JP7471525B2 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP7471525B2
JP7471525B2 JP2023534438A JP2023534438A JP7471525B2 JP 7471525 B2 JP7471525 B2 JP 7471525B2 JP 2023534438 A JP2023534438 A JP 2023534438A JP 2023534438 A JP2023534438 A JP 2023534438A JP 7471525 B2 JP7471525 B2 JP 7471525B2
Authority
JP
Japan
Prior art keywords
light
distance measuring
light receiving
measuring device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023534438A
Other languages
English (en)
Other versions
JPWO2023286114A5 (ja
JPWO2023286114A1 (ja
Inventor
彰太 中原
正幸 大牧
菜月 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023286114A1 publication Critical patent/JPWO2023286114A1/ja
Publication of JPWO2023286114A5 publication Critical patent/JPWO2023286114A5/ja
Application granted granted Critical
Publication of JP7471525B2 publication Critical patent/JP7471525B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本開示は、測距装置に関する。
従来、光を出射した時点から測定対象からの反射光を受光する時点までの時間に基づいて測定対象までの距離を算出する測距装置が知られている。また、車載用の測距装置は、障害物を事前に検知する用途で用いられるため、広角な視野で障害物を検知することが求められている。例えば、特許文献1では、視野の広角化を行うために、レーザ光を走査する1つの走査デバイスと、レーザ光を出射する複数の光源部と、測定対象における反射光である戻り光を受光する複数の受光素子とを備えた測距用のビーム照射装置が提案されている。この装置は、走査デバイスに対して異なる入射角度で複数のレーザ光を入射させる光源部と、複数のレーザ光の入射角度に対応した位置に配置された複数の受光素子とを備えることで、走査デバイスの回転角度に対応する走査角度よりも広い走査角度のレーザ光の走査及び戻り光の受光を可能としている。
特開2015-125109号公報(段落0082~0083、図13)
しかしながら、上記従来の装置では、複数の受光素子を支持するために複数の部材を用いる必要があり、複数の受光素子の実装が容易ではないという問題があった。
本開示は、上述の課題を解決するためになされたものであり、複数の受光素子の実装容易性を向上させることができる測距装置を提供することを目的とする。
本開示の測距装置は、複数の出射光をそれぞれ出射する光出射部と、複数の分離光学部と、前記複数の光出射部から前記複数の分離光学部を介して進み、互いに異なる入射角度で入射する前記複数の出射光を走査する走査光学部と、走査された前記複数の出射光の被照射領域からの反射光である戻り光であって、前記走査光学部で反射し前記複数の分離光学部を介して進む前記複数の戻り光を、それぞれ受光する複数の受光素子と、前記複数の受光素子と前記複数の分離光学部とを保持するベース部材と、前記複数の受光素子が備えられた共通の受光基板とを有することを特徴とする。
本開示によれば、複数の受光素子の実装容易性を向上させることができる。
実施の形態1に係る測距装置を概略的に示す前面斜視図である。 実施の形態1に係る測距装置を概略的に示す背面斜視図である。 図1の測距装置のIII-III線に沿う断面図である。 図1の測距装置のIV-IV線に沿う断面図である。 図1の測距装置のV-V線に沿う断面図である。 実施の形態1に係る測距装置の光学系の構造と出射光及び戻り光の光路とを示す図である。 実施の形態1に係る測距装置の走査範囲に対応する測距領域を示す図である。 実施の形態2に係る測距装置を概略的に示す前面斜視図である。 実施の形態2に係る測距装置を概略的に示す背面斜視図である。 図8の測距装置のSX-SX線に沿う断面図である。 実施の形態2に係る測距装置の光学系の構造と出射光及び戻り光の光路とを示す図である。 実施の形態3に係る測距装置の光学系の構造と出射光及び戻り光の光路とを示す図である。 変形例に係る測距システムの構成を概略的に示すブロック図である。
以下に、実施の形態に係る測距装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。
図において、同一又は相当する部分には、同一の符号が付されている。また、図には、XYZ直交座標系の座標軸が示されている。Z方向は、測距装置が測距する測定対象が存在する測距領域の中心の方向である。+Z方向は、測距装置から出射される3本の出射光のうちの中央の出射光が走査範囲の中心方向を走査しているときの出射光の中心光線の進行方向(すなわち、前方)である。-Z方向は、測定対象から出射される3本の出射光のうちの中央の出射光が走査範囲の中心方向を走査しているときの測定対象からの反射光である戻り光の進行方向(すなわち、後方)である。Y方向は、測距装置の上下方向である。+Y方向は、測距装置の上方向であり、-Y方向は、測距装置の下方向である。X方向は、測距装置の水平方向であり、Y方向及びZ方向の両方に直交する方向である。
《実施の形態1》
図1及び図2は、実施の形態1に係る測距装置1aを概略的に示す前面斜視図及び背面斜視図である。図1又は図2に示されるように、測距装置1aは、複数の出射光E1、E2、E3をそれぞれ生成する複数の光出射部101、102、103と、走査光学部である走査デバイス5と、複数の分離光学部である複数の分離ミラーSP1、SP2、SP3と、複数の受光素子が備えられた受光基板200と、複数の第2の偏向光学部材である複数の第2の偏向ミラーMB1、MB2、MB3と、ベース部材2とを備える。
また、測距装置1aは、後述される受光部201、202、203を備える。また、測距装置1aは、+Z方向に開口している筐体内に、光学系の全ての部品を内包することができる。実施の形態1において、筐体の記載は省略されている。測距装置1aは、例えば、車両の前面に設置され、車両の前方の測定対象を検出し、測定対象までの距離を測定する。
測距装置1aは、光を走査しながら測定対象(すなわち、測定対象)に向けて出射し、測定対象が反射した光を受光することで、測定対象から測距装置1aまでの距離を測定するように構成されている。
ベース部材2は、部品を保持し固定する。固定される部品は、測距装置1aの光学系(すなわち、測距用光学装置の光学系)である。例えば、ベース部材2は、接着剤、ネジ等によって各部品を固定する。ベース部材2は、複数の部品で構成されていてもよい。実施の形態1において、ベース部材2は、リアベース部3とフロントベース部4とで構成されている。ベース部材2の構成は、他の構成であってもよい。
図3は、図1の測距装置1aのIII-III線に沿う断面図である。図4は、図1の測距装置1aのIV-IV線に沿う断面図である。図5は、図1の測距装置1aのV-V線に沿う断面図である。図6は、実施の形態1に係る測距装置1aの光学系の構造と出射光及び戻り光の光路とを示す図である。
光出射部101、102、103は、それぞれ、光源部LD1、LD2、LD3と、出射光学系CA1、CA2、CA3と、出射光学系CB1、CB2、CB3とを備える。光出射部101、102、103は、出射光E1、E2、E3をそれぞれ出射する。実施の形態1において、光出射部101、102、103は、X方向に並んでリアベース部3の上面に固定される。
光出射部102は、測距装置1aのX方向の中心に配置されている。光出射部101、103は、それぞれ、光出射部102の-Z方向及び+Z方向に配置されている。光出射部101と102との間の配置間隔と光出射部101と103との間の配置間隔とは、等しい。
光源部LD1、LD2、LD3は、光を出射する。例えば、光源部LD1、LD2、LD3は、レーザ光源であり、出射光はレーザ光である。光源部LD1、LD2、LD3で生成される光の波長は、例えば、870nm~1600nmである。
出射光学系CA1、CA2、CA3と、出射光学系CB1、CB2、CB3は、それぞれ、光源部LD1、LD2、LD3で生成されたた光の各々を平行光化し、又は、集光し、出射光E1、E2、E3を出射する。出射光学系CA1、CA2、CA3の各々及び出射光学系CB1、CB2、CB3の各々は、例えば、凸レンズ、シリンドリカルレンズ、又はトロイダルレンズなどで構成される。出射光学系CA1、CA2、CA3の各々及び出射光学系CB1、CB2、CB3の各々は、複数のレンズなどの複数の光学部品で構成されてもよく、あるいは、省略することも可能である。また、出射光学系CA1、CA2、CA3と出射光学系CB1、CB2、CB3の一部又は全ては、ベース部材2に固定されてもよい。
実施の形態1において、出射光学系CA1、CA2、CA3と、出射光学系CB1、CB2、CB3とは、それぞれ、光源部LD1、LD2、LD3を通る-Y方向の直線上に並んで配置されており、-Y方向に出射光E1、E2、E3を出射している。出射光学系CA1、CA2、CA3は、それぞれ、光出射部101、102、103に固定されている。出射光学系CB1、CB2、CB3は、リアベース部3に固定されている。
走査デバイス5は、光出射部101、102、103から出射された出射光E1、E2、E3を走査ミラー6で反射し、測距装置1aの内部から外部に出射する。走査デバイス5は、少なくとも1つの回転軸である回転軸TH回りに走査ミラー6を回転させる。また、走査デバイス5は、回転軸THに直交する他の回転軸(例えば、X方向の回転軸)回りに回転してもよい。また、走査デバイス5は、回転軸TH回りに回転する機能と、回転軸THに直交する他の回転軸回りに回転する機能の両方の機能を備えてもよい。つまり、走査デバイス5は、直交する2つの回転軸回りに走査ミラー6を回転させてもよい。走査デバイス5は、走査ミラー6を第1の回転軸TH回りに回転させることで、出射光E1、E2、E3を水平方向に走査することができる。走査デバイス5は、走査ミラー6を第2の回転軸回りに回転させることで、出射光E1、E2、E3を垂直方向に走査することができる。
走査デバイス5は、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、又はジンバル方式のミラーアクチュエータなどである。走査デバイス5は、走査ミラー6が回転動作の中立位置となる状態において、出射光E2を反射して、+Z方向に出射する。
実施の形態1において、走査デバイス5は、図4に示されるように、走査ミラー6が測距装置1aのX方向の中心位置になるよう配置され、YX平面に対して+X軸回りに(すなわち、+X方向を向いた場合におけるX軸を中心とする時計回りに)傾いてフロントベース部4に固定されることで、走査ミラー6の回転動作の中立位置において、走査ミラー6で反射された出射光E2が+Z方向に向かうようにしている。回転軸THで走査ミラー6が回転することで、出射光E2が水平方向に走査される。
分離ミラーSP1、SP2、SP3は、それぞれ、出射光E1、E2、E3を反射し、かつ測定対象が反射した反射光である戻り光R1、R2、R3を透過する。分離ミラーSP1、SP2、SP3は、例えば、出射光E1、E2、E3が照射される部分のみ反射領域が設けられたミラー、又は出射光E1、E2、E3が照射される部分のみとした外形形状のミラー、又は出射光E1、E2、E3の一部を透過し、一部を反射するミラーなどである。
分離ミラーSP1、SP2、SP3は、それぞれ、光出射部101、102、103から出射された出射光E1、E2、E3を反射し、走査ミラー6に導くよう構成される。分離ミラーSP1、SP2、SP3で反射した出射光E1、E2、E3は、走査ミラー6に到達するまでに、複数のミラーを介してもよく、好ましくは、第2の偏向ミラーMB1、MB2、MB3を介して走査ミラー6に到達する。
分離ミラーSP1、SP2、SP3を透過した戻り光R1、R2、R3は、受光部201、202、203に向かうように構成される。
したがって、光出射部101、102、103と、走査デバイス5と、受光部201、202、203は、出射光E1、E2、E3と、戻り光R1、R2、R3が部分的に同軸となる同軸光学系を構成している。そのため、環境光が受光部201、202、203に入射し難くなり、測距装置1aの環境光に対するS/N比を向上させることができる。
実施の形態1において、分離ミラーSP1、SP2、SP3は、光出射部101、102、103の-Y方向に配置され、YX平面に対して-X軸回りに(すなわち、-X方向を向いた場合におけるX軸を中心とする時計回りに)それぞれ等しく傾いた状態でリアベース部3に固定されている。これにより、分離ミラーSP1、SP2、SP3は、出射光E1、E2、E3を予め定められた角度だけ+Y方向かつ-Z方向に(すなわち、+Y方向と-Z方向との間の方向に)偏向させ、第2の偏向ミラーMB1、MB2、MB3に導いている。
第2の偏向ミラーMB1、MB2、MB3は、それぞれ、分離ミラーSP1、SP2、SP3で偏向された出射光E1、E2、E3を反射し、走査ミラー6に導くよう構成される。
実施の形態1において、第2の偏向ミラーMB1、MB2、MB3は、走査ミラー6より+Z方向の位置に配置されている。第2の偏向ミラーMB2は、YX平面に対して+X軸回りに(すなわち、+X方向を向いた場合におけるX軸を中心とする時計回りに)傾いてフロントベース部4に固定されている。これにより、第2の偏向ミラーMB2は、出射光E2を所定の角度だけ+Y方向かつ-Z方向に(すなわち、+Y方向と-Z方向との間の方向に)偏向させ、走査ミラー6に導いている。第2の偏向ミラーMB1は、YX平面に対して+X軸回り、かつ、-Y軸回りに(すなわち、+X方向を向いた場合におけるX軸を中心とする時計回りに、かつ、-Y方向を向いた場合におけるY軸を中心とする時計回りに)傾いてフロントベース部4に固定されている。これにより、第2の偏向ミラーMB1は、出射光E1を所定の角度だけ+Y方向かつ-Z方向かつ+X方向に(すなわち、出射光E1が+Y方向と-Z方向と+X方向との間の方向に)偏向させ、走査ミラー6に導いている。第2の偏向ミラーMB3は、YX平面に対して+X軸回り、かつ、+Y軸回りに(すなわち、+X方向を向いた場合におけるX軸を中心とする時計回りに、かつ、+Y方向を向いた場合におけるY軸を中心とする時計回りに)傾いてフロントベース部4に固定されている。これにより、第2の偏向ミラーMB3は、出射光E3を所定の角度だけ+Y方向かつ-Z方向かつ-X方向に(すなわち、+Y方向と-Z方向とーX方向との間の方向に)偏向させ、走査ミラー6に導いている。
受光部201、202、203は、それぞれ、受光素子PD1、PD2、PD3と、アパーチャ(すなわち、開口部)と開口部が形成された遮光部とを有するアパーチャ部AP1、AP2、AP3と、光学フィルタBPF1、BPF2、BPF3と、第1の偏向ミラーMA1、MA2、MA3と、受光集光光学系CL1、CL2、CL3とを備える。受光素子PD1、PD2、PD3は、共通の実装基板である受光基板200に実装されている。受光部201、202、203は、それぞれ、戻り光R1、R2、R3を受光し、戻り光R1、R2、R3の強度に応じた検出信号を出力する。
受光素子PD1、PD2、PD3は、それぞれ、戻り光R1、R2、R3を検出するように構成されている。受光素子PD1、PD2、PD3は、例えば、フォトダイード、アバランジェフォトダイオード、又はシリコンフォトマルチプライヤーなどである。
受光基板200は、受光素子PD1、PD2、PD3が実装された基板である。受光基板200は、受光素子PD1、PD2、PD3で検出された光に応じた検出信号を監視し、出力する。
受光集光光学系CL1、CL2、CL3は、それぞれ、戻り光R1、R2、R3を集光するように構成される。受光集光光学系CL1、CL2、CL3は、例えば、レンズ、又はミラー、又はこれらの組み合わせなどである。受光集光光学系CL1、CL2、CL3は、例えば、それぞれ、戻り光R1、R2、R3を受光素子PD1、PD2、PD3に収束して照射させる。受光集光光学系CL1、CL2、CL3は、例えば、それぞれ、戻り光R1、R2、R3をアパーチャ部AP1、AP2、AP3の開口部を焦点として集光する。
アパーチャ部AP1、AP2、AP3は、光を通過させるための開口部を有し、受光素子PD1、PD2、PD3に入射される戻り光R1、R2、R3の一部を遮ることで、測距装置1aの受光視野角を決定するよう構成される。アパーチャ部AP1、AP2、AP3は、リアベース部3と一体で構成することも可能である。また、アパーチャ部AP1、AP2、AP3は、省略することも可能である。
光学フィルタBPF1、BPF2、BPF3は、受光素子PD1、PD2、PD3に入射される戻り光R1、R2、R3の波長帯域を設定するために配置成される。光学フィルタBPF1、BPF2、BPF3は、光源部LD1、LD2、LD3から出射される光の波長帯域の光を透過し、それ以外の波長の光を除去する。光学フィルタBPF1、BPF2、BPF3は、例えば、吸収型のフィルタ、又はダイクロイック型のフィルタなどである。光学フィルタBPF1、BPF2、BPF3は、省略することも可能である。
第1の偏向ミラーMA1、MA2、MA3は、それぞれ、戻り光R1、R2、R3を同じ向きに反射し、受光素子PD1、PD2、PD3に導くよう構成される。つまり、第1の偏向ミラーMA1、MA2、MA3から受光素子PD1、PD2、PD3に向かう戻り光R1、R2、R3は互いに平行となる。これにより、受光素子PD1、PD2、PD3の受光面の向きを同一にすることができる。
実施の形態1において、受光素子PD1、PD2、PD3は、受光基板200の-Y方向を向く面に実装されている。受光基板200は、リアベース部3の上面に固定されている。受光素子PD1、PD2、PD3は、Y方向に同じ位置に配置されており、それぞれ、+Y方向に進む戻り光R1、R2、R3を受光するよう配置されている。アパーチャ部AP1、AP2、AP3は、それぞれ、受光素子PD1、PD2、PD3の-Y方向の位置でリアベース部3に固定されている。光学フィルタBPF1、BPF2、BPF3は、それぞれ、アパーチャ部AP1、AP2、AP3の-Y方向の位置に、同じ向きで、リアベース部3に固定されている。第1の偏向ミラーMA1、MA2、MA3は、それぞれ、受光素子PD1、PD2、PD3から-Y方向に向かう仮想的な直線と、分離ミラーSP1、SP2、SP3を透過した戻り光R1、R2、R3とが交わる箇所に配置されている。この配置箇所は、リアベース部3の外側に面する部分の角端部(すなわち、-Y方向及び-Z方向の端部)である。第1の偏向ミラーMA1、MA2、MA3は、YX平面に対して-X軸回りに(すなわち、ーX方向を向いた場合におけるX軸を中心とする時計回りに)等しく傾いた状態でリアベース部3に固定されている。これにより、第1の偏向ミラーMA1、MA2、MA3は、戻り光R1、R2、R3を+Y方向に偏向させ、受光素子PD1、PD2、PD3に導いている。さらに、第1の偏向ミラーMA1、MA2、MA3は、互いにZ方向の同じ位置に配置され、互いにY方向の同じ位置に配置され、X方向に並んで配置されている。さらに、受光集光光学系CL1、CL2、CL3は、それぞれ、第1の偏向ミラーMA1、MA2、MA3と、分離ミラーSP1、SP2、SP3との間に配置され、リアベース部3に固定されている。
また、出射光E1、E2、E3の漏れ光と、測距装置1aの筐体の開口部から入射される様々な外乱光とが、意図せずに受光素子PD1、PD2、PD3に入射することを防ぐために、出射光E1、E2、E3の光路を含む領域と、戻り光R1、R2、R3の光路を含む領域との間に光を通過させない仕切り部材を備えていてもよい。実施の形態1において、リアベース部3は、内壁23を備え、内壁23は、出射光E1、E2、E3の光路の領域と、戻り光R1、R2、R3の光路の領域を分けている。また、リアベース部3は、内壁21、22を備え、内壁21、22は、戻り光R1、R2、R3の光路のそれぞれの領域を分けている。
次に、図6及び図7を参照して、測距装置1aの光学系の作用及び光路の説明を行う。図6は、測距装置1aの光学系の構造と出射光E1、E2、E3及び戻り光R1、R2、R3の光路とを示す図である。図7は、測距装置1aの走査範囲に対応する測距領域S1、S2、S3(すなわち、出射光の被照射領域)を示す図である。なお、図6では、主要な光学部材のみが示されており、ベース部材2などは図示されていない。
光源部LD1から-Y方向に出射された出射光E1は、出射光学系CA1と、出射光学系CB1により、平行光化され、分離ミラーSP1に入射する。分離ミラーSP1で反射された出射光E1は、+Y方向かつ+Z方向に(すなわち、+Y方向と+Z方向との間の方向に)進み、第2の偏向ミラーMB1に入射する。第2の偏向ミラーMB1で反射された出射光E1は、+Y方向かつ-Z方向かつ+X方向に(すなわち、+Y方向と-Z方向と+X方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E1は、+Z方向かつ+X方向(すなわち、+Z方向と+X方向との間の方向に)に出射される。つまり、出射光E1は、測距装置1aの左前方に出射される。走査ミラー6が回転軸THで回転することにより、出射光E1が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S1に照射される。測距領域S1の測定対象からの戻り光R1は、出射光E1の光路を逆行して、分離ミラーSP1に入射する。分離ミラーSP1を透過した戻り光R1は、受光集光光学系CL1により集光され、第1の偏向ミラーMA1に入射する。第1の偏向ミラーMA1で反射された戻り光R1は、+Y方向に進み、光学フィルタBPF1に入射する。光学フィルタBPF1により光源部LD1の出射光の波長帯域以外の波長の光が除去された戻り光R1は、アパーチャ部AP1に入射する。アパーチャ部AP1により所定の受光視野角となった戻り光R1は、受光素子PD1に入射し、戻り光R1が検出される。
光源部LD2から-Y方向に出射された出射光E2は、出射光学系CA2と、出射光学系CB2により、平行光化され、分離ミラーSP2に入射する。分離ミラーSP2で反射された出射光E2は、+Y方向かつ+Z方向(すなわち、+Y方向と+Z方向との間の方向に)に進み、第2の偏向ミラーMB2に入射する。第2の偏向ミラーMB2で反射された出射光E2は、+Y方向かつ-Z方向に(すなわち、+Y方向と-Z方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E2は、+Z方向に出射される。つまり、出射光E2は、測距装置1aの前方正面に出射される。走査ミラー6が回転軸THで回転することにより、出射光E2が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S2に照射される。測距領域S2の測定対象からの戻り光R2は、出射光E2の光路を逆行して、分離ミラーSP2に入射する。分離ミラーSP2を透過した戻り光R2は、受光集光光学系CL2により集光され、第1の偏向ミラーMA2に入射する。第1の偏向ミラーMA2で反射された戻り光R2は、+Y方向に進み、光学フィルタBPF2に入射する。光学フィルタBPF2により光源部LD2の出射光の波長帯域以外の波長の光が除去された戻り光R2は、アパーチャ部AP2に入射する。アパーチャ部AP2により所定の受光視野角となった戻り光R2は、受光素子PD2に入射し、戻り光R2が検出される。
光源部LD3から-Y方向に出射された出射光E3は、出射光学系CA3と、出射光学系CB3により、平行光化され、分離ミラーSP3に入射する。分離ミラーSP3で反射された出射光E3は、+Y方向かつ+Z方向に(すなわち、+Y方向と+Z方向の間の方向に)進み、第2の偏向ミラーMB3に入射する。第2の偏向ミラーMB3で反射された出射光E3は、+Y方向かつ-Z方向かつ-X方向に(すなわち、+Y方向と-Z方向とーX方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E3は、+Z方向かつ-X方向に(すなわち、+Z方向と-X方向との間の方向に)出射される。つまり、出射光E3は、測距装置1aの右前方に出射される。走査ミラー6が回転軸THで回転することにより、出射光E3が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S3に照射される。測距領域S3の測定対象からの戻り光R3は、出射光E3の光路を逆行して、分離ミラーSP3に入射する。分離ミラーSP3を透過した戻り光R3は、受光集光光学系CL3により集光され、第1の偏向ミラーMA3に入射する。第1の偏向ミラーMA3で反射された戻り光R3は、+Y方向に進み、光学フィルタBPF3に入射する。光学フィルタBPF3により光源部LD3の出射光の波長帯域以外の波長の光が除去された戻り光R3は、アパーチャ部AP3に入射する。アパーチャ部AP3により所定の受光視野角となった戻り光R3は、受光素子PD3に入射し、戻り光R3が検出される。
以上により、測距装置1aは、走査ミラー6の回転角度に対応した走査角度よりも広い角度範囲で測距することが可能である。なお、図7において、測距領域S1、S2、S3は重なるように図示しているが、隣り合う測距領域の境界を互いに一致させてもよく、あるいは、隣り合う測距領域を互いに離してもよい。
続いて、実施の形態1の作用効果を説明する。実施の形態1に係る測距装置1aによれば、図6に示されるように、戻り光R1、R2、R3は、それぞれ、第1の偏向ミラーMA1、MA2、MA3により、同じ方向に進み、受光素子PD1、PD2、PD3に入射されている。これにより、受光素子PD1、PD2、PD3は、同じ向きで配置することができ、受光基板200への受光素子PD1、PD2、PD3の実装容易性を向上することができる。
また、第1の偏向ミラーMA1、MA2、MA3で戻り光R1、R2、R3を偏向させているため、第1の偏向ミラーMA1、MA2、MA3は、ベース部材2の外側に面する部分の角端部に位置している。通常、測距装置は受光視野の光軸の調整が必要となる。特に、実施の形態1のような出射光と戻り光の光路を同一に構成している測距装置においては、出射光の光軸に対して、戻り光の光軸を一致させる光軸調整が必要となる。単一の受光基板に実装された複数の受光素子に対して光軸を調整する場合、受光素子をそれぞれ独立に移動させることができないため、受光集光光学系のレンズを把持し、レンズの位置による光軸調整が考えられる。しかし、戻り光の光路の内部に配置されたレンズの位置を調整する必要があり、スペースが無いため、調整が困難である。一方、実施の形態1において、第1の偏向ミラーMA1、MA2、MA3の位置と角度を調整することで、同様に光軸調整が可能である。第1の偏向ミラーMA1、MA2、MA3は、ベース部材2の外側に面する部分の角端部に位置しているため、調整作業スペースを確保しやすく、調整が容易に行える。また、一般的なレンズは薄い円筒形状であり、レンズ側面部以外は光学的に使用されるため、レンズ側面部のみで保持する必要があり、把持及び吸着自体が困難である。一方、第1の偏向ミラーMA1、MA2、MA3は平面形状であり、反射面の反対側の平面は光学的に作用しないため、この面の吸着による保持が容易に行える。
さらに、図6に示されるように、光出射部101、102、103と、走査デバイス5と、受光部201、202、203とは、出射光E1、E2、E3と、戻り光R1、R2、R3とが部分的に同軸となる同軸光学系を構成している。このため、環境光が受光部201、202、203に入射し難く、測距装置1aの環境光に対するS/N比を向上させることができる。
さらに、図6に示されるように、受光素子PD1、PD2、PD3は、同じ向き、かつ、Y方向に同じ位置に配置されている。これにより、受光素子を3個以上備えることができ、広い角度範囲で測距することできる。また、測距装置において、受光素子を線上に並べるだけでなく、平面上に分布させる配置が行えるため、光学設計がしやすくなる。
さらに、図1に示されるように、全ての受光素子は、1つ受光基板200に実装している。これにより、基板製造コストを安価にすることができる。
さらに、図6に示されるように、光学フィルタBPF1、BPF2、BPF3は、それぞれ、受光素子PD1、PD2、PD3の-Y方向の位置に、戻り光R1、R2、R3が入射する面を同じ向きにして配置されている。これにより、戻り光R1、R2、R3は、それぞれ、光学フィルタBPF1、BPF2、BPF3に同じ角度で入射されている。このため、光学フィルタの入射角度依存性による影響を排し、光学フィルタBPF1、BPF2、BPF3を共通部品化することができる。このような構造は、特に、選択する波長の入射角度依存性があるダイクロイック型の光学フィルタを備えた測距装置において好適である。
さらに、図6に示されるように、アパーチャ部AP1、AP2、AP3は、受光素子PD1、PD2、PD3に向かって進む戻り光R1、R2、R3の光路上であって、受光素子PD1、PD2、PD3に入射される直前の位置に配置されている。これにより、受光素子PD1、PD2、PD3の受光視野角を制限し、受光素子PD1、PD2、PD3を高分解能化することができる。受光集光光学系の焦点距離をf、アパーチャ径(すなわち、開口径)をDとすると、受光視野角θは、θ=arctan(D/f)となる。このため、アパーチャ径Dを適切に設定することにより、受光素子の大きさによらず、受光視野角θが所望の値となる。
さらに、図6に示されるように、第1の偏向ミラーMA1、MA2、MA3は、受光集光光学系CL1、CL2、CL3で集光された戻り光R1、R2、R3が入射されている。これにより、戻り光R1、R2、R3の照射領域が小さくなり、第1の偏向ミラーMA1、MA2、MA3の反射面を小さくすることができ、第1の偏向ミラーMA1、MA2、MA3を小型にすることができる。
また、第1の偏向ミラーMA1、MA2、MA3で偏向させた後に、受光集光光学系CL1、CL2、CL3に戻り光R1、R2、R3を入射させる場合に比べて、受光集光光学系CL1、CL2、CL3からアパーチャ部AP1、AP2、AP3までの距離が長くなるため、受光集光光学系CL1、CL2、CL3の焦点距離を長くすることができる。受光集光光学系の焦点距離をf、アパーチャ径をDとすると、受光視野角θは、θ=arctan(D/f)となる。同じ受光視野角θを得る場合、焦点距離fが長いほど、アパーチャ径Dが大きくなる。このため、受光視野角θに対するアパーチャ部の開口部の加工精度を緩和し、アパーチャ部AP1、AP2、APの加工コストを削減することができる。
例えば、光学設計上の受光視野角θを0.50度とした場合、受光集光光学系の焦点距離fが短く、f=20mmとすると、アパーチャ径Dは0.1746mmとなる。このとき、アパーチャ径Dに+0.01mmの加工誤差が発生した場合、受光視野角θは0.529度となる。一方、受光集光光学系の焦点距離fを長くし、f=40mmとすると、アパーチャ径Dは0.3491mmとなる。このとき、アパーチャ径Dが、同様に、+0.01mmの加工誤差が発生した場合、受光視野角θは0.514度となり、アパーチャ径Dの加工誤差に対する受光視野角への影響が少ないことが分かる。
また、同様に、ベース部材2へのアパーチャ部AP1、AP2、AP3の面内方向の固定位置誤差(すなわち、アパーチャ部AP1、AP2、AP3を含む平面上における固定位置の誤差)に対する影響も緩和されるため、ベース部材2への組立精度を緩和することができる。また、焦点距離fを伸ばし、受光視野角θに対するアパーチャ径Dが受光素子の大きさと等しくなるよう構成することで、アパーチャ部AP1、AP2、AP3を省略することができる。また、受光集光光学系CL1、CL2、CL3の焦点距離fが長くなることで、焦点位置に集光する光の角度が鋭角化するため、受光集光光学系CL1、CL2、CL3に対するアパーチャ部AP1、AP2、AP3のフォーカス方向の位置ずれによる受光性能への影響を緩和することができる。また、アパーチャ部を排した構成においては、受光素子PD1、PD2、PD3のフォーカス方向の位置ずれによる受光性能への影響を緩和することができる。
さらに、図6に示されるように、受光集光光学系CL1、CL2、CL3は、第1の偏向ミラーMA1、MA2、MA3と分離ミラーSP1、SP2、SP3との間に配置されている。これにより、光出射部101、102、103は、受光集光光学系CL1、CL2、CL3による光学的作用を受けずに、出射光E1、E2、E3を出射することができ、出射光E1、E2、E3の光学的性能を向上させることができる。
さらに、図6に示されるように、第1の偏向ミラーMA1、MA2、MA3は、互いにZ方向の同じ位置に配置され、互いにY方向の同じ位置に配置され、X方向に並んで配置されている。これにより、第1の偏向ミラーMA1、MA2、MA3による光軸調整作業において、第1の偏向ミラーMA1、MA2、MA3の保持を行う調整装置が水平方向に移動するだけ、もしくは、測距装置1aを水平方向に移動するだけで、第1の偏向ミラーMA1、MA2、MA3それぞれを保持することが可能となり、調整が容易となる。
さらに、図6に示されるように、受光素子PD1、PD2、PD3は、第1の偏向ミラーMA1、MA2、MA3により、光出射部101、102、103から出射光E1、E2、E3が出射される方向と反対の方向から入射される戻り光R1、R2、R3を受光するように配置されている。これにより、受光部201、202、203は、光出射部101、102、103と同一の方向に配置することができ、その他方向に受光部201、202、203を配置した場合よりも、測距装置1aのZ方向に沿う寸法及びY方向に沿う寸法を小さくすることができる。
さらに、図6に示されるように、分離ミラーSP1、SP2、SP3で反射した出射光E1、E2、E3は、走査ミラー6の-Z方向に配置された光出射部101、102、103から、走査ミラー6より+Z方向に突出して配置されている第2の偏向ミラーMB1、MB2、MB3に向けられ、第2の偏向ミラーMB1、MB2、MB3により走査ミラー6に導かれる。このように、光出射部101、102、103と受光部201、202、203とが、走査ミラー6の-Z方向に集約して配置されている。これにより、走査ミラー6から+Z方向に突き出た部分のZ方向の寸法を小さくなる。したがって、図7に示されるように、走査ミラー6から+Z方向に進むにつれて、X方向に広がっていく出射光E1、E2、E3の光路の光路長を確保するためのスペースを、測距装置1aの内部に設ける必要がなくなるため、測距装置1aのX方向に沿う寸法を小さくすることができる。
さらに、図6に示されるように、第2の偏向ミラーMB1、MB2、MB3から、それぞれ、受光素子PD1、PD2、PD3に至る光路は、YZ平面に平行になっている。これにより、第1の偏向ミラーMA1、MA2、MA3の傾きは、全て同じ傾きになり、光軸調整作業において、第1の偏向ミラーMA1、MA2、MA3を保持し、調整を開始するときの角度を統一することができ、調整が容易となる。
《実施の形態2》
次に、図8から図11を用いて、実施の形態2に係る測距装置1bを説明する。実施の形態2に係る測距装置1bの構成は、特に説明しない限り、上記の実施の形態1に係る測距装置1aの構成と同じである。したがって、上記の実施の形態1と同一の機能を持つ構成には同一の符号を付し、説明を繰り返さない。
図8及び図9は、実施の形態2に係る測距装置1bを概略的に示す前面斜視図及び背面斜視図である。図8又は図9に示されるように、実施の形態2に係る測距装置1bは、実施の形態1に係る測距装置1aに比べて、Y方向に沿う寸法が小さい走査デバイス5を備えている。このような走査デバイス5に対して、光出射部101、102、103を+Y方向に配置し、出射光E1、E2、E3が-Y方向に出射されるように構成すると、光出射部101、102、103のみが+Y方向に突出する。特に、設置スペースの都合上、Y方向の寸法が小さい測距装置が必要とされる場合に、測距装置が設置できなくなる問題がある。そのため、実施の形態2に係る測距装置1bは、Y方向に沿う寸法が小さくなるように構成されている。
図10は、図8の測距装置1bのSX-SX線に沿う断面図である。図11は、実施の形態2に係る測距装置1bの光学系の構造と出射光E1、E2、E3及び戻り光R1、R2、R3の光路とを示す図である。
実施の形態2に係る測距装置1bは、分離ミラーSPA1、SPA2、SPA3を備える。分離ミラーSPA1、SPA2、SPA3は、それぞれ、出射光E1、E2、E3を透過し(すなわち、通過させ)、かつ、戻り光R1、R2、R3を反射する。つまり、実施の形態2におけるの分離ミラーSPA1、SPA2、SPA3は、実施の形態1における分離ミラーSP1、SP2、SP3に対して、反射と透過する光の対象が逆になっている。分離ミラーSPA1、SPA2、SPA3は、例えば、出射光E1、E2、E3が入射される部分のみ穴が設けられたミラー、又は出射光E1、E2、E3が入射される領域のみ反射面の蒸着されていないミラー、又は戻り光R1、R2、R3の一部を透過し、一部を反射するミラーなどである。
分離ミラーSPA1、SPA2、SPA3は、それぞれ、戻り光R1、R2、R3を反射し、受光部201、202、203に導くよう構成される。
実施の形態2において、光出射部101、102、103は、リアベース部3の背面に並んで固定されている。光出射部102は、測距装置1bのX方向の中心に配置されている。光出射部101、103は、それぞれ、光出射部102の-Z方向及び+Z方向に配置されている。光出射部101と102との間の配置間隔と光出射部101と103との間の配置間隔とは、等しい。
出射光学系CA1、CA2、CA3と、出射光学系CB1、CB2、CB3は、それぞれ、光源部LD1、LD2、LD3を通る+Z方向に直線上に並んでおり、+Z方向に出射光E1、E2、E3を出射している。
分離ミラーSPA1、SPA2、SPA3は、光出射部101、102、103の+Z方向に配置され、YX平面に対して-X軸回りに(すなわち、-X方向を向いた場合におけるX軸を中心とする時計回りに)それぞれ等しく傾いた状態でリアベース部3に固定されている。これにより、分離ミラーSPA1、SPA2、SPA3は、戻り光R1、R2、R3を+Y方向に偏向させ、受光部201、202、203に導いている。
受光基板200は、リアベース部3の背面に固定され、受光素子PD1、PD2、PD3は、受光基板200の+Z方向を向く面に実装されている。アパーチャ部AP1、AP2、AP3は、それぞれ、受光素子PD1、PD2、PD3の+Z方向でリアベース部3に固定されている。光学フィルタBPF1、BPF2、BPF3は、それぞれ、アパーチャ部AP1、AP2、AP3の+Z方向でリアベース部3に固定されている。第1の偏向ミラーMA1、MA2、MA3は、それぞれ、光学フィルタBPF1、BPF2、BPF3から+Z方向に向かう仮想的な直線と、分離ミラーSPA1、SPA2、SPA3で反射した戻り光R1、R2、R3とが交わる箇所に配置されている。この配置箇所は、リアベース部3の外側に面する部分の角端部(すなわち、+Y方向及び+Z方向の端部)である。第1の偏向ミラーMA1、MA2、MA3は、YX平面に対して-X軸回りに(すなわち、-X方向を向いた場合におけるX軸を中心とする時計回りに)それぞれ等しく傾いた状態でリアベース部3に固定されている。これにより、第1の偏向ミラーMA1、MA2、MA3は、戻り光R1、R2、R3を-Z方向に偏向させ、受光素子PD1、PD2、PD3に導いている。受光集光光学系CL1、CL2、CL3は、それぞれ、第1の偏向ミラーMA1、MA2、MA3と、分離ミラーSPA1、SPA2、SPA3との間に配置され、リアベース部3に固定されている。
次に、図11により、実施の形態2に係る測距装置1bの光学系の作用又は光路の説明を行う。なお、図11では、主要な光学部材のみが示されており、ベース部材2などは図示されていない。また、測距装置1bの走査範囲は、図7でしめされたものと同様である。
光源部LD1から+Z方向に出射された出射光E1は、出射光学系CA1と、出射光学系CB1により、平行光化され、分離ミラーSPA1に入射する。分離ミラーSPA1を透過した出射光E1は、第2の偏向ミラーMB1に入射する。第2の偏向ミラーMB1で反射された出射光E1は、+Y方向かつ-Z方向かつ+X方向に(すなわち、+Y方向と-Z方向と+X方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E1は、+Z方向かつ+X方向に(すなわち、+Z方向と+X方向との間の方向に)出射される。つまり、出射光E1は、測距装置1bの左前方に出射される。走査ミラー6が回転軸THで回転することにより、出射光E1が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S1に照射される。測距領域S1の測定対象からの戻り光R1は、出射光E1の光路を逆行して、分離ミラーSPA1に入射する。分離ミラーSPA1で反射した戻り光R1は、+Y方向に進み、受光集光光学系CL1により集光され、第1の偏向ミラーMA1に入射する。第1の偏向ミラーMA1で反射された戻り光R1は、-Z方向に進み、光学フィルタBPF1に入射する。光学フィルタBPF1により光源部LD1の波長以外が除去された戻り光R1は、アパーチャ部AP1に入射する。アパーチャ部AP1により所定の受光視野角となった戻り光R1は、受光素子PD1に入射し、戻り光R1が検出される。
光源部LD2から+Z方向に出射された出射光E2は、出射光学系CA2と、出射光学系CB2により、平行光化され、分離ミラーSPA2に入射する。分離ミラーSPA2を透過した出射光E2は、第2の偏向ミラーMB2に入射する。第2の偏向ミラーMB2で反射された出射光E2は、+Y方向かつ-Z方向に(すなわち、+Y方向と-Z方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E2は、+Z方向に出射される。つまり、出射光E2は、測距装置1bの前方正面に出射される。走査ミラー6が回転軸THで回転することにより、出射光E2が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S2に照射される。測距領域S2の測定対象からの戻り光R2は、出射光E2の光路を逆行して、分離ミラーSPA2に入射する。分離ミラーSPA2で反射した戻り光R2は、+Y方向に進み、受光集光光学系CL2により集光され、第1の偏向ミラーMA2に入射する。第1の偏向ミラーMA2で反射された戻り光R2は、-Z方向に進み、光学フィルタBPF2に入射する。光学フィルタBPF2により光源部LD2の波長以外が除去された戻り光R2は、アパーチャ部AP2に入射する。アパーチャ部AP2により所定の受光視野角となった戻り光R2は、受光素子PD2に入射し、戻り光R2が検出される。
光源部LD3から+Z方向に出射された出射光E3は、出射光学系CA3と、出射光学系CB3により、平行光化され、分離ミラーSPA3に入射する。分離ミラーSPA3を透過した出射光E3は、第2の偏向ミラーMB3に入射する。第2の偏向ミラーMB3で反射された出射光E3は、+Y方向かつ-Z方向かつ-X方向に(すなわち、+Y方向と-Z方向とーX方向との間の方向に)進み、走査ミラー6に入射する。走査ミラー6で反射された出射光E3は、+Z方向かつ-X方向に(すなわち、+Z方向とーX方向との間の方向に)出射される。つまり、出射光E3は、測距装置1bの右前方に出射される。走査ミラー6が回転軸THで回転することにより、出射光E3が、走査ミラー6の回転角度に対応して水平方向に走査される測距領域S3に照射される。測距領域S3の測定対象からの戻り光R3は、出射光E3の光路を逆行して、分離ミラーSPA3に入射する。分離ミラーSP3で反射した戻り光R3は、+Y方向に進み、受光集光光学系CL3により集光され、第1の偏向ミラーMA3に入射する。第1の偏向ミラーMA3で反射された戻り光R3は、-Z方向に進み、光学フィルタBPF3に入射する。光学フィルタBPF3により光源部LD3の波長以外が除去された戻り光R3は、アパーチャ部AP3に入射する。アパーチャ部AP3により所定の受光視野角となった戻り光R3は、受光素子PD3に入射し、戻り光R3が検出される。
以上により、測距装置1bは、走査ミラー6の回転角度に対応した走査角度よりも広い角度範囲で測距することが可能である。
続いて、実施の形態2の作用効果を説明する。実施の形態2に係る測距装置1bによれば、受光素子PD1、PD2、PD3は、第1の偏向ミラーMA1、MA2、MA3により、光出射部101、102、103から出射光E1、E2、E3が出射される方向と反対の方向から入射される戻り光R1、R2、R3を受光するように配置されている。これにより、受光部201、202、203は、光出射部101、102、103と同一の方向に配置することができ、その他方向に受光部201、202、203を配置した場合よりも、測距装置1bのY方向に沿う寸法を小さくすることができる。
《実施の形態3》
次に、図12を用いて、実施の形態3に係る測距装置1cの構成を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態1と同一の構成、作用効果を有している。実施の形態3に係る測距装置1cの構成は、特に説明しない限り、上記の実施の形態1に係る測距装置1aの構成と同じである。したがって、上記の実施の形態1と同一の機能を持つ構成には同一の符号を付し、説明を繰り返さない。
図12は、実施の形態3に係る測距装置1cの光学系の構造と出射光E1、E2、E3及び戻り光R1、R2、R3の光路とを示す図である。図12に示されるように、実施の形態3に係る測距装置1cは、実施の形態1に係る測距装置1aと比べて、受光集光光学系CL1、CL2、CL3の配置箇所が異なる。実施の形態1では、分離ミラーSP1、SP2、SP3と第1の偏向ミラーMA1、MA2、MA3との間に、受光集光光学系CL1、CL2、CL3を配置している。一方、実施の形態3では、受光集光光学系CL1、CL2、CL3からアパーチャ部AP1、AP2、AP3までの距離を伸ばすために、分離ミラーSP1、SP2、SP3よりも+Z方向で、分離ミラーSP1、SP2、SP3と第2の偏向ミラーMB1、MB2、MB3との間に受光集光光学系CL1、CL2、CL3を配置している。
実施の形態3において、出射光E1、E2、E3は、受光集光光学系CL1、CL2、CL3に入射して、出射光の被照射領域である測距領域に向けて出射される。そのため、出射光学系CA1、CA2、CA3と、出射光学系CB1、CB2、CB3は、受光集光光学系CL1、CL2、CL3による光学的作用と併せて、出射光E1、E2、E3を平行光化、又は、集光するよう構成されている。
続いて、実施の形態3の作用効果を説明する。実施の形態3に係る測距装置1cによれば、受光集光光学系CL1、CL2、CL3は、分離ミラーSP1、SP2、SP3よりも+Z方向に配置されているため、受光集光光学系CL1、CL2、CL3の焦点距離を長くすることができる。これにより、アパーチャ部AP1、AP2、AP3の開口部の加工精度と、アパーチャ部AP1、AP2、AP3の面内方向の固定位置精度(すなわち、アパーチャ部AP1、AP2、AP3を含む平面上における固定位置の精度)と、フォーカス方向の位置ずれ精度による受光性能の影響を緩和することができる。
また、アパーチャ部を排した構成においては、受光素子PD1、PD2、PD3のフォーカス方向の位置ずれによる受光性能への影響を緩和することができる。
《変形例》
図13は、変形例に係る測距装置1a(又は1b又は1c)と情報処理装置400とを含む測距システム1の構成を概略的に示すブロック図である。情報処理装置400は、例えば、処理回路である。また、処理回路は、コンピュータであってもよい。
情報処理装置400は、走査デバイス5の駆動と光源部LD1、LD2、LD3の駆動とを制御し、受光素子PD1、PD2、PD3の検出信号に基づいて、測距装置1a(又は1b又は1c)から被測定領域内の測定対象までの距離を算出する情報処理部である。具体的には、情報処理装置400は、光源部LD1、LD2、LD3が光を出射した時点から受光素子PD1、PD2、PD3が戻り光を受光する時点までの時間に基づいて、測定対象までの距離を算出する。
情報処理装置400は、プロセッサ401と、メモリ402と、記憶装置403と、走査デバイス5に接続されるインタフェース404と、光源部LD1、LD2、LD3に接続されるインタフェース405と、受光素子PD1、PD2、PD3に接続されるインタフェース406とを備える。プロセッサ401は、例えば、CPU(Central Proccessing Unit)、GPU(Graphics Proccessing Unit)、又はFPGA(Field-Programmable Gate Array)などで構成される。メモリ402は、RAM(Random Access Memory)などの揮発性の記憶装置である。記憶装置403は、例えば、ハードディスク装置(HDD)又はソリッドステートドライブ(SSD)などの不揮発性の記憶装置である。
情報処理装置400を構成する処理回路は、専用のハードウェアであっても、メモリ402に格納される測距用のプログラムを実行するプロセッサ401であってもよい。プロセッサ401は、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、及びDSP(Digital Signal Processor)のいずれであってもよい。
処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらのうちのいずれかを組み合わせたものである。
測距システム1を用いれば、広い被測定領域内の測定対象までの距離を測定することができる。
なお、上述の各実施の形態において、「平行」、「直交」又は「中心」などの部品間の位置関係又は部品の形状を示す用語が用いられた場合でも、これらは、製造上の公差、組立て上のばらつきなどを考慮した範囲を含むものである。
また、上述の実施の形態及び変形例は例示にすぎず、本開示の範囲は請求の範囲によって示される範囲内でのすべての変更が含まれる。
1 測距システム、 1a、1b、1c 測距装置、 101、102、103 光出射部、 200 受光基板、 201、202、203 受光部、 2 ベース部材、 3 フロントベース部、 4 リアベース部、 5 走査デバイス、 6 走査ミラー(走査光学部)、 TH ミラー回転方向、 LD1、LD2、LD3 光源部、 MA1、MA2、MA3 第1の偏向ミラー、 MB1、MB2、MB3 第2の偏向ミラー、 CA1、CA2、CA3 出射光学系、 CB1、CB2、CB3 出射光学系、 SP1、SP2、SP3 分離ミラー(分離光学部)、 SPA1、SPA2、SPA3 分離ミラー(分離光学部)、 CL1、CL2、CL3 受光集光光学系、 BPF1、BPF2、BPF3 光学フィルタ、 AP1、AP2、AP3 アパーチャ部、 PD1、PD2、PD3 受光素子、 E1、E2、E3 出射光、 R1、R2、R3 戻り光、 S1、S2、S3 走査範囲。

Claims (17)

  1. 複数の出射光をそれぞれ出射する複数の光出射部と、
    複数の分離光学部と、
    前記複数の光出射部から前記複数の分離光学部を介して進み、互いに異なる入射角度で入射する前記複数の出射光を走査する走査光学部と、
    走査された前記複数の出射光の被照射領域からの反射光である戻り光であって、前記走査光学部で反射し前記複数の分離光学部を介して進む前記複数の戻り光を、それぞれ受光する複数の受光素子と、
    前記複数の受光素子と前記複数の分離光学部とを保持するベース部材と、
    前記複数の受光素子が備えられた共通の受光基板と
    を有することを特徴とする測距装置。
  2. 前記複数の分離光学部は、前記複数の出射光を反射させ、前記複数の戻り光を通過させる
    ことを特徴とする請求項1に記載の測距装置。
  3. 前記複数の分離光学部を通過して進む前記複数の戻り光を前記複数の受光素子へそれぞれ向ける複数の第1の偏向部材をさらに有する
    ことを特徴とする請求項に記載の測距装置。
  4. 前記複数の分離光学部は、前記複数の出射光を通過させ、前記複数の戻り光を反射させる
    ことを特徴とする請求項1に記載の測距装置。
  5. 前記複数の分離光学部で反射して進む前記複数の戻り光を前記複数の受光素子へそれぞれ向ける複数の第1の偏向部材をさらに有する
    ことを特徴とする請求項に記載の測距装置。
  6. 前記複数の受光素子は、同一平面上に、互いに同じ方向を向いて配置されており、
    前記複数の受光素子に対する前記複数の第1の偏向部材の位置は、互いに同じであり、
    前記複数の受光素子に対する前記複数の第1の偏向部材の姿勢は、互いに同じである
    ことを特徴とする請求項又はに記載の測距装置。
  7. 前記複数の第1の偏向部材は、前記ベース部材の外側に配置されていることを特徴とする請求項、及びのいずれか1項に記載の測距装置。
  8. 前記複数の分離光学部より前記複数の出射光の下流側において、前記複数の出射光の光路と、前記複数の出射光にそれぞれ対応する前記複数の戻り光の光路とは、互いに同軸である
    ことを特徴とする請求項1からのいずれか1項に記載の測距装置。
  9. 前記複数の分離光学部を介して進む前記複数の出射光を前記走査光学部に向け、前記走査光学部で反射した前記複数の戻り光を前記複数の分離光学部にそれぞれ向ける複数の第2の偏向部材をさらに有する
    ことを特徴とする請求項1からのいずれか1項に記載の測距装置。
  10. 前記複数の第2の偏向部材は、前記複数の第2の偏向部材に向かって進む、互いに平行な前記複数の出射光を、前記走査光学部に対して、互いに異なる入射角度で入射させる
    ことを特徴とする請求項に記載の測距装置。
  11. 前記第2の偏向部材から前記複数の受光素子に至る前記複数の戻り光の光路は、互いに平行である
    ことを特徴とする請求項又は10に記載の測距装置。
  12. 前記複数の受光素子は、3個以上である
    ことを特徴とする請求項1から11のいずれか1項に記載の測距装置。
  13. 前記複数の受光素子に向かう前記複数の戻り光の光路上に、予め定められた波長帯域の光を通過させ、前記予め定められた波長帯域以外の波長帯域の光を減衰させる光学フィルタをさらに有する
    ことを特徴とする請求項1から12のいずれか1項に記載の測距装置。
  14. 前記複数の受光素子に向かう前記複数の戻り光の光路上にそれぞれ配置された複数のアパーチャ部をさらに有する
    ことを特徴とする請求項1から13のいずれか1項に記載の測距装置。
  15. 前記複数の戻り光をそれぞれ集光する複数の受光集光光学部材をさらに有する
    ことを特徴とする請求項1から14のいずれか1項に記載の測距装置。
  16. 前記複数の受光集光光学部材は、前記複数の出射光をそれぞれ集光する
    ことを特徴とする請求項15に記載の測距装置。
  17. 前記複数の受光素子に入射する直前の前記複数の戻り光の進行方向と、前記光出射部から出射された直後における前記複数の出射光の進行方向とは、平行である、
    ことを特徴とした請求項1から16のいずれか1項に記載の測距装置。
JP2023534438A 2021-07-12 2021-07-12 測距装置 Active JP7471525B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026104 WO2023286114A1 (ja) 2021-07-12 2021-07-12 測距装置

Publications (3)

Publication Number Publication Date
JPWO2023286114A1 JPWO2023286114A1 (ja) 2023-01-19
JPWO2023286114A5 JPWO2023286114A5 (ja) 2023-11-01
JP7471525B2 true JP7471525B2 (ja) 2024-04-19

Family

ID=84919125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023534438A Active JP7471525B2 (ja) 2021-07-12 2021-07-12 測距装置

Country Status (4)

Country Link
US (1) US20240329204A1 (ja)
JP (1) JP7471525B2 (ja)
DE (1) DE112021007951T5 (ja)
WO (1) WO2023286114A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203820A (ja) 2009-03-02 2010-09-16 Denso Wave Inc レーザ距離測定装置
JP2012057960A (ja) 2010-09-06 2012-03-22 Topcon Corp 点群位置データ処理装置、点群位置データ処理方法、点群位置データ処理システム、および点群位置データ処理プログラム
US20170322074A1 (en) 2016-05-03 2017-11-09 Datalogic IP Tech, S.r.l. Laser scanner and optical system
JP2020027044A (ja) 2018-08-13 2020-02-20 パイオニア株式会社 走査装置、走査装置の制御方法、プログラム及び記録媒体並びに測距装置
JP2020504291A5 (ja) 2017-11-16 2020-12-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117310742A (zh) 2016-11-16 2023-12-29 应诺维思科技有限公司 激光雷达系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203820A (ja) 2009-03-02 2010-09-16 Denso Wave Inc レーザ距離測定装置
JP2012057960A (ja) 2010-09-06 2012-03-22 Topcon Corp 点群位置データ処理装置、点群位置データ処理方法、点群位置データ処理システム、および点群位置データ処理プログラム
US20170322074A1 (en) 2016-05-03 2017-11-09 Datalogic IP Tech, S.r.l. Laser scanner and optical system
JP2020504291A5 (ja) 2017-11-16 2020-12-24
JP2020027044A (ja) 2018-08-13 2020-02-20 パイオニア株式会社 走査装置、走査装置の制御方法、プログラム及び記録媒体並びに測距装置

Also Published As

Publication number Publication date
WO2023286114A1 (ja) 2023-01-19
DE112021007951T5 (de) 2024-06-20
JPWO2023286114A1 (ja) 2023-01-19
US20240329204A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US9304228B2 (en) Object detection apparatus with detection based on reflected light or scattered light via an imaging unit
CN111656215B (zh) 激光雷达装置、驾驶辅助系统以及车辆
JP2014020889A (ja) 物体検出装置
JP7102797B2 (ja) 光学装置、これを用いた距離計測装置、及び移動体
JP2014052366A (ja) 光計測装置、車両
JP2004509329A (ja) 位置測定装置
US20100157282A1 (en) Range finder
US20210048566A1 (en) Object detection device and photodetector
JP7230443B2 (ja) 距離測定装置及び移動体
US20230333319A1 (en) Optical Signal Routing Devices and Systems
JP7471525B2 (ja) 測距装置
JP2014514779A (ja) ターゲットの少なくとも一部を処理するためのリソグラフィシステム
JP6958383B2 (ja) ライダー装置
US20200348400A1 (en) Lidar device
JPH0540072A (ja) 鏡面の測定装置
KR920010908B1 (ko) 거울기검출헤드
JP2004125554A (ja) ミラー角度検出装置
JP7155526B2 (ja) ライダー装置
JP2001056210A (ja) 光反射型センサ
JP3861904B2 (ja) 電子ビ−ム描画装置
JP3728151B2 (ja) 曲面形状測定装置
KR20230041973A (ko) 라이다 mems 각도 조정
JP6702088B2 (ja) レーザレーダ装置
JP3216829B2 (ja) 走査型光学顕微鏡の光検出ユニット

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7471525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150