JP4658684B2 - Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile - Google Patents

Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile Download PDF

Info

Publication number
JP4658684B2
JP4658684B2 JP2005147770A JP2005147770A JP4658684B2 JP 4658684 B2 JP4658684 B2 JP 4658684B2 JP 2005147770 A JP2005147770 A JP 2005147770A JP 2005147770 A JP2005147770 A JP 2005147770A JP 4658684 B2 JP4658684 B2 JP 4658684B2
Authority
JP
Japan
Prior art keywords
pile
inclined surface
ultimate
knotted
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005147770A
Other languages
Japanese (ja)
Other versions
JP2006322256A (en
Inventor
崇夫 関
文雄 茶谷
広歳 清
章吉 後閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005147770A priority Critical patent/JP4658684B2/en
Publication of JP2006322256A publication Critical patent/JP2006322256A/en
Application granted granted Critical
Publication of JP4658684B2 publication Critical patent/JP4658684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は、拡径部の傾斜面に作用する支圧力とせん断力とを用いた節付杭の引抜抵抗力の計算方法、押込抵抗力の計算方法、節付杭の設計方法、及び、節付杭に関する。   The present invention relates to a method for calculating a pulling resistance force of a knotted pile using a bearing pressure and a shearing force acting on the inclined surface of the enlarged diameter portion, a method for calculating an indentation resistance force, a method for designing a knotted pile, and a knot It relates to a pile.

従来より、建物の荷重を支える基礎杭として、基礎杭の長手方向中間部又は下端部に拡径部を設けた節付杭が広く用いられている。節付杭によれば、拡径部が設けられることにより、基礎杭から地盤への荷重の伝達面積が大きくなるので、鉛直方向支持力及び引抜抵抗力を増大させることができる。   2. Description of the Related Art Conventionally, as a foundation pile that supports the load of a building, a knotted pile having a diameter-expanded portion at the middle or lower end in the longitudinal direction of the foundation pile has been widely used. According to the knotted pile, by providing the enlarged diameter portion, the transmission area of the load from the foundation pile to the ground is increased, so that the vertical support force and the pulling resistance force can be increased.

かかる節付杭の引抜抵抗力を評価する手法として、例えば特許文献1には、節付杭を引抜いたときに、拡径部直上の地盤が拡径部の直径の2倍の有効高さを持つ円筒状にせん断されると仮定し、その円筒の周面積に地盤のせん断強度を乗じた値を拡径部の引抜抵抗力として設計することが記載されている。
特開2002―21070号公報
As a method for evaluating the pulling resistance force of the knotted pile, for example, in Patent Document 1, when the knotted pile is pulled out, the ground directly above the enlarged diameter portion has an effective height that is twice the diameter of the enlarged diameter portion. It is described that a value obtained by multiplying the peripheral area of the cylinder by the shear strength of the ground is designed as the drawing resistance force of the enlarged diameter portion, assuming that the cylinder is sheared into a cylindrical shape.
Japanese Patent Laid-Open No. 2002-21070

しかしながら、上記の拡径部の引抜抵抗力の計算方法では、せん断面の有効高さを一意に拡径部の2倍の値としているため、拡径部と軸部の径の差が小さい場合と、拡径部と軸部の径の差が大きい場合とでは、実際の引抜抵抗力が異なるにもかかわらず、計算される引抜抵抗力が同じ値になってしまうという問題がある。   However, in the above-mentioned method for calculating the pulling resistance force of the enlarged diameter portion, the effective height of the shear surface is uniquely set to twice the value of the enlarged diameter portion, so that the difference in diameter between the enlarged diameter portion and the shaft portion is small. In addition, when the difference in diameter between the enlarged diameter portion and the shaft portion is large, there is a problem that the calculated pulling resistance force becomes the same value even though the actual pulling resistance force is different.

このように、特許文献1に記載された節付杭の引抜抵抗力の計算方法では、必ずしも十分な精度が得ることができないため、引抜抵抗力を過小評価してしまい、過剰設計を行いコストが割高になってしまう場合や、引抜抵抗力を過大評価してしまい、安全性が損なわれてしまう場合がある。   As described above, the method of calculating the pulling resistance force of the knotted pile described in Patent Document 1 cannot always obtain sufficient accuracy, so that the pulling resistance force is underestimated, overdesigned, and costly. In some cases, it becomes expensive, or the pulling resistance force is overestimated, and safety may be impaired.

そこで、本発明は、節付杭の引抜抵抗力を正確に計算できるようにすることを目的とする。   Then, an object of this invention is to enable it to calculate correctly the drawing-out resistance of a knot pile.

本発明の節付杭の引抜抵抗力の計算方法は、下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を有する節付杭の引抜抵抗力を計算する方法であって、前記傾斜面が負担する極限引抜抵抗力を、前記傾斜面に作用する極限せん断抵抗力の鉛直方向下向きの成分と、前記傾斜面に作用する極限支圧力の鉛直方向下向きの成分との和に基づいて計算することを特徴とする。   The method for calculating the pulling resistance force of the knotted pile according to the present invention is a method of calculating the pulling resistance force of the knotted pile having a diameter-enlarged portion including an inclined surface inclined so that the diameter increases toward the lower side. The ultimate pull-out resistance force borne by the inclined surface is the sum of the vertical downward component of the ultimate shear resistance acting on the inclined surface and the vertical downward component of the ultimate support pressure acting on the inclined surface. It is characterized by calculating based on.

また、本発明の節付杭の引抜抵抗力は、下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の引抜抵抗力を計算する方法であって、前記拡径部の個数をN、i番目の拡径部の傾斜面付近の地盤の極限支圧力度をpsi[kN/m]、i番目の拡径部の傾斜面付近の地盤の極限せん断抵抗力度をfsi[kN/m]、i番目の拡径部の傾斜面と鉛直方向との間の角度をθ[rad]、i番目の拡径部の傾斜面の表面積をA[m]、i番目の拡径部の傾斜面における地盤の抵抗力の低減係数をβとした場合に、以下の式(1)で求めた各拡径部の傾斜面の極限引抜抵抗力の和T[kN]に基づいて計算することを特徴とする。

Figure 0004658684
Further, the pulling resistance force of the knotted pile according to the present invention is a method of calculating the pulling resistance force of the knotted pile having a plurality of enlarged diameter portions including an inclined surface inclined so that the diameter increases toward the lower side. , N is the number of the enlarged portions, p si [kN / m 2 ] is the ultimate bearing pressure of the ground near the inclined surface of the i-th enlarged portion, and The ultimate shear resistance is f si [kN / m 2 ], the angle between the inclined surface of the i-th enlarged portion and the vertical direction is θ i [rad], and the surface area of the inclined surface of the i-th enlarged portion is A i [m 2 ], the limit of the inclined surface of each enlarged-diameter portion obtained by the following equation (1), where β i is the reduction factor of the resistance force of the ground on the inclined surface of the i-th enlarged-diameter portion The calculation is based on the sum T [kN] of the pulling resistance force.
Figure 0004658684

前記節付杭の引抜抵抗力の計算方法において、砂質土内に埋設されたi番目の拡径部の傾斜面付近の平均N値をN、内部摩擦角をφとしたとき、前記式(1)における極限支圧力度psiとして、以下の式(2)により前記極限支圧力度psiを算出し、式(2)により算出された極限支圧力度psiが7500[kN/m]未満の場合は、前記算出された極限支圧力度を、式(2)により算出された極限支圧力度psiが7500[kN/m]以上の場合は、7500[kN/m]を用い、前記式(1)における極限せん断抵抗力度をfsiとして、前記極限せん断抵抗力度fsiを以下の式(3)を満たす値として決定し、前記決定した極限せん断抵抗力度fsiが1000[kN/m]未満である場合は、前記前記決定した極限せん断抵抗力度を前記決定した極限せん断抵抗力度fsiが1000[kN/m]以上である場合は、1000[kN/m]以上である場合は、1000[kN/m]を用いてもよい。

Figure 0004658684
In the calculation method of the pulling resistance force of the knot pile, when the average N value near the inclined surface of the i-th enlarged diameter portion embedded in the sandy soil is N and the internal friction angle is φ, the above formula ( as extreme Bearing force of p si in 1), the following equation (2) to calculate the ultimate bearing capacity power level p si, ultimate Bearing force of p si calculated by equation (2) is 7500 [kN / m 2 when it is less than, the ultimate bearing capacity force of the calculated, wherein in the case of extreme Bearing force of p si is 7500 [kN / m 2] or more calculated by (2), 7500 [kN / m 2] used, the ultimate shear resistance of the above formula (1) as f si, the ultimate shear resistance of f si determined as a value that satisfies the following equation (3), ultimate shear resistance force of f si that said determining 1000 it is less than [kN / m 2] was said determining electrode If ultimate shear resistance force of f si that the shear resistance of the determined is 1000 [kN / m 2] or more, if it is 1000 [kN / m 2] or more, using a 1000 [kN / m 2] Also good.
Figure 0004658684

さらに、上記の節付杭の拡径部における引抜抵抗力の計算方法において、粘性土内に埋設されたi番目の拡径部の傾斜面付近の非排水せん断強さの平均をCとしたとき、前記式(1)における極限支圧力度psiの値として、以下の式(4)により前記極限支圧力度psiを求め、式(4)により算出された極限支圧力度psiが7500[kN/m]未満である場合は、前記算出された極限支圧力度を、式(4)により算出された極限支圧力度psiが7500[kN/m]以上である場合は、7500[kN/m]を用い、前記式(1)における極限せん断抵抗力度をfsiとして前記極限せん断抵抗力度fsiを以下の式(5)で求め、式(5)により算出された極限せん断抵抗力度fsiが1000[kN/m]未満である場合は、前記算出された極限せん断抵抗力度を式(5)により算出された極限せん断抵抗力度fsiが1000[kN/m]以上である場合は、1000[kN/m]を用いてもよい。
si=6C …(4)
si=C …(5)
Further, the calculation method of the pull-out resistance force of the enlarged diameter portion of the pile with the previous section, the average of the undrained shear strength near the inclined surface of the i-th enlarged diameter portion which is embedded in the cohesive soil was C U In this case, as the value of the ultimate support pressure p si in the expression (1), the ultimate support pressure degree p si is obtained by the following expression (4), and the ultimate support pressure degree p si calculated by the expression (4) is obtained. When it is less than 7500 [kN / m 2 ], the calculated ultimate support pressure degree is when the ultimate support pressure degree p si calculated by the equation (4) is 7500 [kN / m 2 ] or more. 7500 [kN / m 2 ], the ultimate shear resistance strength f si in the above formula (1) is defined as f si , and the ultimate shear resistance strength f si is obtained by the following formula (5) and calculated by the formula (5). extreme shear resistance force of f si is smaller than 1000 [kN / m 2] If you, if ultimate shear resistance of f si calculated by Equation (5) an ultimate shear resistance of the calculated is 1000 [kN / m 2] or more, using a 1000 [kN / m 2] May be.
p si = 6 C U (4)
f si = C U (5)

また、本発明の節付杭の押込抵抗力の計算方法は、上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を有する節付杭の押込抵抗力を計算する方法であって、前記傾斜面が負担する極限引抜抵抗力を、前記傾斜面に作用する極限せん断抵抗力の鉛直方向上向きの成分と、前記傾斜面に作用する極限支圧力の鉛直方向上向きの成分との和に基づいて計算することを特徴とする。   Further, the method of calculating the indentation resistance force of the knotted pile according to the present invention is a method of calculating the indentation resistance force of the knotted pile having a diameter-enlarged portion including an inclined surface that is inclined so that the diameter increases toward the upper side. Thus, the ultimate pulling resistance force borne by the inclined surface is the sum of the vertical upward component of the ultimate shear resistance acting on the inclined surface and the vertical upward component of the ultimate support pressure acting on the inclined surface. It calculates based on.

また、本発明の節付杭の押込抵抗力の計算方法は、上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の押込抵抗力を計算する方法であって、前記拡径部の個数をN、i番目の拡径部の傾斜面付近の地盤の極限支圧力度をp’si[kN/m]、i番目の拡径部の傾斜面付近の地盤の極限せん断抵抗力度をf’si[kN/m]、i番目の拡径部の傾斜面と鉛直方向との間の角度をθ’[rad]、i番目の拡径部の傾斜面の表面積をA’[m]、i番目の拡径部の傾斜面における地盤の抵抗力の低減係数をβ’とした場合に、以下の式(6)で求めた各拡径部の傾斜面の極限押込抵抗力の和T’[kN]に基づいて計算することを特徴とする。

Figure 0004658684
Further, the method of calculating the indentation resistance force of the knotted pile according to the present invention is a method of calculating the indentation resistance force of the knotted pile having a plurality of enlarged diameter portions including an inclined surface inclined so that the diameter increases toward the upper side. there are a number of said radially enlarged portion N, i-th ultimate Bearing force of the p 'si of the ground in the vicinity of the inclined surface of the enlarged diameter portion [kN / m 2], around the inclined surfaces of the i-th enlarged diameter portion F ′ si [kN / m 2 ] for the ultimate shear resistance strength of the ground, θ ′ i [rad] for the angle between the inclined surface of the i-th enlarged portion and the vertical direction, and the i-th enlarged portion When the surface area of the inclined surface is A ′ i [m 2 ] and the reduction coefficient of the resistance force of the ground on the inclined surface of the i-th enlarged diameter portion is β ′ i , each expansion obtained by the following equation (6) is used. The calculation is based on the sum T ′ [kN] of the ultimate indentation resistance force of the inclined surface of the diameter portion.
Figure 0004658684

前記引抜抵抗力の計算方法において前記節付杭は節付丸杭又は節付壁杭であってもよい。前記押込抵抗力の計算方法において前記節付杭は節付丸杭又は節付壁杭であってもよい。   In the method for calculating the pulling resistance, the knotted pile may be a knotted round pile or a knotted wall pile. In the method for calculating the indentation resistance, the knotted pile may be a knotted round pile or a knotted wall pile.

以上の節付杭の引抜抵抗力の計算方法及び押込力の計算方法によれば、拡径部の傾斜面に作用する力を傾斜面に平行なせん断抵抗力と、傾斜面に垂直な支圧力とに分けて計算するため、より正確に拡径部の引抜抵抗力及び押込力を計算することができる。   According to the method for calculating the pulling resistance force and the pushing force calculation method for the above-mentioned knot pile, the force acting on the inclined surface of the enlarged diameter portion is divided into the shear resistance force parallel to the inclined surface and the bearing pressure perpendicular to the inclined surface. Therefore, the drawing resistance force and the pushing force of the enlarged diameter portion can be calculated more accurately.

さらに本発明は、下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の設計方法であって、上記の節付杭の引抜抵抗力の計算方法により算出された引抜抵抗力が所定の基準抵抗力以上となるように設計することを特徴とする節付杭の設計方法を含むものとする。   Furthermore, the present invention is a design method of a knot pile having a plurality of enlarged diameter portions including an inclined surface that is inclined so that the diameter increases toward the lower side, and by the above-described calculation method of the pulling resistance force of the knot pile. It shall include the design method of a pile with a knot characterized by designing so that the calculated pulling resistance may be more than a predetermined standard resistance.

また本発明は、上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の設計方法であって、上記の節付杭の押込抵抗力の計算方法により算出された押込抵抗力が所定の基準抵抗力以上となるように設計することを特徴とする節付杭の設計方法を含むものとする。   Further, the present invention is a design method of a knotted pile having a plurality of enlarged diameter portions including an inclined surface inclined so that the diameter increases toward the upper side, which is calculated by the above-described calculation method of the indentation resistance force of the knotted pile It shall include the design method of the pile with a knot characterized by designing so that the indentation resistance force made may become more than predetermined standard resistance force.

なお、以上の節付杭の設計方法において前記節付杭は節付丸杭又は節付壁杭であってもよい。
また、本発明は上記の節付杭の設計方法により設計されたことを特徴とする節付杭を含むものとする。
In the above-described method for designing a knotted pile, the knotted pile may be a knotted round pile or a knotted wall pile.
Moreover, this invention shall include the knot pile characterized by the above-mentioned design method of a knot pile.

節付杭の拡径部の引抜抵抗力及び押込抵抗力をより正確に求められるので、過剰設計や安全性の過小評価を防ぎ、コストの削減又は安全性の向上が可能になる。   Since the pulling resistance force and pushing resistance force of the enlarged diameter portion of the knotted pile can be obtained more accurately, it is possible to prevent excessive design and underestimation of safety, and to reduce costs or improve safety.

以下、本発明の節付杭の引抜抵抗力の計算方法の一実施形態について図面に基づき説明する。図1は、引抜抵抗力の算定の対象となる節付丸杭の断面図である。同図に示すように、節付丸杭1は円柱状の杭軸部2と一つ以上の節部3と拡底部4とを有しており、その上部は建物の地下構造(図示せず)に接続されている。なお、節部3と拡底部4が拡径部に相当する。また、拡径部は杭径の変化により、高さによらず杭径が一定な部分(鉛直部という)5と、鉛直部から上下に向かって径が変化していく部分(傾斜部という)6、7とにより構成される。   Hereinafter, an embodiment of a method for calculating the pulling resistance force of a knotted pile according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a round pile with a knot that is an object of calculation of pulling resistance. As shown in the figure, the round pile 1 with a knot has a columnar pile shaft portion 2, one or more knot portions 3, and an expanded bottom portion 4, and the upper portion thereof is an underground structure of a building (not shown). )It is connected to the. The node portion 3 and the expanded bottom portion 4 correspond to the expanded diameter portion. In addition, the enlarged diameter part is a part where the pile diameter is constant regardless of the height (referred to as a vertical part) 5 and a part where the diameter changes from the vertical part up and down (referred to as an inclined part). 6 and 7.

また、図2は、(A)は引抜抵抗力の算定の対象となる節付壁杭の正面断面図、(B)は側面断面図である。同図に示すように、節付壁杭11は壁体状の壁杭本体12と一つ以上の節部3と拡底部4とが、壁杭本体2より突出しており、壁杭本体2の上部は建物の地下構造(図示せず)に接続されている。節付丸杭1の場合と同様に、節部3と拡底部4が拡径部に相当し、拡径部は杭径の変化により、高さによらず杭径が一定な部分(鉛直部という)5と、鉛直部5から上下に向かって径が変化していく部分(傾斜部という)6、7とにより構成される。   2A is a front cross-sectional view of a knotted wall pile that is an object of calculation of the pulling resistance force, and FIG. 2B is a side cross-sectional view. As shown in the figure, a wall pile 11 having a wall shape is composed of a wall pile body 12, one or more node portions 3, and an expanded bottom portion 4 projecting from the wall pile body 2. The upper part is connected to the building's underground structure (not shown). As in the case of the round pile 1 with a knot, the node 3 and the expanded bottom 4 correspond to the enlarged diameter portion, and the enlarged diameter portion is a portion where the pile diameter is constant regardless of the height (vertical portion) 5) and portions (referred to as inclined portions) 6 and 7 whose diameters change from the vertical portion 5 upward and downward.

本実施形態の節付杭の引抜抵抗力の計算方法は、以下説明するように、拡径部の上側の引抜抵抗力をより精度よく算出するものであり、節付丸杭及び節付壁杭に同様の原理を用いることができる。そこで、以下、節付丸杭を例として説明する。
なお、本実施形態の拡径部の引抜抵抗力の計算方法では、杭下端の拡底部4と、杭中間部の節部3とを区別せずに計算を行う。
The calculation method of the pulling resistance force of the knotted pile according to this embodiment is to calculate the pulling resistance force on the upper side of the enlarged diameter portion with higher accuracy, as will be described below. A similar principle can be used. Therefore, hereinafter, a circular pile with a knot will be described as an example.
In addition, in the calculation method of the drawing-out resistance force of the enlarged diameter part of this embodiment, it calculates without distinguishing the expanded bottom part 4 of a pile lower end, and the node part 3 of a pile intermediate part.

発明者らは、地盤から節付杭1に作用する荷重を以下に説明するように想定し、節付杭1の引抜抵抗力を算出することとした。
図3は、発明者らの想定した、節付杭1に引抜力が作用した場合に節付杭1周辺に働く力の分布を示した模式図である。同図に示すように、拡径部4に引抜力が作用すると、周囲の地盤より節部3及び拡径部4の上側の傾斜面8に圧力が作用し支圧効果が起こり、上側の傾斜面8と平行な方向にせん断抵抗力が作用するとともに、この傾斜面8と垂直方向に支圧力が作用する。また、鉛直部5には、節付杭1を包囲する地盤との間の摩擦力により、引抜力と逆向きに周面摩擦力が作用する。なお、下側の傾斜部7においては、地盤と下側の傾斜面9とが離間する方向に引抜力が働くため、引抜抵抗力は作用しない。
The inventors assumed that the load acting on the knot pile 1 from the ground will be described below, and calculated the pulling resistance of the knot pile 1.
FIG. 3 is a schematic diagram showing the distribution of forces acting around the knotted pile 1 when the pulling force acts on the knotted pile 1 as assumed by the inventors. As shown in the figure, when a pulling force acts on the enlarged diameter portion 4, pressure acts on the node 3 and the inclined surface 8 on the upper side of the enlarged diameter portion 4 from the surrounding ground, and a supporting effect occurs, and the upper inclination A shear resistance acts in a direction parallel to the surface 8 and a supporting pressure acts in a direction perpendicular to the inclined surface 8. Further, a circumferential frictional force acts on the vertical portion 5 in a direction opposite to the pulling force due to the frictional force between the vertical portion 5 and the ground surrounding the knot pile 1. In the lower inclined portion 7, the pulling-out force acts in the direction in which the ground and the lower inclined surface 9 are separated from each other, so that the pull-out resistance force does not act.

図3に示すように節付杭1周囲の地盤内に抵抗力が分布する場合、上側の傾斜部6が負担する引抜抵抗力は、上側の傾斜面8に作用する極限支圧力の鉛直方向成分と、上側の傾斜面8に作用する極限せん断抵抗力の鉛直方向成分との和と等しくなる。したがって、拡径部の個数をN、i番目の拡径部の上側の傾斜面8付近の地盤の極限支圧力度をpsi[kN/m]、i番目の拡径部の上側の傾斜面8付近の地盤の極限せん断抵抗力度をfsi[kN/m]、i番目の拡径部の上側の傾斜面8と鉛直方向との間の角度をθ[rad]、i番目の拡径部の上側の傾斜面8の表面積をA[m]とすると、i番目の拡径部の上側の傾斜面8に作用する極限支圧力の鉛直方向成分はpsisinθ、i番目の拡径部の上側の傾斜面8に作用する極限せん断抵抗力の鉛直成分はfsicosθとなる。よって、上側の傾斜部6が負担する引抜抵抗力の合計Tは、以下の式(7)のようになる。

Figure 0004658684
As shown in FIG. 3, when the resistance force is distributed in the ground around the jointed pile 1, the pulling resistance force borne by the upper inclined portion 6 is the vertical component of the ultimate support pressure acting on the upper inclined surface 8. And the sum of the vertical direction component of the ultimate shear resistance acting on the upper inclined surface 8. Therefore, the number of the enlarged diameter parts is N, the ultimate bearing pressure degree of the ground near the inclined surface 8 on the upper side of the i-th enlarged diameter part is p si [kN / m 2 ], and the upper-side inclination of the i-th enlarged diameter part. The ultimate shear resistance of the ground near the surface 8 is f si [kN / m 2 ], the angle between the inclined surface 8 on the upper side of the i-th expanded portion and the vertical direction is θ i [rad], the i-th When the surface area of the upper inclined surface 8 of the enlarged diameter portion is A i [m 2 ], the vertical component of the ultimate support pressure acting on the upper inclined surface 8 of the i-th enlarged diameter portion is p si A i sin θ i. The vertical component of the ultimate shear resistance acting on the inclined surface 8 on the upper side of the i-th enlarged diameter portion is f si A i cos θ i . Accordingly, the total pulling resistance T borne by the upper inclined portion 6 is expressed by the following equation (7).
Figure 0004658684

なお、支圧力とせん断抵抗力の相互干渉による抵抗力低下の影響を考慮し、地盤の抵抗力の低減係数βをかけることとした。βは上側の傾斜面8の傾斜角度θによって異なるが、概ね0.75又はそれに近い値(0.7〜0.8程度)が適当である。 In consideration of the influence of resistance reduction due to mutual interference between bearing pressure and shear resistance, the ground resistance reduction coefficient β i was applied. The beta i varies the inclination angle theta i of the upper inclined plane 8, generally 0.75 or a value close (about 0.7 to 0.8) is suitable.

ここで、式(7)を用いて上側の傾斜部6の負担する引抜抵抗力を算出するためには、極限支圧力度psi及び極限せん断抵抗力度fsiの値が必要となるが、これらの値を算出する方法はこれまで確立されていない。そこで、発明者は、通常、基礎構造を設計する際は、予め地盤調査等によりその土地のN値や土の一軸圧縮強さ等を調べ、それに基づき設計を行うことに鑑みて、これらの地盤調査により得られるN値や一軸圧縮強さ等の値から、極限支圧力度psi及び極限せん断抵抗力度fsiを算出することとした Here, in order to calculate the pulling resistance force borne by the upper inclined portion 6 using Expression (7), the values of the ultimate support pressure degree p si and the ultimate shear resistance force degree f si are required. A method for calculating the value of has not been established so far. Therefore, the inventor usually examines the N value of the land, the uniaxial compressive strength of the soil, and the like based on the ground investigation and the like based on the ground investigation. From the values such as N value and uniaxial compressive strength obtained by the investigation, the ultimate bearing pressure degree p si and the ultimate shear resistance force degree f si were calculated.

具体的には、発明者らは、極限支圧力度psi及び極限せん断抵抗力度fsiを算出する方法として、地盤が砂質土及び粘性土である場合について、図4に示すN値又は非排水せん断強さと、極限支圧力度psi及び極限せん断抵抗力度fsiとの関係式を提案する。図中のNは上側の傾斜面付近の地盤の平均N値を、Cは上側の傾斜面付近の地盤の平均非排水せん断強さを、φは上側の傾斜面付近の地盤の内部摩擦角を示している。なお、非排水せん断強さは土の一軸圧縮強さの1/2とする。また、内部摩擦角はN値等から推定することができる。 Specifically, as a method for calculating the ultimate bearing pressure degree p si and the ultimate shear resistance degree f si , the inventors set the N value shown in FIG. It proposes a drainage shear strength, the relationship between the ultimate Bearing force of p si and ultimate shear resistance of f si. In the figure, N is the average N value of the ground near the upper slope, Cu is the average undrained shear strength of the ground near the upper slope, and φ is the internal friction angle of the ground near the upper slope. Is shown. The undrained shear strength is 1/2 of the uniaxial compressive strength of the soil. The internal friction angle can be estimated from the N value or the like.

同図に示すように、極限支圧力度psiは、砂質土の場合には150N、粘性土の場合には6Cとし、砂質土及び粘性土においてその上限値は7500[kN/m]とする。また、極限せん断抵抗力度fsiは、砂質土の場合にはpsitanφ、粘性土の場合にはCとし、その上限値は1000[kN/m]とする。 As shown in the figure, intrinsic Bearing force of p si in the case of sandy soil is 150 N, and 6C u in the case of cohesive soil, the upper limit value in the sandy soil and cohesive soil is 7500 [kN / m 2 ]. Also, the ultimate shear resistance of f si, p si tan [phi in the case of sandy soil, and C u in the case of cohesive soil, its upper limit is set to 1000 [kN / m 2].

以下、各場合の値について説明する。
まず、図4に示すように、砂質土の地盤における極限支圧力度psiを150N[kN/m]としているが、この値は以下のように定めた。
「国土交通省告示第1113号」には基礎杭の先端の地盤の許容応力度qとして以下の式(8)が記載されている。なお、式中のNは基礎杭先端付近の地盤付近の平均N値である。
=150N/3 …(8)
Hereinafter, the value in each case will be described.
First, as shown in FIG. 4, the ultimate bearing pressure degree p si in the ground of sandy soil is set to 150 N [kN / m 2 ], and this value is determined as follows.
“Ministry of Land, Infrastructure, Transport and Tourism Notification No. 1113” describes the following equation (8) as the allowable stress level q p of the ground at the tip of the foundation pile. Note that N in the formula is an average N value near the ground near the tip of the foundation pile.
q p = 150 N / 3 (8)

ここで、qは基礎杭に押し込み力が作用する際の地盤が耐えうる極限支持力度を表し、式(7)におけるpsiは基礎杭に引抜力が作用する際の地盤の圧縮力に対する最大圧縮応力度を表している。psiとqは杭の押し込みと引抜という杭に働く力の状態は異なるが、地盤の極限支持力度は力の作用方向によらないため、この値を適用することができる。 Here, q p represents the ultimate bearing strength that the ground can withstand when the indentation force acts on the foundation pile, and p si in Equation (7) is the maximum against the compressive force of the ground when the pulling force acts on the foundation pile. Represents the degree of compressive stress. Although p si and q p are different in the state of the force acting on the pile, that is, pushing and pulling out the pile, this value can be applied because the ultimate support force of the ground does not depend on the direction of the force.

また、式(8)において150Nは極限支圧力度であり、150Nを3で除しているが、この3はいわゆる安全率である。式(8)では、本実施形態における砂質土の極限支圧力度psiには安全率をかけずに、その値として150Nを用いることとした。 In Equation (8), 150N is the ultimate support pressure, and 150N is divided by 3, which is a so-called safety factor. In equation (8), without the safety factor is the ultimate bearing capacity power level p si of sandy soil in this embodiment, it decided to use the 150N as its value.

また、図4に示すように、粘性土における極限支圧力度psiについては、6C[kN/m]としたが、この値は以下のように定めた。
日本建築学会著の「建築基礎構造設計指針2001年改定」(以下、建築学会設計指針という)の粘性土における杭の極限先端支持力度qとして、以下の式が記載されている。
=6C …(9)
Further, as shown in FIG. 4, for ultimate Bearing force of p si in cohesive soil, it is set to 6C u [kN / m 2] , this value is determined as follows.
Japanese architecture "building foundation structure design guidelines 2001 revision" of the Society of Author (hereinafter, architecture called Society of design guidelines) as the ultimate tip support force of q p of the pile in viscous soil, have been described following equation.
q p = 6C u (9)

ここで、qは、基礎杭に押し込み力が作用する際の地盤が耐えうる極限支持力度を示しているので、上記の砂質土における極限支圧力度を定めた場合と同様に、式(7)のpsiとして、式(9)の極限先端支持力度qを用いることができる。 Here, q p indicates the ultimate bearing strength that the ground can withstand when the indentation force acts on the foundation pile, so that the formula ( As the p si of 7), the extreme tip supporting force degree q p of Equation (9) can be used.

また、極限支圧力度psiの最大値としては、7500[kN/m]としたが、この値は以下のように定めた。国土交通省告示には、N値の最大値として60(つまり、極限支圧力度の最大値は150×60=9000[kN/m])と記載されているが、建築学会設計指針には、7500[kN/m]と記載されている。ここでは、両者のうち安全側の値であり、かつ、当業者の間で広く用いられている7500[kN/m]を適用することとした。 As the maximum value of the ultimate Bearing force of p si, it was a 7500 [kN / m 2], this value is determined as follows. The Ministry of Land, Infrastructure, Transport and Tourism notice states that the maximum N value is 60 (that is, the maximum value of the ultimate support pressure is 150 × 60 = 9000 [kN / m 2 ]). 7500 [kN / m 2 ]. Here, 7500 [kN / m 2 ], which is a value on the safe side of both and widely used by those skilled in the art, is applied.

次に、砂質土における極限せん断抵抗力度fsiはpsitanφとしたが、この値は以下のように定めた。
建築学会設計指針には、「支持地盤が砂質土の場合には内部摩擦角φに対するtanφを摩擦係数とする」と記載されている。ここで、極限せん断抵抗力度fsiを極限支圧力psiに対する摩擦力と考えれば以下の式が導かれる。ただし、砂質土のせん断が高圧下で起こり、砂の粒子が破砕されるため、それによる内部摩擦角φの低下の影響を考慮して(10)式を満たすようにfsiを設定することとした。

Figure 0004658684
Next, although the ultimate shear resistance strength f si in sandy soil was set to p si tanφ, this value was determined as follows.
The Architectural Institute of Japan design guideline states that “when the supporting ground is sandy soil, tanφ with respect to the internal friction angle φ is the friction coefficient”. Here, the following equation is derived considering the ultimate shear resistance of f si and the frictional force against the ultimate bearing capacity power p si. However, since sandy soil is sheared under high pressure and sand particles are crushed, f si should be set so as to satisfy Equation (10) in consideration of the effect of lowering the internal friction angle φ. It was.
Figure 0004658684

粘性土における極限せん断抵抗力度fsiはCとしたが、この値は以下のように定めた。
節付杭に引抜力が作用すると、拡径部の上部の地盤は引抜力方向に圧縮力を受ける。この時、節付杭の表面は非常に粗いので、傾斜面付近の地盤の土砂は節付杭と一体となって引抜力に抵抗するため、傾斜面の境界付近の地盤内にせん断すべりを生じる。
Ultimate shear resistance force of f si in cohesive soil was C u, but this value was defined as follows.
When a pulling force is applied to the knot pile, the ground above the expanded portion receives a compressive force in the pulling force direction. At this time, since the surface of the knotted pile is very rough, the soil on the ground near the inclined surface is integrated with the knotted pile and resists the pulling force, causing shear slip in the ground near the boundary of the inclined surface. .

このため、地盤内部にせん断破壊が生じている場合には、極限せん断抵抗力度は地盤の非排水せん断強さに対応した値となる。このため、本実施形態における極限せん断抵抗力度として地盤の非排水せん断強さを用いることができる。   For this reason, when the shear fracture has occurred inside the ground, the ultimate shear resistance is a value corresponding to the undrained shear strength of the ground. For this reason, the undrained shear strength of the ground can be used as the ultimate shear resistance strength in the present embodiment.

極限せん断抵抗力度fsiの最大値を1000[kN/m]としたが、この値は以下のように定めた。そもそも、せん断抵抗力度として非排水せん断強さを用いることとしたが、これによれば、非排水せん断強さが大きければ、いくらでも大きい値を用いることが可能になってしまう。建築学会設計指針では、粘性土と杭周面との間にせん断面が生じた場合は非排水せん断強度Cの最大値として100[kN/m]を用いることとされている。この値は地盤と杭体表面の境界でせん断破壊が生じている場合の最大値であり、本実施形態では地盤内でせん断破壊が生じているので、その最大値は100[kN/m]よりも大きくなることが言える。そこで、安全性を確保するため、後述する実験値を考慮に入れ、1000[kN/m]とした。 The maximum value of the ultimate shear resistance strength f si was set to 1000 [kN / m 2 ], and this value was determined as follows. In the first place, the undrained shear strength is used as the degree of shear resistance. However, according to this, if the undrained shear strength is large, any value can be used. The AIJ design guideline, if the shear plane between the viscous soil and piles peripheral surface has occurred is decided to use a 100 [kN / m 2] as the maximum value of the undrained shear strength C u. This value is the maximum value when shear failure occurs at the boundary between the ground and the pile body surface. In this embodiment, since the shear failure occurs in the ground, the maximum value is 100 [kN / m 2 ]. Than can be said. Therefore, in order to ensure safety, an experimental value to be described later is taken into consideration and is set to 1000 [kN / m 2 ].

以上の方法により得られた極限支圧力度psi及び極限せん断抵抗力度fsiを式(7)に代入することで上側の傾斜面が負担する引抜抵抗力を算出できる。このため、算出された拡径部の上側の傾斜面が負担する引抜抵抗力と、拡径部の鉛直部及び杭軸部の負担する引抜抵抗力とを合計することで節付杭の極限引抜抵抗力を算出することが可能となる。 By substituting the ultimate bearing pressure degree p si and the ultimate shear resistance degree f si obtained by the above method into the equation (7), the pulling resistance force borne by the upper inclined surface can be calculated. For this reason, the ultimate pull-out of the knot pile is calculated by summing the pull-out resistance force borne by the calculated inclined surface on the upper side of the enlarged diameter portion and the pull-out resistance force borne by the vertical portion of the enlarged diameter portion and the pile shaft portion The resistance force can be calculated.

例えば、前記の建築学会指針には、極限周面摩擦力度の値として、砂質土においてはτ=3.3N(上限N=50)、粘性土においては、τ=C(上限C=100[kN/m])と記載されている。そこで、砂質土においては杭周面地盤の平均N値をNに、粘性土においては杭周面地盤の平均非排水せん断強度をCに代入し、杭周面積をかけることで、節付杭の軸部及び拡径部の鉛直部の引抜抵抗力を算出することができる。このため、節付杭全体の引抜抵抗力として、節付杭の軸部及び拡径部の鉛直部の引抜抵抗力の合計と、上側の傾斜面の引抜抵抗力の合計との和を用いることで、より正確な引抜抵抗力を算出することができる。 For example, the Architectural Institute guideline states that the value of the limit circumferential frictional force is τ s = 3.3 N (upper limit N = 50) for sandy soil and τ s = C u (upper limit C) for cohesive soil. u = 100 [kN / m 2 ]). Therefore, the average value of N pile circumferential surface ground in sandy soil to N, in the cohesive soil substitutes average undrained shear strength of pile circumferential surface ground to C u, by applying the pile circumferential area, with sections The pulling resistance force of the shaft portion of the pile and the vertical portion of the enlarged diameter portion can be calculated. For this reason, the sum of the pullout resistance force of the shaft portion of the jointed pile and the vertical portion of the enlarged diameter portion and the sum of the pullout resistance force of the upper inclined surface is used as the pullout resistance force of the entire jointed pile. Thus, a more accurate pulling resistance can be calculated.

なお、本実施形態では、節付杭に引抜力が作用する場合について説明したが、節付杭に押込み力が働く場合も同様に考えることができる。図5は、発明者らの想定した、節付杭に押込み力が作用している時の、節付杭1に押込み力が作用した場合に節付杭1周辺に働く力の分布を示した模式図である。同図に示すように、拡径部4に押込み力が作用すると、周囲の地盤より節部3及び拡径部4の下側の傾斜面7に圧力が作用し支圧効果が起こり、下側の傾斜面7と平行な方向にせん断抵抗力が作用するとともに、この傾斜面7と垂直方向に支圧力が作用する。また、鉛直部5には、節付杭1を包囲する地盤との間の摩擦力により、押込み力と逆向きに周面摩擦力が作用する。なお、上側の傾斜部6においては、地盤と下側の傾斜面9とが離間する方向に引抜力が働くため、押込み抵抗力は作用しない。   In addition, although this embodiment demonstrated the case where extraction force acts on a knot pile, the case where pushing force acts on a knot pile can also be considered similarly. FIG. 5 shows the distribution of forces acting around the knotted pile 1 when the pushing force is applied to the knotted pile 1 when the pushing force is acting on the knotted pile, as assumed by the inventors. It is a schematic diagram. As shown in the figure, when a pushing force acts on the enlarged diameter portion 4, pressure acts on the inclined surface 7 on the lower side of the node portion 3 and the enlarged diameter portion 4 from the surrounding ground, and a supporting effect occurs. A shear resistance acts in a direction parallel to the inclined surface 7 and a supporting pressure acts in a direction perpendicular to the inclined surface 7. Further, a circumferential frictional force acts on the vertical portion 5 in a direction opposite to the pushing force due to a frictional force between the vertical portion 5 and the ground surrounding the knotted pile 1. It should be noted that the pulling force acts on the upper inclined portion 6 in a direction in which the ground and the lower inclined surface 9 are separated from each other, so that the pushing resistance force does not act.

図3と図5を比較するとわかるように、節付杭1に引抜力が作用した場合に節付杭1の各部に作用する力と逆向きに働いている。このため、節付杭の作用した場合の抵抗力も引抜力を算出した場合と同じ原理によって導くことができる。   As can be seen by comparing FIG. 3 and FIG. 5, when a pulling force is applied to the knotted pile 1, it works in the opposite direction to the force acting on each part of the knotted pile 1. For this reason, the resistance force when the knotted pile is applied can also be derived by the same principle as when the pulling force is calculated.

したがって、拡径部の個数をN、i番目の拡径部の下側の傾斜面7付近の地盤の極限支圧力度をp’si[kN/m]、i番目の拡径部の下側の傾斜面7付近の地盤の極限せん断抵抗力度をf’si[kN/m]、i番目の拡径部の下側の傾斜面7と鉛直方向との間の角度をθ’[rad]、i番目の拡径部の下側の傾斜面7の表面積をA’[m]、低減係数をβ’とすると、i番目の拡径部の下側の傾斜面7に作用する極限支圧力の鉛直方向成分はp’siA’sinθ’、i番目の拡径部の下側の傾斜面7に作用する極限せん断抵抗力の鉛直成分はf’siA’cosθ’となる。よって、上側の傾斜部6が負担する押込抵抗力の合計T’は、以下の式(11)のようになる。

Figure 0004658684
Therefore, the number of the enlarged diameter parts is N, the ultimate bearing pressure degree of the ground near the inclined surface 7 below the i-th enlarged diameter part is p ′ si [kN / m 2 ], and the lower of the i-th enlarged diameter part. F ′ si [kN / m 2 ] is the ultimate shear resistance of the ground near the inclined surface 7 on the side, and θ ′ i [is the angle between the inclined surface 7 on the lower side of the i-th expanded portion and the vertical direction. rad], where the surface area of the lower inclined surface 7 of the i-th enlarged portion is A ′ i [m 2 ] and the reduction factor is β ′ i , the lower inclined surface 7 of the i-th enlarged portion is The vertical component of the acting ultimate support pressure is p ′ si A ′ i sin θ ′ i , and the vertical component of the ultimate shear resistance acting on the lower inclined surface 7 of the i-th enlarged diameter portion is f ′ si A ′ i. cos θ ′ i . Therefore, the total indentation resistance T ′ borne by the upper inclined portion 6 is expressed by the following equation (11).
Figure 0004658684

ここで、式(11)におけるβ’、f’si、p’siは引抜抵抗力の計算方法におけるβ、fsi、psiを用いることができる。 Here, β 'i, f' si , p 'si in equation (11) can be used β i, f si, p si in the calculation method of the pull-out resistance force.

本実施形態の節付杭の引抜抵抗力の計算方法によれば、拡径部の上側の傾斜面に作用する力を傾斜面に平行なせん断抵抗力と、傾斜面に垂直な支圧力とに分けて計算するため、より正確に拡径部の引抜抵抗力を算出することができる。このため、引抜抵抗力の過小評価による過剰設計や引抜抵抗力の過大評価による安全性の低下を減らし、コストの削減又は安全性の向上が可能になる。   According to the method of calculating the pulling resistance force of the knotted pile according to the present embodiment, the force acting on the inclined surface on the upper side of the enlarged diameter portion is changed to a shear resistance force parallel to the inclined surface and a supporting pressure perpendicular to the inclined surface. Since the calculation is performed separately, it is possible to calculate the pulling resistance force of the enlarged diameter portion more accurately. For this reason, the excessive design by the underestimation of the pulling resistance force and the decrease in safety due to the overestimation of the pulling resistance force can be reduced, and the cost can be reduced or the safety can be improved.

また、図4に示すN値及び土の一軸圧縮強度と、極限せん断抵抗力度fsiとの関係を用いることで、通常の地盤調査により得られたN値及び非排水せん断強度から極限せん断抵抗力度fsiを求めることができる。これにより、容易に引抜抵抗力を算出することができ、コストの低減及び工期の削減が可能となる。 Further, the uniaxial compressive strength of the N value and the soil 4, by using the relationship between the ultimate shear resistance force of f si, ultimate shear resistance of the N value and the undrained shear strength obtained by the conventional ground survey f si can be determined. Thereby, it is possible to easily calculate the pulling resistance, and it is possible to reduce the cost and the construction period.

なお、引抜抵抗力を算出する場合には、節付杭の底面は引抜力を受けると地盤と離間する方向に引抜力が作用するため、底面における地盤支持力は考慮する必要はなかったが、押込力を算出する場合には、節付杭の底面が負担する抵抗力も考慮しなければならない。また、本実施形態では節付丸杭の引抜抵抗力を計算する場合について説明したが、本発明の引抜抵抗力の計算方法の原理は節付壁杭にも同様に適用することができる。   In addition, when calculating the pullout resistance force, the bottom support of the knot pile did not need to consider the ground support force at the bottom, because the pullout force acts in the direction away from the ground when receiving the pullout force. When calculating the indentation force, the resistance force borne by the bottom of the knotted pile must also be considered. Moreover, although this embodiment demonstrated the case where the pulling-out resistance of a knotted round pile was calculated, the principle of the calculation method of the pulling-out resistance of this invention is applicable similarly to a knotted wall pile.

ここで、実物大の節付壁杭を用いて、本実施形態の引抜抵抗力の計算方法の妥当性を検討したので、以下説明する。
図6は、本実験に用いた試験体である節付壁杭及び、その節付壁杭が埋設された地盤の土質及びN値を示す図である。同図に示すように、本実験は試験体として、壁杭の中間部及び下端部に拡径部を設けた節付壁杭を用いた。実験を行った地盤は、地盤表面付近の表土層と、表土層の下に位置する土丹層と、土丹層の下に位置する砂層からなる。土丹層は粘土質の地盤であり、そのN値は50N以上である。節付壁杭は、その下端が土丹層内まで達しており、また、その節部及び拡底部は土丹層内に位置するように設計されている。
Here, since the validity of the calculation method of the drawing resistance force of this embodiment was examined using a full-sized knotted wall pile, it demonstrates below.
FIG. 6 is a diagram showing a knotted wall pile which is a test body used in this experiment, and the soil quality and N value of the ground in which the knotted wall pile is embedded. As shown in the figure, this experiment used a knotted wall pile provided with a diameter-expanded portion at the middle and lower end of the wall pile as a test body. The ground in which the experiment was conducted consists of a topsoil layer near the ground surface, a Dotan layer located under the topsoil layer, and a sand layer located under the Dotan layer. The Dotan Formation is clayey ground, and its N value is 50N or more. The knotted wall pile is designed so that the lower end reaches the Dotan Formation, and the node portion and the expanded bottom portion are located in the Dotan Formation.

図7は、節部と拡径部における上記の引抜抵抗力の計算方法により得られた引抜抵抗力(以下、計算値という)と、実験により得られた拡径部の引抜抵抗力(以下、実験値という)を比較した表である。表に示すように、計算値と実験値とは非常に近い値であり、かつ、計算値は実験値を下回っている。このように、上記の引抜抵抗力の計算方法は、拡径部の引抜抵抗力を安全側で正確に評価できることが確かめられた。   FIG. 7 shows a drawing resistance force (hereinafter referred to as “calculated value”) obtained by the above-described calculation method of the drawing resistance force in the node portion and the enlarged diameter portion, and a drawing resistance force (hereinafter referred to as “calculated value”) obtained by experiments. It is a table comparing experimental values). As shown in the table, the calculated value and the experimental value are very close, and the calculated value is lower than the experimental value. As described above, it has been confirmed that the above-described calculation method of the drawing resistance force can accurately evaluate the drawing resistance force of the enlarged diameter portion on the safety side.

引抜抵抗力の算定の対象となる節付丸杭の断面図である。It is sectional drawing of the round pile with a node used as the object of calculation of drawing resistance. (A)は引抜抵抗力の算定の対象となる節付壁杭の正面断面図、(B)は側面断面図である。(A) is front sectional drawing of the knotted wall pile used as the object of calculation of drawing-out resistance, (B) is side sectional drawing. 節付杭に引抜力が作用した場合における杭に働く力を示した模式図である。It is the schematic diagram which showed the force which acts on a pile when drawing-out force acts on a knot pile. N値又は非排水せん断強さCと極限支圧力度psi及び極限せん断抵抗力度fsiと値との関係式を示す表である。Is a table showing the N value or the undrained shear strength C u and ultimate bearing capacity power level p si and ultimate shear resistance of f si and values relations. 節付杭に押込力が作用した場合における杭に働く力を示した模式図である。It is the schematic diagram which showed the force which acts on a pile when pushing force acts on a pile with a node. 節付杭における拡径部の引抜抵抗力の計算方法を用いて設計方法を用いて設計した節付杭を示す図である。It is a figure which shows the knot pile designed using the design method using the calculation method of the drawing-out resistance of the enlarged diameter part in a knot pile. 計算値と実験値とを比較した表である。It is the table | surface which compared the calculated value and the experimental value.

符号の説明Explanation of symbols

1 節付丸杭
2 杭軸部
3 節部
4 拡底部
5 鉛直部
6 上側の傾斜部
7 下側の傾斜部
8 上側の傾斜面
9 下側の傾斜面
11 節付壁杭
12 壁杭本体
DESCRIPTION OF SYMBOLS 1 Round joint pile 2 Pile shaft part 3 Joint part 4 Expanded bottom part 5 Vertical part 6 Upper slope part 7 Lower slope part 8 Upper slope part 9 Lower slope part 11 Joint wall pile 12 Wall pile body

Claims (16)

下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を有する節付杭の引抜抵抗力を計算する方法であって、
前記傾斜面が負担する極限引抜抵抗力を、
前記傾斜面に作用する極限せん断抵抗力の鉛直方向下向きの成分と、
前記傾斜面に作用する極限支圧力の鉛直方向下向きの成分との和に基づいて計算することを特徴とする節付杭の引抜抵抗力の計算方法。
It is a method of calculating the pulling resistance force of a pile with a knot having an enlarged diameter part including an inclined surface inclined so that the diameter increases toward the lower side,
The ultimate pulling resistance that the inclined surface bears,
A vertically downward component of the ultimate shear resistance acting on the inclined surface;
A method for calculating the pulling resistance force of a knotted pile, wherein the calculation is based on the sum of the ultimate support pressure acting on the inclined surface and the vertically downward component.
下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の引抜抵抗力を計算する方法であって、
前記拡径部の個数をN、i番目の拡径部の傾斜面付近の地盤の極限支圧力度をpsi[kN/m]、i番目の拡径部の傾斜面付近の地盤の極限せん断抵抗力度をfsi[kN/m]、i番目の拡径部の傾斜面と鉛直方向との間の角度をθ[rad]、i番目の拡径部の傾斜面の表面積をA[m]、i番目の拡径部の傾斜面における地盤の抵抗力の低減係数をβとした場合に、
以下の式(1)で求めた各拡径部の傾斜面の極限引抜抵抗力の和T[kN]に基づいて計算することを特徴とする節付杭の引抜抵抗力の計算方法。
Figure 0004658684
It is a method for calculating the pulling resistance force of a knotted pile having a plurality of enlarged diameter parts including an inclined surface that is inclined so that its diameter increases toward the lower side,
N is the number of the expanded portions, p si [kN / m 2 ] is the ultimate bearing pressure of the ground near the inclined surface of the i-th expanded portion, and the ultimate limit of the ground is near the inclined surface of the i-th expanded portion. The shear resistance strength is f si [kN / m 2 ], the angle between the inclined surface of the i-th enlarged portion and the vertical direction is θ i [rad], and the surface area of the inclined surface of the i-th enlarged portion is A i [m 2 ], when the reduction coefficient of the resistance force of the ground on the inclined surface of the i-th enlarged diameter portion is β i ,
A calculation method of pulling resistance force of a knotted pile characterized by calculating based on a sum T [kN] of ultimate pulling resistance force of the inclined surface of each enlarged diameter portion obtained by the following formula (1).
Figure 0004658684
前記低減係数βを0.7以上かつ0.8以下の値とすることを特徴とする請求項2記載の節付杭の引抜抵抗力の計算方法。 The calculation method of the pulling resistance force of a knotted pile according to claim 2, wherein the reduction coefficient β i is set to a value of 0.7 or more and 0.8 or less. 請求項2又は3記載の節付杭の引抜抵抗力の計算方法であって、
砂質土内に埋設されたi番目の拡径部の傾斜面付近の平均N値をN、内部摩擦角をφとしたとき、
前記式(1)における極限支圧力度psiとして、
以下の式(2)により前記極限支圧力度psiを算出し、
式(2)により算出された極限支圧力度psiが7500[kN/m]未満の場合は、前記算出された極限支圧力度を、
式(2)により算出された極限支圧力度psiが7500[kN/m]以上の場合は、7500[kN/m]を用い、
前記式(1)における極限せん断抵抗力度をfsiとして、
前記極限せん断抵抗力度fsiを以下の式(3)を満たす値として決定し、
前記決定した極限せん断抵抗力度fsiが1000[kN/m]未満である場合は、前記前記決定した極限せん断抵抗力度を
前記決定した極限せん断抵抗力度fsiが1000[kN/m]以上である場合は、1000[kN/m]を
用いることを特徴とする節付杭の引抜抵抗力の計算方法。
Figure 0004658684
A method for calculating the pullout resistance of the knotted pile according to claim 2 or 3,
When the average N value near the inclined surface of the i-th expanded portion embedded in sandy soil is N and the internal friction angle is φ,
As the ultimate bearing pressure degree p si in the formula (1),
The ultimate support pressure degree p si is calculated by the following equation (2):
When the ultimate support pressure p si calculated by the equation (2) is less than 7500 [kN / m 2 ], the calculated ultimate support pressure is
When the ultimate support pressure degree p si calculated by the equation (2) is 7500 [kN / m 2 ] or more, 7500 [kN / m 2 ] is used,
Assuming that the ultimate shear resistance strength in the equation (1) is f si ,
The ultimate shear resistance strength f si is determined as a value satisfying the following formula (3):
When the determined ultimate shear resistance strength f si is less than 1000 [kN / m 2 ], the determined ultimate shear resistance strength f si is 1000 [kN / m 2 ] or more. In this case, 1000 [kN / m 2 ] is used.
Figure 0004658684
請求項2から4のうちいずれか1項記載の節付杭の引抜抵抗力の計算方法であって、
粘性土内に埋設されたi番目の拡径部の傾斜面付近の非排水せん断強さの平均をCとしたとき、
前記式(1)における極限支圧力度psiの値として、
以下の式(4)により前記極限支圧力度psiを求め、
式(4)により算出された極限支圧力度psiが7500[kN/m]未満である場合は、前記算出された極限支圧力度を、
式(4)により算出された極限支圧力度psiが7500[kN/m]以上である場合は、7500[kN/m]を用い、
前記式(1)における極限せん断抵抗力度をfsiとして
前記極限せん断抵抗力度fsiを以下の式(5)で求め、
式(5)により算出された極限せん断抵抗力度fsiが1000[kN/m]未満である場合は、前記算出された極限せん断抵抗力度を
式(5)により算出された極限せん断抵抗力度fsiが1000[kN/m]以上である場合は、1000[kN/m]を
用いることを特徴とする節付杭の引抜抵抗力の計算方法。
si=6C …(4)
si=C …(5)
It is the calculation method of the drawing-out resistance of the knot pile according to any one of claims 2 to 4,
When the average of the undrained shear strength near the inclined surface of the i-th enlarged diameter portion which is embedded in the cohesive soil was C U,
As the value of the ultimate bearing pressure degree p si in the formula (1),
Determined the ultimate bearing capacity power level p si by the following equation (4),
If the ultimate support pressure p si calculated by the equation (4) is less than 7500 [kN / m 2 ], the calculated ultimate support pressure is
When the ultimate support pressure degree p si calculated by the equation (4) is 7500 [kN / m 2 ] or more, 7500 [kN / m 2 ] is used,
The ultimate shear resistance strength f si in the formula (1) is determined as f si by the following formula (5),
When the ultimate shear resistance strength f si calculated by the formula (5) is less than 1000 [kN / m 2 ], the calculated ultimate shear resistance strength f is calculated by the formula (5). When si is 1000 [kN / m 2 ] or more, 1000 [kN / m 2 ] is used.
p si = 6 C U (4)
f si = C U (5)
上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を有する節付杭の押込抵抗力を計算する方法であって、
前記傾斜面が負担する極限引抜抵抗力を、
前記傾斜面に作用する極限せん断抵抗力の鉛直方向上向きの成分と、
前記傾斜面に作用する極限支圧力の鉛直方向上向きの成分との和に基づいて計算することを特徴とする節付杭の押込抵抗力の計算方法。
It is a method for calculating the indentation resistance force of a knotted pile having an enlarged diameter portion including an inclined surface that is inclined so that the diameter increases toward the upper side,
The ultimate pulling resistance that the inclined surface bears,
A vertically upward component of the ultimate shear resistance acting on the inclined surface;
A calculation method for the indentation resistance force of a knotted pile, wherein the calculation is based on the sum of the ultimate support pressure acting on the inclined surface and the upward component in the vertical direction.
上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の押込抵抗力を計算する方法であって、
前記拡径部の個数をN、i番目の拡径部の傾斜面付近の地盤の極限支圧力度をp’si[kN/m]、i番目の拡径部の傾斜面付近の地盤の極限せん断抵抗力度をf’si[kN/m]、i番目の拡径部の傾斜面と鉛直方向との間の角度をθ’[rad]、i番目の拡径部の傾斜面の表面積をA’[m]、i番目の拡径部の傾斜面における地盤の抵抗力の低減係数をβ’とした場合に、
以下の式(6)で求めた各拡径部の傾斜面の極限押込抵抗力の和T’[kN]に基づいて計算することを特徴とする節付杭の押込抵抗力の計算方法。
Figure 0004658684
It is a method of calculating the indentation resistance force of a pile with a knot having a plurality of enlarged diameter parts including an inclined surface inclined so that the diameter increases toward the upper side,
The number of the enlarged diameter portions is N, the ultimate bearing pressure degree of the ground near the inclined surface of the i-th enlarged diameter portion is p ′ si [kN / m 2 ], and the ground pressure near the inclined surface of the i-th enlarged diameter portion is The ultimate shear resistance is f ′ si [kN / m 2 ], the angle between the inclined surface of the i-th enlarged portion and the vertical direction is θ ′ i [rad], and the inclined surface of the i-th enlarged portion is the surface area a 'i [m 2], the reduction factor of the resistance force of the ground on the inclined surface of the i-th enlarged diameter portion beta' when a i,
A calculation method of indentation resistance force of a knotted pile, wherein the calculation is based on a sum T ′ [kN] of ultimate indentation resistance force of the inclined surface of each enlarged diameter portion obtained by the following formula (6).
Figure 0004658684
前記節付杭は節付丸杭であることを特徴とする請求項1から5のうちいずれか1項記載の節付杭の引抜抵抗力の計算方法。   The method for calculating the pulling resistance force of the knotted pile according to any one of claims 1 to 5, wherein the knotted pile is a rounded pile with a knot. 前記節付杭は節付丸杭であることを特徴とする請求項6又は7記載の節付杭の押込抵抗力の計算方法。   The method for calculating the indentation resistance force of a knotted pile according to claim 6 or 7, wherein the knotted pile is a rounded pile with a knot. 前記節付杭は節付壁杭であることを特徴とする請求項1から5のうちいずれか1項記載の節付杭の引抜抵抗力の計算方法。   The method for calculating the pulling resistance force of a knotted pile according to any one of claims 1 to 5, wherein the knotted pile is a knotted wall pile. 前記節付杭は節付壁杭であることを特徴とする請求項6又は7記載の節付杭の押込抵抗力の計算方法。   The method for calculating the indentation resistance force of a knotted pile according to claim 6 or 7, wherein the knotted pile is a knotted wall pile. 下側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の設計方法であって、請求項1から5のうちいずれか1項記載の節付杭の引抜抵抗力の計算方法により算出された引抜抵抗力が所定の基準抵抗力以上となるように設計することを特徴とする節付杭の設計方法。   It is a design method of the knot pile which has two or more enlarged diameter parts including the inclined surface inclined so that a diameter may become large in the lower side, Comprising: Pulling out the knot pile according to any one of claims 1 to 5 A design method for a knot pile characterized by designing the drawing resistance calculated by the calculation method of the resistance to be equal to or greater than a predetermined reference resistance. 上側ほど径が大きくなるように傾斜した傾斜面を含んだ拡径部を複数有する節付杭の設計方法であって、請求項6又は7記載の節付杭の押込抵抗力の計算方法により算出された押込抵抗力が所定の基準抵抗力以上となるように設計することを特徴とする節付杭の設計方法。   It is a design method of the knot pile which has two or more enlarged diameter parts including the inclined surface inclined so that a diameter may become large toward the upper side, Comprising: It calculates with the calculation method of the indentation resistance force of the knot pile according to claim 6 or 7 A method for designing a pile with knots, wherein the designed indentation resistance is designed to be equal to or greater than a predetermined reference resistance. 前記節付杭は節付丸杭であることを特徴とする請求項12又は13記載の節付杭の設計方法。   The method for designing a knotted pile according to claim 12 or 13, wherein the knotted pile is a rounded pile with a knot. 前記節付杭は節付壁杭であることを特徴とする請求項12又は13記載の節付杭の設計方法。   The method for designing a knotted pile according to claim 12 or 13, wherein the knotted pile is a knotted wall pile. 請求項12から15のうちいずれか1項記載の節付杭の設計方法により設計されたことを特徴とする節付杭。

A knotted pile designed by the knotted pile design method according to any one of claims 12 to 15.

JP2005147770A 2005-05-20 2005-05-20 Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile Active JP4658684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147770A JP4658684B2 (en) 2005-05-20 2005-05-20 Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147770A JP4658684B2 (en) 2005-05-20 2005-05-20 Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile

Publications (2)

Publication Number Publication Date
JP2006322256A JP2006322256A (en) 2006-11-30
JP4658684B2 true JP4658684B2 (en) 2011-03-23

Family

ID=37542133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147770A Active JP4658684B2 (en) 2005-05-20 2005-05-20 Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile

Country Status (1)

Country Link
JP (1) JP4658684B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114696A (en) * 2007-11-05 2009-05-28 Ohbayashi Corp Knotted pile
JP5471073B2 (en) * 2009-06-26 2014-04-16 株式会社大林組 Knotted pile, load support method for knotted pile
JP5638815B2 (en) * 2010-02-23 2014-12-10 株式会社竹中工務店 Calculation method of pulling resistance of expanded pile, expanded pile, expanded pile arrangement setting method, and expanded pile construction quality judgment method
JP5978426B2 (en) * 2015-01-05 2016-08-24 システム計測株式会社 Calculation method of pulling resistance of pile
CN107330146B (en) * 2017-05-26 2020-08-25 昆明理工大学 Rock slope ultimate bearing capacity analysis upper limit method considering rotation effect
CN111460547A (en) * 2020-03-16 2020-07-28 上海大学 Deformation analysis method of expanded-base uplift pile group considering reinforcement effect
JP7447652B2 (en) 2020-04-13 2024-03-12 株式会社大林組 Evaluation method of pull-out resistance
JP7447654B2 (en) 2020-04-14 2024-03-12 株式会社大林組 Calculation method for pull-out resistance at the joints of knotted piles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751735U (en) * 1980-09-02 1982-03-25
JPH11280067A (en) * 1998-01-28 1999-10-12 Mitani Sekisan Co Ltd Method for embedding existing concrete pile and structure of foundation pile and existing concrete pile
JP2002021070A (en) * 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2003176532A (en) * 2001-12-11 2003-06-24 Marugo Foundation Corp Cast-in-place concrete pile structure
JP2004360252A (en) * 2003-06-03 2004-12-24 Ohbayashi Corp Underground concrete structure and construction method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751735U (en) * 1980-09-02 1982-03-25
JPH11280067A (en) * 1998-01-28 1999-10-12 Mitani Sekisan Co Ltd Method for embedding existing concrete pile and structure of foundation pile and existing concrete pile
JP2002021070A (en) * 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2003176532A (en) * 2001-12-11 2003-06-24 Marugo Foundation Corp Cast-in-place concrete pile structure
JP2004360252A (en) * 2003-06-03 2004-12-24 Ohbayashi Corp Underground concrete structure and construction method therefor

Also Published As

Publication number Publication date
JP2006322256A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4658684B2 (en) Calculation method of pull-out resistance of knotted piles using support pressure and shear force acting on inclined surface of expanded diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP4658685B2 (en) Calculation method of pulling resistance of knotted pile using support pressure acting on inclined surface of enlarged diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
US10221538B2 (en) Helical pile leads and extensions
US6234720B1 (en) Reduced skin friction sheet pile
CN107893429A (en) A kind of underground trough-shaped body anti-floating construction and its antifloating computation method
JP2015135045A (en) Method for stabilization when installing long object and method for installing long object
JP5542529B2 (en) Hybrid anchor and anchor method
JP5095944B2 (en) Method for producing multistage expanded cast-in-place concrete pile and evaluation method for multistage expanded cast-in-place concrete pile
JP6172825B1 (en) Slope stabilization method, slope stabilization structure, soil structure management method, and soil structure management system
US20140301791A1 (en) Telescopic Foundation Screw Pile with Continuously Tapered Pile Body
JP5919675B2 (en) Composite foundation pile and construction method of composite foundation pile
JP5031463B2 (en) Earth retaining wall reinforcement structure and method
JP2003138561A (en) Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP4856903B2 (en) Calculation method of pull-out resistance of knotted pile using shear force acting on inclined surface of enlarged diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP2009114696A (en) Knotted pile
JP5638815B2 (en) Calculation method of pulling resistance of expanded pile, expanded pile, expanded pile arrangement setting method, and expanded pile construction quality judgment method
US20220298739A1 (en) Weak soil anchor device to anchor one or several structures and method to arrange an anchor in weak soil
JP5471073B2 (en) Knotted pile, load support method for knotted pile
JP7447652B2 (en) Evaluation method of pull-out resistance
JP2002021070A (en) Pile with multi-stage enlarged-diameter portions
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
KR101334393B1 (en) Pre-boring method for micro pile
Niroumand et al. Design and construction of helical anchors in soils
JP6474080B2 (en) Stabilization method of prop
JP6544561B2 (en) Design method of ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4658684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250