JP7450646B2 - wafer boat - Google Patents

wafer boat Download PDF

Info

Publication number
JP7450646B2
JP7450646B2 JP2021576198A JP2021576198A JP7450646B2 JP 7450646 B2 JP7450646 B2 JP 7450646B2 JP 2021576198 A JP2021576198 A JP 2021576198A JP 2021576198 A JP2021576198 A JP 2021576198A JP 7450646 B2 JP7450646 B2 JP 7450646B2
Authority
JP
Japan
Prior art keywords
wafer boat
boat according
support
main component
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021576198A
Other languages
Japanese (ja)
Other versions
JPWO2021157722A1 (en
Inventor
翔一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2021157722A1 publication Critical patent/JPWO2021157722A1/ja
Application granted granted Critical
Publication of JP7450646B2 publication Critical patent/JP7450646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67313Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67313Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements
    • H01L21/67316Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Description

本開示は、ウェハーボートに関する。 The present disclosure relates to wafer boats.

従来、LSIなどの半導体デバイスの製造工程において、半導体ウェハー(以下、単に「ウェハー」と記載する場合がある)の表面に酸化膜を形成したり、ドーパントを拡散させたりするために、ウェハーを1200℃程度の高温で熱処理する工程が含まれる。このような熱処理工程において、複数のウェハーを水平方向に所定間隔で載置するために、特許文献1に記載のようなウェハーボートが使用される。 Conventionally, in the manufacturing process of semiconductor devices such as LSIs, wafers are processed at 1200°C in order to form an oxide film on the surface of a semiconductor wafer (hereinafter simply referred to as "wafer") or to diffuse dopants. It includes a process of heat treatment at a high temperature of about ℃. In such a heat treatment process, a wafer boat as described in Patent Document 1 is used to place a plurality of wafers at predetermined intervals in the horizontal direction.

特開平11-126755号公報Japanese Patent Application Publication No. 11-126755

本開示に係るウェハーボートは、ウェハーを載置するための複数の溝を備えた複数の柱状の支柱と、支柱の両端部をそれぞれ支持する支持板とを備える。支柱が、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスで形成されており、支柱の外側面が研削面および研磨面の少なくとも一方である。 A wafer boat according to the present disclosure includes a plurality of columnar supports each having a plurality of grooves for placing wafers thereon, and support plates that respectively support both ends of the supports. The pillar is made of ceramics whose main component is aluminum oxide or silicon carbide, and the outer surface of the pillar is at least one of a ground surface and a polished surface.

本開示の一実施形態に係るウェハーボートを示す写真である。1 is a photograph showing a wafer boat according to an embodiment of the present disclosure. (A)は一実施形態に係るウェハーボートに備えられる支柱を示す説明図であり、(B)は(A)に示す支柱を矢印Aの方向から見た場合の説明図である。(A) is an explanatory diagram showing a strut provided in a wafer boat according to one embodiment, and (B) is an explanatory diagram when the strut shown in (A) is viewed from the direction of arrow A. 一実施形態に係るウェハーボートに備えられる支持板を示す説明図である。It is an explanatory view showing a support plate with which a wafer boat concerning one embodiment is equipped. 支持板に支柱を固定した状態を示す説明図である。It is an explanatory view showing a state where a pillar is fixed to a support plate. 本開示の他の実施形態に係るウェハーボートを示す写真である。5 is a photograph showing a wafer boat according to another embodiment of the present disclosure. 図5に示すウェハーボートを斜め方向から撮影した写真である。6 is a photograph of the wafer boat shown in FIG. 5 taken from an oblique direction.

特許文献1に記載のような従来のウェハーボートは、製造方法などに起因する支持棒(支柱)のうねりや反りを生じることがある。その結果、従来のウェハーボートは、支持棒の外周面の軸方向の真直度や、支持棒の端面に対する外周面の直角度などを精度よく保つことができない。したがって、ウェハーを載置するための溝を正確に形成するのが困難である。 In the conventional wafer boat as described in Patent Document 1, the support rods (pillars) may undulate or warp due to the manufacturing method or the like. As a result, the conventional wafer boat cannot accurately maintain the axial straightness of the outer circumferential surface of the support rod or the perpendicularity of the outer circumferential surface with respect to the end surface of the support rod. Therefore, it is difficult to accurately form a groove for placing a wafer.

本開示に係るウェハーボートは、上記のように、支柱の外測面が研削面および研磨面の少なくとも一方である。そのため、支柱の軸方向の真直度や、支柱の端面に対する外側面の直角度などが、焼き放し面である場合よりも向上する。その結果、外側面に対する溝の仮想中心面の直角度および隣り合う溝の仮想中心面同士の平行度が向上する。したがって、本開示に係るウェハーボートを使用すると、複数のウェハーを規則正しく整列した状態で載置させることができる。 As described above, in the wafer boat according to the present disclosure, the outer surface of the support column is at least one of a ground surface and a polished surface. Therefore, the straightness of the column in the axial direction and the perpendicularity of the outer surface with respect to the end surface of the column are improved compared to the case where the column is a burnt-out surface. As a result, the perpendicularity of the virtual central planes of the grooves with respect to the outer surface and the parallelism between the virtual central planes of adjacent grooves are improved. Therefore, when the wafer boat according to the present disclosure is used, a plurality of wafers can be placed in a regularly arranged state.

本開示の一実施形態に係るウェハーボートを、図1~6に基づいて説明する。図1に示す一実施形態に係るウェハーボート1は、円柱状の支柱2と支持板3とを備える。一実施形態に係るウェハーボート1には、図1に示すように、支柱2とは異なる棒状部材5が設けられている。この棒状部材5には、支柱2が備えるような溝21は形成されておらず、いわゆる補強材として使用されている。 A wafer boat according to an embodiment of the present disclosure will be described based on FIGS. 1 to 6. A wafer boat 1 according to an embodiment shown in FIG. 1 includes a columnar support 2 and a support plate 3. The wafer boat 1 shown in FIG. As shown in FIG. 1, the wafer boat 1 according to one embodiment is provided with a rod-shaped member 5 different from the support column 2. This rod-shaped member 5 does not have a groove 21, which is provided in the support column 2, and is used as a so-called reinforcing material.

図5および6に示す一実施形態に係るウェハーボート1は、角柱状の支柱2と支持板3とを備える。図5、6に示すウェハーボート1は、棒状部材5がなく、支柱2が補強材としても機能するため、軽量化することができる。 A wafer boat 1 according to an embodiment shown in FIGS. 5 and 6 includes a prismatic support column 2 and a support plate 3. The wafer boat 1 shown in FIGS. 5 and 6 does not have the rod-shaped member 5, and the support columns 2 also function as reinforcing members, so that the weight can be reduced.

図1および5に示す支柱2は、ウェハーを載置するための複数の溝21を備える。支柱2の大きさは限定されず、載置されるウェハーの数や大きさに応じて適宜設計される。支柱2は、例えば、120mm以上180mm以下程度の長さ(全長)を有する。円柱状の支柱2は、8mm以上12mm以下程度の太さ(直径)を有していてもよい。角柱状の支柱2は、軸に垂直な方向における断面形状が正方形であって、1辺の長さが4mm以上12mm以下程度であってもよい。 The column 2 shown in FIGS. 1 and 5 includes a plurality of grooves 21 for placing wafers. The size of the support 2 is not limited, and is appropriately designed depending on the number and size of wafers to be placed. The strut 2 has a length (total length) of approximately 120 mm or more and 180 mm or less, for example. The columnar support 2 may have a thickness (diameter) of about 8 mm or more and 12 mm or less. The prismatic pillar 2 may have a square cross-sectional shape in the direction perpendicular to the axis, and the length of one side may be approximately 4 mm or more and 12 mm or less.

図1に示す支柱2は円柱状のみ、図5に示す支柱2は角柱状のみである。しかし、ウェハーボート1は、円柱状および角柱状両方の支柱2を備えていてもよい。 The support 2 shown in FIG. 1 has only a cylindrical shape, and the support 2 shown in FIG. 5 has only a prismatic shape. However, the wafer boat 1 may include both cylindrical and prismatic columns 2.

支柱2は、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスで形成されている。支柱2は、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスであれば、限定されない。本明細書において「主成分」とは、セラミックスを構成する成分の合計100質量%における80質量%以上を占める成分を意味する。セラミックスに含まれる各成分の同定は、CuKα線を用いたX線回折装置で行い、各成分の含有量は、例えばICP(InductivelyCoupled Plasma)発光分光分析装置または蛍光X線分析装置により求められる。 The pillars 2 are made of ceramics whose main component is aluminum oxide or silicon carbide. The pillars 2 are not limited as long as they are made of ceramics whose main component is aluminum oxide or silicon carbide. As used herein, the term "main component" refers to a component that accounts for 80% by mass or more of the total 100% by mass of the components constituting the ceramic. Identification of each component contained in the ceramic is performed using an X-ray diffraction device using CuKα rays, and the content of each component is determined using, for example, an ICP (Inductively Coupled Plasma) emission spectrometer or a fluorescent X-ray spectrometer.

セラミックスが酸化アルミニウムを主成分とする場合、マグネシウム、珪素およびカルシウムを酸化物として含んでいてもよい。酸化物に換算すると、例えば、マグネシウムの含有量は、0.034質量%以上0.36質量%以下、珪素の含有量は、0.02質量%以上0.7質量%以下、カルシウムの含有量は、0.011質量%以上0.065質量%以下である。 When the ceramic has aluminum oxide as a main component, it may contain magnesium, silicon, and calcium as oxides. In terms of oxides, for example, the magnesium content is 0.034 mass% or more and 0.36 mass% or less, the silicon content is 0.02 mass% or more and 0.7 mass% or less, and the calcium content is 0.02 mass% or more and 0.7 mass% or less. is from 0.011% by mass to 0.065% by mass.

ウェハーを載置するための溝21について、深さ、幅および数は限定されない。溝21の深さ、幅および数は、載置されるウェハーの数や大きさに応じて適宜設計される。 The depth, width, and number of grooves 21 for placing wafers are not limited. The depth, width, and number of grooves 21 are appropriately designed depending on the number and size of wafers to be placed.

溝21の断面形状は、開口側が載置面側よりも幅の広い等脚台状であってもよい。このような形状であれば、ウェハーを溝21に挿入して載置する場合、溝21を形成する内側面にウェハーを接触させるおそれが低減する。断面視した溝の頂角は、例えば、18°以上42°以下であり、特に、20°以上40°以下であるとよい。 The cross-sectional shape of the groove 21 may be in the form of an isosceles trapezoid, with the opening side being wider than the mounting surface side. With such a shape, when a wafer is inserted and placed in the groove 21, the risk of the wafer coming into contact with the inner surface forming the groove 21 is reduced. The apex angle of the groove when viewed in cross section is, for example, 18° or more and 42° or less, particularly preferably 20° or more and 40° or less.

一実施形態に係るウェハーボート1において、支柱2の外側面は、研削面および研磨面の少なくとも一方である。支柱2の外側面がこのように加工された面を有していると、外側面の軸方向の真直度や、支柱2の端面に対する外側面の直角度などが、焼き放し面(未研削面および未研磨面)である場合よりも向上する。そのため、外周面に対する溝21の仮想中心面の直角度および隣り合う溝21の仮想中心面同士の平行度が向上する。その結果、複数のウェハーを規則的に整列させることができる。 In the wafer boat 1 according to one embodiment, the outer surface of the support column 2 is at least one of a ground surface and a polished surface. When the outer surface of the column 2 has a surface processed in this way, the straightness of the outer surface in the axial direction and the perpendicularity of the outer surface with respect to the end surface of the column 2 are affected by the baked surface (unground surface). and unpolished surfaces). Therefore, the perpendicularity of the virtual center planes of the grooves 21 with respect to the outer circumferential surface and the parallelism between the virtual center planes of adjacent grooves 21 are improved. As a result, a plurality of wafers can be regularly aligned.

研削または研磨は、例えば、平面研削、心なし研削(センタレス)、ブラシ研磨、バフ研磨などによって行われる。 Grinding or polishing is performed, for example, by surface grinding, centerless grinding, brush polishing, buff polishing, or the like.

支柱2に備えられた溝21において、ウェハーの載置面が、研削面および研磨面の少なくとも一方であってもよい。この場合、ウェハーの載置面の算術平均粗さRaは、外側面の算術平均粗さRaよりも小さい方がよい。支柱2に備えられた溝21が、このような構造を有することによって、ウェハーを溝21に載置した場合に、ウェハーが損傷する可能性を低減することができる。 In the groove 21 provided in the support column 2, the surface on which the wafer is placed may be at least one of a ground surface and a polished surface. In this case, the arithmetic mean roughness Ra of the wafer mounting surface is preferably smaller than the arithmetic mean roughness Ra of the outer surface. Since the groove 21 provided in the support column 2 has such a structure, when a wafer is placed in the groove 21, the possibility that the wafer is damaged can be reduced.

支柱2に備えられた溝21において、ウェハーの載置面の算術平均粗さRaは限定されない。例えば、ウェハーの載置面の算術平均粗さRaは、0.02μm以上0.3μm以下程度であるのがよい。さらに、ウェハーの載置面の算術平均粗さRaは、外側面の算術平均粗さRaよりも小さければ、その差は限定されない。例えば、ウェハーの載置面の算術平均粗さRaと外側面の算術平均粗さRaとの差が0.05μm以上であってもよい。ウェハーの載置面の算術平均粗さRaが0.02μm以上0.3μm以下程度であり、ウェハーの載置面の算術平均粗さRaと外側面の算術平均粗さRaとの差が0.05μm以上であれば、ウェハーを溝21に載置した場合に、ウェハーが損傷する可能性をより低減することができる。 In the groove 21 provided in the support column 2, the arithmetic mean roughness Ra of the wafer mounting surface is not limited. For example, the arithmetic mean roughness Ra of the wafer mounting surface is preferably about 0.02 μm or more and 0.3 μm or less. Further, as long as the arithmetic mean roughness Ra of the wafer mounting surface is smaller than the arithmetic mean roughness Ra of the outer surface, the difference is not limited. For example, the difference between the arithmetic mean roughness Ra of the wafer mounting surface and the arithmetic mean roughness Ra of the outer surface may be 0.05 μm or more. The arithmetic mean roughness Ra of the wafer placement surface is approximately 0.02 μm or more and 0.3 μm or less, and the difference between the arithmetic mean roughness Ra of the wafer placement surface and the arithmetic mean roughness Ra of the outer surface is 0.02 μm or more and 0.3 μm or less. If the thickness is 0.05 μm or more, the possibility that the wafer will be damaged when the wafer is placed in the groove 21 can be further reduced.

ウェハーの載置面の算術平均粗さRaおよび外側面の算術平均粗さRaは、いずれもJIS B 0601:2001に準拠した測定モードを有するレーザ顕微鏡((株)キーエンス製、VK-X1100またはその後継機種)を用いて測定することができる。測定条件としては、まず、倍率を480倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、カットオフ値λfを無し、測定対象とする載置面および外側面から1か所当たりの測定範囲をそれぞれ705μm×530μmに設定する。ここで、測定範囲の設定にあたっては、倍率を480倍として観察した表面のうち、その表面の特徴を示す代表的な部分を選択すればよい。 The arithmetic mean roughness Ra of the mounting surface of the wafer and the arithmetic mean roughness Ra of the outer surface are both measured using a laser microscope (manufactured by Keyence Corporation, VK-X1100 or its (successor model). The measurement conditions are: first, the magnification is 480 times, there is no cut-off value λs, the cut-off value λc is 0.08 mm, there is no cut-off value λf, and each point is measured from the mounting surface and the outer surface to be measured. The measurement range of each is set to 705 μm×530 μm. Here, in setting the measurement range, it is sufficient to select a representative part showing the characteristics of the surface from among the surfaces observed at a magnification of 480 times.

そして、測定範囲において、測定対象とする線を略等間隔に4本引いて、表面粗さ計測を行い、算術平均粗さRaの平均値を各面毎に求め、両者を比べればよい。線1本当たりの長さは、560mであり、線の方向は、載置面および外側面で観察される研磨筋や研磨筋との方向と同じ方向にすればよい。 Then, in the measurement range, four lines to be measured are drawn at approximately equal intervals, the surface roughness is measured, the average value of the arithmetic mean roughness Ra is determined for each surface, and the two are compared. The length of each line is 560 m, and the direction of the line may be the same as the direction of the polishing streaks and polishing streaks observed on the mounting surface and the outer surface.

支柱2の両端部は、図2(B)に示すように平板状の係合部22を有している。平板状の係合部22には、厚み方向に雄ねじ4を挿入するための通し穴23が形成されている。すなわち、支柱2の軸方向(長手方向)と垂直な方向に形成されている。通し穴23は、支持板3に設けられた雌ねじ(図示しない)と同一軸心上に形成され、雄ねじ4が通し穴23に挿入されて支持板3に取り付けられる。 Both ends of the support column 2 have plate-shaped engagement portions 22, as shown in FIG. 2(B). A through hole 23 for inserting the male screw 4 in the thickness direction is formed in the flat engagement portion 22 . That is, it is formed in a direction perpendicular to the axial direction (longitudinal direction) of the support column 2. The through hole 23 is formed coaxially with a female thread (not shown) provided on the support plate 3, and the male screw 4 is inserted into the through hole 23 and attached to the support plate 3.

支柱2の製造方法は限定されず、例えば、下記のようにして製造される。まず、酸化アルミニウムを主成分とするセラミックスで支柱を形成する場合について説明する。主成分である酸化アルミニウム粉末(純度99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを、粉砕用ミルに溶媒(イオン交換水)とともに投入する。粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と酸化アルミニウム粉末を分散させる分散剤とを添加し、混合してスラリーを得る。 The method of manufacturing the support column 2 is not limited, and for example, the support column 2 can be manufactured in the following manner. First, a case in which the pillars are formed of ceramics containing aluminum oxide as a main component will be described. Aluminum oxide powder (purity of 99.9% by mass or more), which is the main component, and each powder of magnesium hydroxide, silicon oxide, and calcium carbonate are charged into a grinding mill together with a solvent (ion-exchanged water). After pulverizing the powder until the average particle size (D50) becomes 1.5 μm or less, an organic binder and a dispersant for dispersing the aluminum oxide powder are added and mixed to obtain a slurry.

ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.05質量%以上0.53質量%以下、酸化珪素粉末の含有量は0.02質量%以上0.7質量%以下、炭酸カルシウム粉末の含有量は0.02質量%以上0.12質量%以下であり、残部が酸化アルミニウム粉末および不可避不純物である。有機結合剤としては、例えば、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイドなどが挙げられる。 Here, the content of magnesium hydroxide powder in the total 100% by mass of the above powder is 0.05% by mass or more and 0.53% by mass or less, and the content of silicon oxide powder is 0.02% by mass or more and 0.7% by mass. Hereinafter, the content of calcium carbonate powder is 0.02% by mass or more and 0.12% by mass or less, and the remainder is aluminum oxide powder and unavoidable impurities. Examples of the organic binder include acrylic emulsion, polyvinyl alcohol, polyethylene glycol, and polyethylene oxide.

次に、スラリーを噴霧造粒して主成分が酸化アルミニウムからなる顆粒を得る。この顆粒を冷間静水圧加圧装置内の成形用空間に充填して、成形圧を、例えば、78MPa~128MPaとして加圧することにより円柱状または角柱状の成形体を得る。次に、切削などにより成形体の両端部に、通し穴を有する平板状の係合部を形成した後、焼成雰囲気を大気雰囲気、焼成温度を1500℃以上1700℃以下、保持時間を4時間以上6時間以下として、成形体を焼成することによって柱状の焼結体を得ることができる。 Next, the slurry is spray granulated to obtain granules whose main component is aluminum oxide. The granules are filled into a molding space in a cold isostatic pressing device and pressurized at a molding pressure of, for example, 78 MPa to 128 MPa to obtain a cylindrical or prismatic molded body. Next, after forming plate-shaped engagement parts with through holes at both ends of the molded body by cutting, etc., the firing atmosphere is atmospheric, the firing temperature is 1500°C or more and 1700°C or less, and the holding time is 4 hours or more. A columnar sintered body can be obtained by firing the molded body for 6 hours or less.

炭化珪素を主成分とするセラミックスで支柱を形成する場合について説明する。炭化珪素粉末として粗粒状粉末および微粒状粉末を準備し、炭化珪素粉末を、粉砕用ミルに溶媒と分散剤とともに投入し、粉砕混合してスラリーとする。粉砕混合の時間は40時間以上60時間以下である。粉砕混合した後の微粒状粉末および粗粒状粉末のそれぞれの粒径の範囲は0.4μm以上4μm以下、および11μm以上34μm以下である。 A case where the pillars are formed of ceramics containing silicon carbide as a main component will be described. Coarse granular powder and fine granular powder are prepared as silicon carbide powder, and the silicon carbide powder is charged into a pulverizing mill together with a solvent and a dispersant, and pulverized and mixed to form a slurry. The time for pulverization and mixing is 40 hours or more and 60 hours or less. After pulverization and mixing, the particle sizes of the fine granular powder and the coarse granular powder are in the range of 0.4 μm to 4 μm, and 11 μm to 34 μm.

次に、得られたスラリーに、炭化硼素粉末および非晶質状の炭素粉末またはフェノール樹脂からなる焼結助剤と、バインダとを添加して混合した後、噴霧乾燥することで主成分が炭化珪素からなる顆粒を得る。この顆粒を上述した方法で成形した成形体を切削などにより成形体の両端部に、通し穴を有する平板状の係合部を形成する。その後、窒素雰囲気中、温度を450℃~650℃、保持時間を2時間以上10時間以下として脱脂体を得る。次に、焼成雰囲気を不活性ガスの減圧雰囲気、焼成温度を1800℃以上2200℃以下、保持時間を3時間以上6時間以下として脱脂体を焼成することによって柱状の焼結体を得ることができる。 Next, a sintering aid consisting of boron carbide powder, amorphous carbon powder or phenolic resin, and a binder are added to the resulting slurry and mixed, and then spray-dried to carbonize the main components. Granules consisting of silicon are obtained. A molded body obtained by molding the granules by the method described above is cut or the like to form plate-shaped engagement portions having through holes at both ends of the molded body. Thereafter, a degreased body is obtained in a nitrogen atmosphere at a temperature of 450° C. to 650° C. and a holding time of 2 hours to 10 hours. Next, a columnar sintered body can be obtained by firing the degreased body under a reduced pressure atmosphere of inert gas, a firing temperature of 1800°C or more and 2200°C or less, and a holding time of 3 hours or more and 6 hours or less. .

上述した柱状の焼結体の外側面を回転砥石による心なし研削(センタレス)、ブラシ研磨、バフ研磨などによって加工することによって、円柱状の支柱とすることができる。焼結体が角柱状である場合、平面研削により、外側面を加工することによって、角柱状の支柱とすることができる。溝は、外周先端が鋭角状に形成された回転砥石によるV溝研削によって形成する。必要に応じてブラシ研磨、バフ研磨などを施せばよい。載置面が外側面よりも小さい算術平均粗さRaを有するウェハーボートを得る場合、例えば、溝の形成で用いる回転砥石の粒度を、外側面の形成で用いる回転砥石の粒度よりも細かくすればよい。 By processing the outer surface of the above-mentioned columnar sintered body by centerless grinding with a rotary grindstone, brush polishing, buff polishing, etc., a columnar support can be obtained. When the sintered body has a prismatic shape, it can be made into a prismatic support by processing the outer surface by surface grinding. The groove is formed by V-groove grinding using a rotary grindstone having an acute-angled outer peripheral tip. Brush polishing, buff polishing, etc. may be applied as necessary. In order to obtain a wafer boat in which the mounting surface has a smaller arithmetic mean roughness Ra than the outer surface, for example, if the grain size of the rotary grindstone used for forming the grooves is made finer than the grain size of the rotary grindstone used for forming the outer surface. good.

雄ねじ4が平板状の係合部22に形成された通し穴23を介して、支持板3に設けられた雌ねじに螺合される。支柱2が、ねじによって支持板3に機械的に取り付けられた状態となるため、搬送してもウェハーが不安定になりにくい。その結果、ウェハーが損傷する可能性をより低減することができる。 The male screw 4 is screwed into the female screw provided on the support plate 3 through a through hole 23 formed in the flat plate-shaped engagement portion 22 . Since the support column 2 is mechanically attached to the support plate 3 with screws, the wafer is less likely to become unstable during transportation. As a result, the possibility of damage to the wafer can be further reduced.

支持板3は、支柱2の両端部を支持(固定)するために使用される。支持板3の大きさは、載置されるウェハーの大きさや支柱2の長さなどに応じて、適宜設計される。支持板3は、例えばセラミックスで形成されている。セラミックスとしては、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスなどが挙げられる。軽量化を目的として、支持板3の少なくとも1つは、中空構造を有していてもよい。中空構造を有していると、洗浄用の部品として用いる場合、洗浄液の対流が改善する。さらに、乾燥時の残液が少なくなるため、洗浄効率が良好になる。 The support plate 3 is used to support (fix) both ends of the column 2. The size of the support plate 3 is appropriately designed depending on the size of the wafer to be placed, the length of the support column 2, and the like. The support plate 3 is made of ceramics, for example. Examples of ceramics include ceramics containing aluminum oxide or silicon carbide as a main component. For the purpose of weight reduction, at least one of the support plates 3 may have a hollow structure. Having a hollow structure improves the convection of the cleaning liquid when used as a cleaning component. Furthermore, since there is less residual liquid during drying, cleaning efficiency is improved.

支持板3の形状は、支柱2の両端部を支持し得る形状であれば、限定されない。例えば、図3に示すように、支柱2の両端部の形状に整合させて、支持板3の周縁部を凹凸状に形成してもよい。この凹凸部分には、図4に示すように支柱2の両端部が位置するように支柱2が配置され、例えば、上述のように雄ねじ4で固定される。雄ねじ4も、例えばセラミックスで形成されている。セラミックスとしては、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスなどが挙げられる。 The shape of the support plate 3 is not limited as long as it can support both ends of the support column 2. For example, as shown in FIG. 3, the peripheral edge of the support plate 3 may be formed into an uneven shape to match the shape of both ends of the support column 2. The strut 2 is arranged in this uneven portion so that both ends of the strut 2 are located as shown in FIG. 4, and is fixed, for example, with the male screw 4 as described above. The male thread 4 is also made of ceramic, for example. Examples of ceramics include ceramics containing aluminum oxide or silicon carbide as a main component.

支持板3の製造方法は限定されず、例えば、下記のようにして製造される。まず、上述した方法で得られた顆粒を冷間静水圧加圧装置内の成形用空間に充填する。成形圧を、例えば、78MPa以上128MPa以下として加圧することにより板状の成形体を得る。次に、切削などにより成形体を支持板3の前駆体となる形状にする。その後、主成分に応じて焼成条件を適宜選択して、上記前駆体を焼成することによって焼結体を得ることができる。この焼結体の各表面は、必要に応じて研削または研磨を施せばよい。 The method for manufacturing the support plate 3 is not limited, and for example, the support plate 3 can be manufactured as follows. First, the granules obtained by the method described above are filled into a molding space in a cold isostatic pressing device. A plate-shaped molded body is obtained by applying a molding pressure of, for example, 78 MPa or more and 128 MPa or less. Next, the molded body is shaped into a precursor of the support plate 3 by cutting or the like. Thereafter, a sintered body can be obtained by appropriately selecting firing conditions depending on the main component and firing the precursor. Each surface of this sintered body may be ground or polished as necessary.

支柱2、支持板3および雄ねじ4は、それぞれ主成分の異なるセラミックスで形成されていてもよく、主成分が同じセラミックスで形成されていてもよい。主成分が同じセラミックスとは、主成分の含有量まで同じである必要はなく、主成分の含有量は異なっていてもよい。例えば、主成分が酸化アルミニウムであれば、酸化アルミニウムの含有量は異なっていてもよい。 The support column 2, the support plate 3, and the male screw 4 may be made of ceramics having different main components, or may be made of ceramics having the same main component. Ceramics having the same main component do not necessarily have the same content of the main component, and the content of the main component may be different. For example, if the main component is aluminum oxide, the content of aluminum oxide may be different.

支柱2、支持板3および雄ねじ4が、同じ主成分のセラミックスで形成されている場合、それぞれの部材に含まれる主成分の割合は限定されない。例えば、主成分の含有量については、雄ねじ4の主成分の含有量を最も少なくするのがよい。例えば、一実施形態に係るウェハーボート1を洗浄する場合、雄ねじ4と比べて大きな表面積を有する支柱2および支持板3は、洗浄液と接触する面積が大きくなる。そのため、支柱2および支持板3の主成分の含有量を高める(純度を高くする)ことによって、酸やアルカリで洗浄しても腐食を抑制することができる。その結果、一実施形態に係るウェハーボート1を長期間にわたって使用することができる。 When the pillar 2, the support plate 3, and the male screw 4 are formed of ceramics having the same main component, the proportion of the main component contained in each member is not limited. For example, regarding the content of the main components, it is preferable to minimize the content of the main components of the external thread 4. For example, when cleaning the wafer boat 1 according to one embodiment, the pillars 2 and the support plate 3, which have a larger surface area than the male screw 4, have a larger area in contact with the cleaning liquid. Therefore, by increasing the content of the main components of the pillars 2 and the support plate 3 (increasing the purity), corrosion can be suppressed even when cleaning with acid or alkali. As a result, the wafer boat 1 according to one embodiment can be used for a long period of time.

主成分の含有量については、雄ねじ4の主成分の含有量を最も少なくすれば限定されない。例えば、支柱2に含まれる主成分と雄ねじ4に含まれる主成分との差が0.15質量%以上であってもよい。このような差を有することによって、腐食をより抑制することができ、より長期間にわたって使用することができる。 The content of the main components is not limited as long as the content of the main components of the male thread 4 is minimized. For example, the difference between the main components contained in the strut 2 and the main components contained in the male thread 4 may be 0.15% by mass or more. By having such a difference, corrosion can be further suppressed and it can be used for a longer period of time.

雄ねじ4の完全ねじ部および支持板3に設けられた雌ねじの完全ねじ部の表面、ならびに支柱2の両端部に設けられた平板状の係合部22に形成された通し穴23の内壁面の少なくとも一方が、焼き放し面であってもよい。焼き放し面は、純水に対する接触角が低く、親水性が高くなるため、雄ねじ4が雌ねじに螺合した状態でも、一実施形態に係るウェハーボート1を効率よく洗浄することができる。特に、雄ねじ4の完全ねじ部および支持板3に設けられた雌ねじの完全ねじ部の表面が焼き放し面であるのがよい。完全ねじ部の表面は大きな凹凸を有しているため、結合力が強く、耐衝撃性や耐振性に対する信頼性が向上する。 The surfaces of the fully threaded portion of the male thread 4 and the fully threaded portion of the female thread provided on the support plate 3, as well as the inner wall surface of the through hole 23 formed in the flat plate-shaped engagement portion 22 provided at both ends of the support post 2. At least one side may be an unburned surface. Since the unbaked surface has a low contact angle with pure water and is highly hydrophilic, the wafer boat 1 according to the embodiment can be efficiently cleaned even when the male thread 4 is screwed into the female thread. In particular, it is preferable that the surfaces of the fully threaded portion of the male thread 4 and the fully threaded portion of the female thread provided on the support plate 3 be burnt-out surfaces. Since the surface of the fully threaded portion has large irregularities, the bonding force is strong and the reliability of impact resistance and vibration resistance is improved.

支柱2、支持板3および雄ねじ4の少なくとも1種が、閉気孔を有するセラミックスで形成されていてもよい。この場合、隣り合う閉気孔の重心間距離から閉気孔の円相当径の平均値を引いた値(A)が20μm以上85μm以下であるのがよい。この値(A)が20μm以上であれば、セラミックス中に空隙部分が密集せずに分散して配置されている。そのため、より高い機械的特性が発揮される。一方、値(A)が85μm以下であれば、研磨などの加工性がより向上する。さらに、値(A)がこのような範囲であれば、隣り合う閉気孔の間隔が狭くなる。そのため、熱衝撃などによって生じるマイクロクラックの伸展を抑制することができる。 At least one of the strut 2, the support plate 3, and the male screw 4 may be formed of ceramics having closed pores. In this case, the value (A) obtained by subtracting the average value of the equivalent circle diameter of the closed pores from the distance between the centers of gravity of adjacent closed pores is preferably 20 μm or more and 85 μm or less. If this value (A) is 20 μm or more, the voids are not densely packed but are dispersedly arranged in the ceramic. Therefore, higher mechanical properties are exhibited. On the other hand, if the value (A) is 85 μm or less, workability such as polishing is further improved. Furthermore, when the value (A) is within such a range, the distance between adjacent closed pores becomes narrow. Therefore, the extension of microcracks caused by thermal shock or the like can be suppressed.

値(A)は、以下の方法で求めることができる。まず、支柱2の長手方向に垂直な断面から深さ方向(長手方向)に、平均粒径D50が3μmのダイヤモンド砥粒を用いて銅盤にて研磨する。その後、平均粒径D50が0.5μmのダイヤモンド砥粒を用いて錫盤にて研磨することにより研磨面を得る。 The value (A) can be determined by the following method. First, the pillar 2 is polished in the depth direction (longitudinal direction) from a cross section perpendicular to the longitudinal direction using a copper disc using diamond abrasive grains having an average grain size D 50 of 3 μm. Thereafter, a polished surface is obtained by polishing with a tin disk using diamond abrasive grains having an average grain size D 50 of 0.5 μm.

研磨面を200倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が0.105mm2(横方向の長さが374μm、縦方向の長さが280μm)となる範囲をCCDカメラで撮影して、観察像を得る。この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて分散度計測の重心間距離法という手法で開気孔の重心間距離を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。 Observe the polished surface at 200x magnification, select an average range, and select a range with an area of 0.105 mm 2 (horizontal length: 374 μm, vertical length: 280 μm) using the CCD. Obtain an observation image by taking a picture with a camera. Using this observed image as a target, the distance between the centers of gravity of the open pores was measured using the image analysis software "A-zo-kun (ver 2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) using a method called the center-to-center distance method of dispersion measurement. Just find the distance. Hereinafter, when the image analysis software is referred to as "Azo-kun", it refers to the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd.

この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を86、明度を暗、小図形除去面積を1μm2、雑音除去フィルタを有とすればよい。観察像の明るさに応じて、しきい値を調整してもよい。明度を暗とし、2値化の方法を手動とし、小図形除去面積を1μm2および雑音除去フィルタを有とした上で、観察像に現れるマーカーが気孔の形状と一致するように、しきい値を調整すればよい。 Setting conditions for this method include, for example, a threshold value of 86, which is an index indicating the brightness of an image, a brightness of dark, a small figure removal area of 1 μm 2 , and a noise removal filter. The threshold value may be adjusted depending on the brightness of the observed image. The brightness was set to dark, the binarization method was set to manual, the small figure removal area was set to 1 μm 2 , and a noise removal filter was used, and the threshold value was set so that the marker appearing in the observed image matched the shape of the pore. Just adjust it.

閉気孔の円相当径は、以下の方法で求めることができる。上記観察像を対象として、粒子解析という手法で閉気孔の円相当径を求めればよい。この手法の設定条件も分散度計測の重心間距離法で用いた設定条件と同じにすればよい。 The equivalent circular diameter of a closed pore can be determined by the following method. The equivalent circle diameter of the closed pores may be determined using a technique called particle analysis using the above observed image. The setting conditions for this method may be the same as those used for the center-of-gravity distance method for dispersion measurement.

支持板3の場合、支持板3の厚み方向に上述した方法と同じ方法で研磨面を作製し、この研磨面を対象として、上述した方法と同じ方法で値(A)を求めればよい。雄ねじ4の場合、雄ねじ4の長手方向に垂直な断面から深さ方向(長手方向)に上述した方法と同じ方法で研磨面を作製し、この研磨面を対象として、上述した方法と同じ方法で値(A)を求めればよい。 In the case of the support plate 3, a polished surface may be prepared in the thickness direction of the support plate 3 using the same method as described above, and the value (A) may be determined using the same method as described above for this polished surface. In the case of the male screw 4, a polished surface is prepared in the depth direction (longitudinal direction) from a cross section perpendicular to the longitudinal direction of the male screw 4 using the same method as described above, and this polished surface is subjected to the same method as described above. All you have to do is find the value (A).

値(A)が20μm以上85μm以下である、支柱2、支持板3および雄ねじ4を得るには、主成分が酸化アルミニウムであるセラミックスを得る場合、焼成温度を1500℃以上1600℃以下、焼成雰囲気を大気雰囲気、保持時間を5時間以上6時間以下として、成形体を焼成した後、例えば、熱処理温度を1300℃以上1600℃以下、熱処理の雰囲気をアルゴン雰囲気、圧力を90MPa以上300MPa以下として熱処理すればよい。 To obtain the pillar 2, support plate 3, and male screw 4 having a value (A) of 20 μm or more and 85 μm or less, when obtaining ceramics whose main component is aluminum oxide, the firing temperature should be set at 1500°C or more and 1600°C or less, and the firing atmosphere After firing the molded body in an air atmosphere for a holding time of 5 hours or more and 6 hours or less, heat treatment is performed, for example, at a heat treatment temperature of 1300° C. or more and 1600° C. or less, an argon atmosphere as the heat treatment atmosphere, and a pressure of 90 MPa or more and 300 MPa or less. Bye.

一実施形態に係るウェハーボート1は、上述のように、複数のウェハーを規則正しく整列した状態で載置させることができる。このような一実施形態に係るウェハーボート1は、ウェハーを熱処理するための熱処理装置、ウェハーを洗浄するための洗浄装置などに備えられる。 As described above, the wafer boat 1 according to one embodiment can place a plurality of wafers in a regularly aligned state. The wafer boat 1 according to this embodiment is included in a heat treatment device for heat treating wafers, a cleaning device for cleaning wafers, and the like.

本開示に係るウェハーボートは、上述の一実施形態に限定されない。例えば、一実施形態に係るウェハーボート1には、4つの支柱2が備えられている。しかし、本開示に係るウェハーボートにおいて柱状の支柱は、ウェハーを保持し得るように配置されれば、少なくとも2つ備えられていればよい。 The wafer boat according to the present disclosure is not limited to the above-described embodiment. For example, the wafer boat 1 according to one embodiment is equipped with four pillars 2. However, in the wafer boat according to the present disclosure, at least two columnar supports may be provided as long as they are arranged so as to be able to hold wafers.

一実施形態に係るウェハーボート1において、支柱2は支持板3に雄ねじ4を用いて支持されている。しかし、本開示に係るウェハーボートにおいて、柱状の支柱を支持板に支持する手段は限定されず、例えば、接着剤、ガラス接合、拡散接合などを用いて支持されていてもよい。 In the wafer boat 1 according to one embodiment, the support column 2 is supported by the support plate 3 using a male screw 4. However, in the wafer boat according to the present disclosure, the means for supporting the columnar supports on the support plate is not limited, and may be supported using an adhesive, glass bonding, diffusion bonding, etc., for example.

一実施形態に係るウェハーボート1において、支持板3の周縁部は、支柱2の両端部の形状に整合させて凹凸状に形成されている。しかし、本開示に係るウェハーボートにおいて、支持板の形状は限定されず、支持板の周縁部は凹凸状に形成されていなくてもよい。 In the wafer boat 1 according to one embodiment, the peripheral edge of the support plate 3 is formed into an uneven shape to match the shape of both ends of the support column 2. However, in the wafer boat according to the present disclosure, the shape of the support plate is not limited, and the peripheral edge of the support plate does not need to be formed in an uneven shape.

一実施形態に係るウェハーボート1には、補強材として支柱2とは異なる棒状部材5が設けられている。しかし、本開示に係るウェハーボートにおいて、このような棒状部材は任意で使用される部材であり、必ずしも使用しなければならない部材ではない。 The wafer boat 1 according to one embodiment is provided with a rod-shaped member 5 different from the support column 2 as a reinforcing member. However, in the wafer boat according to the present disclosure, such a rod-shaped member is a member that is optionally used, and is not necessarily a member that must be used.

1 ウェハーボート
2 支柱
21 溝
22 平板状の係合部
23 通し穴
3 支持板
4 雄ねじ
5 棒状部材
1 Wafer boat 2 Support 21 Groove 22 Flat engagement portion 23 Through hole 3 Support plate 4 Male thread 5 Rod-shaped member

Claims (11)

ウェハーを載置するための複数の溝を備えた複数の柱状の支柱と、該支柱の両端部をそれぞれ支持する支持板とを備え、
前記支柱が、酸化アルミニウムまたは炭化ケイ素を主成分とするセラミックスで形成されており、前記支柱の外側面は研削面および研磨面の少なくとも一方であ
前記支柱の両端部が、厚み方向に通し穴を有する平板状の係合部を備えており、
前記支持板には、それぞれ前記通し穴の軸心上に雌ねじが設けられており、
雄ねじが、前記通し穴を介して前記雌ねじに螺合されている、
ウェハーボート。
comprising a plurality of columnar supports each having a plurality of grooves for placing wafers thereon, and support plates each supporting both ends of the supports,
The pillar is made of ceramics containing aluminum oxide or silicon carbide as a main component, and the outer surface of the pillar is at least one of a ground surface and a polished surface,
Both ends of the support are provided with flat plate-like engagement parts having through holes in the thickness direction,
Each of the support plates is provided with a female thread on the axis of the through hole,
a male thread is screwed into the female thread through the through hole;
wafer boat.
前記溝において前記ウェハーを載置する載置面が、研削面および研磨面の少なくとも一方であって、前記載置面が前記外側面よりも小さい算術平均粗さRaを有する請求項1に記載のウェハーボート。 The mounting surface on which the wafer is mounted in the groove is at least one of a ground surface and a polished surface, and the mounting surface has an arithmetic mean roughness Ra smaller than the outer surface. wafer boat. 前記溝の断面形状が前記載置面側より開口側の幅が広い等脚台形状である、請求項2に記載のウェハーボート。 3. The wafer boat according to claim 2 , wherein the groove has an isosceles trapezoidal cross-sectional shape that is wider on the opening side than on the placement surface side. 前記支柱、前記支持板および前記雄ねじが、同じ主成分のセラミックスで形成されており、前記主成分の含有量について、前記雄ねじが最も少ない請求項1~3のいずれかに記載のウェハーボート。 The wafer boat according to any one of claims 1 to 3, wherein the support column, the support plate, and the male screw are formed of ceramics having the same main component, and the male screw has the smallest content of the main component. 前記支柱に含まれる主成分の含有量が、前記雄ねじに含まれる主成分の含有量より少なくとも0.15質量%多い請求項に記載のウェハーボート。 The wafer boat according to claim 4 , wherein the content of the main component contained in the strut is at least 0.15% by mass greater than the content of the main component contained in the male thread. 前記雌ねじの完全ねじ部および前記雄ねじの完全ねじ部の表面、ならびに前記通し穴の内壁面の少なくとも1種が、焼き放し面である請求項4または5に記載のウェハーボート。 The wafer boat according to claim 4 or 5 , wherein at least one of the surfaces of the fully threaded portion of the female thread and the fully threaded portion of the male thread, and the inner wall surface of the through hole are baked surfaces. 前記通し穴が、前記支柱の軸方向に沿った長穴である請求項のいずれかに記載のウェハーボート。 The wafer boat according to any one of claims 1 to 6 , wherein the through hole is an elongated hole extending in the axial direction of the support column. 前記支柱、前記支持板および前記雄ねじの少なくとも1種が、閉気孔を有するセラミックスで形成されており、隣り合う該閉気孔の重心間距離から前記閉気孔の円相当径の平均値を引いた値(A)が20μm以上85μm以下である請求項のいずれかに記載のウェハーボート。 At least one of the support column, the support plate, and the male screw is formed of ceramics having closed pores, and a value obtained by subtracting the average value of the equivalent circle diameter of the closed pores from the distance between the centers of gravity of the adjacent closed pores. The wafer boat according to any one of claims 1 to 7 , wherein (A) is 20 μm or more and 85 μm or less. 前記支持板の少なくとも1つが、中空構造を有している請求項1~のいずれかに記載のウェハーボート。 The wafer boat according to claim 1, wherein at least one of the support plates has a hollow structure. 請求項1~のいずれかに記載のウェハーボートを備える熱処理装置。 A heat treatment apparatus comprising the wafer boat according to any one of claims 1 to 9 . 請求項1~のいずれかに記載のウェハーボートを備える洗浄装置。 A cleaning device comprising the wafer boat according to any one of claims 1 to 9 .
JP2021576198A 2020-02-07 2021-02-05 wafer boat Active JP7450646B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020020013 2020-02-07
JP2020020013 2020-02-07
PCT/JP2021/004416 WO2021157722A1 (en) 2020-02-07 2021-02-05 Wafer boat

Publications (2)

Publication Number Publication Date
JPWO2021157722A1 JPWO2021157722A1 (en) 2021-08-12
JP7450646B2 true JP7450646B2 (en) 2024-03-15

Family

ID=77200678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021576198A Active JP7450646B2 (en) 2020-02-07 2021-02-05 wafer boat

Country Status (5)

Country Link
US (1) US20230111655A1 (en)
EP (1) EP4101826A4 (en)
JP (1) JP7450646B2 (en)
TW (1) TWI770810B (en)
WO (1) WO2021157722A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100821A1 (en) * 2021-11-30 2023-06-08 京セラ株式会社 Height adjustment member, heat treatment apparatus and electrostatic chuck device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119079A (en) 1998-08-11 2000-04-25 Toshiba Ceramics Co Ltd Si-sic-made material for heat treatment of semiconductor and its production
JP2008010589A (en) 2006-06-28 2008-01-17 Kobe Steel Ltd Wafer boat made of glassy carbon, and its manufacturing method
JP2019004096A (en) 2017-06-19 2019-01-10 東京エレクトロン株式会社 Substrate holder and substrate processing apparatus using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349512C3 (en) * 1973-10-02 1978-06-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of supports from silicon or silicon carbide for diffusion and tempering processes
JPS53148283A (en) * 1977-05-30 1978-12-23 Toshiba Ceramics Co Silicon wafer jig
JPS6161831U (en) * 1984-09-26 1986-04-25
JPH0627953Y2 (en) * 1988-11-25 1994-07-27 テクノクオーツ株式会社 IC boat
US4993559A (en) * 1989-07-31 1991-02-19 Motorola, Inc. Wafer carrier
JPH04300262A (en) * 1991-03-28 1992-10-23 Shin Etsu Chem Co Ltd Siliceous carbide jig
JPH0595040A (en) * 1991-08-27 1993-04-16 Mitsubishi Materials Corp Supporting jig for silicon wafer
JP2732224B2 (en) * 1994-09-30 1998-03-25 信越半導体株式会社 Wafer support boat
JPH09275078A (en) * 1996-04-05 1997-10-21 Sumitomo Metal Ind Ltd Silicon wafer retaining jig
JP4390872B2 (en) * 1997-06-20 2009-12-24 株式会社ブリヂストン Semiconductor manufacturing apparatus member and method for manufacturing semiconductor manufacturing apparatus member
JPH11126755A (en) 1997-10-22 1999-05-11 Sumitomo Metal Ind Ltd Manufacture of boat for semiconductor heat treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119079A (en) 1998-08-11 2000-04-25 Toshiba Ceramics Co Ltd Si-sic-made material for heat treatment of semiconductor and its production
JP2008010589A (en) 2006-06-28 2008-01-17 Kobe Steel Ltd Wafer boat made of glassy carbon, and its manufacturing method
JP2019004096A (en) 2017-06-19 2019-01-10 東京エレクトロン株式会社 Substrate holder and substrate processing apparatus using the same

Also Published As

Publication number Publication date
EP4101826A1 (en) 2022-12-14
WO2021157722A1 (en) 2021-08-12
TW202144309A (en) 2021-12-01
EP4101826A4 (en) 2024-03-06
TWI770810B (en) 2022-07-11
US20230111655A1 (en) 2023-04-13
JPWO2021157722A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US20160303704A1 (en) Grinding Tool
JP7450646B2 (en) wafer boat
JP2008156160A (en) Corrosion resistant member and its production method
CN104024179A (en) Transparent Ceramic Material
US11031278B2 (en) Suction member
JP2020173089A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
JP7022817B2 (en) Ceramic structure
WO2021241645A1 (en) Air-permeable plug, substrate support assembly, and shower plate
JP2010114416A (en) Wafer placing table and method of manufacturing the same
WO2016027540A1 (en) Target material, target material manufacturing method, and board-like target
JP7431642B2 (en) Ceramic tray, heat treatment method using the same, and heat treatment equipment
WO2021015092A1 (en) Molding mold and production method thereof
KR102246850B1 (en) Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
JP2020173088A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
CN110494956B (en) Temporary fixing substrate and molding method of electronic component
KR102665048B1 (en) Forming mold and its manufacturing method
JP7075499B2 (en) Frame member for electron beam lithography system and electron beam lithography system
US11008260B2 (en) Corrosion resistant materials
WO2022250096A1 (en) Focus ring and plasma processing device
TWI757876B (en) Ceramic structure
TWI798859B (en) Clamping jig, manufacturing method of clamping jig, and cleaning apparatus
WO2023189957A1 (en) Placement member
KR20230063892A (en) Clamp jig, manufacturing method of clamp jig, and cleaning device
JP2020164406A (en) Corrosion resistant member
JP2016160123A (en) Corrosion-resistant member and electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7450646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150