JP7472892B2 - 駆動力制御装置 - Google Patents

駆動力制御装置 Download PDF

Info

Publication number
JP7472892B2
JP7472892B2 JP2021184406A JP2021184406A JP7472892B2 JP 7472892 B2 JP7472892 B2 JP 7472892B2 JP 2021184406 A JP2021184406 A JP 2021184406A JP 2021184406 A JP2021184406 A JP 2021184406A JP 7472892 B2 JP7472892 B2 JP 7472892B2
Authority
JP
Japan
Prior art keywords
driving force
vehicle
driving
accelerator pedal
force characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021184406A
Other languages
English (en)
Other versions
JP2023071549A (ja
Inventor
孝平 土橋
靖史 堂上
聡 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021184406A priority Critical patent/JP7472892B2/ja
Priority to US17/932,438 priority patent/US20230143408A1/en
Publication of JP2023071549A publication Critical patent/JP2023071549A/ja
Application granted granted Critical
Publication of JP7472892B2 publication Critical patent/JP7472892B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/087Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • B60W2050/0096Control during transition between modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、駆動力制御装置に関する。
特許文献1には、オーバーライドを検知した場合に、運転者の加速意図を判断してモード移行用駆動力特性を設定する技術が開示されている。
特開2021-079746号公報
しかしながら、特許文献1に開示された技術では、モード移行用駆動力特性から手動運転モード用駆動力特性に切り替えられた場合に、駆動力の急変が発生するといった問題が生じる。
本発明は、上記課題に鑑みてなされたものであって、その目的は、駆動力の急変を抑制することができる駆動力制御装置を提供することである。
上述した課題を解決し、目的を達成するために、本発明に係る駆動力制御装置は、車速、アクセルペダル位置、及び、前記アクセルペダル位置に対応して発生させるべき車両の前後加速度を目標加速度として規定した手動運転モード用駆動力特性に基づいて前記車両の駆動力を制御する手動運転モードと、運転者のアクセルペダル操作に依存せずに自動制御で前記駆動力を制御する自動運転モードと、を切り替えて走行可能であり、前記自動運転モードから前記手動運転モードへ移行する際に、前記自動運転モードで発生させた駆動力から前記手動運転モードで発生させる駆動力へ向けて前記駆動力を変化させる駆動力制御装置であって、前記自動運転モードから前記手動運転モードへ移行する場合に、前記車速、前記アクセルペダル位置、及び、前記車両に対する走行抵抗に応じて前記目標加速度を規定するオーバーライド用駆動力特性に基づいて前記駆動力を制御し、全閉のアクセルペダル位置における前記前後加速度が、前記手動運転モード用駆動力特性よりも前記オーバーライド用駆動力特性のほうが高く、且つ、前記オーバーライド用駆動力特性における前記アクセルペダル位置と前記前後加速度との関係を表したグラフと、前記手動運転モード用駆動力特性における前記アクセルペダル位置と前記前後加速度との関係を表したグラフとが、全閉及び全開とは異なる特定のアクセルペダル位置で交差することを特徴とするものである。
これにより、オーバーライド用駆動力特性及び手動運転モード用駆動力特性の駆動力差が小さい状態で、自動運転モードから手動運転モードへ切り替えやすくなるため、駆動力の急変を抑制することができる。
また、上記において、前記特定のアクセルペダル位置よりも全開側のアクセルペダル位置において、前記オーバーライド用駆動力特性及び前記手動運転モード用駆動力特性における前記前後加速度が一致するようにしてもよい。
これにより、オーバーライド用駆動力特性から手動運転モード用駆動力特性に切り替えやすくすることができる。
本発明に係る駆動力制御装置は、オーバーライド用駆動力特性及び手動運転モード用駆動力特性の駆動力差が小さい状態で、自動運転モードから手動運転モードへ切り替えやすくなるため、駆動力の急変を抑制することができるという効果を奏する。
図1は、実施形態1に係る車両のギヤトレーン及び制御系統の一例を示す図である。 図2は、実施形態1に係る車両の制御系統の詳細を説明するための図である。 図3は、実施形態1に係る車両のECUによって実行される制御の一例を説明するためのフローチャートである。 図4は、実施形態1におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。 図5は、実施形態1における時系列の挙動イメージを示した図である。 図6は、実施形態2におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。 図7は、実施形態3におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。 図8は、実施形態4におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。 図9は、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダルの戻し操作の過程で、特定のアクセルペダル位置よりも全閉側において、手動運転モード用駆動力特性を使用する場合を示した図である。 図10は、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダルの戻し操作の過程で、特定のアクセルペダル位置よりも全閉側において、手動運転モード用駆動力特性を使用する場合における時系列の挙動イメージを示した図である。 図11は、実施形態5におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。 図12は、実施形態5における時系列の挙動イメージを示した図である。
(実施形態1)
以下に、本発明に係る駆動力制御装置の実施形態1について説明する。なお、本実施形態により本発明が限定されるものではない。
図1は、実施形態1に係る車両100のギヤトレーン及び制御系統の一例を示す図である。実施形態1に係る車両100は、従来の一般的な車両と同様に、運転者の運転操作に従って走行する手動運転モードと、運転者の運転操作には依存せずに、運転操作を自動制御することによって走行する自動運転モードとを切り替えることが可能なように構成されている。具体的には、図1に示すように、車両100は、主要な構成要素として、駆動力源1、駆動輪2、アクセルペダル3、及び、ECU(Electronic Control Unit)4などを備えている。
駆動力源1は、車両100を走行させるための駆動トルクを出力する動力源である。駆動力源1は、例えば、ガソリンエンジンやディーゼルエンジンなどの内燃機関であり、出力の調整、並びに、始動及び停止などの作動状態が電気的に制御されるように構成されている。ガソリンエンジンであれば、スロットルバルブの開度、燃料の供給量または噴射量、点火の実行及び停止、並びに、点火時期などが電気的に制御される。あるいは、ディーゼルエンジンであれば、燃料の噴射量、燃料の噴射時期、または、EGRシステムにおけるスロットルバルブの開度などが電気的に制御される。
また、駆動力源1は、例えば、永久磁石式の同期モータ、もしくは、誘導モータなどの電気モータであってもよい。その場合の電気モータは、例えば、電力が供給されることにより駆動されてモータトルクを出力する原動機としての機能と、外部からのトルクを受けて駆動されることにより電気を発生する発電機としての機能とを兼ね備えた、いわゆるモータ・ジェネレータであってもよい。モータ・ジェネレータであれば、回転数やトルク、あるいは、原動機としての機能と発電機としての機能との切り替えなどが電気的に制御される。
駆動輪2は、駆動力源1が出力する駆動トルクが伝達されて駆動力を発生する。図1には、前輪が駆動輪2となる前輪駆動車の構成を示している。なお、実施形態1に係る車両100としては、後輪が駆動輪となる後輪駆動車であってもよいし、前輪及び後輪の両方を駆動輪とする四輪駆動車であってもよい。また、駆動力源1としてエンジンを搭載する場合は、エンジンの出力側に変速機を設け、駆動力源1が出力する駆動トルクを変速機で増減して駆動輪2へ伝達するように構成してもよい。駆動輪2を含む各車輪には、それぞれ、制動装置が設けられている。さらに、前輪もしくは後輪の少なくともいずれか一方には、車両100の操舵を行う操舵装置が設けられている。
車両100では、運転者による加速要求操作、すなわち、運転者によるアクセルペダル操作(アクセルペダル3の踏み込み操作、及び、アクセルペダル3の踏み戻し操作)の操作量、及び、車速に基づいて、車両100の駆動力あるいは加速度が制御される。例えば、アクセルペダル3の操作量もしくはアクセルペダル位置、及び、車速に基づく目標加速度を設定し、その目標加速度を実現するように、ECU4が駆動力源1の出力を制御する。
アクセルペダル3は、運転者の加速要求操作によって車両100の駆動力を調整し、車両100の加速度を制御するために用いられる。そのため、このアクセルペダル3には、後述する内部センサ13の一つとして、運転者によるアクセルペダル3の操作量を検出するためのアクセルポジションセンサが設けられている。アクセルポジションセンサにより、アクセルペダル3の操作量もしくはアクセルペダル位置(アクセルペダル開度、あるいは、アクセルペダルの踏み込み角度等)を検出することができる。
ECU4は、例えば、マイクロコンピュータを主体にして構成される電子制御装置である。ECU4には、後述する外部センサ11、GPS受信部12、内部センサ13、地図データベース14、及び、ナビゲーションシステム15などからの各種データが入力される。また、車両間通信システムからのデータが入力されるように構成することもできる。ECU4は、入力された各種データ及び予め記憶させられているデータや計算式等を使用して演算を行う。それと共に、その演算結果を制御指令信号として出力し、車両100を制御するように構成されている。
例えば、ECU4は、アクセルポジションセンサで検出されるアクセルペダル位置をはじめとする各種データを取得する。それと共に、取得した各種データに基づいて、車両100の目標加速度あるいは目標駆動トルクを算出する。そして、算出した目標加速度あるいは目標駆動トルクに基づいて、車両100に発生させる前後加速度を制御する。すなわち、目標加速度を実現する駆動力を制御するための制御指令信号を出力する。
したがって、ECU4は、検出されたアクセルペダル位置に基づいて、目標加速度を設定し、その目標加速度を実現するように、車両100の駆動力及び制動力を制御する。具体的には、駆動力源1の出力を制御する。すなわち、車両100の駆動力制御を実行する。なお、図1では一つのECU4が設けられた例を示しているが、ECU4は、制御する装置や機器毎に、あるいは制御内容毎に、複数設けられていてもよい。例えば、ECU4を、車両100を統合的に制御するメインコントローラとし、ECU4と連携して、駆動力源1や変速機などを専門的に制御するサブコントローラが別途設けられていてもよい。
実施形態1に係る車両100は、車両100の運転操作を自動制御して走行させる自動運転(自動運転モードにおける走行)が可能である。本実施形態において定義している自動運転とは、走行環境の認識や周辺状況の監視、並びに、発進・加速、操舵、及び、制動・停止などの全ての運転操作を、全て車両100の制御システムが行う自動運転である。例えば、NHTSA[米国運輸省道路交通安全局]が策定した自動化レベルにおける「レベル4」、あるいは、米国のSAE[Society of Automotive Engineers]が策定した自動化レベルにおける「レベル4」及び「レベル5」に該当する高度自動運転もしくは完全自動運転である。車両100は、例えば、SAEの自動化レベルにおける「レベル4」で定義されているように、自動運転で走行する自動運転モードと、運転操作を運転者が行う手動運転モードとを選択できる構成であってもよい。
上記のような自動運転を実施するECU4の具体例を、図2に示している。図2は、実施形態1に係る車両100の制御系統の詳細を説明するための図である。
ECU4には、外部センサ11、GPS受信部12、内部センサ13、地図データベース14、及び、ナビゲーションシステム15などからの検出信号や情報信号が入力されるように構成されている。
外部センサ11は、車両100の外部における走行環境や周辺状況を検出する。外部センサ11としては、例えば、車載カメラ、RADAR(Radio Detection and Ranging)、LIDAR(Laser Imaging Detection and Ranging)、及び、超音波センサなどが設けられている。外部センサ11として、上記の各センサの全てが設けられていてもよく、あるいは、上記の各センサのうちの少なくとも1つが設けられた構成であってもよい。
例えば、車載カメラは、車両100の前方及び側方に設置され、車両100の外部状況に関する撮像情報をECU4に送信する。車載カメラは、単眼カメラであってもよく、あるいはステレオカメラであってもよい。単眼カメラは、ステレオカメラと比較して、小型で低コストであり、車両100への取り付けが容易である。ステレオカメラは、両眼視差を再現するように配置された複数の撮像部を有している。ステレオカメラの撮像情報によれば、認識対象物の奥行き方向の情報も得ることができる。
RADARは、ミリ波やマイクロ波などの電波を利用して車両100の外部の他車両や障害物等を検出し、その検出データをECU4に送信する。例えば、電波を車両100の周囲に放射し、他車両や障害物等に当たって反射された電波を受信して測定・分析することにより、他車両や障害物等を検出するように構成されている。
LIDAR(もしくは、レーザーセンサ、レーザースキャナー)は、レーザー光を利用して車両100の外部の他車両や障害物等を検出し、その検出データをECU4に送信する。例えば、レーザー光を車両100の周囲に放射し、他車両や障害物等に当たって反射されたレーザー光を受光して測定・分析することにより、他車両や障害物等を検出するように構成されている。
超音波センサは、超音波を利用して車両100の外部の他車両や障害物等を検出し、その検出データをECU4に送信する。例えば、超音波を車両100の周囲に放射し、他車両や障害物等に当たって反射された超音波を受信して測定・分析することにより、他車両や障害物等を検出するように構成されている。
GPS受信部12は、複数のGPS(Global Positioning System)衛星からの電波を受信することにより、車両100の位置(例えば、車両100の緯度及び経度)を測定し、その位置情報をECU4に送信する。
内部センサ13は、車両100の走行状態及び各部の作動状態や挙動等を検出する。内部センサ13は、少なくとも、アクセルペダル3の操作量もしくはアクセルペダル位置を検出するアクセルポジションセンサを有している。その他に、主な内部センサ13としては、一例として、車速を検出するための車輪速センサ、駆動力源1の出力軸の回転数を検出する回転数センサ(駆動力源として電気モータを搭載する場合、レゾルバ)、スロットルバルブの開度を検出するスロットル開度センサ、ブレーキペダルの操作量(操作状態)を検出するブレーキストロークセンサ(ブレーキスイッチ)、車両100の加速度を検出する加速度センサ、及び、操舵装置の舵角を検出する舵角センサなどが設けられている。内部センサ13は、ECU4と電気的に接続されており、上記のような各種センサや機器・装置等の検出値または算出値に応じた電気信号を検出データとしてECU4に出力する。
地図データベース14は、地図情報を蓄積したデータベースであり、例えば、ECU4内に形成されている。あるいは、車両100と通信可能な情報処理センタなどの外部施設のコンピュータに記憶されたデータを利用することもできる。
ナビゲーションシステム15は、GPS受信部12が測定した車両100の位置情報と、地図データベース14の地図情報とに基づいて、車両100の走行ルートを算出するように構成されている。
上記のような外部センサ11、GPS受信部12、内部センサ13、地図データベース14、及び、ナビゲーションシステム15などからの検出データや情報データが、ECU4に入力される。そして、ECU4は、入力された各種データ及び予め記憶させられているデータ等を使用して演算を行い、その演算結果を基に、車両100各部のアクチュエータ16及び補助機器17などに対して、制御指令信号を出力するように構成されている。
アクチュエータ16は、車両100を自動運転で走行させる際に、車両100の発進・加速、操舵、及び、制動・停止などの運転操作に関与し、駆動力源1、制動装置、及び、操舵装置などを制御するための作動装置である。主なアクチュエータ16としては、例えば、スロットルアクチュエータ、ブレーキアクチュエータ、及び、操舵アクチュエータなどが設けられている。
例えば、スロットルアクチュエータは、ECU4から出力される制御信号に応じてエンジンのスロットルバルブの開度や、電気モータに対する供給電力を制御するように構成されている。ブレーキアクチュエータは、ECU4から出力される制御信号に応じて制動装置を作動させ、各車輪へ付与する制動力を制御するように構成されている。操舵アクチュエータは、ECU4から出力される制御信号に応じて電動パワーステアリング装置のアシストモータを駆動し、操舵装置における操舵トルクを制御するように構成されている。
補助機器17は、上記のアクチュエータ16に含まれない機器あるいは装置であり、例えば、ワイパー、前照灯、方向指示器、エアコンディショナ、及び、オーディオ装置など、車両100の運転操作に直接的には関与しない機器・装置である。
さらに、ECU4は、車両100を自動運転モードで走行させるための主な制御部として、例えば、車両位置認識部18、外部状況認識部19、走行状態認識部20、走行計画生成部21、走行制御部22、及び、補助機器制御部23などを有している。
車両位置認識部18は、GPS受信部12で受信した車両100の位置情報及び地図データベース14の地図情報に基づいて、地図上における車両100の現在位置を認識するように構成されている。なお、ナビゲーションシステム15で用いられる車両100の位置を、そのナビゲーションシステム15から得ることもできる。あるいは、道路上や道路脇の外部に設置されたセンサやサインポスト等で車両100の位置を測定可能な場合は、そのセンサとの通信によって現在位置を得ることもできる。
外部状況認識部19は、例えば、車載カメラの撮像情報やRADARもしくはLIDARの検出データに基づいて、車両100の外部状況を認識するように構成されている。外部状況としては、例えば、走行車線の位置、道路幅、道路の形状、路面勾配、及び、車両周辺の障害物に関する情報等が得られる。また、走行環境として車両100周辺の気象情報や路面の摩擦係数などを検出してもよい。
走行状態認識部20は、内部センサ13の各種検出データに基づいて、車両100の走行状態を認識するように構成されている。車両100の走行状態としては、例えば、車速、前後加速度、横加速度、及び、ヨーレートなどが入力される。
走行計画生成部21は、例えば、ナビゲーションシステム15で演算された目標ルート、車両位置認識部18で認識された車両100の現在位置、及び、外部状況認識部19で認識された外部状況等に基づいて、車両100の進路を生成するように構成されている。進路は、目標ルートに沿って車両100が進行する経路である。また、走行計画生成部21は、目標ルート上で、安全に走行すること、法令を順守して走行すること、及び、効率よく走行すること等の基準に沿って、車両100が適切に走行することができるように進路を生成する。そして、走行計画生成部21は、生成した進路に応じた走行計画を生成するように構成されている。具体的には、少なくとも、外部状況認識部19で認識された外部状況及び地図データベース14の地図情報に基づいて、予め設定された目標ルートに沿った走行計画が生成される。
走行計画は、車両100の将来の駆動力要求を含む車両の走行状態を設定したものであり、例えば、現在時刻から数秒先の将来のデータが生成される。また、車両100の外部状況や走行状況によっては、現在時刻から数十秒先の将来のデータが生成される。走行計画は、例えば、目標ルートに沿った進路を車両100が走行する際に、車速、加速度、及び、操舵トルク等の推移を示すデータとして走行計画生成部21から出力される。
また、走行計画は、車両100の速度パターン、加速度パターン、及び、操舵パターンとして走行計画生成部21から出力することもできる。速度パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、目標制御位置毎に時間に関連付けられて設定された目標車速からなるデータである。加速度パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、目標制御位置毎に時間に関連付けられて設定された目標加速度からなるデータである。操舵パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、目標制御位置毎に時間に関連付けられて設定された目標操舵トルクからなるデータである。
走行制御部22は、走行計画生成部21で生成された走行計画に基づいて、車両100の走行を自動で制御するように構成されている。具体的には、走行計画に応じた制御信号が、スロットルアクチュエータ、ブレーキアクチュエータ、及び、操舵アクチュエータ等のアクチュエータ16に対して出力される。また、駆動力源1に対して、上記のような走行計画に応じた制御信号が出力されてもよい。
補助機器制御部23は、走行計画生成部21で生成された走行計画に基づいて、補助機器17を自動で制御するように構成されている。具体的には、走行計画に応じた制御信号が、必要に応じて、ワイパー、前照灯、方向指示器、エアコンディショナ、オーディオ装置等の補助機器17に対して出力される。
なお、上述したような走行計画に基づいて車両100を自動運転モードで走行させる制御に関しては、例えば、特開2016-99713号公報に記載されている。この車両100は、特開2016-99713号公報に記載されている内容や、その他の自動運転に関する制御技術を適用して、上述した高度自動運転あるいは完全自動運転による走行が可能なように構成されている。
実施形態1に係る車両100のECU4は、運転者の加速意図や減速意図を反映させ、運転者にショックや違和感を感じさせ難くし、自動運転モードから手動運転モードへの運転モードの切り替えを適切に行うように構成されている。なお、手動運転モードでは、アクセルペダル位置、及び、そのアクセルペダル位置に対応して発生させるべき車両100の前後加速度を目標加速度として規定した手動運転モード用駆動力特性に基づいて駆動力制御がECU4によって実行される。
例えば、ECU4は、自動運転モード中に運転者の加速要求がありオーバーライドを実行するときに、車両走行状態(車速や走行抵抗(路面勾配)など)、及び、運転者の意図(アクセルペダル位置(アクセルペダル3の操作量)や、内部センサ13に含まれる車内カメラなどによって撮影した運転者の身体や目線の動きなど)に基づいて、駆動力特性を自動運転モード用駆動力特性からオーバーライド用駆動力特性に変更する。なお、オーバーライド用駆動力特性は、車両100の走行状態及び運転者の意図に基づいて、オーバーライド中の駆動力特性を定めるものである。具体的には、オーバーライド用駆動力特性は、車速と、アクセルペダル位置(アクセルペダル3の操作量)と、車両100に対する走行抵抗とに応じて、アクセルペダル位置に対応して発生させるべき車両100の前後加速度を、目標加速度として規定する。したがって、オーバーライド中は、オーバーライド用駆動力特性に基づいて目標加速度が算出され、そのオーバーライド用駆動力特性から算出された目標加速度を基に、車両100の駆動力制御がECU4によって実行される。
このように、自動運転モード中に運転者の加速要求がありオーバーライドを実行するときに、駆動力特性をオーバーライド用駆動力特性に変更することによって、自動運転モード中でも運転者の加速意図を反映した車両挙動を速やかに実現することができる。特に、運転者が加速意図の場合には、失速感を与えないように自動運転モード用駆動力特性と調停することによって、運転者の意図を反映した車両挙動を実現することができる。その結果、オーバーライドをスムースに開始することができる。
また、本実施形態においては、車速やアクセルペダル位置、手動運転モード用駆動力特性との関係などの情報に基づいて、オーバーライド用駆動力特性を手動運転モード用駆動力特性に変更する。これにより、オーバーライド用駆動力特性を手動運転モード用駆動力特性へ、運転者に違和感を与えず切り替えることができる。
図3は、実施形態1に係る車両100のECU4によって実行される制御の一例を説明するためのフローチャートである。図3に示すフローチャートに示す制御は、車両100が自動運転モードで走行している場合に数[ms]毎に繰り返し実行する。
まず、ECU4は、駆動力特性がオーバーライド用駆動力特性であるか否かを判断する(ステップS1)。ECU4は、駆動力特性がオーバーライド用駆動力特性であると判断した場合(ステップS1にてYes)、手動運転モード用駆動力特性への変更条件成立か否かを判断する(ステップS2)。ECU4は、手動運転モード用駆動力特性への変更条件成立と判断した場合(ステップS2にてYes)、手動運転モード用駆動力特性に変更する(ステップS3)。その後、ECU4は、一連の制御をリターンする。
また、ECU4は、ステップS2において、手動運転モード用駆動力特性への変更条件成立ではないと判断した場合(ステップS2にてNo)、駆動力特性の変更を行わずに、一連の制御をリターンする。
また、ECU4は、ステップS1において、駆動力特性がオーバーライド用駆動力特性ではないと判断した場合(ステップS1にてNo)、自動運転モード中であるか否かを判断する(ステップS4)。ECU4は、自動運転モード中であると判断した場合(ステップS4にてYes)、オーバーライド用駆動力特性への変更条件成立か否かを判断する(ステップS5)。ECU4は、オーバーライド用駆動力特性への変更条件成立と判断した場合(ステップS5にてYes)、オーバーライド用駆動力特性に変更する(ステップS6)。その後、ECU4は、一連の制御をリターンする。
また、ECU4は、ステップS4において、自動運転モード中ではないと判断した場合(ステップS4にてNo)、車両100が通常の手動運転モードで走行するように制御して、一連の制御をリターンする。
また、ECU4は、ステップS5において、オーバーライド用駆動力特性への変更条件成立ではないと判断した場合(ステップS5にてNo)、駆動力特性の変更を行わず、車両100が通常の自動運転モードで走行するように制御して、一連の制御をリターンする。
ここで、本実施形態では、図3に示したフローチャートにおいて、ECU4が、スタートからリターンまで、ステップS1(ステップS1にてNo)、ステップS4(ステップS4にてYes)、ステップS5(ステップS5にてYes)、ステップS6の順で実施する処理の流れをフロー1とする。また、図3に示したフローチャートにおいて、ECU4が、スタートからリターンまで、ステップS1(ステップS1にてYes)、ステップS2(ステップS2にてYes)、ステップS3の順で実施する処理の流れをフロー2とする。また、ECU4が、スタートからリターンまで、ステップS1(ステップS1にてYes)、ステップS2(ステップS2にてNo)の順で実施する処理の流れをフロー3とする。
図4は、実施形態1におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。なお、図4中、アクセルペダル位置が0のときが全閉(アクセル開度が全閉)であり、アクセルペダル位置が100のときが全開(アクセル開度が全開)である。また、図4中の点A11は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応したオーバーライド用駆動力特性に基づく目標加速度を示している。また、図4中の点B11は、前記特定のアクセルペダル位置Pcに対応した手動運転モード用駆動力特性に基づく目標加速度を示している。
なお、図4においては、点A11及び点B11との目標加速度の値は同じため、点A11と点B11とは本来重なるが、点A11と点B11とを見やすくするために意図的にずらして示している。また、以後、本明細書において、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応した、オーバーライド用駆動力特性に基づく目標加速度を示した点と、手動運転モード用駆動力特性に基づく目標加速度を示した点とは、本来重なるが、各点を見やすくするために意図的にずらして示す。
図5は、実施形態1における時系列の挙動イメージを示した図である。なお、図5中の点A21は、オーバーライド開始時におけるオーバーライド用駆動力特性に基づいた駆動力を示している。また、図5中の点B21は、オーバーライド開始時における実際の駆動力と一致する、手動運転モード用駆動力特性に基づいた駆動力を示している。
本実施形態においては、図3に示したフローチャートにおけるフロー2の成立を促進するため、図4に示すように、全閉及び全開ではない特定のアクセルペダル位置Pcで、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが同じ値の目標加速度(点A11と点B11)で交差するように、オーバーライド用駆動力特性と手動運転モード用駆動力特性とを設定している。そして、図5に示すように、オーバーライド用駆動力特性に基づく目標駆動力(点A21)と手動運転モード用駆動力特性に基づく目標駆動力(点B21)との差である駆動力差が所定値以下となるようなタイミングで、オーバーライド用駆動力特性から手動運転モード用駆動力特性に切り替える。これにより、駆動力の急変を抑制して、運転者に失速感を知覚されずにオーバーライド用駆動力特性から手動運転モード用駆動力特性に変更することができる。
(実施形態2)
以下に、本発明に係る駆動力制御装置の実施形態2について説明する。なお、実施形態2において、実施形態1と共通する部分についての説明は適宜省略する。
図6は、実施形態2におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。なお、図6中の点A31は、オーバーライド用駆動力特性に基づく目標加速度を示している。また、図6中の点B31は、手動運転モード用駆動力特性に基づく目標加速度を示している。
実施形態2においては、図6に示すように、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する場合、オーバーライド用駆動力特性に基づく目標加速度A32よりも手動運転モード用駆動力特性に基づく目標加速度B32が大きく、目標加速度A32と目標加速度B32の差である加速度差が所定値以下となるアクセルペダル位置で、オーバーライド用駆動力特性から手動運転モード用駆動力特性に切り替える。これにより、失速感を完全に排除して、オーバーライド用駆動力特性から手動運転モード用駆動力特性に変更することができる。
(実施形態3)
以下に、本発明に係る駆動力制御装置の実施形態3について説明する。なお、実施形態3において、実施形態1と共通する部分についての説明は適宜省略する。
図7は、実施形態3におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。なお、図7中の点A41は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応したオーバーライド用駆動力特性に基づく目標加速度を示している。また、図7中の点B41は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応した手動運転モード用駆動力特性に基づく目標加速度を示している。
実施形態3においては、図7に示すように、オーバーライド用駆動力特性に基づくも目標加速度(点A41)と、手動運転モード用駆動力特性に基づく目標加速度(点B41)とが一致し、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcよりもアクセルペダル位置の全開側において、オーバーライド用駆動力特性と手動運転モード用駆動力特性とを一致させている。これにより、オーバーライド用駆動力特性から手動運転モード用駆動力特性に切り替えやすくすることができる。
(実施形態4)
以下に、本発明に係る駆動力制御装置の実施形態4について説明する。なお、実施形態4において、実施形態1と共通する部分についての説明は適宜省略する。
図8は、実施形態4におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。なお、図8中の点A51は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応したオーバーライド用駆動力特性に基づく目標加速度を示している。また、図8中の点B51は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応した手動運転モード用駆動力特性に基づく目標加速度を示している。
実施形態4においては、図8に示すように、オーバーライド用駆動力特性に基づくも目標加速度(点A51)と、手動運転モード用駆動力特性に基づく目標加速度(点B51)とが一致し、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcよりも全開側にアクセルペダル3が踏み込まれて(フロー2が成立して)、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダル3の戻し操作の過程で、特定のアクセルペダル位置Pcよりも全閉側において、オーバーライド用駆動力特性と手動運転モード用駆動力特性とのどちらの駆動力特性を使用するかは、例えば、車両100のキャラクター(スポーツカー、大衆車、及び、タクシーなど)に応じて決めればよい。
図9は、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダルの戻し操作の過程で、特定のアクセルペダル位置Pcよりも全閉側において、手動運転モード用駆動力特性を使用する場合を示した図である。なお、図9中の点A61は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応したオーバーライド用駆動力特性に基づく目標加速度を示している。また、図9中の点B61は、オーバーライド用駆動力特性と手動運転モード用駆動力特性とが交差する特定のアクセルペダル位置Pcに対応した手動運転モード用駆動力特性に基づく目標加速度を示している。
図10は、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダルの戻し操作の過程で、特定のアクセルペダル位置Pcよりも全閉側において、手動運転モード用駆動力特性を使用する場合における時系列の挙動イメージを示した図である。なお、図10中の点A71は、オーバーライド開始時におけるオーバーライド用駆動力特性に基づいた駆動力を示している。また、図10中の点B71は、手動運転モード用駆動力特性に変更した時における手動運転モード用駆動力特性に基づいた駆動力を示している。
例えば、車両100が大衆車やタクシーであれば、オーバーライド用駆動力特性から手動運転モード用駆動力特性への変更が完了した後、運転者によるアクセルペダルの戻し操作の過程で、特定のアクセルペダル位置Pcよりも全閉側において、図9及び図10に示すように、手動運転モード用駆動力特性を積極的に活用することによって、よりマイルドな車両挙動となるようにすることができる。
(実施形態5)
以下に、本発明に係る駆動力制御装置の実施形態5について説明する。なお、実施形態5において、実施形態1と共通する部分についての説明は適宜省略する。
図11は、実施形態5におけるオーバーライド用駆動力特性及び手動運転用駆動力特性のアクセルペダル位置と前後加速度との関係を示した図である。なお、図11中、オーバーライド用駆動力特性及び手動運転用駆動力特性は、全閉及び全開とは異なる特定のアクセルペダル位置Pcで交差している。また、図11中の点A81は、全閉のアクセルペダル位置に対応したオーバーライド用駆動力特性に基づく目標加速度を示している。また、図11中の点B81は、全閉のアクセルペダル位置に対応した手動運転モード用駆動力特性に基づく目標加速度を示している。
図12は、実施形態5における時系列の挙動イメージを示した図である。なお、図12中の点A91は、オーバーライド開始時におけるオーバーライド用駆動力特性に基づいた駆動力を示している。また、図12中の点A92は、手動運転モード用駆動力特性に変更した時におけるオーバーライド用駆動力特性に基づいた駆動力を示している。また、図12中の点B91は、手動運転モード用駆動力特性に変更した時における手動運転モード用駆動力特性に基づいた駆動力を示している。
実施形態5においては、図11及び図12などに示すように、図3に示したフローチャートにおけるフロー2における、オーバーライド用駆動力特性から手動運転モード用駆動力特性に変更する条件として、アクセルペダル位置が全閉または全閉近傍になった場合としている。これにより、車両100の走行状態次第では、全閉のアクセルペダル位置に戻されるまでオーバーライドが終了しない場合が想定されるが、そのような場合でもオーバーライド用駆動力特性から手動運転モード用駆動力特性に変更することができる。
1 駆動力源
2 駆動輪
3 アクセルペダル
4 ECU
11 外部センサ
12 GPS受信部
13 内部センサ
14 地図データベース
15 ナビゲーションシステム
16 アクチュエータ
17 補助機器
18 車両位置認識部
19 外部状況認識部
20 走行状態認識部
21 走行計画生成部
22 走行制御部
23 補助機器制御部
100 車両

Claims (2)

  1. 車速、アクセルペダル位置、及び、前記アクセルペダル位置に対応して発生させるべき車両の前後加速度を目標加速度として規定した手動運転モード用駆動力特性に基づいて前記車両の駆動力を制御する手動運転モードと、運転者のアクセルペダル操作に依存せずに自動制御で前記駆動力を制御する自動運転モードと、を切り替えて走行可能であり、前記自動運転モードから前記手動運転モードへ移行する際に、前記自動運転モードで発生させた駆動力から前記手動運転モードで発生させる駆動力へ向けて前記駆動力を変化させる駆動力制御装置であって、
    前記自動運転モードから前記手動運転モードへ移行する場合に、
    前記車速、前記アクセルペダル位置、及び、前記車両に対する走行抵抗に応じて前記目標加速度を規定するオーバーライド用駆動力特性に基づいて前記駆動力を制御し、
    全閉のアクセルペダル位置における前記前後加速度が、前記手動運転モード用駆動力特性よりも前記オーバーライド用駆動力特性のほうが高く、
    且つ、前記オーバーライド用駆動力特性における前記アクセルペダル位置と前記前後加速度との関係を表したグラフと、前記手動運転モード用駆動力特性における前記アクセルペダル位置と前記前後加速度との関係を表したグラフとが、全閉及び全開とは異なる特定のアクセルペダル位置で交差することを特徴とする駆動力制御装置。
  2. 前記特定のアクセルペダル位置よりも全開側のアクセルペダル位置において、前記オーバーライド用駆動力特性及び前記手動運転モード用駆動力特性における前記前後加速度が一致することを特徴とする請求項1に記載の駆動力制御装置。
JP2021184406A 2021-11-11 2021-11-11 駆動力制御装置 Active JP7472892B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021184406A JP7472892B2 (ja) 2021-11-11 2021-11-11 駆動力制御装置
US17/932,438 US20230143408A1 (en) 2021-11-11 2022-09-15 Driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184406A JP7472892B2 (ja) 2021-11-11 2021-11-11 駆動力制御装置

Publications (2)

Publication Number Publication Date
JP2023071549A JP2023071549A (ja) 2023-05-23
JP7472892B2 true JP7472892B2 (ja) 2024-04-23

Family

ID=86229782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184406A Active JP7472892B2 (ja) 2021-11-11 2021-11-11 駆動力制御装置

Country Status (2)

Country Link
US (1) US20230143408A1 (ja)
JP (1) JP7472892B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071087A1 (en) 2017-09-07 2019-03-07 Ford Global Technologies, Llc Method for adjusting requested vehicle torque
JP2020168915A (ja) 2019-04-02 2020-10-15 株式会社Subaru 車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071087A1 (en) 2017-09-07 2019-03-07 Ford Global Technologies, Llc Method for adjusting requested vehicle torque
JP2020168915A (ja) 2019-04-02 2020-10-15 株式会社Subaru 車両の制御装置

Also Published As

Publication number Publication date
US20230143408A1 (en) 2023-05-11
JP2023071549A (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
CN109760679B (zh) 自动驾驶车辆的行驶控制装置
US10698405B2 (en) Autonomous driving control device
US10494022B2 (en) Driving assistance device
JP6572328B2 (ja) 車両制御装置
US20160304124A1 (en) Vehicle control system
CN110654390B (zh) 车辆控制装置
US10065644B2 (en) Vehicle control system
US10983516B2 (en) Vehicle control system
CN109291910B (zh) 车辆的控制装置
US11780425B2 (en) Vehicle control apparatus
JP2019123321A (ja) 車両走行制御装置
US10513273B1 (en) Driver transition assistance for transitioning to manual control for vehicles with autonomous driving modes
CN111409621B (zh) 用于扭矩分配仲裁的系统和方法
CN111409636B (zh) 用于控制车辆推进的系统和方法
JP7000291B2 (ja) 車両制御装置
US20230141314A1 (en) Driving force control device
JP6992279B2 (ja) 車両の制御装置
CN111391843B (zh) 自动驾驶车辆系统
CN116968735A (zh) 队列行驶系统
JP7472892B2 (ja) 駆動力制御装置
CN111391829A (zh) 车辆的行驶控制装置
US20230147441A1 (en) Driving force control device
JP2020063754A (ja) 変速機制御装置
US20230286505A1 (en) Driving assistance apparatus
JP2021079746A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150