JP7478590B2 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
JP7478590B2
JP7478590B2 JP2020088334A JP2020088334A JP7478590B2 JP 7478590 B2 JP7478590 B2 JP 7478590B2 JP 2020088334 A JP2020088334 A JP 2020088334A JP 2020088334 A JP2020088334 A JP 2020088334A JP 7478590 B2 JP7478590 B2 JP 7478590B2
Authority
JP
Japan
Prior art keywords
bucket
control
controller
pilot
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020088334A
Other languages
English (en)
Other versions
JP2021181732A (ja
Inventor
将 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2020088334A priority Critical patent/JP7478590B2/ja
Publication of JP2021181732A publication Critical patent/JP2021181732A/ja
Application granted granted Critical
Publication of JP7478590B2 publication Critical patent/JP7478590B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

本発明は、ショベルに関する。
従来では、掘削対象の目標形状を示す設計面に対し、バケットの刃先位置を自動調整するための掘削制限制御を行うショベルが知られている(特許文献1参照)。
特開2013-217137号公報
上述する従来のショベルでは、バケットを設計面に沿って自動で移動させるものであり、ショベルの動作内容をオペレータに設定させることは考慮されていない。このため、従来の技術では、例えば、ショベルの動作を修正したり、オペレータの判断による特殊な動きをさせることができない。
そこで、上記事情に鑑み、動作パターンの設定を可能とすることを目的とする。
本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に対して、旋回自在に搭載される上部旋回体と、前記上部旋回体に取り付けられたアタッチメントと、前記アタッチメントに対する操作に応じて、前記アタッチメントに含まれるエンドアタッチメントを目標軌道に合わせて自動的に動作させる制御装置と、前記エンドアタッチメントの動作の種類を選択させるための複数の画像を含む画面が表示される表示装置と、を有し、
前記制御装置は、前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンを、前記目標軌道に合わせた動作パターンとして設定する、ショベルである。
動作パターンを設定することができる。
ショベルの側面図である。 ショベルの上面図である。 ショベルの油圧システムの構成の一例を示す図である。 ショベルの油圧システムにおけるアームに関する操作系の構成部分の一例を示す図である。 ショベルの油圧システムにおけるブームに関する操作系の構成部分の一例を示す図である。 ショベルの油圧システムにおけるバケットに関する操作系の構成部分の一例を示す図である。 ショベルの油圧システムにおける上部旋回体に関する操作系の構成部分の一例を示す図である。 ショベルのマシンガイダンス機能及びマシンコントロール機能に関する構成の一例の概要を示すブロック図である。 表示装置に表示されるショベルの動作の種類を示す情報の一例を示す図である。 動作パターンの設定例を示す第一の図である。 動作パターンの設定例を示す第二の図である。 動作パターンの設定例を示す第三の図である。 ショベルのマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。 ショベルのマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。 ショベルのマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。 別の実施形態のショベル100の動作を説明する図である。 別の実施形態に係るショベル100のマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。 別の実施形態のコントローラの動作を説明するフローチャートである。
(実施形態)
図1、図2は、それぞれ、本実施形態に係るショベル100の上面図及び側面図である。
本実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回自在に下部走行体1に搭載される上部旋回体3と、アタッチメントATを構成するブーム4、アーム5、及び、バケット6と、キャビン10を備える。
下部走行体1(走行体の一例)は、後述の如く、左右一対のクローラ1C、具体的には、左クローラ1CL及び右クローラ1CRを含む。下部走行体1は、左クローラ1CL及び右クローラ1CRが走行油圧モータ2M(2ML,2MR)でそれぞれ油圧駆動されることにより、ショベル100を走行させる。
上部旋回体3(旋回体の一例)は、旋回油圧モータ2Aで駆動されることにより、下部走行体1に対して旋回する。
ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、エンドアタッチメントとしてのバケット6が上下回動可能に枢着される。ブーム4、アーム5、及びバケット6は、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。
尚、バケット6は、エンドアタッチメントの一例であり、アーム5の先端には、作業内容等に応じて、バケット6の代わりに、他のエンドアタッチメント、例えば、法面用バケット、浚渫用バケット、ブレーカ等が取り付けられてもよい。
キャビン10は、オペレータが搭乗する運転室であり、上部旋回体3の前部左側に搭載される。
ショベル100は、キャビン10に搭乗するオペレータの操作に応じて、アクチュエータを動作させ、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の動作要素(被駆動要素)を駆動する。
また、ショベル100は、キャビン10のオペレータにより操作可能に構成されるのに代えて、或いは、加えて、所定の外部装置(例えば、後述の支援装置200や管理装置300)のオペレータによって遠隔操作が可能に構成されてもよい。
この場合、ショベル100は、例えば、後述の空間認識装置70が出力する画像情報(撮像画像)を外部装置に送信する。また、後述するショベル100の表示装置D1に表示される各種の情報画像(例えば、各種設定画面等)は、同様に、外部装置に設けられる表示装置にも表示されてよい。
これにより、オペレータは、例えば、外部装置に設けられる表示装置に表示される内容を確認しながら、ショベル100を遠隔操作することができる。そして、ショベル100は、外部装置から受信される、遠隔操作の内容を表す遠隔操作信号に応じて、アクチュエータを動作させ、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の動作要素を駆動してよい。
ショベル100が遠隔操作される場合、キャビン10の内部は、無人状態であってもよい。以下、オペレータの操作には、キャビン10のオペレータの操作装置26に対する操作、及び外部装置のオペレータの遠隔操作の少なくとも一方が含まれる前提で説明を進める。
また、ショベル100は、オペレータの操作の内容に依らず、自動で油圧アクチュエータを動作させてもよい。これにより、ショベル100は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の動作要素の少なくとも一部を自動で動作させる機能(以下、「自動運転機能」或いは「マシンコントロール機能」)を実現する。
自動運転機能には、オペレータの操作装置26に対する操作や遠隔操作に応じて、操作対象の動作要素(油圧アクチュエータ)以外の動作要素(油圧アクチュエータ)を自動で動作させる機能(いわゆる「半自動運転機能」)が含まれてよい。
また、自動運転機能には、オペレータの操作装置26に対する操作や遠隔操作がない前提で、複数の被駆動要素(油圧アクチュエータ)の少なくとも一部を自動で動作させる機能(いわゆる「完全自動運転機能」)が含まれてよい。
ショベル100において、完全自動運転機能が有効な場合、キャビン10の内部は無人状態であってよい。また、自動運転機能には、ショベル100の周囲の作業者等の人のジェスチャをショベル100が認識し、認識されるジェスチャの内容に応じて、複数の被駆動要素(油圧アクチュエータ)の少なくとも一部を自動で動作させる機能(「ジェスチャ操作機能」)が含まれてよい。
また、半自動運転機能や完全自動運転機能やジェスチャ操作機能には、自動運転の対象の動作要素(油圧アクチュエータ)の動作内容が予め規定されるルールに従って自動的に決定される態様が含まれてよい。また、半自動運転機能や完全自動運転機能やジェスチャ操作機能には、ショベル100が自律的に各種の判断を行い、その判断結果に沿って、自律的に自動運転の対象の動作要素(油圧アクチュエータ)の動作内容が決定される態様(いわゆる「自律運転機能」)が含まれてもよい。
[ショベルの構成]
次に、図1、図2に加えて、図3、図4(図4A~図4D)を参照して、ショベル100の構成について説明する。
図3は、本実施形態に係るショベル100の油圧システムの構成の一例を説明する図である。図4A~図4Dは、本実施形態に係るショベル100の油圧システムにおけるアタッチメントAT及び上部旋回体3に関する操作系の構成部分の一例を示す図である。具体的には、図4A~図4Dは、それぞれ、アーム5、ブーム4、バケット6、及び上部旋回体3に関する操作系の構成部分の一例を示す図である。
本実施形態に係るショベル100の油圧システムは、エンジン11と、レギュレータ13と、メインポンプ14と、パイロットポンプ15と、コントロールバルブ17と、操作装置26と、吐出圧センサ28と、操作圧センサ29と、コントローラ30とを含む。
また、本実施形態に係るショベル100の油圧システムは、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ2ML,2MR、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。
エンジン11は、油圧システムのメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、コントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。
レギュレータ13は、メインポンプ14の吐出量を制御する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。レギュレータ13は、後述するメインポンプ14L,14Rのそれぞれに対応するレギュレータ13L,13Rを含む。
メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、上述の如く、エンジン11により駆動されることにより、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、例えば、可変容量式油圧ポンプであり、コントローラ30による制御下で、上述の如く、レギュレータ13により斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。メインポンプ14は、メインポンプ14L,14Rを含む。
パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットラインを介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26に対する操作や遠隔操作に応じて、油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、操作装置26に対する操作や遠隔操作の状態に応じて、油圧アクチュエータ(走行油圧モータ2ML,2MR、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9)に選択的に供給する。
具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する制御弁171~176を含む。制御弁171は、走行油圧モータ2MLに対応する。
また、制御弁172は、走行油圧モータ2MRに対応する。また、制御弁173は、旋回油圧モータ2Aに対応し、制御弁174は、バケットシリンダ9に対応する。また、制御弁175は、ブームシリンダ7に対応し、制御弁175L,175Rを含む。制御弁176は、アームシリンダ8に対応し、制御弁176L,176Rを含む。
操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、バケット6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの動作要素を駆動する油圧アクチュエータ(即ち、走行油圧モータ2ML,2MR、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等)の操作を行うための操作入力手段である。
図3、図4A~図4Dに示すように、操作装置26は、油圧パイロット式である。操作装置26は、その二次側のパイロットラインを通じて、直接的に、或いは、その二次側のパイロットラインに設けられる後述のシャトル弁32を介して、コントロールバルブ17に接続される。
これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じたパイロット圧が入力されうる。そのため、コントロールバルブ17は、操作装置26における操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。
操作装置26は、アタッチメントAT、即ち、ブーム4(ブームシリンダ7)、アーム5(アームシリンダ8)、バケット6(バケットシリンダ9)、並びに、上部旋回体3を操作するための左操作レバー26L及び右操作レバー26Rを含む。また、操作装置26は、下部走行体1を操作するための走行レバー26Dを含み、走行レバー26Dは、左クローラ1CLを操作するための左走行レバー26DLと、右クローラ1CRを操作するための右走行レバー26DRを含む。
左操作レバー26Lは、上部旋回体3の旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、キャビン10内のオペレータから見た前後方向(つまり、上部旋回体3の前後方向)に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
また、左操作レバー26Lは、キャビン10内のオペレータから見た左右方向(つまり、上部旋回体3の左右方向)に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、キャビン10内のオペレータから見た前後方向に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
また、右操作レバー26Rは、左右方向に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
左走行レバー26DLは、上述の如く、左クローラ1CLの操作に用いられ、図示しない左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、キャビン10内のオペレータから見た前後方向に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
左走行レバー26DLの前進方向及び後進方向の操作に対応する二次側のパイロットラインは、それぞれ、制御弁171の対応するパイロットポートに直接的に接続される。つまり、走行油圧モータ2MLを駆動する制御弁171のスプール位置には、左走行レバー26DLの操作内容が反映される。
右走行レバー26DRは、上述の如く、右クローラ1CRの操作に用いられ、図示しない右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、キャビン10内のオペレータから見た前後方向に操作されると、パイロットポンプ15から吐出される作動油を利用し、レバー操作量に応じた制御圧(パイロット圧)を二次側のパイロットラインに出力する。
右走行レバー26DRの前進方向及び後進方向の操作に対応する二次側のパイロットラインは、それぞれ、制御弁172の対応するパイロットポートに直接的に接続される。つまり、走行油圧モータ2MLを駆動する制御弁172のスプール位置には、左走行レバー26DLの操作内容が反映される。
また、操作装置26(左操作レバー26L、右操作レバー26R、左走行レバー26DL、及び右走行レバー26DR)は、パイロット圧を出力する油圧パイロット式ではなく、電気信号(以下、「操作信号」)を出力する電気式であってもよい。
この場合、操作装置26からの電気信号(操作信号)は、コントローラ30に入力され、コントローラ30は、入力される電気信号に応じて、コントロールバルブ17内の各制御弁171~176を制御することにより、操作装置26に対する操作内容に応じた、各種油圧アクチュエータの動作を実現する。
例えば、コントロールバルブ17内の制御弁171~176は、コントローラ30からの指令により駆動する電磁ソレノイド式スプール弁であってもよい。また、例えば、パイロットポンプ15と各制御弁171~176のパイロットポートとの間には、コントローラ30からの電気信号に応じて動作する油圧制御弁(以下、「操作用制御弁」)が配置されてもよい。
操作用制御弁は、例えば、比例弁31であってよく、シャトル弁32は、省略される。この場合、電気式の操作装置26を用いた手動操作が行われると、コントローラ30は、その操作量(例えば、レバー操作量)に対応する電気信号によって、操作用制御弁を制御しパイロット圧を増減させることで、操作装置26に対する操作内容に合わせて、各制御弁171~176を動作させることができる。以下、操作用制御弁は、比例弁31である前提で説明を進める。
吐出圧センサ28は、メインポンプ14の吐出圧を検出する。吐出圧センサ28により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28は、メインポンプ14L,14Rのそれぞれの吐出圧を検出する吐出圧センサ28L,28Rを含む。
操作圧センサ29は、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの動作要素(即ち、油圧アクチュエータ)の操作状態に対応するパイロット圧を検出する。操作圧センサ29による操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。操作圧センサ29は、操作圧センサ29LA,29LB,29RA,29RB,29DL,29DRを含む。
操作圧センサ29LAは、オペレータによる左操作レバー26Lに対する前後方向の操作内容(例えば、操作方向及び操作量)を、左操作レバー26Lの二次側のパイロットラインの作動油の圧力(以下、「操作圧」)の形で検出する。
操作圧センサ29LBは、オペレータによる左操作レバー26Lに対する左右方向の操作内容(例えば、操作方向及び操作量)を、左操作レバー26Lの二次側のパイロットラインの操作圧の形で検出する。
操作圧センサ29RAは、オペレータによる右操作レバー26Rに対する前後方向の操作内容(例えば、操作方向及び操作量)を、右操作レバー26Rの二次側のパイロットラインの操作圧の形で検出する。
操作圧センサ29RBは、オペレータによる右操作レバー26Rに対する左右方向の操作内容(例えば、操作方向及び操作量)を、右操作レバー26Rの二次側のパイロットラインの操作圧の形で検出する。
操作圧センサ29DLは、オペレータによる左走行レバー26DLに対する前後方向の操作内容(例えば、操作方向及び操作量)を、左走行レバー26DLの二次側のパイロットラインの操作圧の形で検出する。
操作圧センサ29DRは、オペレータによる右走行レバー26DRに対する前後方向の操作内容(例えば、操作方向及び操作量)を、右走行レバー26DRの二次側のパイロットラインの操作圧の形で検出する。
尚、操作装置26(左操作レバー26L、右操作レバー26R、左走行レバー26DL、及び右走行レバー26DR)の操作内容は、操作圧センサ29以外のセンサ(例えば、右操作レバー26R、左走行レバー26DL、及び右走行レバー26DRに取り付けられるポテンショメータ等)で検出されてもよい。
コントローラ30(制御装置の一例)は、例えば、キャビン10内に設けられ、ショベル100の駆動制御を行う。コントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。
例えば、コントローラ30は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、不揮発性の補助記憶装置と、各種入出力インターフェース等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、ROMや不揮発性の補助記憶装置に格納される各種プログラムをCPU上で実行することにより各種機能を実現する。
尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。
ここで、図3に示すように、ショベル100の油圧システムにおいて、油圧アクチュエータを駆動する駆動系の油圧システムの部分は、エンジン11により駆動されるメインポンプ14から、センタバイパス油路40やパラレル油路を経て作動油タンクまで作動油を循環させる。
センタバイパス油路40は、センタバイパス油路40L,40Rを含む。センタバイパス油路40Lは、メインポンプ14Lを起点として、コントロールバルブ17内に配置される制御弁171,173,175L,176Lを順に通過し、作動油タンクに至る。
センタバイパス油路40Rは、メインポンプ14Rを起点として、コントロールバルブ17内に配置される制御弁172,174,175R,176Rを順に通過し、作動油タンクに至る。
制御弁171は、メインポンプ14Lから吐出される作動油を走行油圧モータ2MLへ供給し、且つ、走行油圧モータ2MLが吐出する作動油を作動油タンクに排出させるスプール弁である。
制御弁172は、メインポンプ14Rから吐出される作動油を走行油圧モータ2MRへ供給し、且つ、走行油圧モータ2MRが吐出する作動油を作動油タンクへ排出させるスプール弁である。
制御弁173は、メインポンプ14Lから吐出される作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出させるスプール弁である。
制御弁174は、メインポンプ14Rから吐出される作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出させるスプール弁である。
制御弁175L,175Rは、それぞれ、メインポンプ14L,14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出させるスプール弁である。
制御弁176L,176Rは、それぞれ、メインポンプ14L,14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出させるスプール弁である。
制御弁171,172,173,174,175L,175R,176L,176Rは、それぞれ、パイロットポートに作用するパイロット圧に応じて、油圧アクチュエータに給排される作動油の流量を調整したり、流れる方向を切り換えたりする。
パラレル油路42は、パラレル油路42L,42Rを含む。パラレル油路42Lは、センタバイパス油路40Lと並列的に、制御弁171,173,175L,176Lにメインポンプ14Lの作動油を供給する。具体的には、パラレル油路42Lは、制御弁171の上流側でセンタバイパス油路40Lから分岐し、制御弁171,173,175L,176Rのそれぞれに並列してメインポンプ14Lの作動油を供給可能に構成される。
これにより、パラレル油路42Lは、制御弁171,173,175Lの何れかによってセンタバイパス油路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
パラレル油路42Rは、センタバイパス油路40Rと並列的に、制御弁172,174,175R,176Rにメインポンプ14Rの作動油を供給する。
具体的には、パラレル油路42Rは、制御弁172の上流側でセンタバイパス油路40Rから分岐し、制御弁172,174,175R,176Rのそれぞれに並列してメインポンプ14Rの作動油を供給可能に構成される。パラレル油路42Rは、制御弁172,174,175Rの何れかによってセンタバイパス油路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
レギュレータ13L,13Rは、それぞれ、コントローラ30による制御下で、メインポンプ14L、14Rの斜板の傾転角を調節することによって、メインポンプ14L,14Rの吐出量を調節する。
吐出圧センサ28Lは、メインポンプ14Lの吐出圧を検出し、検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28Rについても同様である。これにより、コントローラ30は、メインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御することができる。
センタバイパス油路40L,40Rには、最も下流にある制御弁176L,176Rのそれぞれと作動油タンクとの間には、ネガティブコントロール絞り(以下、「ネガコン絞り」)18L,18Rが設けられる。これにより、メインポンプ14L,14Rにより吐出された作動油の流れは、ネガコン絞り18L,18Rで制限される。そして、ネガコン絞り18L、18Rは、レギュレータ13L,13Rを制御するための制御圧(以下、「ネガコン圧」)を発生させる。
ネガコン圧センサ19L,19Rは、ネガコン圧を検出し、検出されたネガコン圧に対応する検出信号は、コントローラ30に取り込まれる。
コントローラ30は、吐出圧センサ28L,28Rにより検出されるメインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御し、メインポンプ14L,14Rの吐出量を調節してよい。
例えば、コントローラ30は、メインポンプ14Lの吐出圧の増大に応じて、レギュレータ13Lを制御し、メインポンプ14Lの斜板傾転角を調節することにより、吐出量を減少させてよい。レギュレータ13Rについても同様である。これにより、コントローラ30は、吐出圧と吐出量との積で表されるメインポンプ14L,14Rの吸収馬力がエンジン11の出力馬力を超えないように、メインポンプ14L,14Rの全馬力制御を行うことができる。
また、コントローラ30は、ネガコン圧センサ19L,19Rにより検出されるネガコン圧に応じて、レギュレータ13L,13Rを制御することにより、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、ネガコン圧が大きいほどメインポンプ14L,14Rの吐出量を減少させ、ネガコン圧が小さいほどメインポンプ14L,14Rの吐出量を増大させる。
具体的には、ショベル100における油圧アクチュエータが何れも操作されていない待機状態(図3に示す状態)の場合、メインポンプ14L,14Rから吐出される作動油は、センタバイパス油路40L,40Rを通ってネガコン絞り18L、18Rに至る。
そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rの上流で発生するネガコン圧を増大させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を許容最小吐出量まで減少させ、吐出した作動油がセンタバイパス油路40L,40Rを通過する際の圧力損失(ポンピングロス)を抑制する。
一方、何れかの油圧アクチュエータが操作装置26を通じて操作された場合、メインポンプ14L,14Rから吐出される作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。
そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rに至る量を減少或いは消失させ、ネガコン絞り18L,18Rの上流で発生するネガコン圧を低下させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータを確実に駆動させることができる。
また、図3、図4に示すように、ショベル100の油圧システムにおいて、操作系に関する油圧システム部分は、パイロットポンプ15と、操作装置26(左操作レバー26L、右操作レバー26R、左走行レバー26DL、及び右走行レバー26DR)と、比例弁31と、シャトル弁32と、減圧用比例弁33とを含む。
比例弁31は、パイロットポンプ15とシャトル弁32とを接続するパイロットラインに設けられ、その流路面積(作動油が通流可能な断面積)を変更できるように構成される。比例弁31は、コントローラ30から入力される制御指令に応じて動作する。
これにより、コントローラ30は、オペレータにより操作装置26(具体的には、左操作レバー26L、右操作レバー26R)が操作されていない場合であっても、パイロットポンプ15から吐出される作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブ17内の対応する制御弁(具体的には、制御弁173~176)のパイロットポートに供給できる。
そのため、コントローラ30は、比例弁31を制御することにより、ショベル100の自動運転機能や遠隔操作機能を実現することができる。比例弁31は、比例弁31AL,31AR,31BL,31BR,31CL,31CR,31DL,31DRを含む。
シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、2つの入口ポートのうちの一方が操作装置26に接続され、他方が比例弁31に接続される。
シャトル弁32の出口ポートは、パイロットラインを通じて、コントロールバルブ17内の対応する制御弁のパイロットポートに接続されている。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。
つまり、コントローラ30は、操作装置26から出力される二次側のパイロット圧よりも高いパイロット圧を比例弁31から出力させることにより、オペレータによる操作装置26の操作に依らず、対応する制御弁を制御し、下部走行体1、上部旋回体3、アタッチメントATの動作を制御することができる。シャトル弁32は、シャトル弁32AL,32AR,32BL,32BR,32CL,32CR,32DL,32DRを含む。
減圧用比例弁33は、操作装置26とシャトル弁32とを接続するパイロットラインに設けられる。減圧用比例弁33は、例えば、その流路面積を変更できるように構成される。減圧用比例弁33は、コントローラ30から入力される制御指令に応じて動作する。
これにより、コントローラ30は、オペレータにより操作装置26(具体的には、レバー装置26A~26C)が操作されている場合に、操作装置26から出力されるパイロット圧を強制的に減圧させることができる。そのため、コントローラ30は、操作装置26が操作されている場合であっても、操作装置26の操作に対応する油圧アクチュエータの動作を強制的に抑制させたり停止させたりすることができる。
また、コントローラ30は、例えば、操作装置26が操作されている場合であっても、操作装置26から出力されるパイロット圧を減圧させ、比例弁31から出力されるパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31及び減圧用比例弁33を制御することで、例えば、操作装置26の操作内容とは無関係に、所望のパイロット圧をコントロールバルブ17内の制御弁のパイロットポートに確実に作用させることができる。
よって、コントローラ30は、例えば、比例弁31に加えて、減圧用比例弁33を制御することで、ショベル100の自動運転機能や遠隔操作機能をより適切に実現することができる。減圧用比例弁33は、後述の如く、減圧用比例弁33AL,33AR,33BL,33BR,33CL,33CR,33DL,33DRを含む。
また、減圧用比例弁33は、切替弁に置換されてもよい。切替弁は、コントローラ30による制御下で、操作装置26とシャトル弁32との間のパイロットラインの連通状態と、非連通状態とを切り替える。
図4Aに示すように、左操作レバー26Lは、オペレータが前後方向に傾倒する態様で、アーム5に対応するアームシリンダ8を操作するために用いられる。つまり、左操作レバー26Lは、前後方向に傾倒される場合、アーム5の動作を操作対象とする。左操作レバー26Lは、パイロットポンプ15から吐出される作動油を利用して、前後方向への操作内容に応じたパイロット圧を二次側に出力する。
シャトル弁32ALは、二つの入口ポートが、それぞれ、アーム5の閉じ方向の操作(以下、「アーム閉じ操作」)に対応する左操作レバー26Lの二次側のパイロットラインと、比例弁31ALの二次側のパイロットラインとに接続され、出口ポートが制御弁176Lの右側のパイロットポート及び制御弁176Rの左側のパイロットポートに接続される。
シャトル弁32ARは、二つの入口ポートが、それぞれ、アーム5の開き方向の操作(以下、「アーム開き操作」)に対応する左操作レバー26Lの二次側のパイロットラインと、比例弁31ARの二次側のパイロットラインとに接続され、出口ポートが制御弁176Lの左側のパイロットポート及び制御弁176Rの右側のパイロットポートに接続される。
つまり、左操作レバー26Lは、シャトル弁32AL,32ARを介して、前後方向への操作内容に応じたパイロット圧を制御弁176L、176Rのパイロットポートに作用させる。
具体的には、左操作レバー26Lは、アーム閉じ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ALの一方の入口ポートに出力し、シャトル弁32ALを介して、制御弁176Lの右側のパイロットポートと制御弁176Rの左側のパイロットポートに作用させる。
また、左操作レバー26Lは、アーム開き操作された場合に、操作量に応じたパイロット圧をシャトル弁32ARの一方の入口ポートに出力し、シャトル弁32ARを介して、制御弁176Lの左側のパイロットポートと制御弁176Rの右側のパイロットポートに作用させる。
比例弁31ALは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ALは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ALの他方のパイロットポートに出力する。
これにより、比例弁31ALは、シャトル弁32ALを介して、制御弁176Lの右側のパイロットポート及び制御弁176Rの左側のパイロットポートに作用するパイロット圧を調整することができる。
比例弁31ARは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ARは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ARの他方のパイロットポートに出力する。これにより、比例弁31ARは、シャトル弁32ARを介して、制御弁176Lの左側のパイロットポート及び制御弁176Rの右側のパイロットポートに作用するパイロット圧を調整することができる。
つまり、比例弁31AL、31ARは、左操作レバー26Lの操作状態に依らず、制御弁176L,176Rを任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
減圧用比例弁33ALは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33ALは、コントローラ30からの制御電流が入力されない場合、左操作レバー26Lのアーム閉じ操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33ALは、コントローラ30からの制御電流が入力される場合、左操作レバー26Lのアーム閉じ操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32ALの一方の入口ポートに出力する。
これにより、減圧用比例弁33ALは、左操作レバー26Lでアーム閉じ操作が行われている場合であっても、必要に応じて、アーム閉じ操作に対応するアームシリンダ8の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33ALは、左操作レバー26Lでアーム閉じ操作がされている場合であっても、シャトル弁32ALの一方の入口ポートに作用するパイロット圧を、比例弁31ALからシャトル弁32ALの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31AL及び減圧用比例弁33ALを制御し、所望のパイロット圧を確実に制御弁176L,176Rのアーム閉じ側のパイロットポートに作用させることができる。
減圧用比例弁33ARは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33ARは、コントローラ30からの制御電流が入力されない場合、左操作レバー26Lのアーム開き操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33ARは、コントローラ30からの制御電流が入力される場合、左操作レバー26Lのアーム開き操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32ARの一方の入口ポートに出力する。
これにより、減圧用比例弁33ARは、左操作レバー26Lでアーム開き操作が行われている場合であっても、必要に応じて、アーム開き操作に対応するアームシリンダ8の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33ARは、左操作レバー26Lでアーム開き操作がされている場合であっても、シャトル弁32ARの一方の入口ポートに作用するパイロット圧を、比例弁31ARからシャトル弁32ARの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31AR及び減圧用比例弁33ARを制御し、所望のパイロット圧を確実に制御弁176L,176Rのアーム開き側のパイロットポートに作用させることができる。
このように、減圧用比例弁33AL,33ARは、左操作レバー26Lの前後方向への操作状態に対応するアームシリンダ8の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33AL,33ARは、シャトル弁32AL,32ARの一方の入口ポートに作用するパイロット圧を低下させ、比例弁31AL,31ARのパイロット圧がシャトル弁32AL,32ARを通じて確実に制御弁176L,176Rのパイロットポートに作用するように補助することができる。
尚、コントローラ30は、減圧用比例弁33ALを制御する代わりに、比例弁31ARを制御することによって、左操作レバー26Lのアーム閉じ操作に対応するアームシリンダ8の動作を強制的に抑制させたり停止させたりしてもよい。
例えば、コントローラ30は、左操作レバー26Lでアーム閉じ操作が行われる場合に、比例弁31ARを制御し、比例弁31ARからシャトル弁32ARを介して制御弁176L,176Rのアーム開き側のパイロットポートに所定のパイロット圧を作用させてよい。これにより、左操作レバー26Lからシャトル弁32ALを介して制御弁176L,176Rのアーム閉じ側のパイロットポートに作用するパイロット圧に対抗する形で、制御弁176L,176Rのアーム開き側のパイロットポートにパイロット圧が作用する。
そのため、コントローラ30は、制御弁176L,176Rを強制的に中立位置に近づけて、左操作レバー26Lのアーム閉じ操作に対応するアームシリンダ8の動作を抑制させたり停止させたりすることができる。同様に、コントローラ30は、減圧用比例弁33ARを制御する代わりに、比例弁31ALを制御することによって、左操作レバー26Lのアーム開き操作に対応するアームシリンダ8の動作を強制的に抑制させたり停止させたりしてもよい。
また、減圧用比例弁33AL,33ARは、それぞれ、切替弁に置換されてもよい。以下、減圧用比例弁33BL,33BR,33CL,33CR,33DL,33DRについても同様であってよい。
減圧用比例弁33ALに対応する切替弁は、アーム閉じ操作に対応する左操作レバー26Lの二次側ポートと、シャトル弁32ALとの間のパイロットラインに設けられ、コントローラ30から入力される制御指令に応じて、当該パイロットラインの連通・非連通を切り替える。
例えば、当該切替弁は、通常、当該パイロットラインを連通状態に維持する常開型であり、コントローラ30からの制御指令に応じて、当該パイロットラインを非連通にし、左操作レバー26Lから出力される、アーム閉じ操作に対応する作動油を作動油タンクに排出してよい。
減圧用比例弁33ARに対応する切替弁は、アーム開き操作に対応する左操作レバー26Lの二次側ポートと、シャトル弁32ARとの間のパイロットラインに設けられ、コントローラ30から入力される制御指令に応じて、当該パイロットラインの連通・非連通を切り替える。
例えば、当該切替弁は、通常、当該パイロットラインを連通状態に維持する常開型であり、コントローラ30からの制御指令に応じて、当該パイロットラインを非連通にし、左操作レバー26Lから出力される、アーム開き操作に対応する作動油を作動油タンクに排出してよい。
つまり、切替弁は、シャトル弁32AL,32ARに左操作レバー26Lにおけるアーム5の操作に対応するパイロット圧が入力されないようにすることができる。
操作圧センサ29LAは、オペレータによる左操作レバー26Lに対する前後方向への操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。
これにより、コントローラ30は、左操作レバー26Lに対する前後方向への操作内容を把握できる。検出対象の左操作レバー26Lに対する前後方向への操作内容には、例えば、操作方向、操作量(操作角度)等が含まれうる。以下、左操作レバー26Lに対する左右方向の操作内容、並びに、右操作レバー26Rに対する前後方向及び左右方向の操作内容についても同様である。
コントローラ30は、オペレータによる左操作レバー26Lに対するアーム閉じ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AL及びシャトル弁32ALを介して、制御弁176Lの右側のパイロットポート及び制御弁176Rの左側のパイロットポートに供給できる。
また、コントローラ30は、オペレータによる左操作レバー26Lに対するアーム開き操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AR及びシャトル弁32ARを介して、制御弁176Lの左側のパイロットポート及び制御弁176Rの右側のパイロットポートに供給させることができる。即ち、コントローラ30は、アーム5の開閉動作を自動制御し、ショベル100の自動運転機能や遠隔操作機能等を実現することができる。
また、コントローラ30は、上述の如く、減圧用比例弁33AL,33ARや切替弁を制御し、アーム5の操作に対応する左操作レバー26Lの二次側のパイロットラインからシャトル弁32AL,32ARに入力されるパイロット圧を相対的に低くすることができる。
これにより、コントローラ30は、左操作レバー26Lにおける前後方向の操作内容に対応させる形で、アーム5以外の動作要素(例えば、ブーム4やバケット6)を後述のマスタ要素として動作させ、アーム5をマスタ要素に合わせて動作する後述のスレーブ要素として動作させることができる。
また、例えば、図4Bに示すように、右操作レバー26Rは、オペレータが前後方向に傾倒する態様で、ブーム4に対応するブームシリンダ7を操作するために用いられる。つまり、右操作レバー26Rは、前後方向に傾倒される場合、ブーム4の動作を操作対象とする。右操作レバー26Rは、パイロットポンプ15から吐出される作動油を利用して、前後方向への操作内容に応じたパイロット圧を二次側に出力する。
シャトル弁32BLは、二つの入口ポートが、それぞれ、ブーム4の上げ方向の操作(以下、「ブーム上げ操作」)に対応する右操作レバー26Rの二次側のパイロットラインと、比例弁31BLの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに接続される。
シャトル弁32BRは、二つの入口ポートが、それぞれ、ブーム4の下げ方向の操作(以下、「ブーム下げ操作」)に対応する右操作レバー26Rの二次側のパイロットラインと、比例弁31BRの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Rの右側のパイロットポートに接続される。
つまり、右操作レバー26Rは、シャトル弁32BL,32BRを介して、前後方向への操作内容に応じたパイロット圧を制御弁175L,175Rのパイロットポートに作用させる。
具体的には、右操作レバー26Rは、ブーム上げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32BLの一方の入口ポートに出力し、シャトル弁32BLを介して、制御弁175Lの右側のパイロットポートと制御弁175Rの左側のパイロットポートに作用させる。また、右操作レバー26Rは、ブーム下げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32BRの一方の入口ポートに出力し、シャトル弁32BRを介して、制御弁175Rの右側のパイロットポートに作用させる。
比例弁31BLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31BLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BLの他方の入口ポートに出力する。これにより、比例弁31BLは、シャトル弁32BLを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに作用するパイロット圧を調整することができる。
比例弁31BRは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31BRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BRの他方の入口ポートに出力する。これにより、比例弁31BRは、シャトル弁32BRを介して、制御弁175Rの右側のパイロットポートに作用するパイロット圧を調整することができる。
つまり、比例弁31BL,31BRは、右操作レバー26Rの操作状態に依らず、制御弁175L、175Rを任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
減圧用比例弁33BLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33BLは、コントローラ30からの制御電流が入力されない場合、右操作レバー26Rのブーム上げ操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33BLは、コントローラ30からの制御電流が入力される場合、右操作レバー26Rのブーム上げ操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32BLの一方の入口ポートに出力する。
これにより、減圧用比例弁33BLは、右操作レバー26Rでブーム上げ操作が行われている場合であっても、必要に応じて、ブーム上げ操作に対応するブームシリンダ7の動作を強制的に抑制させたり停止させたりすることができる。また、減圧用比例弁33BLは、右操作レバー26Rでブーム上げ操作がされている場合であっても、シャトル弁32BLの一方の入口ポートに作用するパイロット圧を、比例弁31BLからシャトル弁32BLの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31BL及び減圧用比例弁33BLを制御し、所望のパイロット圧を確実に制御弁175L,175Rのブーム上げ側のパイロットポートに作用させることができる。
減圧用比例弁33BRは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33BRは、コントローラ30からの制御電流が入力されない場合、右操作レバー26Rのブーム下げ操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33BRは、コントローラ30からの制御電流が入力される場合、右操作レバー26Rのブーム下げ操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32BRの一方の入口ポートに出力する。
これにより、減圧用比例弁33BRは、右操作レバー26Rでブーム下げ操作が行われている場合であっても、必要に応じて、ブーム下げ操作に対応するブームシリンダ7の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33BRは、右操作レバー26Rでブーム下げ操作がされている場合であっても、シャトル弁32BRの一方の入口ポートに作用するパイロット圧を、比例弁31BRからシャトル弁32BRの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31BR及び減圧用比例弁33BRを制御し、所望のパイロット圧を確実に制御弁175L,175Rのブーム下げ側のパイロットポートに作用させることができる。
このように、減圧用比例弁33BL,33BRは、右操作レバー26Rの前後方向への操作状態に対応するブームシリンダ7の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33BL,33BRは、シャトル弁32BL,32BRの一方の入口ポートに作用するパイロット圧を低下させ、比例弁31BL,31BRのパイロット圧がシャトル弁32BL,32BRを通じて確実に制御弁175L,175Rのパイロットポートに作用するように補助することができる。
尚、コントローラ30は、減圧用比例弁33BLを制御する代わりに、比例弁31BRを制御することによって、右操作レバー26Rのブーム上げ操作に対応するブームシリンダ7の動作を強制的に抑制させたり停止させたりしてもよい。
例えば、コントローラ30は、右操作レバー26Rでブーム上げ操作が行われる場合に、比例弁31BRを制御し、比例弁31BRからシャトル弁32BRを介して制御弁175L,175Rのブーム下げ側のパイロットポートに所定のパイロット圧を作用させてよい。
これにより、右操作レバー26Rからシャトル弁32BLを介して制御弁175L,175Rのブーム上げ側のパイロットポートに作用するパイロット圧に対抗する形で、制御弁175L,175Rのブーム下げ側のパイロットポートにパイロット圧が作用する。
そのため、コントローラ30は、制御弁175L,175Rを強制的に中立位置に近づけて、右操作レバー26Rのブーム上げ操作に対応するブームシリンダ7の動作を抑制させたり停止させたりすることができる。同様に、コントローラ30は、減圧用比例弁33BRを制御する代わりに、比例弁31BLを制御することによって、右操作レバー26Rのブーム下げ操作に対応するブームシリンダ7の動作を強制的に抑制させたり停止させたりしてもよい。
操作圧センサ29RAは、オペレータによる右操作レバー26Rに対する前後方向への操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、右操作レバー26Rに対する前後方向への操作内容を把握できる。
コントローラ30は、オペレータによる右操作レバー26Rに対するブーム上げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BL及びシャトル弁32BLを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに供給させることができる。
また、コントローラ30は、オペレータによる右操作レバー26Rに対するブーム下げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BR及びシャトル弁32BRを介して、制御弁175Rの右側のパイロットポートに供給できる。即ち、コントローラ30は、ブーム4の上げ下げの動作を自動制御し、ショベル100の自動運転機能や遠隔操作機能等を実現することができる。
図4Cに示すように、右操作レバー26Rは、オペレータが左右方向に傾倒する態様で、バケット6に対応するバケットシリンダ9を操作するために用いられる。つまり、右操作レバー26Rは、左右方向に傾倒される場合、バケット6の動作を操作対象とする。右操作レバー26Rは、パイロットポンプ15から吐出される作動油を利用して、左右方向への操作内容に応じたパイロット圧を二次側に出力する。
シャトル弁32CLは、二つの入口ポートが、それぞれ、バケット6の閉じ方向の操作(以下、「バケット閉じ操作」)に対応する右操作レバー26Rの二次側のパイロットラインと、比例弁31CLの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の左側のパイロットポートに接続される。
シャトル弁32CRは、二つの入口ポートが、それぞれ、バケット6の開き方向の操作(以下、「バケット開き操作」)に対応する右操作レバー26Rの二次側のパイロットラインと、比例弁31CRの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の右側のパイロットポートに接続される。
つまり、右操作レバー26Rは、シャトル弁32CL,32CRを介して、左右方向への操作内容に応じたパイロット圧を制御弁174のパイロットポートに作用させる。具体的には、右操作レバー26Rは、バケット閉じ操作された場合に、操作量に応じたパイロット圧をシャトル弁32CLの一方の入口ポートに出力し、シャトル弁32CLを介して、制御弁174の左側のパイロットポートに作用させる。
また、右操作レバー26Rは、バケット開き操作された場合に、操作量に応じたパイロット圧をシャトル弁32CRの一方の入口ポートに出力し、シャトル弁32CRを介して、制御弁174の右側のパイロットポートに作用させる。
比例弁31CLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31CLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CLの他方のパイロットポートに出力する。これにより、比例弁31CLは、シャトル弁32CLを介して、制御弁174の左側のパイロットポートに作用するパイロット圧を調整することができる。
具体的には、比例弁31CRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CRの他方のパイロットポートに出力する。これにより、比例弁31CRは、シャトル弁32CRを介して、制御弁174の右側のパイロットポートに作用するパイロット圧を調整することができる。
つまり、比例弁31CL,31CRは、右操作レバー26Rの操作状態に依らず、制御弁174を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
減圧用比例弁33CLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33CLは、コントローラ30からの制御電流が入力されない場合、右操作レバー26Rのバケット閉じ操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33CLは、コントローラ30からの制御電流が入力される場合、右操作レバー26Rのバケット閉じ操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32CLの一方の入口ポートに出力する。
これにより、減圧用比例弁33CLは、右操作レバー26Rでバケット閉じ操作が行われている場合であっても、必要に応じて、バケット閉じ操作に対応するバケットシリンダ9の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33CLは、右操作レバー26Rでバケット閉じ操作がされている場合であっても、シャトル弁32CLの一方の入口ポートに作用するパイロット圧を、比例弁31CLからシャトル弁32CLの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31CL及び減圧用比例弁33CLを制御し、所望のパイロット圧を確実に制御弁174のバケット閉じ側のパイロットポートに作用させることができる。
減圧用比例弁33CRは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33CRは、コントローラ30からの制御電流が入力されない場合、右操作レバー26Rのバケット開き操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33CRは、コントローラ30からの制御電流が入力される場合、右操作レバー26Rのバケット開き操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32CRの一方の入口ポートに出力する。
これにより、減圧用比例弁33CRは、右操作レバー26Rでバケット開き操作が行われている場合であっても、必要に応じて、バケット開き操作に対応するバケットシリンダ9の動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33CRは、右操作レバー26Rでバケット開き操作がされている場合であっても、シャトル弁32CRの一方の入口ポートに作用するパイロット圧を、比例弁31CRからシャトル弁32CRの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31CR及び減圧用比例弁33CRを制御し、所望のパイロット圧を確実に制御弁174のバケット開き側のパイロットポートに作用させることができる。
このように、減圧用比例弁33CL,33CRは、右操作レバー26Rの左右方向への操作状態に対応するバケットシリンダ9の動作を強制的に抑制させたり停止させたりすることができる。また、減圧用比例弁33CL,33CRは、シャトル弁32CL,32CRの一方の入口ポートに作用するパイロット圧を低下させ、比例弁31CL,31CRのパイロット圧がシャトル弁32CL,32CRを通じて確実に制御弁174のパイロットポートに作用するように補助することができる。
尚、コントローラ30は、減圧用比例弁33CLを制御する代わりに、比例弁31CRを制御することによって、右操作レバー26Rのバケット閉じ操作に対応するバケットシリンダ9の動作を強制的に抑制させたり停止させたりしてもよい。
例えば、コントローラ30は、右操作レバー26Rでバケット閉じ操作が行われる場合に、比例弁31CRを制御し、比例弁31CRからシャトル弁32CRを介して制御弁174のバケット開き側のパイロットポートに所定のパイロット圧を作用させてよい。これにより、右操作レバー26Rからシャトル弁32CLを介して制御弁174のバケット閉じ側のパイロットポートに作用するパイロット圧に対抗する形で、制御弁174のバケット開き側のパイロットポートにパイロット圧が作用する。
そのため、コントローラ30は、制御弁174を強制的に中立位置に近づけて、右操作レバー26Rのバケット閉じ操作に対応するバケットシリンダ9の動作を抑制させたり停止させたりすることができる。
同様に、コントローラ30は、減圧用比例弁33CRを制御する代わりに、比例弁31CLを制御することによって、右操作レバー26Rのバケット開き操作に対応するバケットシリンダ9の動作を強制的に抑制させたり停止させたりしてもよい。
操作圧センサ29RBは、オペレータによる右操作レバー26Rに対する左右方向への操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、右操作レバー26Rの左右方向への操作内容を把握できる。
コントローラ30は、オペレータによる右操作レバー26Rに対するバケット閉じ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CL及びシャトル弁32CLを介して、制御弁174の左側のパイロットポートに供給させることができる。
また、コントローラ30は、オペレータによる右操作レバー26Rに対するバケット開き操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CR及びシャトル弁32CRを介して、制御弁174の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、バケット6の開閉動作を自動制御し、ショベル100の自動運転機能や遠隔操作機能等を実現することができる。
また、例えば、図4Dに示すように、左操作レバー26Lは、オペレータが左右方向に傾倒する態様で、上部旋回体3(旋回機構2)に対応する旋回油圧モータ2Aを操作するために用いられる。つまり、左操作レバー26Lは、左右方向に傾倒される場合、上部旋回体3の旋回動作を操作対象とする。左操作レバー26Lは、パイロットポンプ15から吐出される作動油を利用して、左右方向への操作内容に応じたパイロット圧を二次側に出力する。
シャトル弁32DLは、二つの入口ポートが、それぞれ、上部旋回体3の左方向の旋回操作(以下、「左旋回操作」)に対応する左操作レバー26Lの二次側のパイロットラインと、比例弁31DLの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の左側のパイロットポートに接続される。
シャトル弁32DRは、二つの入口ポートが、それぞれ、上部旋回体3の右方向の旋回操作(以下、「右旋回操作」)に対応する左操作レバー26Lの二次側のパイロットラインと、比例弁31DRの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の右側のパイロットポートに接続される。
つまり、左操作レバー26Lは、シャトル弁32DL,32DRを介して、左右方向への操作内容に応じたパイロット圧を制御弁173のパイロットポートに作用させる。具体的には、左操作レバー26Lは、左旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32DLの一方の入口ポートに出力し、シャトル弁32DLを介して、制御弁173の左側のパイロットポートに作用させる。
また、左操作レバー26Lは、右旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32DRの一方の入口ポートに出力し、シャトル弁32DRを介して、制御弁173の右側のパイロットポートに作用させる。
比例弁31DLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31DLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32DLの他方のパイロットポートに出力する。これにより、比例弁31DLは、シャトル弁32DLを介して、制御弁173の左側のパイロットポートに作用するパイロット圧を調整することができる。
比例弁31DRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31DRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32DRの他方のパイロットポートに出力する。これにより、比例弁31DRは、シャトル弁32DRを介して、制御弁173の右側のパイロットポートに作用するパイロット圧を調整することができる。
つまり、比例弁31DL,31DRは、左操作レバー26Lの操作状態に依らず、制御弁173を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
減圧用比例弁33DLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33DLは、コントローラ30からの制御電流が入力されない場合、左操作レバー26Lの左旋回操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33DLは、コントローラ30からの制御電流が入力される場合、左操作レバー26Lの左旋回操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32DLの一方の入口ポートに出力する。
これにより、減圧用比例弁33DLは、左操作レバー26Lで左旋回操作が行われている場合であっても、必要に応じて、左旋回操作に対応する旋回油圧モータ2Aの動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33DLは、左操作レバー26Lで左旋回操作がされている場合であっても、シャトル弁32DLの一方の入口ポートに作用するパイロット圧を、比例弁31DLからシャトル弁32DLの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31DL及び減圧用比例弁33DLを制御し、所望のパイロット圧を確実に制御弁173の左旋回側のパイロットポートに作用させることができる。
減圧用比例弁33DRは、コントローラ30から入力される制御電流に応じて動作する。具体的には、減圧用比例弁33DRは、コントローラ30からの制御電流が入力されない場合、左操作レバー26Lの右旋回操作に対応するパイロット圧をそのまま二次側に出力する。
一方、減圧用比例弁33DRは、コントローラ30からの制御電流が入力される場合、左操作レバー26Lの右旋回操作に対応する二次側のパイロットラインのパイロット圧を制御電流に応じた程度に減圧し、減圧したパイロット圧をシャトル弁32DRの一方の入口ポートに出力する。
これにより、減圧用比例弁33DRは、左操作レバー26Lで右旋回操作が行われている場合であっても、必要に応じて、右旋回操作に対応する旋回油圧モータ2Aの動作を強制的に抑制させたり停止させたりすることができる。
また、減圧用比例弁33DRは、左操作レバー26Lで右旋回操作がされている場合であっても、シャトル弁32DRの一方の入口ポートに作用するパイロット圧を、比例弁31DRからシャトル弁32DRの他方の入口ポートに作用するパイロット圧よりも低くすることができる。
そのため、コントローラ30は、比例弁31DR及び減圧用比例弁33DRを制御し、所望のパイロット圧を確実に制御弁173の右旋回側のパイロットポートに作用させることができる。
このように、減圧用比例弁33DL,33DRは、左操作レバー26Lの左右方向への操作状態に対応する旋回油圧モータ2Aの動作を強制的に抑制させたり停止させたりすることができる。また、減圧用比例弁33DL,33DRは、シャトル弁32DL,32DRの一方の入口ポートに作用するパイロット圧を低下させ、比例弁31DL,31DRのパイロット圧がシャトル弁32DL,32DRを通じて確実に制御弁173のパイロットポートに作用するように補助することができる。
尚、コントローラ30は、減圧用比例弁33DLを制御する代わりに、比例弁31DRを制御することによって、左操作レバー26Lの左旋回操作に対応する旋回油圧モータ2Aの動作を強制的に抑制させたり停止させたりしてもよい。
例えば、コントローラ30は、左操作レバー26Lで左旋回操作が行われる場合に、比例弁31DRを制御し、比例弁31DRからシャトル弁32DRを介して制御弁173の右旋回側のパイロットポートに所定のパイロット圧を作用させてよい。
これにより、左操作レバー26Lからシャトル弁32DLを介して制御弁173の左旋回側のパイロットポートに作用するパイロット圧に対抗する形で、制御弁173の右旋回側のパイロットポートにパイロット圧が作用する。
そのため、コントローラ30は、制御弁173を強制的に中立位置に近づけて、左操作レバー26Lの左旋回操作に対応する旋回油圧モータ2Aの動作を抑制させたり停止させたりすることができる。同様に、コントローラ30は、減圧用比例弁33DRを制御する代わりに、比例弁31DLを制御することによって、左操作レバー26Lの右旋回操作に対応する旋回油圧モータ2Aの動作を強制的に抑制させたり停止させたりしてもよい。
操作圧センサ29LBは、オペレータによる左操作レバー26Lに対する操作状態を圧力として検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、左操作レバー26Lに対する左右方向への操作内容を把握できる。
コントローラ30は、オペレータによる左操作レバー26Lに対する左旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31DL及びシャトル弁32DLを介して、制御弁173の左側のパイロットポートに供給させることができる。
また、コントローラ30は、オペレータによる左操作レバー26Lに対する右旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31DR及びシャトル弁32DRを介して、制御弁173の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、上部旋回体3の左右方向への旋回動作を自動制御し、ショベル100の自動運転機能や遠隔操作機能等を実現することができる。
尚、下部走行体1についても、ブーム4、アーム5、バケット6、及び上部旋回体3と同様に、コントローラ30による自動制御が可能な構成が採用されてもよい。この場合、例えば、左走行レバー26DL及び右走行レバー26DRのそれぞれと、制御弁171,172との間の二次側のパイロットラインには、シャトル弁32が設置されると共に、当該シャトル弁32に接続され、コントローラ30による制御が可能な比例弁31が設置されるとよい。
これにより、コントローラ30は、当該比例弁31に制御電流を出力することで、下部走行体1の走行動作を自動制御し、ショベル100の自動運転機能や遠隔操作機能等を実現することができる。
続いて、本実施形態に係るショベル100の制御システムは、コントローラ30と、空間認識装置70と、向き検出装置71と、入力装置72と、測位装置73と、表示装置D1と、音声出力装置D2と、ブーム角度センサS1と、アーム角度センサS2と、バケット角度センサS3と、機体傾斜センサS4と、旋回状態センサS5とを含む。
コントローラ30は、上述の如く、ショベル100に関する制御を行う。
例えば、コントローラ30は、オペレータ等の入力装置72に対する所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、エンジン11を一定回転させる駆動制御を行う。
また、例えば、コントローラ30は、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
また、例えば、コントローラ30は、操作装置26が電気式である場合、上述の如く、比例弁31を制御し、操作装置26の操作内容に応じた油圧アクチュエータの動作を実現してよい。
また、例えば、コントローラ30は、比例弁31を用いて、ショベル100の遠隔操作を実現してよい。具体的には、コントローラ30は、外部装置から受信される遠隔操作信号で指定される遠隔操作の内容に対応する制御指令を比例弁31に出力してよい。そして、比例弁31は、パイロットポンプ15から供給される作動油を用いて、コントローラ30からの制御指令に対応するパイロット圧を出力し、コントロールバルブ17内の対応する制御弁のパイロットポートにそのパイロット圧を作用させてよい。
これにより、遠隔操作の内容がコントロールバルブ17の動作に反映され、油圧アクチュエータによって、遠隔操作の内容に沿った各種動作要素(被駆動要素)の動作が実現される。
また、例えば、コントローラ30は、周辺監視機能に関する制御を行う。周辺監視機能では、空間認識装置70で取得される情報に基づき、ショベル100の周囲の所定範囲(以下、「監視範囲」)内への監視対象の物体の進入が監視される。
監視範囲内への監視対象の物体の進入の判断処理は、空間認識装置70によって行われてもよいし、空間認識装置70の外部(例えば、コントローラ30)によって行われてもよい。監視対象の物体には、例えば、人、トラック、他の建設機械、電柱、吊り荷、パイロン、建屋等が含まれてよい。
また、例えば、コントローラ30は、物体検出報知機能に関する制御を行う。物体検出報知機能では、周辺監視機能によって、監視範囲内に監視対象の物体が存在すると判断される場合に、キャビン10内のオペレータやショベル100の周囲に対する監視対象の物体の存在が報知される。コントローラ30は、例えば、表示装置D1や音声出力装置D2を用いて、物体検出報知機能を実現してよい。
また、例えば、コントローラ30は、動作制限機能に関する制御を行う。動作制限機能では、例えば、周辺監視機能によって、監視対象内に監視対象の物体が存在すると判断される場合に、ショベル100の動作を制限する。以下、監視対象の物体が人である場合を中心に説明する。
コントローラ30は、例えば、アクチュエータが動作する前において、空間認識装置70の取得情報に基づきショベル100から所定範囲内(監視範囲内)に人等の監視対象の物体が存在すると判断される場合、オペレータが操作装置26を操作しても、アクチュエータを動作不能、或いは、微速状態での動作に制限してよい。
具体的には、コントローラ30は、監視範囲内に人が存在すると判断される場合、ゲートロック弁をロック状態にすることでアクチュエータを動作不能にすることができる。
電気式の操作装置26の場合には、コントローラ30から操作用比例弁(比例弁31)への信号を無効にすることで、アクチュエータを動作不能にすることができる。他の方式の操作装置26でも、コントローラ30からの制御指令に対応するパイロット圧を出力し、コントロールバルブ17内の対応する制御弁のパイロットポートにそのパイロット圧を作用させる操作用比例弁(比例弁31)が用いられる場合には、同様である。
アクチュエータの動作を微速にしたい場合には、コントローラ30から操作用比例弁(比例弁31)への制御信号を相対的に小さいパイロット圧に対応する内容に制限することで、アクチュエータの動作を微速状態にすることができる。
このように、検出される監視対象の物体が監視範囲内に存在すると判断されると、操作装置26が操作されてもアクチュエータは駆動されない、或いは、操作装置26への操作入力に対応する動作速度よりも小さい動作速度(微速)で駆動される。
更に、オペレータが操作装置26を操作している最中において、監視範囲内に人等の監視対象の物体が存在すると判断される場合には、オペレータの操作に関わらずアクチュエータの動作を停止、或いは、減速させてもよい。
具体的には、監視範囲内に人が存在すると判断される場合、ゲートロック弁をロック状態にすることでアクチュエータを停止させてよい。コントローラ30からの制御指令に対応するパイロット圧を出力し、コントロールバルブ内の対応する制御弁のパイロットポートにそのパイロット圧を作用させる操作用比例弁(比例弁31)が用いられる場合には、コントローラ30から操作用比例弁(比例弁31)への信号を無効にする、或いは、操作用比例弁(比例弁31)に減速指令を出力することで、アクチュエータを動作不能、或いは、微速状態の動作に制限することができる。
また、検出された監視対象の物体がトラックの場合、アクチュエータの停止或いは減速に関する制御は実施されなくてもよい。例えば、検出されたトラックを回避するようにアクチュエータは制御されてよい。このように、検出された物体の種類が認識され、その認識に基づきアクチュエータは制御されてよい。
空間認識装置70は、ショベル100の周囲の三次元空間に存在する物体を認識し、空間認識装置70或いはショベル100から認識された物体までの距離等の位置関係を測定(演算)するように構成される。
空間認識装置70は、例えば、超音波センサ、ミリ波レーダ、単眼カメラ、ステレオカメラ、LIDAR(Light Detecting and Ranging)、距離画像センサ、赤外線センサ等を含みうる。
本実施形態では、空間認識装置70は、キャビン10の上面前端に取り付けられた前方認識センサ70F、上部旋回体3の上面後端に取り付けられた後方認識センサ70B、上部旋回体3の上面左端に取り付けられた左方認識センサ70L、及び、上部旋回体3の上面右端に取り付けられた右方認識センサ70Rを含む。また、上部旋回体3の上方の空間に存在する物体を認識する上方認識センサがショベル100に取り付けられていてもよい。
向き検出装置71は、上部旋回体3の向きと下部走行体1の向きとの相対的な関係に関する情報(例えば、下部走行体1に対する上部旋回体3の旋回角度)を検出する。
向き検出装置71は、例えば、下部走行体1に取り付けられた地磁気センサと上部旋回体3に取り付けられた地磁気センサの組み合わせを含んでよい。また、向き検出装置71は、下部走行体1に取り付けられたGNSS受信機と上部旋回体3に取り付けられたGNSS受信機の組み合わせを含んでもよい。
また、向き検出装置71は、上部旋回体3の下部走行体1に対する相対的な旋回角度を検出可能なロータリエンコーダ、ロータリポジションセンサ等、つまり、上述の旋回状態センサS5を含んでもよく、例えば、下部走行体1と上部旋回体3との間の相対回転を実現する旋回機構2に関連して設けられるセンタージョイントに取り付けられていてもよい。
また、向き検出装置71は、上部旋回体3に取り付けられたカメラを含んでもよい。この場合、向き検出装置71は、上部旋回体3に取り付けられているカメラが撮像した画像(入力画像)に既知の画像処理を施すことにより、入力画像に含まれる下部走行体1の画像を検出する。
そして、向き検出装置71は、既知の画像認識技術を用いて、下部走行体1の画像を検出することで、下部走行体1の長手方向を特定し、上部旋回体3の前後軸の方向と下部走行体1の長手方向との間に形成される角度を導出してよい。
このとき、上部旋回体3の前後軸の方向は、カメラの取り付け位置から導出されうる。特に、クローラ1Cは上部旋回体3から突出しているため、向き検出装置71は、クローラ1Cの画像を検出することにより、下部走行体1の長手方向を特定することができる。
尚、上部旋回体3が旋回油圧モータ2Aに代えて、電動機で旋回駆動される構成の場合、向き検出装置71は、レゾルバであってよい。
入力装置72は、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作入力を受け付け、操作入力に応じた信号をコントローラ30に出力する。例えば、入力装置72は、各種情報画像を表示する表示装置のディスプレイに実装されるタッチパネルを含みうる。
また、例えば、入力装置72は、表示装置D1の周囲に設置されるボタンスイッチ、レバー、トグル等を含みうる。また、入力装置72は、操作装置26に設けられるノブスイッチ(例えば、左操作レバー26Lに設けられるスイッチNS等)を含みうる。入力装置72に対する操作内容に対応する信号は、コントローラ30に取り込まれる。
スイッチNSは、例えば、左操作レバー26Lの先端に設けられた押しボタンスイッチである。オペレータは、スイッチNSを押しながら左操作レバー26Lを操作できる。また、スイッチNSは、右操作レバー26Rに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。
測位装置73は、上部旋回体3の位置及び向きを測定する。測位装置73は、例えば、GNSS(Global Navigation Satellite System)コンパスであり、上部旋回体3の位置及び向きを検出し、上部旋回体3の位置及び向きに対応する検出信号は、コントローラ30に取り込まれる。また、測位装置73の機能のうちの上部旋回体3の向きを検出する機能は、上部旋回体3に取り付けられた方位センサにより代替されてもよい。
表示装置D1は、キャビン10内の着座したオペレータから視認し易い場所に設けられ、コントローラ30による制御下で、各種情報画像を表示する。表示装置D1は、CAN(Controller Area Network)等の車載通信ネットワークを介してコントローラ30に接続されていてもよいし、一対一の専用線を介してコントローラ30に接続されていてもよい。
音声出力装置D2は、例えば、キャビン10内に設けられ、コントローラ30と接続され、コントローラ30による制御下で、音声を出力する。音声出力装置D2は、例えば、スピーカやブザー等である。音声出力装置D2は、コントローラ30からの音声出力指令に応じて各種情報を音声出力する。
ブーム角度センサS1は、ブーム4に取り付けられ、ブーム4の上部旋回体3に対する俯仰角度(以下、「ブーム角度」)、例えば、側面視において、上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度を検出する。ブーム角度センサS1は、例えば、ロータリエンコーダ、加速度センサ、ジャイロセンサ(角速度センサ)、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含んでよく、以下、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4についても同様である。ブーム角度センサS1によるブーム角度に対応する検出信号は、コントローラ30に取り込まれる。
アーム角度センサS2は、アーム5に取り付けられ、アーム5のブーム4に対する回動角度(以下、「アーム角度」)、例えば、側面視において、ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度を検出する。アーム角度センサS2によるアーム角度に対応する検出信号は、コントローラ30に取り込まれる。
バケット角度センサS3は、バケット6に取り付けられ、バケット6のアーム5に対する回動角度(以下、「バケット角度」)、例えば、側面視において、アーム5の両端の支点を結ぶ直線に対してバケット6の支点と先端(刃先)とを結ぶ直線が成す角度を検出する。バケット角度センサS3によるバケット角度に対応する検出信号は、コントローラ30に取り込まれる。
機体傾斜センサS4は、水平面に対する機体(例えば、上部旋回体3)の傾斜状態を検出する。機体傾斜センサS4は、例えば、上部旋回体3に取り付けられ、ショベル100(即ち、上部旋回体3)の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する。機体傾斜センサS4は、例えば、加速度センサ、ジャイロセンサ(角速度センサ)、6軸センサ、IMU等を含んでよい。機体傾斜センサS4による傾斜角度(前後傾斜角及び左右傾斜角)に対応する検出信号は、コントローラ30に取り込まれる。
旋回状態センサS5は、上部旋回体3に取り付けられ、上部旋回体3の旋回状態に関する検出情報を出力する。旋回状態センサS5は、例えば、上部旋回体3の旋回角速度や旋回角度を検出する。旋回状態センサS5は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含む。
尚、機体傾斜センサS4に3軸回りの角速度を検出可能なジャイロセンサ、6軸センサ、IMU等が含まれる場合、機体傾斜センサS4の検出信号に基づき上部旋回体3の旋回状態(例えば、旋回角速度)が検出されてもよい。この場合、旋回状態センサS5は、省略されうる。
[ショベルのマシンガイダンス機能及びマシンコントロール機能の概要]
次に、図5を参照して、ショベルのマシンガイダンス機能及びマシンコントロール機能の概要について説明する。
図5は、ショベル100のマシンガイダンス機能及びマシンコントロール機能に関する構成の一例を示すブロック図である。
コントローラ30は、例えば、オペレータによるショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関するショベル100の制御を実行する。
コントローラ30は、例えば、目標施工面(設計面の一例)とアタッチメントATの先端部、具体的には、エンドアタッチメントの作業部位との距離等の作業情報を、表示装置D1や音声出力装置D2等を通じて、オペレータに伝える。
具体的には、コントローラ30は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回状態センサS5、空間認識装置70、測位装置V1、入力装置72等から情報を取得する。
そして、コントローラ30は、例えば、取得した情報に基づき、バケット6と目標施工面との間の距離を算出し、表示装置D1に表示される画像や音声出力装置D2から出力される音声により、算出した距離をオペレータに通知してよい。
目標施工面に関するデータは、例えば、オペレータによる入力装置72を通じた設定入力に基づき、或いは、外部(例えば、所定の管理サーバ)からのダウンロードされることにより、内部メモリやコントローラ30に接続される外部記憶装置等に記憶されている。
目標施工面に関するデータは、例えば、基準座標系で表現されている。基準座標系は、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そして、Z軸を北極の方向にとる三次元直交XYZ座標系である。
例えば、オペレータは、施工現場の任意の点を基準点と定め、入力装置72を通じて、基準点との相対的な位置関係により目標施工面を設定してよい。バケット6の作業部位は、例えば、バケット6の爪先、バケット6の背面等である。
また、エンドアタッチメントとして、バケット6の代わりに、例えば、ブレーカが採用される場合、ブレーカの先端部が作業部位に相当する。これにより、コントローラ30は、表示装置D1、音声出力装置D2等を通じて、作業情報をオペレータに通知し、オペレータによる操作装置26を通じたショベル100の操作をガイドすることができる。
また、コントローラ30は、例えば、オペレータによるショベル100の手動操作を支援したり、ショベル100を自動的或いは自律的に動作させたりするマシンコントロール機能に関するショベル100の制御を実行する。
具体的には、コントローラ30は、アタッチメントの作業部位等に設定される、制御基準となる位置(以下、単に「制御基準」)が辿る軌道である目標軌道を取得するように構成されている。
制御基準には、掘削作業や転圧作業等のように、エンドアタッチメントが当接しうる作業対象(例えば、地面や後述するダンプトラックの荷台の土砂)がある場合、エンドアタッチメントの作業部位(例えば、バケット6の爪先や背面等)が設定されてよい。
また、制御基準には、後述のブーム上げ旋回動作、排土動作、ブーム下げ旋回動作等のように、エンドアタッチメントが当接しうる作業対象がない動作の場合、当該動作におけるエンドアタッチメントの位置を規定しうる任意の部位(例えば、バケット6の下端部や爪先等)が設定されてよい。
例えば、コントローラ30は、内部或いは外部の通信可能な不揮発性記憶装置に記憶されている目標施工面に関するデータに基づき、目標軌道を導き出す。コントローラ30は、空間認識装置70が認識したショベル100の周囲の地形に関する情報に基づき、目標軌道を導き出してもよい。
また、コントローラ30は、内部の揮発性記憶装置に一時的に記憶されている姿勢検出装置(例えば、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3等)の過去の出力からバケット6の爪先等の作業部位の過去の軌跡に関する情報を導き出し、その情報に基づいて目標軌道を導き出してもよい。また、コントローラ30は、アタッチメントの所定部位の現在位置と目標施工面に関するデータとに基づき、目標軌道を導き出してもよい。
コントローラ30は、例えば、オペレータが手動で地面の掘削操作や均し操作等を行っている場合に、目標施工面とバケット6の先端位置、具体的には、バケット6の爪先や背面等の作業部位とが一致するように、ブーム4、アーム5、及び、バケット6の少なくとも一つを自動的に動作させる。
具体的には、オペレータがスイッチNSを操作(押し)ながら、左操作レバー26Lにおける前後方向の操作を行うと、コントローラ30は、当該操作に応じて、目標施工面とバケット6の先端位置とが一致するように、ブーム4、アーム5、及び、バケット6の少なくとも一つを自動的に動作させる。
より具体的には、コントローラ30は、上述の如く、比例弁31を制御し、ブーム4、アーム5、及び、バケット6のうちの少なくとも一つを自動的に動作させる。これにより、オペレータは、左操作レバー26Lを前後方向に操作するだけで、目標施工面に沿った掘削作業や均し作業等をショベル100に実行させることができる。
また、コントローラ30は、例えば、所定の条件(以下、「ブーム上げ旋回開始条件」)が成立した場合、オペレータによる旋回操作に合わせて、ブーム4の上げ動作等を自動的に行わせ、バケット6を所定の目標軌道に沿って移動させる。
ブーム上げ旋回開始条件は、所定の位置に駐車されているダンプトラックに向けてバケット6に収容された土砂等を移動させる作業の開始を示す条件である。
例えば、ブーム上げ旋回開始条件は、後述の如く、"マシンコントロール機能が有効な状態、つまり、スイッチNSが押されている状態で、左操作レバー26Lの操作方向が前後方向から左右方向に切り替わったこと"の条件を含んでよい。
また、例えば、ブーム上げ旋回開始条件は、"入力装置72に含まれうる、左操作レバー26Lの先端部に設けられる所定のスイッチ(以下、「ブーム上げ旋回開始スイッチ」)が押された状態で、左操作レバー26Lが左方向或いは左方向に操作されること"の条件を含んでもよい。
また、例えば、ブーム上げ旋回開始条件は、"アタッチメントによる掘削土量が所定量以上となったこと"の条件を含んでもよい。また、例えば、ブーム上げ旋回開始条件は、"アタッチメントによる所定の距離以上の掘削が完了したこと"を含んでもよい。この場合、コントローラ30は、例えば、空間認識装置70に含まれうる単眼カメラやステレオカメラによる上部旋回体3の前方の画像に基づき、アタッチメントによる掘削土量や掘削距離等を把握できる。
つまり、ブーム上げ旋回開始条件は、例えば、掘削動作等のショベル100の一つの動作が完了したかどうかを判断するための条件である。また、ブーム上げ旋回開始条件に、上述のような条件が複数含まれる場合、含まれる複数の条件のうちの何れか一つが成立すると、ブーム上げ旋回開始条件が成立する態様であってもよいし、含まれる複数の条件のうちの二以上の一部又は全部が成立すると、ブーム上げ旋回開始条件が成立する態様であってもよい。以下、後述する排土開始条件、及びブーム下げ旋回開始条件等についても同様である。
具体的には、オペレータが左操作レバー26Lを左方向或いは右方向に操作すると、コントローラ30は、当該操作に応じて、目標軌道とバケット6の制御基準となる部位(例えば、バケット6の下端部等)とが一致するように、上部旋回体3、及び、アタッチメントATのうちの少なくともブーム4を自動的に動作させる。
より具体的には、コントローラ30は、上述の如く、比例弁31を制御し、上部旋回体3、及び、ブーム4等を自動的に動作させる。これにより、オペレータは、左操作レバー26Lを左右方向に操作するだけで、バケット6に収容された土砂等をダンプトラックまで移動させるブーム上げ旋回動作をショベル100に行わせることができる。
また、コントローラ30は、例えば、所定の条件(以下、「排土開始条件」)が成立した場合、バケット6の開き操作に合わせて、アーム5の開き動作等を自動的に行わせ、ダンプトラックに向けてバケット6に収容されている土砂等を排土させる。
排土開始条件は、ダンプトラックにバケット6に収容された土砂等を排出させる作業の開始を示す条件である。例えば、排土開始条件は、後述の如く、"マシンコントロール機能が有効な状態、つまり、スイッチNSが押されている状態で、左操作レバー26Lが左右方向に操作されている状態から右操作レバー26Rが左右方向(具体的には、バケット6の開き操作に対応する左方向)に操作される状態に切り替わること"の条件を含んでよい。
また、例えば、排土開始条件は、"入力装置72に含まれうる、右操作レバー26Rの先端部に設けられる所定のスイッチ(以下、「排土開始スイッチ」)が押された状態で、右操作レバー26Rが左方向(バケット6の閉じ操作)或いは右方向(バケット6の開き操作)に操作されること"の条件を含んでもよい。
また、例えば、排土開始条件は、"バケット6がダンプトラックの上方の所定の箇所(例えば、目標軌道の終点等)に到達したこと"の条件を含んでもよい。この場合、排土開始条件における"所定の箇所(目標軌道の終点)"は、排土の都度、変更されてもよい。
具体的には、オペレータが右操作レバー26Rを右方向に操作すると、コントローラ30は、当該操作に応じて、ダンプトラックの荷台における所定の目標位置にバケット6内の土砂等が排出されるように、バケット6の開き動作、及び、アーム5の開き動作等を行わせる。より具体的には、コントローラ30は、上述の如く、比例弁31を制御し、アーム5及びバケット6等を自動的に動作させる。
これにより、オペレータは、右操作レバー26Rを左右方向(具体的には、右方向)に操作するだけで、バケット6に収容された土砂等をダンプトラックの荷台に排土させることができる。
また、コントローラ30は、例えば、所定の条件(以下、「ブーム下げ旋回開始条件」)が成立した場合、オペレータによる旋回操作に合わせて、ブーム4の下げ動作等を自動的に行わせ、バケット6を所定の目標軌道に合わせて移動させる。
ブーム下げ旋回開始条件は、ダンプトラックの荷台にバケット6の土砂等を排出させた後に、掘削作業等を行うための元の位置にアタッチメントATを旋回移動させる作業の開始を示す条件である。例えば、ブーム下げ旋回開始条件は、後述の如く、"右操作レバー26Rが左右方向(具体的には、右方向)に操作されている状態から左操作レバー26Lが左右方向に操作される状態に切り替わること"の条件を含んでよい。
また、例えば、ブーム下げ旋回開始条件は、"入力装置72に含まれうる、左操作レバー26Lの先端部に設けられる所定のスイッチ(以下、「ブーム下げ旋回開始スイッチ」)が押された状態で、左操作レバー26Lが左方向或いは右方向に操作されること"の条件を含んでもよい。また、例えば、ブーム下げ旋回開始条件は、"バケット6からダンプトラックの荷台に落下する土砂が無くなったこと"の条件を含んでもよい。
この場合、コントローラ30は、例えば、空間認識装置70に含まれうる単眼カメラやステレオカメラによる上部旋回体3の前方の画像に基づき、バケット6内の土砂等の量を把握できる。
具体的には、オペレータが左操作レバー26Lを左方向或いは右方向に操作すると、コントローラ30は、当該操作に応じて、目標軌道とバケット6の制御基準となる部位とが一致するように、上部旋回体3、及び、アタッチメントATのうちの少なくともブーム4を自動的に動作させる。より具体的には、コントローラ30は、上述の如く、比例弁31を制御し、上部旋回体3、及び、ブーム4等を自動的に動作させる。
これにより、オペレータは、左操作レバー26Lを左右方向に操作するだけで、バケット6に収容された土砂等をダンプトラックの荷台に排出させた後に、アタッチメントATを掘削作業等のための元の位置に移動させるブーム下げ旋回動作をショベル100に行わせることができる。
また、コントローラ30は、ショベル100のブーム下げ旋回動作の前に、例えば、所定の条件(以下、「均し動作開始条件」)が成立した場合、オペレータのアタッチメントに関する操作に合わせて、ダンプトラックの荷台に搭載された土砂等を平坦にするための動作(以下、「均し動作」)を自動的に行わせ、バケット6を所定の目標軌道に合わせて移動させてもよい。
均し動作開始条件は、ダンプトラックの荷台にバケット6の土砂等を排出させた後に、均し動作の開始を示す条件である。例えば、均し動作開始条件は、"バケット6からダンプトラックの荷台に落下する土砂が無くなったこと"の条件を含んでよい。
また、例えば、均し動作開始条件は、"ダンプトラックの荷台の上方にバケット6がある状態で、アーム5に関する操作がされた(つまり、左操作レバー26Lが前後方向に操作された)こと"の条件を含んでもよい。この場合、コントローラ30は、予め規定され、内部の或いは外部の通信可能な不揮発性記憶装置に格納されるダンプトラックの荷台の形状に基づき、目標軌道を生成してよい。
また、コントローラ30は、ショベル100のブーム下げ旋回動作の後に、例えば、所定の条件(以下、「掘削開始条件」)が成立した場合、オペレータのアタッチメントに関する操作に合わせて、掘削動作を自動的に行わせ、バケット6を所定の目標軌道に合わせて移動させてもよい。
掘削開始条件は、ショベル100のブーム下げ旋回動作の後に、掘削動作の開始を示す条件である。例えば、掘削開始条件は、"バケット6が目標施工面の上方にある状態で、アーム5に関する操作がされた(つまり、左操作レバー26Lが前後方向に操作された)こと"の条件を含んでよい。
このように、コントローラ30は、所定の条件、つまり、"操作されていなかった操作対象が、所定の操作部(例えば、操作装置26)を通じて、操作開始されたこと"に相当する条件が成立した場合に、操作対象の動作に合わせて、自動的に、ショベル100に所定の動作を行わせ、アタッチメントの所定の部位を目標軌道に合わせて移動させる。
以下、スイッチNSが押し操作された状態で、左操作レバー26L及び右操作レバー26Rの操作が行われた場合に、マシンコントロール機能が有効になる前提で説明を進める。
[ショベルのマシンコントロール機能の一例]
次に、図6~図9を参照して、本実施形態に係るショベル100のマシンコントロール機能の一例について詳細に説明する。
本実施形態のショベル100では、目標軌道に合わせたショベル100の動作パターンの設定を受け付ける。
具体的には、コントローラ30は、表示装置D1に、ショベル100の動作の種類を示す情報を複数表示させる。コントローラ30は、オペレータによって、表示内容から動作の種類が選択されると、選択された動作の種類の動作内容を含む動作パターンを、目標軌道に合わせたショベル100の動作パターンとして設定する。
そして、コントローラ30は、設定された動作パターンと目標軌道とに基づき、ショベル100の動作を制御する。
以下に、図6乃至図8を参照して、ショベル100に設定される動作パターンについて説明する。
図6は、表示装置D1に表示されるショベル100の動作の種類を示す情報の一例を示す図である。
図6に示す画面60は、例えば、マシンコントロール機能が有効とされると、表示装置D1に表示されてもよい。
画面60は、ショベル100の動作の種類の一例として、バケット6の動作の種類を示す情報が表示される。具体的には、画面60には、バケット6の動作の種類を示す複数の画像(情報)が表示される。
図6において、画面60は、表示欄61~64を含む。表示欄61~64のそれぞれに表示される情報は、バケット6の動作の種類と対応している。また、表示欄61~64には、バケット6を示すアイコン画像6Aと、バケット6の動作内容を示すマーカ画像とが表示される。
表示欄61には、バケット6のアイコン画像6Aと、バケットピンの位置を示すマーカ画像61aと、マーカ画像61aを中心とした円弧を示すマーカ画像61bとが表示されている。これらの画像から、表示欄61と対応する動作の種類の動作内容は、バケット6を、バケットピンを中心に回転させる動作であることがわかる。
表示欄62には、バケット6のアイコン画像6Aと、バケット6の爪先の位置を示すマーカ画像62aと、マーカ画像62aを中心とした円弧を示すマーカ画像62bとが表示されている。これらの画像から、表示欄62と対応する動作の種類の動作内容は、バケット6を、バケット6の爪先を中心に回転させる動作であることがわかる。
表示欄63には、バケット6のアイコン画像6Aと、バケットピンの位置を示すマーカ画像63aと、バケット6の角度がアームに対して固定されていることを示すマーカ画像63bと、が表示されている。これらの画像から、表示欄63と対応する動作の種類の動作内容は、バケット6とアーム5の角度を維持したままバケット6を移動させる動作であることがわかる。
表示欄64には、バケット6のアイコン画像6Aと、目標施工面を示すマーカ画像64aと、バケット6の角度が目標施工面に対して固定されていることを示すマーカ画像64bと、が表示されている。これらの画像から、表示欄64と対応する動作の種類の動作内容は、バケット6と目標施工面との角度を維持したままバケット6を移動させる動作であることがわかる。
以下の説明では、表示欄61と対応する動作の種類を動作1、表示欄62と対応する動作の種類を動作2、表示欄63と対応する動作の種類を動作3、表示欄64と対応する動作の種類を動作4と呼ぶ。
動作1と動作2の動作の種類は、回転であり、動作1の動作内容は、「バケット6を、バケットピンを中心に回転させる」であり、動作2の動作内容は、「バケット6を、爪先を中心に回転させる」である。
動作3と動作4の動作の種類は、移動であり、動作3の動作内容は、「バケット6とアーム5の角度を維持したままバケット6を移動させる」であり、動作4の動作内容は、「バケット6と目標施工面との角度を維持したままバケット6を移動させる」である。
このように、本実施形態の画面60には、バケット6の動作の種類を示す情報の一覧として、表示欄61~64が表示される。また、各表示欄には、各表示欄が対応する種類の動作の動作内容を示す情報(アイコン画像、マーカ画像)が表示される。言い換えれば、画面60には、4種類の動作内容を示す情報が一覧表示される。
尚、表示装置D1に表示される画面60では、4種類の動作を示す情報が表示されるものとしたが、これに限定されない。画面60に表示される動作の種類の数は、任意であってよい。例えば、画面60には、5種類以上の動作を示す情報が一覧表示されてもよい。
また、例えば、画面60の各表示欄には、各表示欄と対応した動作内容における、バケット6の制御基準となる位置を示すマーカ画像が表示されてもよい。
例えば、動作1では、制御基準は、バケット6の背面となる。したがって、表示欄61では、アイコン画像6Aの背面が、制御基準であることを示す情報が表示されてもよい。
また、動作2では、制御基準はバケット6の爪先となる。したがって、表示欄62では、アイコン画像6Aの爪先に表示されたマーカ画像62aを、制御基準を示す画像として表示させてもよい。
また、動作3と動作4では、制御基準はバケット6の背面となる。したがって、表示欄63、64では、アイコン画像6Aの背面が制御基準であることを示す情報を表示させてもよい。制御基準であることを示す情報は、例えば、マーカ画像とは表示態様が異なる画像として表示さてれもよいし、テキストデータ等によって表示されてもよい。
また、本実施形態の表示装置D1は、タッチパネル等を有しており、表示欄61~64のそれぞれが、動作1~4を選択するための選択ボタンとして機能してもよい。また、表示装置D1に表示された動作の一覧からの動作の選択は、入力装置72によって行われてもよい。
また、オペレータによって、表示装置D1に表示された動作から動作の種類が選択されたとき、追加の設定画面が表示されてもよい。例えば、動作1と動作2は、バケット6の回転方向、バケット6の回転角度を設定できる。
また、画面60は、表示装置D1に表示されるものとしたが、これに限定されない。画面60は、例えば、ショベル100の外部にあり、ショベル100と通信が可能な端末装置等に表示されてもよい。
本実施形態のコントローラ30は、画面60に表示された動作の種類を示す情報において、オペレータによって選択された動作を含む動作パターンを、目標軌道に合わせたショベル100の動作パターンとして設定する。
尚、画面60では、例えば、ショベル100の動作の種類を示す情報と共に、目標施工面を示す画像を表示させてもよい。そして、画面60では、目標施工面の位置と、動作の種類とを対応づける設定を受け付けてもよい。
また、本実施形態では、画面60を表示させるための表示用データが、コントローラ30によってデータの読み出しが可能な記憶装置に格納されていてもよい。表示用データは、具体的には、動作の種類と、動作中の制御基準となる部位と、動作と対応したアイコン画像の画像データとが対応付けられたデータを含む。
また、表示用データは、動作の種類毎の動作内容を示す動画データ等であってもよい。
図7は、動作パターンの設定例を示す第一の図である。図7に示す動作パターンは、例えば、画面60において、目標施工面Lにおける位置P1~位置P6に対し、以下のように動作の種類が設定された場合を示している。
・位置P1から位置P2 :動作4
・位置P2 :動作2(開き方向)
・位置P2から位置P3 :動作4
・位置P3から位置P4 :動作4
・位置P4から位置P5 :動作2(閉じ方向)
・位置P5から位置P6 :動作4
コントローラ30は、画面60において、上述した設定が行われると、動作4、動作2(開き方向)、動作4、動作4、動作2(閉じ方向)、動作4の順にショベル100を動作させる動作パターンを設定する。
コントローラ30は、この動作パターンが設定されると、目標施工面Lに対し、バケット6が位置P1から位置P2に到達するまで間、バケット6と目標施工面Lとの角度を維持したまま、バケット6を移動させる。次に、コントローラ30は、バケット6が位置P2に到達すると、バケット6の爪先を中心にバケット6を回転させる。このとき、コントローラ30は、水平面に対するバケット6の背面の角度が、水平面に対する位置P2から位置P3までの斜面の角度と一致するように、バケット6を回転させてもよい。
次に、コントローラ30は、斜面に対するバケット6の背面の角度を維持したまま、バケット6を位置P2から位置P3までの斜面に沿って移動させる。また、コントローラ30は、バケット6が位置P3に到達すると、水平面に対するバケット6の角度を維持したまま、水平面に沿ってバケット6を位置P4まで移動させる。
コントローラ30は、バケット6が位置P4に到達すると、バケット6が位置P5に到達するまでの間に、バケット6の背面が水平面に沿うように、爪先を中心に回転させる。そして、コントローラ30は、位置P5から位置P6までの間、バケット6と目標施工面Lとの角度を維持したまま、バケット6を移動させる。
図8は、動作パターンの設定例を示す第二の図である。図8に示す動作パターンは、例えば、画面60において、目標施工面Lにおける位置P1~位置P7に対し、以下のように動作の種類が設定された場合を示している。
・位置P1から位置P2 :動作4
・位置P2 :動作2(開き方向)
・位置P2から位置P3 :動作4
・位置P3から位置P4 :動作4
・位置P4から位置P5 :動作4
・位置P5から位置P6 :動作2(閉じ方向)
・位置P6から位置P7 :動作4
コントローラ30は、画面60において、上述した設定が行われると、動作4、動作2(開き方向)、動作4、動作4、動作4、動作1(閉じ方向)、動作4の順にショベル100を動作させる動作パターンを設定する。各位置における動作の詳細は、図7と同様であるから、説明を省略する。
図9は、動作パターンの設定例を示す第三の図である。図9に示す動作パターンは、例えば、画面60において、目標施工面Lにおける位置P1~位置P7に対し、以下のように動作の種類が設定された場合を示している。
・位置P1から位置P2 :動作4
・位置P2から位置P3 :動作2(開き方向)
・位置P3から位置P4 :動作4
・位置P4から位置P5 :動作4
・位置P5から位置P6 :動作2(閉じ方向)
・位置P6から位置P7 :動作4
コントローラ30は、画面60において、上述した設定が行われると、動作4、動作2(開き方向)、動作4、動作4、動作2(閉じ方向)、動作4の順にショベル100を動作させる動作パターンを設定する。各位置における動作の詳細は、図7と同様であるから、説明を省略する。
本実施形態では、このように、表示装置D1に表示された画面60において、目標施工面Lに対するショベル100(アタッチメント)の動作を設定することができる。
また、本実施形態では、ショベル100のマシンコントロール機能のよる動作パターンの一部を、画面60において選択された動作に変更してもよい。
具体的には、例えば、図9の位置P1から位置P6までの動作パターンが、ショベル100のマシンコントロール機能により導出されていた場合に、位置P2から位置P3までのショベル100の動作を、画面60により設定された動作パターンに置き換えてもよい。
このようにすることで、本実施形態では、ショベル100のマシンコントロール機能によって導出された動作を修正することができる。
また、本実施形態では、図7乃至図9に示すように、複数種類の動作を含む動作パターンを簡単に設定することができる。尚、動作パターンに含まれる動作の種類は、複数でなくてもよい。動作パターンに含まれる動作の種類は、例えば、動作4のみ等というように、1種類であってもよい。
以下の説明では、表示装置D1に表示された画面60(動作パターン設定画面)において設定された動作パターンを示す情報を、動作パターンデータと表現する場合がある。
<ショベルのマシンコントロール機能に関する構成>
次に、図10を参照して、本実施形態のコントローラ30の機能構成について説明する。
図10(図10A図10C)は、本実施形態に係るショベル100のマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。
具体的には、図10Aは、ショベル100の半自動運転機能に関する詳細な構成を示す機能ブロック図であり、図10Cは、ショベル100の自律運転機能に関する詳細な構成を示す機能ブロック図である。図10Bに記載される構成部分は、半自動運転機能及び自律運転機能の双方の場合に共通であるため、ショベル100の自律運転機能に対応する当該構成部分の図示を省略し、図10Bを適宜援用してショベル100の自律運転機能について説明する。
図10A、図10Bに示すように、ショベル100の半自動運転機能を実現するコントローラ30は、マシンコントロール機能に関する機能部として、操作内容取得部3001と、目標施工面取得部3002と、目標軌道設定部3003と、現在姿勢算出部3004と、目標姿勢算出部3005と、バケット形状取得部3006と、マスタ要素設定部3007と、制御基準設定部3008と、動作指令生成部3009と、パイロット指令生成部3010と、姿勢角算出部3011とを含む。これらの機能部3001~3011は、例えば、スイッチNSが押し操作されている場合、所定の制御周期ごとに、後述する動作を繰り返し実行する。
また、図10B、図10Cに示すように、ショベル100の自律運転機能を実現するコントローラ30は、マシンコントロール機能に関する機能部として、作業内容取得部3001Aと、目標施工面取得部3002と、目標軌道設定部3003と、現在姿勢算出部3004と、目標姿勢算出部3005と、バケット形状取得部3006と、マスタ要素設定部3007と、制御基準設定部3008と、動作指令生成部3009と、パイロット指令生成部3010と、姿勢角算出部3011とを含む。これらの機能部3001A,3002~3011は、例えば、自律運転機能が有効な場合、所定の制御周期ごとに、後述する動作を繰り返し実行する。
即ち、コントローラ30は、ショベル100の自律運転機能を実現する場合(図10C)、操作内容取得部3001に代えて、作業内容取得部3001Aを含む点で、ショベル100の半自動運転機能を実現する場合(図10A)と異なる。
操作内容取得部3001は、操作圧センサ29LAから取り込まれる検出信号に基づき、左操作レバー26Lにおける前後方向の傾倒操作に関する操作内容を取得する。
例えば、操作内容取得部3001は、操作内容として、操作方向(前方向であるか後方向であるか)と、操作量を取得(算出)する。
また、ショベル100が遠隔操作される場合、外部装置から受信される遠隔操作信号の内容に基づき、ショベル100の半自動運転機能が実現されてもよい。この場合、操作内容取得部3001は、外部装置から受信される遠隔操作信号に基づき、遠隔操作に関する操作内容を取得する。
一方、作業内容取得部3001Aは、ショベル100に搭載される通信装置T1を通じて、所定の外部装置(例えば、後述の支援装置200や管理装置300等)からショベル100が実行すべき作業内容に関する情報(以下、「作業内容情報」)を取得する。
作業内容情報には、例えば、ショベル100が行う所定の作業の内容、所定の作業を構成する動作の内容、所定の作業に関する動作条件、作業開始のトリガ条件等が含まれる。所定の作業には、例えば、掘削作業、積込作業、整地作業等が含まれてよい。
定の作業を構成する動作には、例えば、所定の作業が掘削作業である場合、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作等が含まれる。動作条件には、例えば、所定の作業が掘削作業である場合、掘削深さ、掘削長さ等に関する条件が含まれる。作業内容取得部3001Aは、取得した作業内容情報に基づき、ショベル100の動作要素(アクチュエータに関する操作指令を出力する。
目標施工面取得部3002は、例えば、内部メモリや所定の外部記憶装置等から目標施工面に関するデータを取得する。
目標軌道設定部3003は、目標施工面取得部3002が取得した目標施工面に関するデータと、入力装置72から入力される動作パターンデータと、に基づき、エンドアタッチメントの作業部位を目標施工面に沿って移動させるためのエンドアタッチメントの作業部位の目標軌道に関する情報を設定する。エンドアタッチメントの作業部位とは、例えば、エンドアタッチメントの制御基準となる所定部位(例えば、バケット6の爪先や背面等)である。
目標軌道設定部3003は、目標施工面に関するデータと、動作パターンデータとが入力されると、目標軌道における位置に対して、動作パターンデータに含まれる動作の種類を設定する。
以下に、入力装置72から、図7に示す動作パターンデータが入力された場合の目標軌道設定部3003の処理について説明する。この場合、動作パターンデータには、動作の種類として、動作2(開き方向)、動作2(閉じ方向)、動作4が含まれる。
したがって、目標軌道設定部3003は、目標軌道における位置P1から位置P2に対して動作4を設定し、目標軌道における位置P2に対して動作2(開き方向)を設定し、目標軌道における位置P2から位置P3に対して動作4を設定する。また、目標軌道設定部3003は、目標軌道における位置P3から位置P4に対して動作4を設定し、目標軌道における位置P4から位置P5に対して動作2(閉じ方向)を設定する。そして、目標軌道設定部3003は、目標軌道における位置P5から位置P6に対して動作4を設定する。
本実施形態では、このように、目標軌道における各位置に、動作パターンデータに含まれる動作の種類を対応付けることで、目標軌道上で、ショベル100に対し、オペレータが設定した動作を行わせることができる。
なお、目標軌道設定部3003は、目標軌道に関する情報として、例えば、ショベル100の機体(上部旋回体3)を基準とする、目標施工面の前後方向への傾斜角度を設定してよい。また、目標軌道には、許容可能な誤差の範囲(以下、「許容誤差範囲」)が設定されていてもよい。この場合、目標軌道に関する情報には、許容誤差範囲に関する情報が含まれてもよい。
現在姿勢算出部3004は、エンドアタッチメントにおける制御基準(例えば、バケット6の作業部位としての爪先や背面等)を含む、アタッチメントATの姿勢(現在位置、現在角度)を算出する。制御基準は、動作パターンデータが示す動作の種類毎に決められている。言い換えれば、現在姿勢算出部3004は、動作パターンデータに含まれる動作の種類毎に制御基準の姿勢を算出する。これにより、エンドアタッチメントの姿勢が、動作パターンとして設定されたエンドアタッチメントの目標姿勢になるように、コントローラ30はアタッチメントATを制御することができる。
具体的には、現在姿勢算出部3004は、後述する姿勢角算出部3011により算出されるブーム角度θ、アーム角度θ、及びバケット角度θに基づき、エンドアタッチメントの制御基準の(現在)姿勢を算出してよい。
なお、現在姿勢算出部3004は、アタッチメントATにおける制御基準(例えば、バケット6の作業部位としての爪先や背面等)の現在位置も算出する。これにより、エンドアタッチメントの作業部位が目標施工面に沿って移動するように、コントローラ30はアタッチメントATを制御することができる。
目標姿勢算出部3005は、ショベル100の半自動運転機能において、マスタ要素と、マスタ要素の動作に関する情報と、設定された目標軌道に関する情報と、エンドアタッチメントにおける制御基準(作業部位)の現在姿勢とに基づき、エンドアタッチメントの制御基準の目標姿勢を算出する。
操作内容には、例えば、操作方向及び操作量が含まれる。当該目標姿勢は、アーム5がオペレータによる操作入力における操作方向及び操作量に応じて動作すると仮定したときに、今回の制御周期中で到達目標とすべき目標軌道(換言すれば、目標施工面)上の位置と、バケット6の動作内容を満たす角度である。目標姿勢算出部3005は、例えば、不揮発性の内部メモリ等に予め格納されるマップや演算式等を用いて、エンドアタッチメントの目標姿勢を算出してよい。このように、目標姿勢算出部3005では、エンドアタッチメントの制御基準の目標位置も算出する。
また、目標姿勢算出部3005は、ショベル100の自律運転機能において、マスタ要素と、マスタ要素の動作に関する情報と、設定された目標軌道に関する情報と、エンドアタッチメントにおける制御基準(作業部位)の現在姿勢とに基づき、アタッチメントATの先端部(制御基準)の目標姿勢を算出する。これにより、コントローラ30は、オペレータの操作に依らず、ショベル100を自律制御することができる。
また、目標姿勢算出部3005は、ショベル100の自律運転機能において、作業内容取得部3001Aから入力される操作指令と、設定された目標軌道に関する情報と、アタッチメントATにおける制御基準(作業部位)の現在位置とに基づき、アタッチメントATの先端部(制御基準)の目標位置を算出してもよい。
バケット形状取得部3006は、例えば、内部メモリや所定の外部記憶装置等から予め登録されているバケット6の形状に関するデータを取得する。このとき、バケット形状取得部3006は、予め登録される複数の種類のバケット6の形状に関するデータのうち、入力装置72を通じた設定操作により設定されている種類のバケット6の形状に関するデータを取得してよい。
マスタ要素設定部3007は、アタッチメントATを構成する動作要素(これらの動作要素を駆動するアクチュエータ)のうち、オペレータの操作入力或いは操作指令に対応して動作する動作要素(アクチュエータ)(以下、「マスタ要素」)を設定する。
以下、オペレータの操作入力あるいは自律運転機能に関する操作指令に合わせて動作する動作要素、及びその動作要素を駆動するアクチュエータを包括的に或いはそれぞれを個別にマスタ要素と称する場合があり、後述のスレーブ要素についても同様である。また、マスタ要素設定部3007は、アタッチメントATのうちのアーム5(アームシリンダ8)以外、つまり、ブーム4(ブームシリンダ7)或いはバケット6(バケットシリンダ9)をマスタ要素に設定する場合、減圧用比例弁33AL,33AR或いは切替弁に対して、パイロットラインを非連通状態にする指令を出力してもよい。
これにより、コントローラ30は、左操作レバー26Lにおける前後操作に対応するパイロット圧がシャトル弁32AL,32ARを介して、アーム5を駆動するアームシリンダ8に対応する制御弁176L,176Rに作用させないようにしてもよい。
制御基準設定部3008は、アタッチメントATにおける制御基準を設定する。例えば、制御基準設定部3008は、入力装置72により入力された動作パターンデータに含まれる動作毎の制御基準を、アタッチメントATの制御基準に設定してよい。
以下に、入力装置72から、図7に示す動作パターンデータが入力された場合の制御基準設定部3008の処理について説明する。この場合、動作パターンデータには、動作の種類として、動作2(開き方向)、動作2(閉じ方向)、動作4が含まれる。
したがって、制御基準設定部3008は、目標軌道の位置P1から位置P2における動作4の制御基準として、バケット6の背面を設定し、目標軌道の位置P2における動作2(開き方向)の制御基準として、バケット6の爪先を設定する。
また、制御基準設定部3008は、目標軌道の位置P2から位置P3における動作4の制御基準として、バケット6の背面を設定し、目標軌道における位置P3から位置P4の動作4における制御基準として、バケット6の背面を設定する。
また、制御基準設定部3008は、目標軌道の位置P4から位置P5における動作2(閉じ方向)の制御基準として、バケット6の爪先を設定する。そして、制御基準設定部3008は、目標軌道の位置P5から位置P6の動作4における制御基準として、バケット6の背面を設定する。
本実施形態では、このように、オペレータが設定した動作パターンに含まれる動作の種類に応じて、ショベル100の動作における制御基準が設定される。
このように、本実施形態のコントローラ30は、動作の種類を示す情報が複数表示された表示装置D1において、選択された動作の種類を含む動作パターンを、ショベル100の動作パターンとして設定する制御部の一例と言える。
また、例えば、制御基準設定部3008は、所定の条件の成立に応じて、自動的に、アタッチメントATの制御基準を設定変更してもよい。
動作指令生成部3009は、アタッチメントATにおける制御基準の目標姿勢に基づき、ブーム4の動作に関する指令値(以下、「ブーム指令値」)β1r、アーム5の動作に関する指令値(以下、「アーム指令値」)β2r、及びバケット6の動作に関する指令値(「バケット指令値」)β3rを生成する。
例えば、ブーム指令値β1r、アーム指令値β2r、及びバケット指令値β3rは、それぞれ、アタッチメントATにおける制御基準が目標位置を実現するために必要なブーム4の角速度(以下、ブーム角速度)、アーム5の角速度(以下、「ブーム角速度」)、及びバケット6の角速度(以下、「バケット角速度」)である。動作指令生成部3009は、マスタ指令値生成部3009Aと、スレーブ指令値生成部3009Bを含む。
尚、ブーム指令値、アーム指令値、及びバケット指令値は、アタッチメントATにおける制御基準が目標姿勢を実現したときのブーム角度、アーム角度、及びバケット角度であってもよい。また、ブーム指令値、アーム指令値、及びバケット指令値は、アタッチメントATにおける制御基準が目標姿勢を実現するために必要な角加速度等であってもよい。
マスタ指令値生成部3009Aは、アタッチメントATを構成する動作要素(ブーム4、アーム5、及びバケット6)のうち、マスタ要素の動作に関する指令値(以下、「マスタ指令値」)βを生成する。
マスタ指令値生成部3009Aは、例えば、マスタ要素設定部3007により設定されているマスタ要素がブーム4(ブームシリンダ7)の場合、マスタ指令値βとして、ブーム指令値β1rを生成し、後述するブームパイロット指令生成部3010Aに向けて出力する。また、マスタ指令値生成部3009Aは、例えば、マスタ要素設定部3007により設定されているマスタ要素がアーム5(アームシリンダ8)の場合、アーム指令値β2rを生成し、アームパイロット指令生成部3010Bに向けて出力する。
また、マスタ指令値生成部3009Aは、例えば、マスタ要素設定部3007により設定されているマスタ要素がバケット6(バケットシリンダ9)である場合、マスタ指令値βとして、バケット指令値β3rを生成し、バケットパイロット指令生成部3010Cに向けて出力する。
具体的には、マスタ指令値生成部3009Aは、オペレータの操作或いは操作指令の内容(操作方向及び操作量)に対応するマスタ指令値βを生成する。例えば、マスタ指令値生成部3009Aは、オペレータの操作或いは操作指令の内容と、ブーム指令値β1r、アーム指令値β2r、及びバケット指令値β3rのそれぞれとの関係を規定する所定のマップや変換式等に基づき、マスタ指令値としてのブーム指令値β1r、アーム指令値β2r、バケット指令値β3rを生成してよい。
尚、ショベル100の半自動運転機能(図10A)について、キャビン10のオペレータによって左操作レバー26Lが操作される場合、マスタ要素がアーム5である場合、マスタ指令値生成部3009Aは、マスタ指令値β(アーム指令値β2r)を生成しなくてもよい。
上述の如く、左操作レバー26Lが前後方向に操作されている場合、その操作内容に対応するパイロット圧がシャトル弁32AL,32ARを介して、アーム5を駆動するアームシリンダ8に対応する制御弁176L,176Rに作用し、アーム5は、マスタ要素として動作することができるからである。
スレーブ指令値生成部3009Bは、アタッチメントATを構成する動作要素のうち、マスタ要素の動作に合わせて(同期して)、アタッチメントATの制御基準が目標施工面に沿って移動するように動作する、スレーブ要素の動作に関する指令値(以下、「スレーブ指令値」)βs1,βs2を生成する。
スレーブ指令値生成部3009Bは、例えば、マスタ要素設定部3007によりブーム4がマスタ要素に設定されている場合、スレーブ指令値βs1,βs2として、アーム指令値β2r及びバケット指令値β3rを生成し、それぞれ、アームパイロット指令生成部3010B及びバケットパイロット指令生成部3010Cに向けて出力する。
また、スレーブ指令値生成部3009Bは、例えば、マスタ要素設定部3007によりアーム5がマスタ要素に設定されている場合、スレーブ指令値βs1,βs2として、ブーム指令値β1r及びバケット指令値β3rを生成し、それぞれ、ブームパイロット指令生成部3010A及びバケットパイロット指令生成部3010Cに向けて出力する。
また、スレーブ指令値生成部3009Bは、マスタ要素設定部3007によりバケット6がマスタ要素に設定されている場合、スレーブ指令値βs1,βs2として、ブーム指令値β1r及びアーム指令値β2rを生成し、それぞれ、ブームパイロット指令生成部3010A及びアームパイロット指令生成部3010Bに向けて出力する。
具体的には、スレーブ指令値生成部3009Bは、マスタ指令値βに対応するマスタ要素の動作に合わせて(同期して)スレーブ要素が動作し、アタッチメントATの制御基準が目標位置を実現できるように(つまり、目標施工面に沿って移動するように)、スレーブ指令値βs1,βs2を生成する。
これにより、コントローラ30は、オペレータの操作入力或いは操作指令に対応するアタッチメントATのマスタ要素の動作に合わせて(つまり、同期させて)、アタッチメントATの二つのスレーブ要素を動作させることで、アタッチメントATの制御基準を目標施工面に沿って移動させることができる。
つまり、マスタ要素(の油圧アクチュエータ)は、オペレータの操作入力或いは操作指令に対応して動作し、スレーブ要素(の油圧アクチュエータ)は、バケット6の爪先等のアタッチメントATの先端部(制御基準)が目標施工面に沿って移動するように、マスタ要素(の油圧アクチュエータ)の動作に合わせて、その動作が制御される。
パイロット指令生成部3010は、ブーム指令値β1r、アーム指令値β2r、及びバケット指令値β3rに対応するブーム角速度、アーム角速度、及びバケット角速度を実現するための制御弁174~176に作用させるパイロット圧の指令値(以下、「パイロット圧指令値」)を生成する。パイロット指令生成部3010は、ブームパイロット指令生成部3010Aと、アームパイロット指令生成部3010Bと、バケットパイロット指令生成部3010Cを含む。
ブームパイロット指令生成部3010Aは、ブーム指令値β1rと、後述するブーム角度算出部3011Aによる現在のブーム角速度の算出値(測定値)との間の偏差に基づき、ブーム4を駆動するブームシリンダ7に対応する制御弁175L,175Rに作用させるパイロット圧指令値を生成する。
そして、ブームパイロット指令生成部3010Aは、生成したパイロット圧指令値に対応する制御電流を比例弁31BL,31BRに出力する。これにより、上述の如く、比例弁31BL,31BRから出力されるパイロット圧指令値に対応するパイロット圧がシャトル弁32BL,32BRを介して、制御弁175L,175Rの対応するパイロットポートに作用する。そして、制御弁175L,175Rの作用により、ブームシリンダ7が動作し、ブーム指令値β1rに対応するブーム角速度を実現するように、ブーム4が動作する。
アームパイロット指令生成部3010Bは、アーム指令値β2rと、後述するアーム角度算出部3011Bによる現在のアーム角速度の算出値(測定値)との間の偏差に基づき、アーム5を駆動するアームシリンダ8に対応する制御弁176L,176Rに作用させるパイロット圧指令値を生成する。
そして、アームパイロット指令生成部3010Bは、生成したパイロット圧指令値に対応する制御電流を比例弁31AL,31ARに出力する。これにより、上述の如く、比例弁31AL,31ARから出力されるパイロット圧指令値に対応するパイロット圧がシャトル弁32AL,32ARを介して、制御弁176L,176Rの対応するパイロットポートに作用する。そして、制御弁176L,176Rの作用により、アームシリンダ8が動作し、アーム指令値β2rに対応するアーム角速度を実現するように、アーム5が動作する。
バケットパイロット指令生成部3010Cは、バケット指令値β3rと、後述するバケット角度算出部3011Cによる現在のバケット角速度の算出値(測定値)との間の偏差に基づき、バケット6を駆動するバケットシリンダ9に対応する制御弁174に作用させるパイロット圧指令値を生成する。
そして、バケットパイロット指令生成部3010Cは、生成したパイロット圧指令値に対応する制御電流を比例弁31CL,31CRに出力する。これにより、上述の如く、比例弁31CL,31CRから出力されるパイロット圧指令値に対応するパイロット圧がシャトル弁32CL,32CRを介して、制御弁174の対応するパイロットポートに作用する。そして、制御弁174の作用により、バケットシリンダ9が動作し、バケット指令値β3rに対応するバケット角速度を実現するように、バケット6が動作する。
姿勢角算出部3011は、ブーム角度センサS1,アーム角度センサS2、及びバケット角度センサS3の検出信号に基づき、(現在の)ブーム角度、アーム角度、及びバケット角度、並びに、ブーム角速度、アーム角速度、及びバケット角速度を算出(測定)する。姿勢角算出部3011は、ブーム角度算出部3011Aと、アーム角度算出部3011Bと、バケット角度算出部3011Cを含む。
ブーム角度算出部3011Aは、ブーム角度センサS1から取り込まれる検出信号に基づき、ブーム角度及びブーム角速度等を算出(測定)する。これにより、ブームパイロット指令生成部3010Aは、ブーム角度算出部3011Aの測定結果に基づき、ブームシリンダ7の動作に関するフィードバック制御を行うことができる。
アーム角度算出部3011Bは、アーム角度センサS2から取り込まれる検出信号に基づき、アーム角度及びアーム角速度等を算出(測定)する。これにより、アームパイロット指令生成部3010Bは、アーム角度算出部3011Bの測定結果に基づき、アームシリンダ8の動作に関するフィードバック制御を行うことができる。
バケット角度算出部3011Cは、バケット角度センサS3から取り込まれる検出信号に基づき、バケット角度及びバケット角速度等を算出(測定)する。これにより、バケットパイロット指令生成部3010Cは、バケット角度算出部3011Cの測定結果に基づき、バケットシリンダ9の動作に関するフィードバック制御を行うことができる。
このように、本実施形態によれば、表示装置D1に表示された画面60において、オペレータがショベル100の動作パターンを設定することができる。また、本実施形態では、ショベル100の動作の種類を示す情報を表示し、この情報から選択された動作の種類を含むように動作パターンを示す動作パターンデータを生成し、ショベル100に設定することができる。したがって、本実施形態によれば、例えば、ショベル100の操作技術に習熟したオペレータ以外のオペレータであっても、ショベル100の動作パターンの簡単に設定することができる。
(別の実施形態)
以下に、図面を参照して別の実施形態について説明する。以下に説明する実施形態では、動作パターンが設定された場合でも、バケット6に対する負荷が所定値を超えた場合には、設定された動作パターンを変更し、バケット6に対する負荷を軽減させる。
図11は、別の実施形態のショベル100の動作を説明する図である。図11(A)は、バケット6に対する負荷が所定値を超えた場合のショベル100の動作の一例を示し、図11(B)は、バケット6に対する負荷が、所定値以下である場合のショベル100の動作の一例を示す。
図11では、例えば、図9に示す動作パターンが設定された場合を示している。図11(A)の例では、目標施工面Lの位置P1から位置P2までの間には、多くの土砂Bが残っている。この場合、位置P1から位置P2までの間、動作4でバケット6を移動させると、バケット6内に土砂Bがたまり、バケット6の爪先が位置P2に到達する前に、バケット6にかかる負荷が所定値を超える。
そこで、本実施形態では、バケット6にかかる負荷が所定値を超えると、バケット6の動作を、目標軌道上を動作パターンに従って移動させる制御を中断し、目標軌道上からかずれた位置にバケット6を移動させ、バケット6内の土砂Bを排土させる。
そして、本実施形態では、目標軌道上を動作パターンに従って移動させる制御を中断した位置へバケット6を戻し、目標軌道上を動作パターンに従って移動させる制御を再開する。
図11(A)では、コントローラ30は、位置P2において、バケット6を目標軌道上から外して排土する動作を行った後に、再び位置P2にバケット6を戻し、目標施工面Lに沿って、動作パターンに従った動作を行わせる。
また、図11(B)に示すように、目標施工面L上に、土砂がそれほど残っていない場合は、バケット6にかかる負荷は、所定値以下のままである。したがって、コントローラ30は、目標施工面に関するデータと、動作パターンデータとに基づき、バケット6を移動させればよい。
以下に、図12を参照して、別の実施形態のコントローラ30Aの機能構成について説明する。
図12は、別の実施形態に係るショベル100のマシンコントロール機能に関する詳細な構成の一例を示す機能ブロック図である。
図12に示すコントローラ30は、図10(A)が有する各部に加え、負荷判定部3020を有する。
負荷判定部3020は、バケット6にかかる負荷が所定値より大きいか否かを判定し、負荷が所定値よりも大きくなった場合に、目標軌道設定部3003Aに対し、バケット6の目標軌道及び動作内容、またはその一方の変更を指示する。尚、本実施形態では、バケット6にかかる負荷は、アームシリンダ圧や、掘削反力等によって検出されてよい。
目標軌道設定部3003Aは、負荷判定部3020から目標軌道及び動作内容、またはその一方の変更の指示を受け付けると、目標軌道及び動作内容、またはその一方を変更する。なお、目標軌道設定部3003Aには、例えば、土砂Bを排土する場所が予め設定されていてもよい。
その場合、コントローラ30Aは、目標軌道及び動作内容、またはその一方の変更の指示を受け付けると、目標姿勢算出部3005により、バケット6を、予め設定された排土場所へ誘導するように制御してもよい。
また、コントローラ30Aは、目標軌道および動作内容、またはその一方の変更の指示を受け付けると、マシンコントロール機能を中断してもよい。その場合、土砂Bを排土する動作をオペレータが行ってもよい。
また、コントローラ30Aは、目標軌道および動作内容、またはその一方の変更の指示を受け付けると、アタッチメントの動作を停止させてもよい。その場合、オペレータがマシンコントロール機能を無効にした後、土砂Bを排土する動作をオペレータが行ってもよい。
以下に、図13を参照して、コントローラ30Aの処理について説明する。図13は、別の実施形態のコントローラの動作を説明するフローチャートである。
コントローラ30Aは、表示装置D1に動作パターンの設定画面である画面60を表示させる(ステップS1301)。続いて、コントローラ30Aは、動作の種類の選択を受け付けて、動作パターンデータを生成し。動作パターンを設定する(ステップS1302)。
続いて、コントローラ30Aは、オペレータからの指示に応じて、動作を開始させる(ステップS1303)。
続いて、コントローラ30Aは、負荷判定部3020により、バケット6に対する負荷が所定値より大きくなったか否かを判定する(ステップS1304)。ステップS1304において、負荷が所定値以下である場合、コントローラ30Aは、後述するステップS1308へ進む。
ステップS1304において、負荷が所定値より大きい場合、コントローラ30Aは、目標軌道設定部3003Aにより、目標軌道および動作内容、またはその一方を変更する(ステップS1305)。
続いて、コントローラ30Aは、バケット6をステップS1305で変更された目標軌道および動作内容、またはその一方に従って移動させる(ステップS1306)。
続いて、コントローラ30Aは、バケット6内の土砂を排土して、変更前の位置にバケット6を戻し、目標軌道設定部3003Aの設定を戻し、設定された動作パターンに基づく動作を再開させ(ステップS1307)ステップS1304に戻る。尚、変更前の位置とは、バケット6が目標軌道上にある状態で、バケット6に対する負荷が所定値より大きくなったことが検出された位置である。
ステップS1304において、負荷が所定値以下である場合、コントローラ30Aは、動作パターンデータが示す動作が終了したか否かを判定する(ステップS1308)。
ステップS1308において、動作が終了していない場合、コントローラ30Aは、ステップS1304へ戻る。
ステップS1308において、動作が終了した場合、コントローラ30Aは、処理を終了する。
尚、図13の例では、ステップS1301からステップS1308までの処理を一連の処理として説明したが、これに限定されない。本実施形態では、例えば、設定画面を表示させて、動作パターンの設定を受け付ける処理(ステップS1301、ステップS1302の処理)と、ステップS1303以降の処理とは、それぞれが独立した処理として実行されてもよい。
このように、本実施形態では、バケット6にかかる負荷を監視し、負荷が所定値より大きくなった場合には、動作パターンが設定されていた場合でも、設定された動作パターンを変更し、バケット6の負荷を低減させる動作を行う。
そして、本実施形態では、バケット6の負荷が軽減された後に、再び、動作パターンが変更された位置にバケット6を戻し、設定された動作パターンが示す動作を再開させる。
本実施形態では、この制御により、バケット6に対する負荷が増大し、設定した動作パターンに基づく動作が行えなくなる、といった事態の発生を抑制できる。
以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施形態に種々の変形及び置換を加えることができる。
11 エンジン
14 メインポンプ
19 制御圧センサ
28 吐出圧センサ
30、30A コントローラ
3005 目標姿勢算出部
3008 制御基準設定部
3020 負荷判定部
100 ショベル

Claims (8)

  1. 下部走行体と、
    前記下部走行体に対して、旋回自在に搭載される上部旋回体と、
    前記上部旋回体に取り付けられたアタッチメントと、
    前記アタッチメントに対する操作に応じて、前記アタッチメントに含まれるエンドアタッチメントを目標軌道に合わせて自動的に動作させる制御装置と、
    前記エンドアタッチメントの動作の種類を選択させるための複数の画像を含む画面が表示される表示装置と、を有し、
    前記制御装置は、
    前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンを、前記目標軌道に合わせた動作パターンとして設定する、ショベル。
  2. 前記画面は、目標施工面を示す画像を含み、
    前記制御装置は、
    前記画面において、前記目標施工面における第一の位置と第二の位置と、前記エンドアタッチメントの動作の種類とを対応付ける設定を受け付けると、
    前記エンドアタッチメントの先端位置が、前記第一の位置から前記第二の位置に到達するまでの間の前記エンドアタッチメントの動作の種類を、前記画面において前記第一の位置と前記第二の位置とに対応付けられた前記動作の種類とする、請求項1記載のショベル。
  3. 前記制御装置は、
    前記目標軌道に合わせて自動的に導出された前記エンドアタッチメントの動作パターンの一部を、前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンに置き換える、請求項1又は2記載のショベル。
  4. 前記エンドアタッチメントは、バケットであって、
    前記制御装置は、
    動作の開始指示に応じて、前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンに基づく動作を開始し、
    該動作パターンに基づく動作中に、前記バケットに対する負荷が所定値より大きくなった場合に、前記目標軌道及び動作内容、又は前記目標軌道と前記動作内容の何れか一方を変更する、請求項1乃至3の何れか一項に記載のショベル。
  5. 前記目標軌道において、前記バケット内の土砂を排土する排土場所が設定されており、
    前記制御装置は、
    前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンに基づく動作中に、前記バケットに対する負荷が所定値より大きくなった場合に、前記バケットを前記排土場所へ誘導するように制御する、
    請求項4記載のショベル。
  6. 前記制御装置は、
    前記バケット内の土砂が排土された後に、前記バケットを、前記バケットが目標軌道上にある状態で前記バケットに対する負荷が前記所定値より大きくなったことが検出された位置に戻し、前記画面において選択された前記エンドアタッチメントの動作の種類を含む動作パターンに基づく動作を再開させる、
    請求項5記載のショベル。
  7. 前記エンドアタッチメントは、バケットであり、
    前記動作の種類を示す情報は、
    前記動作の種類の動作内容を示すアイコン画像と、動作中における前記バケットの制御基準を示すマーカ画像とを含み、
    前記アイコン画像は、
    前記バケットをバケットピンを中心に回転させる動作内容を示す画像と、前記バケットの爪先を中心に回転させる動作内容を示す画像と、前記バケットとアームの角度を維持したまま前記バケットを移動させる動作内容を示す画像と、前記バケットと目標施工面との角度を維持したまま前記バケットを移動させる動作内容を示す画像と、
    を含む、請求項1乃至6の何れか一項に記載のショベル。
  8. 前記表示装置は、
    選択された動作の種類に応じて、追加の設定画面を表示させ、
    前記追加の設定画面は、
    前記バケットをバケットピンを中心に回転させるときの前記バケットの回転方向の設定、前記バケットの爪先を中心に回転させるときの前記バケットの回転角度の設定が行われる、
    請求項7記載のショベル。
JP2020088334A 2020-05-20 2020-05-20 ショベル Active JP7478590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088334A JP7478590B2 (ja) 2020-05-20 2020-05-20 ショベル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020088334A JP7478590B2 (ja) 2020-05-20 2020-05-20 ショベル

Publications (2)

Publication Number Publication Date
JP2021181732A JP2021181732A (ja) 2021-11-25
JP7478590B2 true JP7478590B2 (ja) 2024-05-07

Family

ID=78606185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088334A Active JP7478590B2 (ja) 2020-05-20 2020-05-20 ショベル

Country Status (1)

Country Link
JP (1) JP7478590B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190843A1 (ja) * 2022-03-31 2023-10-05 住友重機械工業株式会社 支援装置、作業機械、プログラム
WO2024034624A1 (ja) * 2022-08-09 2024-02-15 住友重機械工業株式会社 支援装置、作業機械、支援システム、プログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021121A (ja) 2000-07-07 2002-01-23 Shin Caterpillar Mitsubishi Ltd 建設機械における操作レバー割り当て方法
JP2008106440A (ja) 2006-10-23 2008-05-08 Hitachi Constr Mach Co Ltd 油圧ショベルのフロント位置合わせ制御装置
US20110301817A1 (en) 2010-06-04 2011-12-08 Lane Colin Hobenshield Dual Monitor Information Display System and Method for An Excavator
JP5430805B1 (ja) 2013-07-22 2014-03-05 株式会社小松製作所 作業車両
WO2014167732A1 (ja) 2013-04-12 2014-10-16 株式会社小松製作所 油圧シリンダのストローク動作校正制御装置及び油圧シリンダのストローク動作校正制御方法
WO2019088065A1 (ja) 2017-10-30 2019-05-09 日立建機株式会社 作業機械
WO2019189399A1 (ja) 2018-03-30 2019-10-03 住友建機株式会社 ショベル
JP2019167711A (ja) 2018-03-22 2019-10-03 株式会社小松製作所 作業機械、および作業機械を含むシステム
JP2019183638A (ja) 2015-03-19 2019-10-24 住友建機株式会社 ショベル及びショベルの表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021121A (ja) 2000-07-07 2002-01-23 Shin Caterpillar Mitsubishi Ltd 建設機械における操作レバー割り当て方法
JP2008106440A (ja) 2006-10-23 2008-05-08 Hitachi Constr Mach Co Ltd 油圧ショベルのフロント位置合わせ制御装置
US20110301817A1 (en) 2010-06-04 2011-12-08 Lane Colin Hobenshield Dual Monitor Information Display System and Method for An Excavator
WO2014167732A1 (ja) 2013-04-12 2014-10-16 株式会社小松製作所 油圧シリンダのストローク動作校正制御装置及び油圧シリンダのストローク動作校正制御方法
JP5430805B1 (ja) 2013-07-22 2014-03-05 株式会社小松製作所 作業車両
JP2019183638A (ja) 2015-03-19 2019-10-24 住友建機株式会社 ショベル及びショベルの表示装置
WO2019088065A1 (ja) 2017-10-30 2019-05-09 日立建機株式会社 作業機械
JP2019167711A (ja) 2018-03-22 2019-10-03 株式会社小松製作所 作業機械、および作業機械を含むシステム
WO2019189399A1 (ja) 2018-03-30 2019-10-03 住友建機株式会社 ショベル

Also Published As

Publication number Publication date
JP2021181732A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
CN113039326B (zh) 挖土机、挖土机的控制装置
CN112867831B (zh) 挖土机
KR102602384B1 (ko) 쇼벨
CN113039327B (zh) 挖土机、挖土机的控制装置
JP7439053B2 (ja) ショベル及びショベルの管理装置
WO2019189935A1 (ja) ショベル
JP7460538B2 (ja) ショベル、ショベルの制御装置
JP7478590B2 (ja) ショベル
CN113056591A (zh) 挖土机、挖土机的控制装置及挖土机的支援装置
JP2021059945A (ja) ショベル
WO2019189624A1 (ja) ショベル
JP7454505B2 (ja) ショベル
WO2021066032A1 (ja) ショベル、ショベルの制御装置
US20210372079A1 (en) Shovel and system
JP7449314B2 (ja) ショベル、遠隔操作支援装置
JP2022154722A (ja) ショベル
WO2022196776A1 (ja) ショベル
WO2022202918A1 (ja) ショベル及びショベルの施工支援システム
EP4317594A1 (en) Shovel and shovel control device
WO2022210613A1 (ja) ショベル及びショベルの制御装置
WO2024004387A1 (ja) ショベル用の制御装置
JP2024001736A (ja) ショベル
JP2024073207A (ja) ショベル、ショベルの制御装置、及び機械学習装置
JP2021055433A (ja) ショベル
JP2024031019A (ja) ショベルの表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7478590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150