JP7447654B2 - Calculation method for pull-out resistance at the joints of knotted piles - Google Patents

Calculation method for pull-out resistance at the joints of knotted piles Download PDF

Info

Publication number
JP7447654B2
JP7447654B2 JP2020072198A JP2020072198A JP7447654B2 JP 7447654 B2 JP7447654 B2 JP 7447654B2 JP 2020072198 A JP2020072198 A JP 2020072198A JP 2020072198 A JP2020072198 A JP 2020072198A JP 7447654 B2 JP7447654 B2 JP 7447654B2
Authority
JP
Japan
Prior art keywords
joint
pull
ground
pile
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072198A
Other languages
Japanese (ja)
Other versions
JP2021169704A (en
Inventor
直子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2020072198A priority Critical patent/JP7447654B2/en
Publication of JP2021169704A publication Critical patent/JP2021169704A/en
Application granted granted Critical
Publication of JP7447654B2 publication Critical patent/JP7447654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は、場所打ちコンクリート造の節付き杭の節部における引抜き抵抗力の算定方法に関する。 The present invention relates to a method for calculating the pull-out resistance at the joints of a cast-in-place concrete knotted pile.

従来より、建物の大型化及び高層化に対応する基礎杭として、杭長の長大化を抑えつつ高い鉛直支持力を確保することの可能な節付き杭を採用する場合が多い。節付き杭には、鉛直支持力を増大させるため、軸部の下端部に拡底部を有するとともに、軸部の中間部に1つもしくは複数の節部が設けられている。 BACKGROUND ART Conventionally, knotted piles have often been used as foundation piles to accommodate larger and higher-rise buildings, as they can ensure high vertical bearing capacity while suppressing increases in pile length. The knotted pile has an expanded bottom portion at the lower end of the shaft portion and one or more knot portions at the middle portion of the shaft portion in order to increase the vertical supporting force.

節付き杭に設けられた節部は、鉛直支持力だけでなく引抜き抵抗力を負担可能であるが、その根入れ長によって負担できる引抜き抵抗力が異なる。具体的には、節付き杭に所定の引抜き力が作用されると、節部の根入れ長が浅い場合には、節部が地盤中で引抜き力に抵抗するものの、地盤中に節部から地表面に達する破壊面が発生し、引抜き抵抗力を失う。 The knots provided in the knotted pile can bear not only the vertical support force but also the pull-out resistance force, but the pull-out resistance force that can be borne differs depending on the embedment length. Specifically, when a predetermined pulling force is applied to a knotted pile, if the knots are shallowly embedded, the knots resist the pulling force in the ground, but the knots do not penetrate into the ground. A fracture surface that reaches the ground surface is generated and the pull-out resistance is lost.

一方、節部の根入れ長が十分確保されている場合、もしくは節部全体が硬質な中間層や支持層等に埋設されている場合には、節部が地盤中で引抜き力に抵抗し続け、長期にわたって引抜き抵抗力を負担する。 On the other hand, if the knot has sufficient penetration length, or if the entire knot is buried in a hard intermediate layer or support layer, the knot will continue to resist the pull-out force in the ground. , bear the pull-out resistance force over a long period of time.

例えば、特許文献1では、軸部に拡径部を形成してなる多段階拡径杭について、拡径部の根入れ長が十分深い場合を想定し、引抜き抵抗力の算定方法が開示されている。ここでは、引抜き抵抗力を、拡径部及び軸部の周面摩擦力と杭の自重とを足し合わせて算定している。 For example, Patent Document 1 discloses a method for calculating the pull-out resistance of a multi-stage diameter-expanding pile formed by forming an enlarged-diameter portion on the shaft, assuming that the enlarged-diameter portion has a sufficiently deep penetration length. There is. Here, the pull-out resistance force is calculated by adding together the peripheral surface friction force of the enlarged diameter portion and the shaft portion and the pile's own weight.

そして、拡径部の周面摩擦力を算定するにあたっては、まず、拡径部径を直径とし、有効高さ(拡径部の支圧効果が及ぶ範囲)を拡径部径の2倍に設定した鉛直円筒すべり面を規定する。次に、このすべり面上に発揮されるせん断抵抗力を周面摩擦力として算定することとし、鉛直円筒すべり面の面積に地盤から求まる極限周面摩擦力度を掛け合わせている。 When calculating the circumferential friction force of the enlarged diameter part, first, the diameter of the enlarged diameter part is taken as the diameter, and the effective height (range where the bearing pressure effect of the enlarged diameter part extends) is set to twice the diameter of the enlarged diameter part. Define the set vertical cylindrical slip surface. Next, the shear resistance force exerted on this sliding surface is calculated as the peripheral surface friction force, and the area of the vertical cylindrical sliding surface is multiplied by the ultimate peripheral surface friction force determined from the ground.

特開2002-21070号公報Japanese Patent Application Publication No. 2002-21070

特許文献1では上記のとおり、鉛直円筒すべり面の有効高さが、地盤中で収まる程度に拡径部の根入れが十分深い場合に適用可能な方法である。しかし、拡径部の根入れが十分でなく有効高さが地盤内に収まらない場合には、拡径部の引抜き抵抗力を算定することができない。 As described above, Patent Document 1 is a method that can be applied when the enlarged diameter portion is sufficiently deeply embedded to the extent that the effective height of the vertical cylindrical sliding surface is contained in the ground. However, if the enlarged diameter part is not sufficiently embedded and the effective height does not fit within the ground, the pullout resistance of the enlarged diameter part cannot be calculated.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、場所打ちコンクリート造の節付き杭に引抜き力が作用した際、節部の根入れが浅く、節部から地表面に円筒面状の破壊面が地盤中に発生する場合にも、節部の引抜き抵抗力を算定することの可能な、節付き杭の節部における引抜き抵抗力の算定方法を提供する。 The present invention has been made in view of the above problem, and its main purpose is to prevent the joints from being shallowly embedded when a pull-out force is applied to a cast-in-place concrete knotted pile. To provide a method for calculating the pull-out resistance force at the joints of a knotted pile, which is capable of calculating the pull-out resistance force at the joints even when a cylindrical fracture surface occurs in the ground.

かかる目的を達成するため、本発明の節付き杭の節部における引抜き抵抗力の算定方法は、軸部と、該軸部に設けた節部とを備える節付き杭における前記節部の引抜き抵抗力を、地盤に発生する節部から地表面に達する円筒状の破壊面のせん断抵抗力、及び前記破壊面と前記軸部との間の土塊重量に基づいて算定する、節付き杭の節部における引抜き抵抗力の算定方法であって、前記破壊面における前記せん断抵抗力を算出する対象範囲を、前記節部と隣接する節部区間と、前記軸部に隣接する軸部区間に区分し、前記節部区間のせん断抵抗力を算出する際に用いる土圧係数を、前記軸部区間のせん断抵抗力を算出する際に用いる土圧係数より割増することを特徴とする。
In order to achieve such an object, the method for calculating the pull-out resistance at the joint of a knotted pile of the present invention is to calculate the pull-out resistance of the joint in a knotted pile that includes a shaft and a joint provided on the shaft. The joint portion of a knotted pile in which the force is calculated based on the shear resistance force of a cylindrical fracture surface that reaches the ground surface from the joint portion generated in the ground, and the weight of the clod between the fracture surface and the shaft portion. A method for calculating a pull-out resistance force, wherein the target range for calculating the shear resistance force on the fracture surface is divided into a joint section adjacent to the joint section and a shaft section adjacent to the shaft section, It is characterized in that the earth pressure coefficient used when calculating the shear resistance force of the joint section is increased from the earth pressure coefficient used when calculating the shear resistance force of the shaft section.

本発明の節付き杭の節部における引抜き抵抗力の算定方法によれば、節付き杭の引抜き時に、節部から地表面に達する円筒形状の破壊面が地盤に発生するような根入れ長の浅い節部について、その引抜き抵抗力を高い精度で算定できる。したがって、従来では引抜き抵抗力を設計に考慮していなかった根入れ長の浅い節部の引抜き抵抗力を、節部の鉛直支持力と同様に設計に反映することが可能となる。 According to the method of calculating the pull-out resistance force at the joints of a knotted pile of the present invention, when pulling out a knotted pile, the penetration length is such that a cylindrical fracture surface reaching the ground surface from the joints occurs in the ground. The pull-out resistance of shallow joints can be calculated with high accuracy. Therefore, it becomes possible to reflect the pull-out resistance force of a joint with a shallow penetration length, which has not been considered in the design in the past, in the same way as the vertical support force of the joint.

また、節部を節付き杭に作用する引抜き力に抵抗することを目的として設ける際、要求される引抜き抵抗力の大きさに応じた根入れ長を推定することもできる。これにより、節部の根入れ長を適切な深度に設定でき、安全性と経済性を兼ね備えた合理的な節付き杭の設計を行うことが可能となる。 Further, when the knot is provided for the purpose of resisting the pull-out force acting on the knotted pile, it is also possible to estimate the penetration length according to the magnitude of the required pull-out resistance force. This makes it possible to set the penetration length of the knot to an appropriate depth, and to design a rational knotted pile that is both safe and economical.

本発明によれば、節付き杭に引抜き力が作用した際、節部の根入れ長が浅く、節部から地表面に円筒面状の破壊面が地盤中に発生する場合にも、節部の引抜き抵抗力を高い精度で算定でき、合理的な設計を行うことが可能となる。 According to the present invention, when a pullout force is applied to a knotted pile, even if the penetration length of the knot is shallow and a cylindrical fracture surface is generated in the ground from the knot to the ground surface, the knot It is possible to calculate the pull-out resistance force with high accuracy, making it possible to perform a rational design.

本発明の実施の形態における節付き杭の概略を示す図である。It is a figure showing an outline of a knotted pile in an embodiment of the present invention. 本発明の実施の形態における節部の詳細を示す図である。It is a figure showing the detail of the joint part in embodiment of the present invention. 本発明の実施の形態における節部の根入れ長と地中応力の影響範囲を示す図である。FIG. 3 is a diagram showing the penetration length of a joint and the influence range of underground stress in an embodiment of the present invention. 本発明の実施の形態における模型杭を用いた引抜き実験の様子を示す図である。It is a figure which shows the state of the pull-out experiment using the model pile in embodiment of this invention. 本発明の実施の形態における模型杭の引抜き実験より得た杭頭変位と節部の上向き円錐台部に作用する土圧の関係を示すグラフである。It is a graph which shows the relationship between the displacement of the pile head obtained from the pull-out experiment of the model pile in embodiment of this invention, and the earth pressure which acts on the upward truncated cone part of a node. 本発明の実施の形態における節付き杭の引抜き時に発生する破壊面を示す図である。It is a figure which shows the fracture surface which occurs when pulling out the knotted pile in embodiment of this invention. 本発明の実施の形態における引抜き抵抗力の算定にあたり、せん断抵抗力を算定する際の区分を示す図である。It is a figure which shows the division at the time of calculating a shearing resistance force in calculating the pull-out resistance force in embodiment of this invention. 本発明の実施の形態における模型杭の引抜き実験より得た杭頭変位と節部上下の軸力差(節部の抵抗力)の関係を示すグラフである。It is a graph showing the relationship between the displacement of the pile head and the difference in axial force above and below the joint (resistance of the joint) obtained from a pull-out experiment of a model pile in an embodiment of the present invention.

本発明は、場所打ちコンクリート造の節付き杭について、節部の引抜き抵抗力を、地盤に発生する節部から地表面に達する円筒状の破壊面のせん断抵抗力、及び前記破壊面と前記軸部との間の土塊重量に基づいて算定する方法である。以下に、図1~図8を参照しつつ、その詳細を説明する。 The present invention relates to knotted piles made of cast-in-place concrete, and calculates the pull-out resistance of the knots by the shear resistance of a cylindrical fracture surface that reaches the ground surface from the knots generated in the ground, and the shear resistance of the fracture surface and the shaft. This is a calculation method based on the weight of the soil between the two parts. The details will be explained below with reference to FIGS. 1 to 8.

図1で示すように、建物を支持する節付き杭1は、支持層G3に到達する杭長を有し、軸部2と、軸部2の下端に設けられる拡底部3と、軸部2の中間部に設けられる節部4とを備える。 As shown in FIG. 1, a knotted pile 1 that supports a building has a pile length that reaches a support layer G3, and includes a shaft portion 2, an enlarged bottom portion 3 provided at the lower end of the shaft portion 2, and a shaft portion 2. and a joint portion 4 provided at the intermediate portion of the.

節部4は、図2で示すように、軸部2より径の大きい円筒部41と、円筒部41の上側に位置する上向き円錐台部42と、円筒部41の下側に位置する下向き円錐台部43とを組み合わせた形状を有している。 As shown in FIG. 2, the joint portion 4 includes a cylindrical portion 41 having a larger diameter than the shaft portion 2, an upward truncated conical portion 42 located above the cylindrical portion 41, and a downward conical portion located below the cylindrical portion 41. It has a shape that combines the base portion 43.

このような形状の節部4は、下向き円錐台部43が、図1で示すように砂礫層等の中間層G2に設けられており、節付き杭1に押込み力が作用された場合には、拡底部3と節部4とでこれに抵抗できる。一方、節付き杭1に引抜き力が作用された場合には、節部4の上向き円錐台部42が地盤中でどのように埋設されているかにより、その態様が異なる。 In the joint portion 4 having such a shape, the downward truncated conical portion 43 is provided in an intermediate layer G2 such as a gravel layer as shown in FIG. 1, and when a pushing force is applied to the joint pile 1, This can be resisted by the enlarged bottom portion 3 and the knot portion 4. On the other hand, when a pull-out force is applied to the knotted pile 1, the mode differs depending on how the upward truncated conical portion 42 of the knotted portion 4 is buried in the ground.

例えば図1で示すように、節部4の上向き円錐台部42が表層G1に設けられている状態において、節部4の根入れ長Hが十分確保された場合、節部4近傍の地盤に破壊が生じることなく常時、節部4は地盤中で引抜き力に抵抗する。 For example, as shown in FIG. 1, when the upward truncated conical portion 42 of the knot 4 is provided on the surface layer G1, if the penetration length H of the knot 4 is sufficiently secured, the ground near the knot 4 At all times, the joints 4 resist pull-out forces in the ground without breaking.

節部4の根入れ長Hが十分確保された場合とは、図3(a)で示すように、節付き杭1に引抜き力が作用されて上向き円錐台部42が地盤を押圧した際に、地中応力の影響範囲Aが地盤内に収まる場合をいう。なお、地中応力の影響範囲Aとは、上向き円錐台部42が地盤を押圧した際の支圧効果が及ぶ範囲を指す。 When the penetration length H of the joint 4 is sufficiently secured, as shown in FIG. , refers to the case where the influence range A of underground stress falls within the ground. Note that the range A of influence of underground stress refers to the range in which the bearing effect is exerted when the upward truncated conical portion 42 presses the ground.

一方、節部4の根入れ長Hが十分でない、つまり図3(b)で示すような、地中応力の影響範囲Aが地盤内に収まらない場合には、節部4は地盤中で引抜き力に抵抗するものの、やがて地盤に地表面に達する破壊が発生し抵抗する力は失われていく。つまり、根入れ長Hが十分でない節部4であっても、地盤に破壊が発生するまでの期間は、引抜き抵抗力を負担する。 On the other hand, if the penetration length H of the knot 4 is not sufficient, that is, if the influence range A of the underground stress does not fit within the ground as shown in Fig. 3(b), the knot 4 will be pulled out in the ground. Although it resists the force, the ground eventually experiences destruction that reaches the surface, and the power to resist is lost. In other words, even if the joint portion 4 does not have a sufficient penetration length H, it bears the pulling resistance force until the ground breaks.

このような根入れ長Hが十分でない節部4が負担する引抜き抵抗力を算定するにあたり、節部4の周辺地盤にどのような破壊面が生じるのかを明らかにし、破壊面の形状に適した方法で引抜き抵抗力を算定することとした。 In calculating the pull-out resistance force borne by the joint 4 where the penetration length H is not sufficient, it is necessary to clarify what kind of fracture surface will occur in the ground around the joint 4, and to calculate the We decided to calculate the pull-out resistance using the following method.

≪模型杭を用いた引抜き実験≫
実験は、図4(a)~(c)で示すように、半割の模型杭1’を使って遠心力模型実験を実施し、引抜き時の節部4’の抵抗機構を確認した。地盤材料には乾燥した豊浦砂を採用し、容器内で所定の相対密度の模型地盤G’を作成した。
≪Extraction experiment using model pile≫
As shown in FIGS. 4(a) to 4(c), a centrifugal force model experiment was carried out using a half-split model pile 1' to confirm the resistance mechanism of the joint 4' during pull-out. Dry Toyoura sand was used as the ground material, and a model ground G' with a predetermined relative density was created in a container.

一方、模型杭1’の寸法は、図2を参照し、軸部径D0=48mm、節部径D=68mm、節部突出幅Dn=10mm、上部傾斜角θn=20°とした。また、模型杭1’には、節部4’に土圧計EGを設置し、節部4’の上下に位置する軸部2’に歪ゲージSGを設置するとともに、杭頭部に変位計DGを設置している。 On the other hand, with reference to FIG. 2, the dimensions of the model pile 1' were as follows: shaft diameter D0 = 48 mm, node diameter D = 68 mm, node protrusion width Dn = 10 mm, and upper inclination angle θn = 20°. In addition, on the model pile 1', an earth pressure gauge EG is installed at the joint 4', a strain gauge SG is installed at the shaft 2' located above and below the joint 4', and a displacement gauge DG is installed at the pile head. is installed.

上記の模型杭1’は、図4(a)~(c)で示すような3通り(Case1~Case3)の根入れ長Hで模型地盤G’に貫入した。Case1は、根入れ長H=20Dnに設定され、節部4の根入れ長Hが十分な場合に相当する(比較例)。一方、Case2及びCase3は、節部4の根入れ長Hが浅い場合に相当し、Case2は、根入れ長H=12Dnに設定され、Case3は、根入れ長H=6Dnに設定されている。 The above model pile 1' penetrated into the model ground G' at three penetration lengths H (Case 1 to Case 3) as shown in FIGS. 4(a) to 4(c). Case 1 corresponds to a case where the penetration length H is set to 20Dn, and the penetration length H of the joint portion 4 is sufficient (comparative example). On the other hand, Case 2 and Case 3 correspond to the case where the penetration length H of the joint portion 4 is shallow; in Case 2, the penetration length H is set to 12Dn, and in Case 3, the penetration length H is set to 6Dn.

このような構成の模型杭1’に引抜き力を作用させたところ、変位計DGと土圧計EGの計測結果から、図5で示すような、杭頭変位と節部4’の上向き円錐台部42に作用する土圧の関係を得た。また、図6(a)~(c)は、これらCase1~Case3について、模型杭1’の周辺地盤における変位を画像解析によりコンターで表したものである。 When a pulling force was applied to the model pile 1' having such a configuration, the displacement of the pile head and the upward truncated cone of the node 4' were determined from the measurement results of the displacement gauge DG and the soil pressure gauge EG, as shown in Fig. 5. The relationship between the earth pressure acting on 42 was obtained. Furthermore, FIGS. 6(a) to 6(c) are contours representing displacements in the surrounding ground of the model pile 1' for these Cases 1 to 3 through image analysis.

図6(a)の節部4’を十分に根入れしたCase1をみると、地表面に到達する破壊面が生じていない様子がわかる。図5をみても、Case1では、杭頭変位が増大するにしたがって土圧も上昇しており、節部4近傍の模型地盤G’が破壊することなく、節部4に押圧されている様子がわかる。 Looking at Case 1 in FIG. 6(a), in which the node 4' is fully rooted, it can be seen that no fracture surface reaching the ground surface has been generated. Looking at Figure 5, in Case 1, as the pile head displacement increases, the earth pressure also increases, and it appears that the model ground G' near the joint 4 is being pressed against the joint 4 without breaking. Recognize.

図6(b)のCase1より節部4’の根入れが浅いCase2をみると、節部4近傍の模型地盤G’中に、円筒状の破壊土塊が形成されるような破壊面Fsが生じている様子がわかる。また、図5を見ると、Case2では、杭頭変位が約3mmを超えると節部4’が、円筒状の破壊面Fsに0.1Mpa前後の範囲で押圧される状態と、破壊面Fsに沿って滑る状態とを繰り返しているものと想定できる。 Looking at Case 2 in which the penetration of the node 4' is shallower than that of Case 1 in Fig. 6(b), a fracture surface Fs is created in the model ground G' near the node 4, where a cylindrical fractured soil mass is formed. I can see how it is. Also, looking at FIG. 5, in Case 2, when the pile head displacement exceeds about 3 mm, the joint 4' is pressed against the cylindrical fracture surface Fs in a range of about 0.1 Mpa, and when the pile head displacement exceeds about 3 mm, It can be assumed that the state of sliding along the surface is repeated.

図6(c)の最も根入れが浅いCase3をみると、節部4’近傍の模型地盤G’中に、コーン状の破壊土塊が形成されるような破壊面Fsが生じている様子がわかる。また、図5を見ると、Case2と同様に節部4’が、破壊面Fsに押圧される状態と、破壊面Fsに沿って滑る状態とを繰り返している。しかし、その土圧は約0~0.05Mpaの範囲となっており、ごく小さい様子がわかる。 Looking at Case 3 in Figure 6(c), where the penetration is the shallowest, it can be seen that a fracture surface Fs, in which a cone-shaped fractured soil mass is formed, has occurred in the model ground G' near the node 4'. . Moreover, looking at FIG. 5, similarly to Case 2, the joint portion 4' repeats a state in which it is pressed against the fracture surface Fs and a state in which it slides along the fracture surface Fs. However, the earth pressure is in the range of approximately 0 to 0.05 MPa, which shows that it is extremely small.

上記の模型杭1’を用いた引抜き実験からわかるように、節付き杭1に設けた節部4は根入れ長Hが浅い場合に、地盤中に発生する破壊面Fsがコーン状をなす場合と、円筒面状をなす場合があることがわかる。そして、図6(c)で示すような、破壊面Fsがコーン状をなすコーン破壊は一般に広く知られており、引抜き抵抗力の算定方法もすでに様々な検討がなされている。 As can be seen from the above-mentioned pull-out experiment using the model pile 1', when the joint 4 provided on the jointed pile 1 has a shallow penetration length H, the fracture surface Fs generated in the ground forms a cone shape. It can be seen that there are cases where the surface has a cylindrical surface shape. Cone fracture, in which the fracture surface Fs has a cone shape, as shown in FIG. 6(c), is generally widely known, and various methods for calculating the pull-out resistance force have already been studied.

そこで、節付き杭1に引抜き力が作用した際に、破壊面Fsが円筒面状をなす場合について、節部4の引抜き抵抗力の算定方法を、図7を参照しつつ以下に説明する。 Therefore, in the case where the fracture surface Fs has a cylindrical shape when a pullout force is applied to the knotted pile 1, a method for calculating the pullout resistance force of the knotted portion 4 will be described below with reference to FIG. 7.

≪引抜き抵抗力の算定方法≫
図7で示すように、節付き杭1の引抜き時において、節部4周辺の地盤に円筒面状の破壊面Fsが生じる(以降、円筒面Fsという)場合の節部抵抗力Frは、以下の(1)式で算定できる。
≪How to calculate the pull-out resistance force≫
As shown in FIG. 7, when a cylindrical fracture surface Fs occurs in the ground around the joint 4 (hereinafter referred to as cylindrical surface Fs) when the knotted pile 1 is pulled out, the joint resistance force Fr is as follows: It can be calculated using formula (1).

Fr=Wg+Rf・・・・・・・・・・(1)
Wg:節部直上の円筒形の土塊重量(kN)
Rf:円筒面Fsのせん断抵抗力(kN)
Fr=Wg+Rf・・・・・・・・・(1)
Wg: Weight of cylindrical soil just above the joint (kN)
Rf: Shear resistance force of cylindrical surface Fs (kN)

ここで、節部直上の円筒形の土塊重量Wgは、円筒面Fsと軸部2で囲まれた土塊Vnの重量であり、以下の(2)式で算定できる。 Here, the weight Wg of the cylindrical soil mass directly above the joint is the weight of the soil mass Vn surrounded by the cylindrical surface Fs and the shaft portion 2, and can be calculated using the following equation (2).

Wg=Vn×ρ・・・・・・・・・・・(2)
Vn:面積ABCDを360度回転した体積(m3)
ρ :土の単位体積重量(kN/m3)
Wg=Vn×ρ・・・・・・・・・(2)
Vn: Volume obtained by rotating area ABCD by 360 degrees (m 3 )
ρ: Unit volume weight of soil (kN/m 3 )

また、円筒面Fsのせん断抵抗力Rfは、円筒面Fsの面積と土のせん断強さに基づいて、以下の(3)式で算定できる。このとき、節部4から地表面に達する円筒面Fsの全高(根入れ長H)を対象としてせん断抵抗力Rfを算定してもよい。しかし、本実施の形態では、円筒形状の破壊面Frにおいてせん断抵抗力Rfを考慮する対象範囲HAを、節部4における円筒部41の下端から節部突出幅Dnに基づいて規定する高さに設定する点に1つ目の特徴がある。 Further, the shear resistance force Rf of the cylindrical surface Fs can be calculated using the following equation (3) based on the area of the cylindrical surface Fs and the shear strength of the soil. At this time, the shear resistance force Rf may be calculated using the total height (embedment length H) of the cylindrical surface Fs reaching the ground surface from the joint 4. However, in the present embodiment, the target range HA in which the shear resistance force Rf is considered in the cylindrical fracture surface Fr is set to the height defined based on the joint protrusion width Dn from the lower end of the cylindrical part 41 at the joint 4. The first feature lies in the settings.

上記のせん断抵抗力Rfを考慮する対象範囲HAは、実験の結果に基づき地盤の性状に応じて、節部突出幅Dnの倍数に相当する大きさと設定することとした。例えば、地盤が砂質土の場合は、対象範囲HAを節部突出幅Dnの6倍にすると良い。 The target range HA in which the above-mentioned shear resistance force Rf is considered is set to a size corresponding to a multiple of the joint protrusion width Dn, depending on the properties of the ground based on the results of experiments. For example, if the ground is sandy soil, the target range HA may be set to six times the joint protrusion width Dn.

また、この対象範囲HAを、節部4に隣接する節部区間H2と、節部4の上部にある軸部2と隣接する軸部区間H1とに区分して、各区間ごとにせん断抵抗力を算定し、その和を節部4のせん断抵抗力Rfとする点に2つ目の特徴がある。 In addition, this target range HA is divided into a joint section H 2 adjacent to the joint 4 and a shaft section H 1 adjacent to the shaft section 2 above the joint 4, and the shearing is performed for each section. The second feature is that the resistance forces are calculated and the sum thereof is used as the shear resistance force Rf of the joint portion 4.

Rf=(F1×Af1)+(F2×Af2)・・・・・・・・・(3)
Af1:円筒面Fsにおける軸部区間H1の面積(m2)
Af2:円筒面Fsにおける節部区間H2の面積(m2)
F1 :軸部区間H1の地盤のせん断強さ(kN/m2)
F2 :節部区間H2の地盤のせん断強さ(kN/m2)
Rf=(F1×Af1)+(F2×Af2)・・・・・・・・・(3)
Af1: Area of shaft section H 1 on cylindrical surface Fs (m 2 )
Af2: Area of node section H 2 on cylindrical surface Fs (m 2 )
F1: Shear strength of the ground in shaft section H1 (kN/ m2 )
F2: Shear strength of the ground at node section H2 (kN/ m2 )

軸部区間H1の地盤のせん断強さF1及び節部区間H2の地盤のせん断強さF2は、以下の(4)式及び(5)式で算定できる。このとき、節部区間H2の地盤のせん断強さF2には、割増係数αfを採用している点に3つ目の特徴がある。 The shear strength F1 of the ground in the shaft section H1 and the shear strength F2 of the ground in the joint section H2 can be calculated using the following equations (4) and (5). At this time, the third feature is that the shear strength F2 of the ground in the joint section H2 uses an additional coefficient αf.

割増係数αfは、節付き杭1の引抜き時に、節部4に隣接する節部区間H2の地盤が上向き円錐台部42に押しつけられることを考慮したものである。具体的には、節部区間H2の土圧係数を軸部区間H1の土圧係数(静止土圧係数K0)に割増係数αfを掛け合わせて節部区間H2の土圧係数を割増することで、節部4による支圧効果を地盤のせん断強さF2に反映させたものである。 The extra coefficient αf takes into consideration that the ground in the joint section H 2 adjacent to the joint 4 is pressed against the upward truncated conical part 42 when the jointed pile 1 is pulled out. Specifically, the earth pressure coefficient of the joint section H 2 is obtained by multiplying the earth pressure coefficient of the shaft section H 1 (static earth pressure coefficient K 0 ) by the additional coefficient αf. By increasing the load, the bearing pressure effect of the joints 4 is reflected in the shear strength F2 of the ground.

F1=C+K0×σv1’×tanφ ・・・・・・・(4)
F2=C+K0×αf×σv2’×tanφ ・・・・・(5)
C :土の粘着力(kN/m2)
0:静止土圧係数
σv1’:軸部区間H1の平均有効上載圧(kN/m2)
φ :土のせん断抵抗角(内部摩擦角)(°)
σv2’:節部区間H2の平均有効上載圧(kN/m2)
αf :割増係数
F1=C+K 0 ×σv1'×tanφ (4)
F2=C+K 0 ×αf×σv2'×tanφ (5)
C: Adhesive force of soil (kN/ m2 )
K 0 : Static earth pressure coefficient
σv1': Average effective overload pressure of shaft section H1 (kN/ m2 )
φ: Soil shear resistance angle (internal friction angle) (°)
σv2': Average effective overload pressure in the joint section H2 (kN/ m2 )
αf: Additional coefficient

割増係数αfを設定するにあたっては、節部4が静止状態にあるときの土圧係数(静止土圧係数)と引抜き時の土圧係数(受働土圧係数)とに基づき、K0×αfが両係数の間の値をとることとし、好ましくは両係数の平均値を利用すると良い。例えば、地盤が砂質土の場合にはせん断抵抗角(内部摩擦角)φ’を40°とすると、静止土圧係数K0は0.35、受働土圧係数Kp=4.6となるから、これらの平均からK0×αfとなる割増係数αf=7.1を採用する。 In setting the additional coefficient αf, K 0 A value between the two coefficients should be taken, and preferably the average value of both coefficients should be used. For example, if the ground is sandy soil and the shear resistance angle (internal friction angle) φ' is 40°, the static earth pressure coefficient K 0 is 0.35 and the passive earth pressure coefficient K p =4.6. Therefore, from the average of these, an additional coefficient αf=7.1, which is K 0 ×αf, is adopted.

なお、静止土圧係数K0は公知のヤーキーの式(K0=1-sinφ’)を、また、受働土圧係数Kpは公知のランキン土圧の式(Kp=tan2(45°+φ’/2))を用いて算定している。また、割増係数αfは地盤条件によって異なる。したがって、地盤に対応したせん断抵抗角(内部摩擦角)φ’を採用して静止土圧係数K0及び受働土圧係数Kpを算定し、これらの結果から最適な割増係数αfを設定すればよい。 The static earth pressure coefficient K 0 is calculated using the well-known Yerkey equation (K 0 =1-sinφ'), and the passive earth pressure coefficient K p is calculated using the known Rankine earth pressure equation (K p =tan2(45°+φ) Calculated using '/2)). Further, the additional coefficient αf differs depending on the ground conditions. Therefore, by adopting the shear resistance angle (internal friction angle) φ' corresponding to the ground, calculating the static earth pressure coefficient K 0 and the passive earth pressure coefficient K p , and setting the optimal additional coefficient αf from these results. good.

また、軸部区間H1の平均有効上載圧σv1’及び節部区間H2の平均有効上載圧σv2’は、以下の(6)式及び(7)式で算定できる。
σv1’=ρ×(H0+H1/2)・・・・・・・・・・・・・・(6)
σv2’=ρ×(H0+H1+H1/2)・・・・・・・・・・・(7)
H0:根入れ長Hと対象範囲HAとの差(m)
Further, the average effective overload pressure σv1' of the shaft section H1 and the average effective overload pressure σv2' of the joint section H2 can be calculated using the following equations (6) and (7).
σv1'=ρ×(H0+H 1 /2)・・・・・・・・・・・・・・・(6)
σv2'=ρ×(H0+H 1 +H 1 /2)・・・・・・・・・・・・(7)
H0: Difference between penetration length H and target area HA (m)

≪引抜き抵抗力の算定式の検証≫
上述する節部4の引抜き抵抗力Frの算定式について、割増係数αfの妥当性を上述した模型実験で用いた模型杭1’及び模型地盤G’を利用して検証した。
≪Verification of calculation formula for pull-out resistance force≫
Regarding the calculation formula for the pull-out resistance force Fr of the joint portion 4 described above, the validity of the additional coefficient αf was verified using the model pile 1' and the model ground G' used in the model experiment described above.

検証は、まず、図4(b)で円筒形状の破壊面Frが発生する図4(b)のCase2に基づいて、模型杭1’の節部に4’について引抜き抵抗力Frを上記の(1)式に従って算定した。引抜き抵抗力Frを算定するにあたり、節部区間H2の地盤のせん断強さF2を次の2パターンで算定した。 First, the verification is based on Case 2 of FIG. 4(b) in which a cylindrical fracture surface Fr occurs in FIG. Calculated according to formula 1). In calculating the pull-out resistance Fr, the shear strength F2 of the ground in the joint section H2 was calculated using the following two patterns.

1パターンめは、節部区間H2の土圧係数として、軸部区間H1の土圧係数(静止土圧系K0)に割増係数αfを掛けた係数を採用する。このとき、割増係数αf=7.4に設定した。2パターンめは、節部区間H2の土圧係数として、軸部区間H1の土圧係数と同様の係数を採用する。 In the first pattern, a coefficient obtained by multiplying the earth pressure coefficient (stationary earth pressure system K 0 ) of the shaft section H 1 by an additional coefficient αf is used as the earth pressure coefficient of the joint section H 2 . At this time, the additional coefficient αf was set to 7.4. In the second pattern, a coefficient similar to the earth pressure coefficient of the shaft section H 1 is adopted as the earth pressure coefficient of the joint section H 2 .

その結果、引抜き抵抗力Frは、割増係数αfを採用した場合に0.72kN、割増係数αfを採用しない場合に0.27kNと算定された。なお、地盤定数は、土のせん断強さ(粘着力)C=9.14(kN/m2)、土のせん断抵抗角φ=40.9(°)、土の単位体積重量ρ=15.8(kN/m3)とした。 As a result, the pull-out resistance force Fr was calculated to be 0.72 kN when the extra coefficient αf was adopted, and 0.27 kN when the extra coefficient αf was not adopted. The ground constants are as follows: soil shear strength (adhesive force) C = 9.14 (kN/m 2 ), soil shear resistance angle φ = 40.9 (°), and soil unit volume weight ρ = 15. 8 (kN/m 3 ).

その一方で、上記の模型杭1’に引抜き力を作用させる模型実験を図4(a)~(c)のCase1~Case3について実施した際に取得したひずみゲージSGの計測結果から、図8で示すような、杭頭変位と節部4上下の軸力差(節部4の抵抗力)の関係を得た。図8を見ると、円筒形状の破壊面Frが発生するCase2では、節部抵抗力がおおよそ0.7kN前後を推移し、コーン状の破壊面Frが発生するCase3では、節部抵抗力がおおよそ0.3kN前後を推移する様子がわかる。 On the other hand, from the measurement results of the strain gauge SG obtained when the model experiment in which a pulling force is applied to the model pile 1' was carried out for Cases 1 to 3 in Figs. 4(a) to (c), it was found that The relationship between the displacement of the pile head and the difference in axial force between the upper and lower portions of the joint portion 4 (resistance force of the joint portion 4) was obtained as shown. Looking at FIG. 8, in Case 2 where a cylindrical fracture surface Fr occurs, the knot resistance force changes around 0.7 kN, and in Case 3 where a cone-shaped fracture surface Fr occurs, the knot resistance force changes approximately. It can be seen that the force changes around 0.3kN.

そこで、図8に、上記の(1)式に従って引抜き抵抗力Frを算定した結果を当てはめると、割増係数αfを採用せずに算定した引抜き抵抗力Fr=0.27kNは、Case3の実験結果に近似しており、円筒形状の破壊面Frが発生する節部3の引抜き抵抗力Frを評価できているとは言えない。一方、割増係数αfを採用して算定した引抜き抵抗力Fr=0.72kNは、Case2の実験結果とほぼ合致しており、節部3の引抜き抵抗力Frを精度よく評価している。 Therefore, by applying the result of calculating the pull-out resistance force Fr according to the above equation (1) to Fig. 8, the pull-out resistance force Fr = 0.27 kN calculated without using the additional coefficient αf is the same as the experimental result of Case 3. It cannot be said that the pull-out resistance force Fr of the joint portion 3 where the cylindrical fracture surface Fr occurs can be evaluated. On the other hand, the pull-out resistance force Fr=0.72 kN calculated by employing the additional coefficient αf almost agrees with the experimental result of Case 2, and the pull-out resistance force Fr of the joint portion 3 is evaluated with high accuracy.

上記の模型杭1’を実大換算するべく、その寸法を、軸部径D0=2.4m、節部径D=3.4m、節部突出幅Dn=0.5m、上部傾斜角θn=20°、根入れ長H=6mとした。この条件において引抜き抵抗力Frを算定すると、割増係数αfを採用した場合で3609kN、採用しない場合で1327kNとなり、割増係数αfを採用しない場合、約2300kNもの誤差で過小評価となることがわかる。 In order to convert the above model pile 1' to the actual size, its dimensions are as follows: shaft diameter D0 = 2.4 m, joint diameter D = 3.4 m, joint protrusion width Dn = 0.5 m, upper inclination angle θn = 20°, and the penetration length H was 6 m. When the pull-out resistance force Fr is calculated under these conditions, it is 3609 kN when the extra coefficient αf is adopted, and 1327 kN when not adopted, and it can be seen that when the extra coefficient αf is not adopted, the result is an underestimation with an error of about 2300 kN.

上記のとおり、節部4の引抜き抵抗力Frは、円筒形状の破壊面Frにおいてせん断抵抗力Rfを考慮する対象範囲HAを節部4から節部突出幅Dnに基づいて規定する高さに設定するとともに、設定した対象範囲HAを、節部4と隣接する節部区間H2と軸部2に隣接する軸部区間H1とに区分する。さらに、この各区分ごとでせん断抵抗力Rfを算定するにあたり、節部4と隣接する節部区間H2について、土圧係数として軸部区間H1の土圧係数に割増割増係数αfを掛け合わせたものを採用する。 As mentioned above, the pull-out resistance force Fr of the knot 4 is set at a height that defines the range HA in which the shear resistance force Rf is considered on the cylindrical fracture surface Fr from the knot 4 based on the knot protrusion width Dn. At the same time, the set target range HA is divided into a joint section H2 adjacent to the joint section 4 and a shaft section H1 adjacent to the shaft section 2. Furthermore, in calculating the shear resistance force Rf for each section, for the joint section H2 adjacent to the joint section 4, the earth pressure coefficient of the shaft section H1 is multiplied by a surcharge coefficient αf as the earth pressure coefficient. Adopt new products.

これにより、節付き杭1の引抜き時に、節部4から地表面に達する円筒形状の破壊面Frが地盤に発生するような節部4について、その引抜き抵抗力を高い精度で算定できる。したがって、従来では引抜き抵抗力を設計に考慮していなかった根入れ長Hの浅い節部4の引抜き抵抗力Frを、節部4の鉛直支持力と同様に設計に反映することが可能となる。 This makes it possible to calculate with high precision the pull-out resistance force of the knot 4 in which a cylindrical fracture surface Fr reaching the ground surface from the knot 4 is generated in the ground when the knotted pile 1 is pulled out. Therefore, it becomes possible to reflect the pull-out resistance force Fr of the joint 4 with a shallow penetration length H, which has not been considered in the design in the past, in the same way as the vertical support force of the joint 4. .

また、節部4を節付き杭1に作用する引抜き力に抵抗することを目的として設ける際、要求される引抜き抵抗力Frに応じた根入れ長Hを、上記の(1)式を利用して推定することができる。これにより、節部4の根入れ長Hを適切な深度に設定でき、安全性と経済性を兼ね備え合理的な節付き杭の設計を行うことが可能となる。 In addition, when providing the knot 4 for the purpose of resisting the pull-out force acting on the knotted pile 1, the penetration length H corresponding to the required pull-out resistance Fr can be determined using the above equation (1). It can be estimated by Thereby, the penetration length H of the knot portion 4 can be set to an appropriate depth, and it becomes possible to design a rational knotted pile that is both safe and economical.

なお、本発明の節付き杭の節部における引抜き抵抗力の算定方法は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることはいうまでもない。 Note that the method for calculating the pull-out resistance force at the joints of the knotted pile of the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the spirit of the present invention. Needless to say.

本実施の形態では、節部4について、円筒部41と上向き円錐台部42と下向き円錐台部43とを組みあわせた形状のものを採用した。しかし、これに限定されるものではなく、いずれの形状の節部であっても採用することが可能である。 In this embodiment, the knot portion 4 has a shape that is a combination of a cylindrical portion 41, an upwardly facing truncated conical portion 42, and a downwardly facing truncated conical portion 43. However, the present invention is not limited to this, and any shape of the joint can be used.

1 節付き杭
2 軸部
3 拡底部
4 節部
41 円筒部
42 上向き円錐台部
43 下向き円錐台部
G1 表層
G2 中間層
G3 支持層
HA 対象範囲
1 軸部区間
2 節部区間
1’ 模型杭
2’ 軸部
4’ 節部
G’ 模型地盤
1 Knotted pile 2 Shaft part 3 Expanded bottom part 4 Knot part 41 Cylindrical part 42 Upward truncated conical part 43 Downward truncated conical part G1 Surface layer G2 Middle layer G3 Support layer HA Target range H 1 Shaft section H 2 Knot section 1' Model Pile 2' Shaft 4' Joint G' Model ground

Claims (1)

軸部と、該軸部に設けた節部とを備える節付き杭における前記節部の引抜き抵抗力を、地盤に発生する節部から地表面に達する円筒状の破壊面のせん断抵抗力、及び前記破壊面と前記軸部との間の土塊重量に基づいて算定する、節付き杭の節部における引抜き抵抗力の算定方法であって、
前記破壊面における前記せん断抵抗力を算出する対象範囲を、前記節部と隣接する節部区間と、前記軸部に隣接する軸部区間に区分し、
前記節部区間のせん断抵抗力を算出する際に用いる土圧係数を、前記軸部区間のせん断抵抗力を算出する際に用いる土圧係数より割増することを特徴とする節付き杭の節部における引抜き抵抗力の算定方法。
In a knotted pile comprising a shaft and a joint provided on the shaft, the pull-out resistance of the joint is defined as the shear resistance of a cylindrical fracture surface reaching the ground surface from the joint generated in the ground, and A method for calculating pullout resistance at a joint of a knotted pile, the method comprising: calculating based on the weight of the soil mass between the fracture surface and the shaft,
The target range for calculating the shear resistance force on the fracture surface is divided into a joint section adjacent to the joint section and a shaft section adjacent to the shaft section,
A joint of a knotted pile, characterized in that the earth pressure coefficient used when calculating the shear resistance of the joint section is higher than the earth pressure coefficient used when calculating the shear resistance of the shaft section. Calculation method of pull-out resistance force.
JP2020072198A 2020-04-14 2020-04-14 Calculation method for pull-out resistance at the joints of knotted piles Active JP7447654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072198A JP7447654B2 (en) 2020-04-14 2020-04-14 Calculation method for pull-out resistance at the joints of knotted piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072198A JP7447654B2 (en) 2020-04-14 2020-04-14 Calculation method for pull-out resistance at the joints of knotted piles

Publications (2)

Publication Number Publication Date
JP2021169704A JP2021169704A (en) 2021-10-28
JP7447654B2 true JP7447654B2 (en) 2024-03-12

Family

ID=78149600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072198A Active JP7447654B2 (en) 2020-04-14 2020-04-14 Calculation method for pull-out resistance at the joints of knotted piles

Country Status (1)

Country Link
JP (1) JP7447654B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021070A (en) 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2006322256A (en) 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force and shearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2006322257A (en) 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2006348578A (en) 2005-06-16 2006-12-28 Ohbayashi Corp Knotted pile pull-out resistance calculating method using shearing force acting on slope of diameter-expanded portion, push-in resistance calculating method, knotted pile design method, and knotted pile
JP2011174251A (en) 2010-02-23 2011-09-08 Takenaka Komuten Co Ltd Method of calculating drawing resistance of diameter-enlarged pile, diameter-enlarged pile, method of setting arrangement of diameter-enlarged pile, and method of determining quality of installation of diameter-enlarged pile
JP2016125271A (en) 2015-01-05 2016-07-11 システム計測株式会社 Calculation method for pull-out resistance of pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021070A (en) 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2006322256A (en) 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force and shearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2006322257A (en) 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2006348578A (en) 2005-06-16 2006-12-28 Ohbayashi Corp Knotted pile pull-out resistance calculating method using shearing force acting on slope of diameter-expanded portion, push-in resistance calculating method, knotted pile design method, and knotted pile
JP2011174251A (en) 2010-02-23 2011-09-08 Takenaka Komuten Co Ltd Method of calculating drawing resistance of diameter-enlarged pile, diameter-enlarged pile, method of setting arrangement of diameter-enlarged pile, and method of determining quality of installation of diameter-enlarged pile
JP2016125271A (en) 2015-01-05 2016-07-11 システム計測株式会社 Calculation method for pull-out resistance of pile

Also Published As

Publication number Publication date
JP2021169704A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
CN107893428A (en) A kind of vertical anchor retaining wall design method
JP4658684B2 (en) Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP4658685B2 (en) Calculation method of pulling resistance of knotted pile using support pressure acting on inclined surface of enlarged diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP7447654B2 (en) Calculation method for pull-out resistance at the joints of knotted piles
JP5095944B2 (en) Method for producing multistage expanded cast-in-place concrete pile and evaluation method for multistage expanded cast-in-place concrete pile
KR102300395B1 (en) Method for calculating yield load of ground
Neely Bearing capacity of expanded-base piles in sand
KR101714610B1 (en) Steel pipe pile construction method of sacrificial steel pipe casing partial pullout
JP2020169567A (en) Method and structure for flow inhibition of slope ground
JP4837849B2 (en) Construction method of soil cement composite pile
JP2003138561A (en) Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JPH06280261A (en) Front end consolidating pile
KR101500087B1 (en) Foundation slab reinforcement method for integral behavior with existing building and structure of the same
JP7447652B2 (en) Evaluation method of pull-out resistance
KR20160041397A (en) Settlement estimation method of the ground founded by piles having variated section
JP5684069B2 (en) Pile structure
KR101334393B1 (en) Pre-boring method for micro pile
JP4584512B2 (en) Ready-made pile with soil cement synthetic blade
CN211228553U (en) A friction pile structure that is used for side slope to strut and can control pile bolck displacement
Perko et al. Lateral earth pressure on lagging in soldier pile wall systems
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
Tchepak et al. Statnamic testing of bored piles socketed into siltstone
JP7168328B2 (en) Slope reinforcement work and construction method of slope reinforcement work
JP2010209605A (en) Piled-raft foundation
Sfoog et al. Foundation failures mitigation under expansive clay by using granular pile anchor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7447654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150