JP2016125271A - Calculation method for pull-out resistance of pile - Google Patents

Calculation method for pull-out resistance of pile Download PDF

Info

Publication number
JP2016125271A
JP2016125271A JP2015000323A JP2015000323A JP2016125271A JP 2016125271 A JP2016125271 A JP 2016125271A JP 2015000323 A JP2015000323 A JP 2015000323A JP 2015000323 A JP2015000323 A JP 2015000323A JP 2016125271 A JP2016125271 A JP 2016125271A
Authority
JP
Japan
Prior art keywords
pile
soil
resistance
frictional resistance
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015000323A
Other languages
Japanese (ja)
Other versions
JP5978426B2 (en
Inventor
久保 豊
Yutaka Kubo
豊 久保
筒井 通剛
Michitake Tsutsui
通剛 筒井
義隆 中西
Yoshitaka Nakanishi
義隆 中西
恵三 皆川
Keizo Minagawa
恵三 皆川
由春 小林
Yoshiharu Kobayashi
由春 小林
崚也 藤田
Shunya Fujita
崚也 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ass Of New Found Methods Dev
ASSOCIATION OF NEW FOUNDATION METHODS DEVELOPMENT
PLAN DO SOIL KK
System Measure Co., Ltd.
Original Assignee
Ass Of New Found Methods Dev
ASSOCIATION OF NEW FOUNDATION METHODS DEVELOPMENT
PLAN DO SOIL KK
System Measure Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ass Of New Found Methods Dev, ASSOCIATION OF NEW FOUNDATION METHODS DEVELOPMENT, PLAN DO SOIL KK, System Measure Co., Ltd. filed Critical Ass Of New Found Methods Dev
Priority to JP2015000323A priority Critical patent/JP5978426B2/en
Publication of JP2016125271A publication Critical patent/JP2016125271A/en
Application granted granted Critical
Publication of JP5978426B2 publication Critical patent/JP5978426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calculation method for pull-out resistance of a pile that clarifies the pull-out resistance at each of widened-diameter parts and enables accurate calculation of the pull-out resistance even when soil quality changes in a middle of the widened-diameter part.SOLUTION: A calculation method is for calculating pull-out resistance of an under-reamed pile 1 having a widened-diameter part 3 widened diagonally downward from a shaft part 2. Specifically, in the method that calculates the pull-out resistance by calculating a side surface area of the shaft part and the widened-diameter part in contact with a ground, multiplying the side surface area by a coefficient of frictional resistance specific to strength of soil in the surrounding and frictional resistance in relation with the soil, and calculating the pull-out resistance based on an integrated value of the calculation results for the shaft part and the widened-diameter part and effective self-weight of the under-reamed pile, the side surface area is calculated at least for each type of soil, and different values of the coefficient of frictional resistance are used for different angles of inclination and types of soil, in a portion with an inclined surface.SELECTED DRAWING: Figure 1

Description

本発明は、軸部から下方に向けて斜めに拡大される拡径部を有する杭の引抜き抵抗力の算定方法に関するものである。   The present invention relates to a method for calculating a pulling resistance force of a pile having a diameter-expanded portion that is obliquely enlarged downward from a shaft portion.

杭に、円柱状の軸部から截頭円錐状に下方に向けて広がる拡径部を設けることで、杭の引抜き抵抗力が高められることが知られている。しかしながら、拡径部の引抜き抵抗の算定方法については、明確な算定基準が存在していないのが現状である。   It is known that the pulling resistance force of a pile can be enhanced by providing the pile with a diameter-expanded portion that extends downward in a truncated cone shape from a columnar shaft portion. However, there is currently no clear calculation standard for the method of calculating the drawing resistance of the enlarged diameter portion.

一方、細長いビルなどのアスペクト比の大きな建築物は、地震力を受けると支持杭に大きな引抜き力が作用することが知られている。また、地下水位が上昇して浮力を受けたり、津波によって水平力を受けたりした場合も、杭に大きな引抜き力が作用することになる。   On the other hand, it is known that a building with a large aspect ratio, such as an elongated building, is subjected to a large pulling force on a support pile when subjected to an earthquake force. Also, when the groundwater level rises and receives buoyancy, or when it receives a horizontal force due to a tsunami, a large pulling force acts on the pile.

このような大きな引抜き力に対しては、定性的には拡径部のある杭が有効であることは容易に理解できるため、特許文献1,2に開示されているように、拡径部の引抜き抵抗の算定方法が提案されている。   For such a large pull-out force, it can be easily understood that a pile having a diameter-expanded portion is effective qualitatively, so as disclosed in Patent Documents 1 and 2, A method for calculating the drawing resistance has been proposed.

特許文献1,2は、いずれも軸方向に間隔を置いて複数の拡径部が設けられることを前提とした多段杭における引抜き抵抗力の算定方法である。例えば、特許文献1では、拡径部からある広がりを想定した範囲に含まれる地盤が、拡径部の上載荷重となって引抜き抵抗となるとして、引抜き抵抗力を算定する。   Patent Documents 1 and 2 are methods for calculating the pulling resistance force in a multi-stage pile on the premise that a plurality of enlarged diameter portions are provided at intervals in the axial direction. For example, in Patent Document 1, the pulling resistance force is calculated on the assumption that the ground included in a range that assumes a certain spread from the enlarged diameter portion becomes an overload of the enlarged diameter portion and becomes a drawing resistance.

一方、特許文献2では、拡径部の周辺地盤から受ける極限せん断抵抗力と極限支圧力との和から、引抜き抵抗力を算定する。ここで、特許文献2は、いわゆる節付き杭に関する文献で、一つ一つの拡径部が小さく、それぞれの拡径部に接する地盤の土質は均一であることを前提にした算定方法となっている。   On the other hand, in Patent Document 2, the pulling resistance force is calculated from the sum of the ultimate shear resistance force and the ultimate support pressure received from the ground around the enlarged diameter portion. Here, Patent Document 2 is a literature on so-called piles with knots, and it is a calculation method based on the premise that the soil diameter of the ground in contact with each expanded portion is uniform, with each expanded portion being small. Yes.

特開2011−174251号公報JP 2011-174251 A 特許第4658684号公報Japanese Patent No. 4658684

しかしながら、拡径部が大きくなると、拡径部の途中から土質が変化する場合がある。また、拡径部が一つの場合(拡底杭)でも、通常の円柱状の杭に比べて引抜き抵抗力が大きくなるのは自明である。   However, when the enlarged diameter portion becomes large, the soil quality may change from the middle of the enlarged diameter portion. Further, it is obvious that even when the diameter-expanded portion is one (bottom-expanded pile), the pulling resistance is larger than that of a normal columnar pile.

そこで、本発明は、拡径部毎の引抜き抵抗を明確にできるとともに、拡径部の途中で土質が変化した場合でも正確に引抜き抵抗を算定することが可能な杭の引抜き抵抗力の算定方法を提供することを目的としている。   Therefore, the present invention can clarify the pulling resistance for each enlarged diameter portion, and can calculate the pulling resistance force of a pile that can accurately calculate the pulling resistance even when the soil quality changes in the middle of the enlarged diameter portion. The purpose is to provide.

前記目的を達成するために、本発明の杭の引抜き抵抗力の算定方法は、軸部から下方に向けて斜めに拡大される拡径部を有する杭の引抜き抵抗力の算定方法であって、前記軸部及び拡径部が地盤に接する側面積を算出するステップと、前記側面積に対して、その周囲の土質の強度及びその土質との摩擦抵抗に関する摩擦抵抗係数を掛け合わせるステップと、上記軸部及び拡径部の演算結果の積算値と前記杭の有効自重に基づいて引抜き抵抗力を算出するステップとを備え、前記拡径部の下方に向けて斜めに拡大される傾斜面の範囲においては、前記側面積は少なくとも土質毎に算出するとともに、前記摩擦抵抗係数は前記傾斜面の傾斜角及び前記土質によって異なる値を使用することを特徴とする。   In order to achieve the above object, the method for calculating the pulling resistance force of the pile of the present invention is a method for calculating the pulling resistance force of the pile having a diameter-expanded portion that is obliquely expanded downward from the shaft portion, A step of calculating a side area in which the shaft portion and the diameter-expanded portion are in contact with the ground, a step of multiplying the side area by a frictional resistance coefficient related to a strength of a surrounding soil and a frictional resistance with the soil; A step of calculating an extraction resistance based on an integrated value of calculation results of the shaft portion and the enlarged diameter portion and an effective dead weight of the pile, and a range of an inclined surface which is obliquely enlarged toward the lower side of the enlarged diameter portion In the method, the side area is calculated at least for each soil, and the frictional resistance coefficient is different depending on the inclination angle of the inclined surface and the soil.

ここで、前記傾斜面の範囲で使用する摩擦抵抗係数は、前記傾斜角の増加に伴って増加する値を使用するのが好ましい。例えば、前記傾斜面の範囲で使用する摩擦抵抗係数は指数関数的に増加する値を使用することができる。   Here, it is preferable that the frictional resistance coefficient used in the range of the inclined surface is a value that increases as the inclination angle increases. For example, an exponentially increasing value can be used as the frictional resistance coefficient used in the range of the inclined surface.

また、前記土質の強度は、砂質地盤ではN値であり、粘土質地盤では一軸圧縮強度であることが好ましい。   Moreover, it is preferable that the said soil strength is N value in sandy ground, and is uniaxial compressive strength in clayey ground.

このように構成された本発明の杭の引抜き抵抗力の算定方法では、拡径部の傾斜面の範囲においては、少なくとも土質毎に拡径部の傾斜面が接する側面積を算出し、その側面積に土質の強度と、拡径部の傾斜角及び土質によって異なる摩擦抵抗係数を掛け合わせる。   In the method of calculating the pullout resistance force of the pile of the present invention configured as described above, in the range of the inclined surface of the enlarged-diameter portion, the side area where the inclined surface of the enlarged-diameter portion contacts at least for each soil is calculated, and the side The area is multiplied by the strength of the soil, and the frictional resistance coefficient, which varies depending on the inclination angle of the enlarged diameter portion and the soil.

そして、このようにして土質毎に算出される拡径部の演算結果と軸部の演算結果との積算値及び杭の有効自重に基づいて、杭の引抜き抵抗力を算定する。   Then, the pulling resistance force of the pile is calculated based on the integrated value of the calculation result of the enlarged diameter portion and the calculation result of the shaft portion calculated for each soil material and the effective weight of the pile.

このように拡径部毎に引抜き抵抗を明確に算定できるので、拡径部が一つの拡底杭であっても、拡径部が複数設けられる多段杭であっても、正確に引抜き抵抗力を算定することができる。   In this way, the pullout resistance can be clearly calculated for each enlarged diameter part, so even if the enlarged diameter part is a single bottom expanded pile or a multi-stage pile in which multiple enlarged diameter parts are provided, the resistance to extraction can be accurately determined. Can be calculated.

また、拡径部の途中で土質が変化した場合でも、土質毎に引抜き抵抗を算出できるので、正確に杭の引抜き抵抗力を算定することができる。当然、拡径部が接する土質が一種類しかない場合にも適用できる。   Moreover, even if the soil quality changes in the middle of the enlarged diameter portion, the pullout resistance can be calculated for each soil, so the pile pullout resistance can be accurately calculated. Of course, the present invention can also be applied to the case where there is only one kind of soil that the enlarged diameter portion contacts.

さらに、摩擦抵抗係数が傾斜角の増加に伴って増加する係数であれば、傾斜角を大きくしたことを正確に反映できるので、杭長を短くできるなど経済的に杭を構築することができるようになる。特に、摩擦抵抗係数が指数関数的に増加するという知見を反映させることで、より経済的な杭の設計及び構築ができるようになる。   Furthermore, if the frictional resistance coefficient is a coefficient that increases with an increase in the inclination angle, the fact that the inclination angle has been increased can be accurately reflected, so that it is possible to construct a pile economically, such as shortening the pile length. become. In particular, by reflecting the knowledge that the frictional resistance coefficient increases exponentially, more economical pile design and construction can be achieved.

また、杭の引抜き抵抗力の算定に用いられる土質の強度が、砂質地盤ではN値であり、粘土質地盤では一軸圧縮強度である場合は、土質毎の強度に関する数値を容易に取得することができる。   In addition, when the soil strength used to calculate the pulling resistance of piles is N value in sandy ground and uniaxial compressive strength in clay soil, numerical values related to the strength of each soil should be easily obtained. Can do.

本発明の実施の形態の拡底杭の引抜き抵抗力の算定方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the drawing-out resistance force of the bottom-expanded pile of embodiment of this invention. 拡底杭に作用する引抜き力を説明するために建物全体の構成を示した説明図である。It is explanatory drawing which showed the structure of the whole building in order to explain the drawing-out force which acts on an expanded pile. 拡底杭に作用する引抜き力と抵抗力との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the drawing-out force and resistance force which act on an expanded bottom pile. 砂質地盤における傾斜角θと摩擦抵抗係数λとの関係を示した図である。It is the figure which showed the relationship between inclination-angle (theta) and frictional resistance coefficient (lambda) in sandy ground. 粘土質地盤における傾斜角θと摩擦抵抗係数μとの関係を示した図である。It is the figure which showed the relationship between inclination-angle (theta) and frictional resistance coefficient (micro | micron | mu) in a clayey ground. 実施例の多段杭に作用する引抜き力を説明するために建物全体の構成を示した説明図である。It is explanatory drawing which showed the structure of the whole building in order to demonstrate the drawing-out force which acts on the multistage pile of an Example.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の杭の引抜き抵抗力の算定方法の説明に使用する、杭としての拡底杭1の構成を示した図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of an expanded bottom pile 1 as a pile, which is used for explaining a calculation method of a pulling resistance force of a pile according to the present embodiment.

図2は、複数の拡底杭1,1によって支持されるビルBの全体構成を模式的に示した図である。このビルBは、底辺(底面積)に対して高さが高いアスペクト比の大きい細長い建物である。   FIG. 2 is a diagram schematically illustrating the entire configuration of the building B supported by the plurality of bottom-spreading piles 1 and 1. This building B is an elongated building having a high aspect ratio with a high height with respect to the base (bottom area).

ビルBは、その底盤となる基礎B1を介して拡底杭1,1によって支持される。拡底杭1は、直径が一定の円柱状の軸部2と、軸部2から下方に向けて斜めに拡大される拡径部3とによって主に構成される。   The building B is supported by the expanded bottom piles 1 and 1 through the foundation B1 serving as the bottom plate. The expanded bottom pile 1 is mainly configured by a cylindrical shaft portion 2 having a constant diameter and a diameter expanded portion 3 that is obliquely expanded downward from the shaft portion 2.

このような拡底杭1は、地盤Gに掘削された孔に、鉄筋籠を挿入し、コンクリートを打設することによって構築することができる。すなわちこの拡底杭1は、場所打ちコンクリート杭である。   Such an expanded pile 1 can be constructed by inserting a reinforcing bar into a hole excavated in the ground G and placing concrete. That is, the expanded bottom pile 1 is a cast-in-place concrete pile.

常時においては、拡底杭1,1には、ビルB及び基礎B1の自重と建物内部に設置された設備や利用者の重量などが上載荷重として作用している。すなわち、地盤Gに対して押し込まれる状態にある。なお、本明細書においては、この押込み抵抗力(支持力)に関する説明は省略する。   Normally, the weight of the building B and the foundation B1, the weight of the equipment installed inside the building, the weight of the user, and the like act on the expanded piles 1 and 1 as an overload. That is, it is pushed into the ground G. In addition, in this specification, the description regarding this pushing resistance force (supporting force) is abbreviate | omitted.

一方地震時には、図2に示したように、例えばビルBの左側から地震に起因した力(地震力Q)が作用する。その結果、ビルBは右側に傾きかけることになる。   On the other hand, during an earthquake, as shown in FIG. 2, for example, a force (earthquake force Q) due to the earthquake acts from the left side of the building B. As a result, building B leans to the right.

そうなると、ビルBの右側の拡底杭1には、常時以上の押込み力が作用することになる。その押込み力に対しては、図示したように、拡底杭1の周囲に発生する上向きの抵抗力によって対抗させることになる。   If it becomes so, the pushing force more than usual will act on the expanded bottom pile 1 on the right side of the building B. As shown in the figure, the pushing force is countered by an upward resistance force generated around the expanded pile 1.

これに対して、ビルBの左側の拡底杭1には、常時の押込み力とは反対向きの引抜き力が作用することになる。その引抜き力に対しては、図示したように、拡底杭1の周囲に発生する下向きの抵抗力によって対抗させることになる。   On the other hand, a pulling force opposite to the normal pushing force acts on the bottom expanded pile 1 on the left side of the building B. As shown in the drawing, the pulling force is countered by the downward resistance force generated around the expanded pile 1.

拡底杭1に引抜き力が作用するのは、地震時だけでなく、例えば地下水位G1が上昇して基礎B1が受ける浮力Wが増加した場合なども、引抜き力が作用することがある。   The pulling force acts on the expanded pile 1 not only during an earthquake, but also when the groundwater level G1 rises and the buoyancy W received by the foundation B1 increases, for example.

図3は、引抜き力Pが作用しているときの拡底杭1の抵抗状態を模式化して示した図である。ここで、拡径部3は、截頭円錐状の傾斜部31と、傾斜部31の下端から円柱状に形成される立上り部32とによって主に構成される。また、立上り部32の中央から下方に向けては、先端部33が突出される。   FIG. 3 is a diagram schematically showing the resistance state of the expanded pile 1 when the pulling force P is acting. Here, the diameter-enlarged portion 3 is mainly configured by a frustoconical inclined portion 31 and a rising portion 32 formed in a columnar shape from the lower end of the inclined portion 31. Further, the tip end portion 33 protrudes downward from the center of the rising portion 32.

そして、引抜き力Pに対しては、軸部2の周面と地盤Gとの間に生じる摩擦抵抗力τと、傾斜部31の周面と地盤Gとの間に生じる摩擦抵抗力τと、立上り部32の周面と地盤Gとの間に生じる摩擦抵抗力τと、拡底杭1の有効自重Sによって対抗することになる。 For the pulling force P, a frictional resistance force τ 1 generated between the peripheral surface of the shaft portion 2 and the ground G, and a frictional resistance force τ 2 generated between the peripheral surface of the inclined portion 31 and the ground G. Then, the frictional resistance τ 3 generated between the peripheral surface of the rising portion 32 and the ground G and the effective weight S of the expanded pile 1 are countered.

そこで、以下では、この引抜き力Pに対抗させる引抜き抵抗力について説明する。ここで、引抜き抵抗力には、浮力Wのように長期間作用する力に対して算定される値と、地震力Qのように短期間作用する力に対して算定される値とがある。   Therefore, the pulling resistance force that opposes the pulling force P will be described below. Here, the pulling resistance force includes a value calculated for a force acting for a long period of time such as buoyancy W and a value calculated for a force acting for a short period of time such as seismic force Q.

以下では、長期間作用する引抜き力に対して許容できる値を長期許容引抜き抵抗力Rとし、短期間作用する引抜き力に対して許容できる値を短期許容引抜き抵抗力Rとする。 Hereinafter, long-term and long-term acceptable pullout resistance force R T acceptable values for pull-out force acting, the allowable values for pull-out force acting short term and short-term allowable pull-out resistance R t.

=1/3(λ・N・L・ψ+μ・q・L・ψ)+w (1)
=2/3(λ・N・L・ψ+μ・q・L・ψ)+w (2)
ここで、λは砂質地盤の摩擦抵抗係数、Nは砂質地盤の標準貫入試験による打撃回数の平均値、Lは拡底杭1が砂質地盤に接する長さ、ψは拡底杭1の周囲の長さを示す。
R T = 1/3 (λ · N s · L s · ψ + μ · q u · L c · ψ) + w p (1)
R t = 2/3 (λ · N s · L s · ψ + μ · q u · L c · ψ) + w p (2)
Here, the frictional resistance coefficient of λ is sandy soil, N s is the mean value of the number of shots by SPT of sandy soil, L s is the length of拡底pile 1 are in contact with the sandy soil, [psi is拡底pile 1 Indicates the perimeter of.

また、μは粘土質地盤の摩擦抵抗係数、qは粘土質地盤の一軸圧縮強度の平均値、Lは拡底杭1が粘土質地盤に接する長さを示す。さらに、wは拡底杭1の有効自重を示す。 Further, μ is a frictional resistance coefficient of the clay ground, q u is an average value of the uniaxial compressive strength of the clay ground, and L c is a length of the bottom pile 1 in contact with the clay ground. Further, w p represents the effective weight of the expanded pile 1.

要するに、拡底杭1の引抜き抵抗力(R,R)は、軸部2及び拡径部3がそれぞれ地盤Gに接する側面積(L・ψ又はL・ψ)と、その周囲の土質の強度(N又はq)と、その周囲の土質の摩擦抵抗係数(λ又はμ)とを掛け合わせて積算することで算出される。 In short, the pulling-out resistance (R T , R t ) of the expanded bottom pile 1 is the side area (L s · ψ or L c · ψ) where the shaft portion 2 and the enlarged diameter portion 3 are in contact with the ground G, and the surrounding area It is calculated by multiplying and multiplying the soil strength (N s or q u ) and the frictional resistance coefficient (λ or μ) of the surrounding soil.

上式(1),(2)について、図1を参照しながら傾斜部31の計算の詳細な説明を続ける。傾斜部31は、軸線(鉛直線)に対する傾斜面の傾斜角がθ、上面の直径がD、下面の直径がD、全体の高さがHの截頭円錐体である。 The above formulas (1) and (2) will be described in detail with reference to FIG. The inclined portion 31 is a truncated cone having an inclination angle of the inclined surface with respect to the axis (vertical line) θ, a diameter of the upper surface D, a diameter of the lower surface D W , and an overall height H.

この傾斜部31は、土質が変化する位置(土質毎)で、計算上では分割することができる。「土質毎」とは、砂質地盤、粘土質地盤という地盤の種類だけでなく、地盤の種類が同じでも強度(N,q)の大きさが異なれば別の土質として処理することができることを言う。 The inclined portion 31 can be divided in calculation at the position where the soil changes (for each soil). “Every soil” means not only the soil type such as sandy soil and clay soil, but also the same soil type, if the strength (N s , q u ) is different, it can be treated as another soil Say what you can do.

図1では、傾斜部31をn個の領域に平行線によって分割している。ここで、高さ方向の位置を、傾斜部31の上面から下面までで、Z,・・・Zi−1,Z,・・・Zで示す。なお、分割数nは、傾斜部31に出現する土質の数とすることもできるが、後述する計算精度を上げるために、同一土質内でも分割することができる。 In FIG. 1, the inclined portion 31 is divided into n regions by parallel lines. Here, the position in the height direction, in the upper surface of the inclined portion 31 to the lower surface, Z 0, ··· Z i- 1, Z i, indicated by · · · Z n. In addition, although the division number n can also be made into the number of the soil which appears in the inclination part 31, in order to raise the calculation precision mentioned later, it can also divide | segment within the same soil.

そして、それぞれの高さに対応する位置の傾斜部31の直径を、D,・・・Di−1,D,・・・Dで示す。また、分割された各領域の高さを、L,・・・L,・・・Lで示す。 Then, the diameter of the inclined portion 31 of the positions corresponding to the height, D 0, ··· D i- 1, D i, indicated by · · · D n. Also, the height of each divided region is, L 1, · · · L i, indicated with · · · L n.

また、分割された各領域の側面積(周面積)を、A,・・・A,・・・Aで示す。このように設定された符号を使うと、Zi−1〜Z間の領域の側面積Aは、次式で表わすことができる。 Further, the side areas of the respective divided regions (the peripheral area), A 1, ··· A i , indicated by · · · A n. With thus set code, lateral area A i of the region between Z i-1 ~Z i can be expressed by the following equation.

=π/(2cosθ)(Di−1+D)L (3)
そして、傾斜部31の各領域の周囲の長さψは、ψ=A/Lとなる。但し、上式(1),(2)のL・ψ及びL・ψは、地盤に接する傾斜面の面積(側面積)を表しているため、それぞれの領域で側面積Aが求められれば良い。
A i = π / (2 cos θ) (D i−1 + D i ) L i (3)
Then, the length ψ i around each region of the inclined portion 31 is ψ i = A i / L i . However, since L s · ψ and L c · ψ in the above formulas (1) and (2) represent the area (side area) of the inclined surface in contact with the ground, the side area A i is obtained in each region. It only has to be done.

一方、軸部2は、直径がDで長さがL1の円柱体である。また、立上り部32は、直径がDで高さがhの円柱体である。なお、例えば、h=0.5mの定数とする。 On the other hand, the shaft portion 2 is a cylindrical body having a diameter D and a length L1. The rising portion 32 is a cylindrical body having a diameter DW and a height h. For example, the constant is h = 0.5 m.

この軸部2及び立上り部32については、通常の杭と同様に円柱体であり、この部分については通常の杭と同様に上式(1),(2)を使って、簡単に引抜き抵抗力を算出することができる。   The shaft portion 2 and the rising portion 32 are cylindrical bodies as in a normal pile, and this portion can be easily pulled out using the above formulas (1) and (2) as in a normal pile. Can be calculated.

すなわち、円柱体の範囲であれば、周囲の長さψが一定となるので、各土質に接する長さ(L又はL)を求めればよいことになる。この軸部2及び立上り部32においても、上述した拡径部3と同様に、土質毎に計算を行うことができる。 That is, since the peripheral length ψ is constant within the range of the cylindrical body, the length (L s or L c ) in contact with each soil material may be obtained. In the shaft portion 2 and the rising portion 32 as well, the calculation can be performed for each soil as in the case of the above-described enlarged diameter portion 3.

また、拡底杭1の有効自重wは、軸部2の重量と拡径部3の重量との合計から、拡底杭1に作用する浮力を減じた値となる。要するに、拡底杭1の体積に鉄筋コンクリートの比重を乗じ、地下水位G1以下となる拡底杭1の部分の体積から浮力を算出することで、有効自重wを求めることができる。 Further, the effective dead weight w p of the expanded bottom pile 1 is a value obtained by subtracting the buoyancy acting on the expanded bottom pile 1 from the sum of the weight of the shaft portion 2 and the weight of the expanded diameter portion 3. In short, multiplied by the specific gravity of the reinforced concrete to the volume of拡底pile 1, by calculating the buoyancy from the volume portion of拡底pile 1 to be less than the groundwater level G1, it is possible to obtain an effective self-weight w p.

砂質地盤の強度は、標準貫入試験による打撃回数(N値)の平均値(N)で表わすことができる。ここで、例えば軸部2では、Nが30を超えるときは30とする。一方、傾斜部31では、Nが60を超えるときは60とする。 The strength of the sandy ground can be expressed by an average value (N s ) of the number of hits (N value) by the standard penetration test. Here, for example, the shaft portion 2, and 30 when N s is greater than 30. On the other hand, the inclined portion 31, and 60 when N s is greater than 60.

粘土質地盤の強度は、一軸圧縮強度の平均値(q)で表わすことができる。ここで、例えば軸部2では、qが200 kN/m2を超えるときは200とする。一方、傾斜部31では、qが1000 kN/m2を超えるときは1000とする。 The strength of the clayey ground can be represented by an average value (q u ) of uniaxial compressive strength. Here, for example, in the shaft portion 2, when q u exceeds 200 kN / m 2 , it is set to 200. On the other hand, in the inclined part 31, when q u exceeds 1000 kN / m 2 , it is set to 1000.

また、摩擦抵抗係数(λ,μ)は、拡底杭1の周面とそれに接する周囲の地盤Gとの摩擦抵抗に関する数値である。   The frictional resistance coefficient (λ, μ) is a numerical value related to the frictional resistance between the peripheral surface of the expanded pile 1 and the surrounding ground G in contact therewith.

側面が鉛直面となる軸部2及び立上り部32の摩擦抵抗係数(λ,μ)には、例えば従来から知られている定数が使用される。例えば、砂質地盤の摩擦抵抗係数λには、0.8×10/3が使用できる。また、粘土質地盤の摩擦抵抗係数μには、0.8×1/2が使用できる。   For example, a conventionally known constant is used for the frictional resistance coefficient (λ, μ) of the shaft portion 2 and the rising portion 32 whose side surfaces are vertical surfaces. For example, 0.8 × 10/3 can be used for the frictional resistance coefficient λ of sandy ground. Moreover, 0.8 × 1/2 can be used for the frictional resistance coefficient μ of the clayey ground.

一方、軸部2から下方に向けて斜めに広がる傾斜面を有する傾斜部31においては、土質及び傾斜角θによって異なる摩擦抵抗係数(λ,μ)を使用する。この傾斜部31における摩擦抵抗係数(λ,μ)について、図4,5を参照しながら説明する。   On the other hand, in the inclined portion 31 having an inclined surface that extends obliquely downward from the shaft portion 2, different frictional resistance coefficients (λ, μ) are used depending on the soil quality and the inclination angle θ. The frictional resistance coefficient (λ, μ) in the inclined portion 31 will be described with reference to FIGS.

図4は、砂質地盤における傾斜角θと摩擦抵抗係数λとの関係を示した図である。○、□等の凡例は、載荷試験によって得られた値を示し、曲線は、それらの載荷試験結果に基づいて作成した。   FIG. 4 is a diagram showing the relationship between the inclination angle θ and the frictional resistance coefficient λ in sandy ground. Legends such as ○ and □ indicate values obtained by the loading test, and curves are created based on the loading test results.

この曲線からわかるように、砂質地盤においては、傾斜角θの増加に対して摩擦抵抗係数λが指数関数的に増加するといえる。そこで、許容引抜き力を算定する際に使用する傾斜部31の摩擦抵抗係数λを、安全側で考えて以下の数式で表わすこととする。   As can be seen from this curve, in the sandy ground, it can be said that the frictional resistance coefficient λ increases exponentially as the inclination angle θ increases. Therefore, the frictional resistance coefficient λ of the inclined portion 31 used when calculating the allowable pulling force is expressed by the following formula in consideration of safety.

λ=5.85e0.05θ・ζ (4)
ここで、ζは、杭長Lと拡径部3の最大拡底径Dとの比によって設定される低減係数を示す。例えば、0<L/D<3.3の範囲においてはζ=0.46+0.164(L/D)、L/D≧3.3の範囲においてはζ=1.0と設定することができる。
λ = 5.85e 0.05θ · ζ (4)
Here, ζ represents a reduction coefficient set by the ratio between the pile length L and the maximum bottom expanded diameter D W of the expanded diameter portion 3. For example, ζ = 0.46 + 0.164 (L / D W ) can be set in the range of 0 <L / D W <3.3, and ζ = 1.0 can be set in the range of L / D W ≧ 3.3.

すなわち、根入れ(杭長L)が浅い場合は、拡径部3が上記数式通りの充分な引抜き抵抗とならないことが想定されるため、3.3D以浅に拡径部3を設ける場合は、低減係数ζによって摩擦抵抗係数λを低減する。 That is, when the root insertion (pile length L) is shallow, it is assumed that the expanded diameter portion 3 does not have sufficient pulling resistance as in the above formula. Therefore, when the expanded diameter portion 3 is provided shallower than 3.3 DW , The frictional resistance coefficient λ is reduced by the reduction coefficient ζ.

このように本実施の形態で説明する拡底杭1の引抜き抵抗力の算定方法では、傾斜部31の傾斜角θの大きさに応じて摩擦抵抗係数λが変化することになる。   As described above, in the method for calculating the pulling resistance force of the expanded pile 1 described in the present embodiment, the frictional resistance coefficient λ changes according to the inclination angle θ of the inclined portion 31.

一方図5は、粘土質地盤における傾斜角θと摩擦抵抗係数μとの関係を示した図である。○、□等の凡例は、載荷試験によって得られた値を示し、曲線は、それらの載荷試験結果に基づいて作成した。   On the other hand, FIG. 5 is a diagram showing the relationship between the inclination angle θ and the frictional resistance coefficient μ in the clayey ground. Legends such as ○ and □ indicate values obtained by the loading test, and curves are created based on the loading test results.

この曲線からわかるように、粘土質地盤においても、傾斜角θの増加に対して摩擦抵抗係数μが指数関数的に増加するといえる。そこで、許容引抜き力を算定する際に使用する傾斜部31の摩擦抵抗係数μを、安全側で考えて以下の数式で表わすこととする。   As can be seen from this curve, it can be said that the frictional resistance coefficient μ increases exponentially with an increase in the inclination angle θ even in the clayey ground. Therefore, the frictional resistance coefficient μ of the inclined portion 31 used when calculating the allowable pulling force is expressed by the following formula in consideration of safety.

μ=0.40e0.04θ・ζ (5)
なお、上記した式(4),(5)は、載荷試験結果のある1.1°≦θ≦21.1°の範囲では、確実に適用することができる。また、傾斜角θが45°以下の範囲であれば、適用可能であるといえる。
μ = 0.40e 0.04θ・ ζ (5)
It should be noted that the above formulas (4) and (5) can be reliably applied in the range of 1.1 ° ≦ θ ≦ 21.1 ° where the loading test results are present. Further, it can be said that the present invention is applicable if the inclination angle θ is in the range of 45 ° or less.

次に、本実施の形態の拡底杭1の引抜き抵抗力の算定方法の作用について説明する。   Next, the effect | action of the calculation method of the drawing-out resistance of the bottom expanded pile 1 of this Embodiment is demonstrated.

このように構成された本実施の形態の拡底杭1の引抜き抵抗力の算定方法では、拡径部3の傾斜部31の傾斜面の範囲においては、少なくとも土質毎に傾斜部31の傾斜面が接する側面積を算出する。ここで「少なくとも土質毎」とするのは、土質が同じ範囲内においても分割を行うことができることをいう。少なくとも土質の変わり目(境界)において、算出される側面積が分割されていればよい。   In the calculation method of the pulling-out resistance force of the bottom expanded pile 1 of this Embodiment comprised in this way, in the range of the inclined surface of the inclined part 31 of the enlarged diameter part 3, the inclined surface of the inclined part 31 is at least for every soil quality. Calculate the area of the contact side. Here, “at least for every soil” means that the soil can be divided even within the same range. It is only necessary that the calculated side area is divided at least at the transition (boundary) of the soil.

さらに、その側面積に土質の強度(N又はq)と、拡径部3の傾斜部31の傾斜角θ及び土質(砂質地盤又は粘土質地盤)によって異なる摩擦抵抗係数(λ又はμ)を掛け合わせる。 Furthermore, the frictional resistance coefficient (λ or μ) varies depending on the strength of the soil (N s or q u ), the inclination angle θ of the inclined portion 31 of the enlarged diameter portion 3 and the soil (sandy ground or clayey ground). ).

そして、このようにして土質毎に算出される拡径部3の演算結果と軸部2の演算結果との積算値及び拡底杭1の有効自重Sに基づいて、拡底杭1の引抜き抵抗力を算定する。   And based on the integrated value of the calculation result of the enlarged diameter part 3 calculated in this way for every soil and the calculation result of the axial part 2, and the effective dead weight S of the expanded pile 1, the pulling resistance force of the expanded pile 1 is obtained. Calculate.

このように拡径部3毎に引抜き抵抗を明確に算定できるので、拡径部3が一つの拡底杭1であっても、正確に引抜き抵抗力を算定することができる。   Thus, since drawing resistance can be calculated clearly for every enlarged diameter part 3, even if the enlarged diameter part 3 is one bottom expansion pile 1, extraction resistance can be calculated correctly.

また、拡径部3の途中で土質が変化した場合でも、土質毎に引抜き抵抗を算出できるので、正確に拡底杭1の引抜き抵抗力を算定することができる。当然、拡径部3が接する土質が一種類しかない場合にも適用できる。   Further, even when the soil quality changes in the middle of the expanded diameter portion 3, the pulling resistance can be calculated for each soil, so that the pulling resistance force of the expanded pile 1 can be accurately calculated. Of course, the present invention can also be applied to the case where there is only one kind of soil that the enlarged diameter portion 3 contacts.

さらに、摩擦抵抗係数が傾斜角θの増加に伴って増加する係数であれば、傾斜角θを大きくしたことを正確に反映できるので、杭長Lを短くできるなど経済的に杭を構築することができるようになる。   Furthermore, if the frictional resistance coefficient is a coefficient that increases as the inclination angle θ increases, the fact that the inclination angle θ is increased can be accurately reflected, so that the pile length L can be shortened and the pile is constructed economically. Will be able to.

すなわち、せっかく傾斜角θの大きな拡径部3を構築できるようになっても、拡大した分の引抜き抵抗の増加が設計上、認められなければ、杭長を長くしたり杭本数を増やしたりするなどして引抜き抵抗力を高めなければならない。   That is, even if it becomes possible to construct the enlarged diameter part 3 having a large inclination angle θ, if the increase in the drawing resistance is not recognized in the design, the pile length is increased or the number of piles is increased. For example, the resistance to pulling out must be increased.

これに対して、傾斜角θが増加した分が正当に評価されれば、杭長を無駄に長くしたり杭本数を増やしたりする必要がなくなり、経済的に杭を構築することができる。   On the other hand, if the increment of the inclination angle θ is properly evaluated, it is not necessary to unnecessarily lengthen the pile length or increase the number of piles, and the pile can be constructed economically.

また、軸部2の直径を小さくして傾斜角θを大きくした方が、同じ引抜き抵抗力でも掘削量が削減できる場合がある。このようにして掘削量が削減できれば、掘削コストが削減できるだけでなく、コンクリートの打設量や産廃残土の発生量を抑えることもできるようになる。   Further, when the diameter of the shaft portion 2 is reduced and the inclination angle θ is increased, the amount of excavation may be reduced even with the same pulling resistance force. If the amount of excavation can be reduced in this way, not only the excavation cost can be reduced, but also the amount of concrete pouring and the amount of generated industrial waste soil can be suppressed.

特に、土質が砂質地盤である場合には、傾斜角θの増加に対して摩擦抵抗係数λの指数関数的に増加する比率が大きく、より経済的な杭の設計及び構築ができるようになる。   In particular, when the soil is sandy ground, the ratio of the exponential increase of the frictional resistance coefficient λ to the increase of the inclination angle θ is large, and it becomes possible to design and construct a more economical pile. .

また、杭の引抜き抵抗力の算定に用いられる土質の強度が、砂質地盤ではN値から導かれ、粘土質地盤では一軸圧縮強度から導かれる場合は、土質毎の強度に関する数値を容易に取得することができる。   In addition, when the soil strength used to calculate the pullout resistance of the pile is derived from the N value in sandy ground and from the uniaxial compressive strength in clay soil, numerical values related to the strength of each soil are easily obtained. can do.

以下、前記した実施の形態の拡底杭1とは別の形態の多段杭4の引抜き抵抗力の算定方法について、図6を参照しながら説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語や同一符号を付して説明する。   Hereinafter, the calculation method of the pulling-out resistance force of the multistage pile 4 of the form different from the expanded bottom pile 1 of above-described embodiment is demonstrated, referring FIG. Note that the description of the same or equivalent parts as those described in the above embodiment will be described with the same terms and the same reference numerals.

この実施例で説明する杭としての多段杭4は、軸方向に間隔を置いて複数の拡径部42,43が設けられる。すなわち、多段杭4は、直径が一定の円柱状の軸部41Aと、軸部41Aから下方に向けて斜めに拡大される1段目の拡径部42と、その拡径部42から下方に延びる円柱状の軸部41Bと、その軸部41Bから下方に向けて斜めに拡大される最下段の拡径部43とによって主に構成される。   The multi-stage pile 4 as a pile described in this embodiment is provided with a plurality of enlarged diameter portions 42 and 43 at intervals in the axial direction. That is, the multi-stage pile 4 includes a cylindrical shaft portion 41A having a constant diameter, a first-stage enlarged diameter portion 42 that is obliquely enlarged downward from the axial portion 41A, and a downward direction from the enlarged diameter portion 42. It is mainly comprised by the column-shaped axial part 41B extended, and the diameter expansion part 43 of the lowest step expanded diagonally toward the downward direction from the axial part 41B.

本実施例では、拡径部42,43が2段の多段杭4について説明するが、これに限定されるものではなく、必要な引抜き力や支持力に応じて拡径部の段数を設定することができる。   In the present embodiment, the multi-stage pile 4 having two enlarged diameter portions 42 and 43 will be described. However, the present invention is not limited to this, and the number of steps of the enlarged diameter portion is set according to the necessary pulling force and supporting force. be able to.

前記実施の形態で説明したように、地震時にはビルBの例えば左側から地震に起因した力(地震力Q)が作用する。また、津波が発生した場合には、図6に示すように、大きな水平力Hや地下水位G1の上昇による浮力Wを受ける可能性もある。   As described in the above embodiment, a force (earthquake force Q) due to the earthquake acts from the left side of the building B, for example, at the time of the earthquake. Further, when a tsunami occurs, as shown in FIG. 6, there is a possibility of receiving a large horizontal force H or a buoyancy W due to an increase in the groundwater level G1.

このような巨大な引抜き力に経済的に対抗させるために、複数の拡径部42,43を設けることで対応することができる。そして、拡径部42,43を増やしたことによる引抜き抵抗の増加が正確に算定できれば、安全かつ経済的な杭の構築を実現することができる。   In order to economically counter such a large pulling force, it is possible to cope with this by providing a plurality of enlarged diameter portions 42 and 43. And if the increase in drawing-out resistance by increasing the diameter-expanded parts 42 and 43 can be calculated correctly, construction of a safe and economical pile can be realized.

本実施例の多段杭4の引抜き抵抗力の算定方法においても、前記実施の形態で説明した算定方法と同様の演算を行う。要するに、式(1)〜(5)は、同じように使用できる。   Also in the calculation method of the pulling-out resistance force of the multistage pile 4 of a present Example, the calculation similar to the calculation method demonstrated in the said embodiment is performed. In short, formulas (1) to (5) can be used in the same way.

相違点としては、前記実施の形態の拡底杭1では一つの拡径部3に対してのみ引抜き抵抗を演算すればよかったが、本実施例の多段杭4においては、複数の拡径部42,43に対して引抜き抵抗の演算を行う点が挙げられる。   As a difference, in the expanded pile 1 of the above-described embodiment, it is only necessary to calculate the pulling resistance for only one expanded portion 3, but in the multi-stage pile 4 of the present embodiment, a plurality of expanded portions 42, The point which performs calculation of drawing resistance to 43 is mentioned.

このように拡径部42,43毎に引抜き抵抗を明確に算定できるので、拡径部42,43が複数設けられる多段杭4であっても、正確に引抜き抵抗力を算定することができる。   As described above, the drawing resistance can be clearly calculated for each of the enlarged diameter portions 42 and 43. Therefore, even if the multistage pile 4 is provided with a plurality of enlarged diameter portions 42 and 43, the extraction resistance force can be accurately calculated.

なお、他の構成及び作用効果については、前記実施の形態と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those in the above-described embodiment, and thus description thereof is omitted.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態及び実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to the embodiment and the example, and the design change is within a range not departing from the gist of the present invention. Are included in the present invention.

例えば、前記実施の形態及び実施例では、拡径部3,42,43の下面が水平面になる場合について説明したが、これに限定されるものではなく、拡径部の下面が下方の杭底又は軸部に向けて縮小される(狭くなる)傾斜面が設けられた杭に対しても、本発明の算定方法を適用することができる。要するに、引抜き抵抗力に加算される傾斜面は、下方に向けて斜めに拡大される傾斜面だけなので、下面の形状によって限定を受けることはない。   For example, in the said embodiment and Example, although the case where the lower surface of the enlarged diameter part 3,42,43 became a horizontal surface was demonstrated, it is not limited to this, The lower surface of an enlarged diameter part is a lower pile bottom Or the calculation method of this invention is applicable also to the pile provided with the inclined surface reduced (it narrows) toward an axial part. In short, since the inclined surface added to the pulling resistance force is only the inclined surface that is obliquely enlarged downward, it is not limited by the shape of the lower surface.

1 拡底杭(杭)
2 軸部
3 拡径部
31 傾斜部(傾斜面の範囲)
4 多段杭(杭)
41A,41B 軸部
42,43 拡径部
G 地盤
P 引抜き力
θ 傾斜角
λ,μ 摩擦抵抗係数
側面積
S 有効自重
1 Expanded pile (pile)
2 Shaft part 3 Expanded diameter part 31 Inclined part (range of inclined surface)
4 Multi-stage pile (pile)
41A, 41B Shaft portion 42, 43 Expanded portion G Ground P Pull-out force θ Inclination angle λ, μ Friction resistance coefficient A i side area S Effective weight

Claims (4)

軸部から下方に向けて斜めに拡大される拡径部を有する杭の引抜き抵抗力の算定方法であって、
前記軸部及び拡径部が地盤に接する側面積を算出し、
前記側面積に対して、その周囲の土質の強度及びその土質との摩擦抵抗に関する摩擦抵抗係数を掛け合わせ、
上記軸部及び拡径部の演算結果の積算値と前記杭の有効自重に基づいて引抜き抵抗力を算出する際に、
前記拡径部の下方に向けて斜めに拡大される傾斜面の範囲においては、前記側面積は少なくとも土質毎に算出するとともに、前記摩擦抵抗係数は前記傾斜面の傾斜角及び前記土質によって異なる値を使用することを特徴とする杭の引抜き抵抗力の算定方法。
A method for calculating a pulling resistance force of a pile having a diameter-expanded portion that is obliquely expanded downward from a shaft portion,
Calculate the side area where the shaft part and the enlarged diameter part are in contact with the ground,
Multiply the side area by the frictional resistance coefficient related to the strength of the surrounding soil and the frictional resistance with the soil,
When calculating the pulling resistance based on the integrated value of the calculation result of the shaft part and the enlarged diameter part and the effective dead weight of the pile,
In the range of the inclined surface that is obliquely enlarged toward the lower portion of the diameter-enlarged portion, the side area is calculated at least for each soil, and the frictional resistance coefficient varies depending on the inclination angle of the inclined surface and the soil quality. A method for calculating the pull-out resistance of a pile, characterized in that the above is used.
前記傾斜面の範囲で使用する摩擦抵抗係数は、前記傾斜角の増加に伴って増加することを特徴とする請求項1に記載の杭の引抜き抵抗力の算定方法。   The calculation method of the pulling-out resistance force of the pile according to claim 1, wherein the frictional resistance coefficient used in the range of the inclined surface increases as the inclination angle increases. 前記傾斜面の範囲で使用する摩擦抵抗係数は指数関数的に増加することを特徴とする請求項2に記載の杭の引抜き抵抗力の算定方法。   The method according to claim 2, wherein the frictional resistance coefficient used in the range of the inclined surface increases exponentially. 前記土質の強度は、砂質地盤ではN値であり、粘土質地盤では一軸圧縮強度であることを特徴とする請求項1乃至3のいずれか一項に記載の杭の引抜き抵抗力の算定方法。   The calculation method of the pulling-out resistance force of the pile according to any one of claims 1 to 3, wherein the soil strength is an N value in sandy ground and uniaxial compressive strength in clayey ground. .
JP2015000323A 2015-01-05 2015-01-05 Calculation method of pulling resistance of pile Active JP5978426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000323A JP5978426B2 (en) 2015-01-05 2015-01-05 Calculation method of pulling resistance of pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000323A JP5978426B2 (en) 2015-01-05 2015-01-05 Calculation method of pulling resistance of pile

Publications (2)

Publication Number Publication Date
JP2016125271A true JP2016125271A (en) 2016-07-11
JP5978426B2 JP5978426B2 (en) 2016-08-24

Family

ID=56359055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000323A Active JP5978426B2 (en) 2015-01-05 2015-01-05 Calculation method of pulling resistance of pile

Country Status (1)

Country Link
JP (1) JP5978426B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100124A (en) * 2017-12-06 2019-06-24 大成建設株式会社 Subsurface wall pile structure including expanded bottom
CN114626158A (en) * 2022-03-16 2022-06-14 西南石油大学 Method for determining falling resistance coefficient of plunger for plunger gas lift in horizontal well
CN116733042A (en) * 2023-08-16 2023-09-12 上海建工一建集团有限公司 Structure for pulling resistance by utilizing soil layer dead weight and design construction method
JP7447652B2 (en) 2020-04-13 2024-03-12 株式会社大林組 Evaluation method of pull-out resistance
JP7447654B2 (en) 2020-04-14 2024-03-12 株式会社大林組 Calculation method for pull-out resistance at the joints of knotted piles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112227360B (en) * 2020-09-25 2021-10-29 福建新华夏建工有限公司 High-pulling-resistance-strength foundation reinforcing device for rotary jet drilling machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265312A (en) * 1991-02-18 1992-09-21 Takenaka Komuten Co Ltd Method of multistage bottom-expanding place pile driving construction
JP2002021070A (en) * 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2006322256A (en) * 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force and shearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265312A (en) * 1991-02-18 1992-09-21 Takenaka Komuten Co Ltd Method of multistage bottom-expanding place pile driving construction
JP2002021070A (en) * 2000-07-05 2002-01-23 Takenaka Komuten Co Ltd Pile with multi-stage enlarged-diameter portions
JP2006322256A (en) * 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force and shearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016014225; 筒井通剛,外3名: '場所打ち拡底杭の引抜き抵抗に関する研究(その2 引抜き抵抗算定式および実験値との比較)' 日本建築学会大会学術講演梗概論 構造(1)分冊, 199508, p.933-p.934, 日本建築学会 *
JPN6016014226; 鈴木直子,外3名: '拡底杭・節付き杭の鉛直荷重〜変位の関係と抵抗力の評価' 日本建築学会構造系論文集 第75巻 第656号, 20110216, p.1847-p.1856, 日本建築学会 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100124A (en) * 2017-12-06 2019-06-24 大成建設株式会社 Subsurface wall pile structure including expanded bottom
JP2021121725A (en) * 2017-12-06 2021-08-26 大成建設株式会社 Underground wall pile structure provided with expanded bottom part
JP7094423B2 (en) 2017-12-06 2022-07-01 大成建設株式会社 Underground wall pile structure with expanded bottom
JP7447652B2 (en) 2020-04-13 2024-03-12 株式会社大林組 Evaluation method of pull-out resistance
JP7447654B2 (en) 2020-04-14 2024-03-12 株式会社大林組 Calculation method for pull-out resistance at the joints of knotted piles
CN114626158A (en) * 2022-03-16 2022-06-14 西南石油大学 Method for determining falling resistance coefficient of plunger for plunger gas lift in horizontal well
CN116733042A (en) * 2023-08-16 2023-09-12 上海建工一建集团有限公司 Structure for pulling resistance by utilizing soil layer dead weight and design construction method
CN116733042B (en) * 2023-08-16 2023-11-07 上海建工一建集团有限公司 Structure for pulling resistance by utilizing soil layer dead weight and design construction method

Also Published As

Publication number Publication date
JP5978426B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5978426B2 (en) Calculation method of pulling resistance of pile
Azzam et al. Experimental and numerical studies of circular footing resting on confined granular subgrade adjacent to slope
JP2008144546A (en) Construction method for earth retaining/supporting and its structure
JP4658685B2 (en) Calculation method of pulling resistance of knotted pile using support pressure acting on inclined surface of enlarged diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP6021993B1 (en) Rigid connection structure of lower end of support and concrete pile
Kohan et al. Spudcan extraction from deep embedment in soft clay
JP5259510B2 (en) Retaining wall and its construction method
JP2007170099A (en) Method for preventing differential settlement by reducing liquefaction of existing building foundation
JP5779018B2 (en) Piled raft method
JP5638815B2 (en) Calculation method of pulling resistance of expanded pile, expanded pile, expanded pile arrangement setting method, and expanded pile construction quality judgment method
JP2006152799A (en) Manufacturing method of multi-stage enlarged diameter cast-in-place concrete pile, evaluation method of multi-stage enlarged diameter cast-inplace concrete pile, and multi-stage enlarged diameter cast-in-place concrete pile
JP6372692B2 (en) Construction method of buoyancy type base isolation structure and buoyancy type base isolation structure
JP5848038B2 (en) Overhead deterrent structure
JP6213758B2 (en) Cast-in-place steel pipe concrete pile and its construction method
Gang et al. Deformation behavior of deep foundation pit under both overloading and unloading conditions
JP2008291601A (en) Pile head joining structure
JP5176788B2 (en) Construction method of underground structure
JP2018017041A (en) Foundation structure, and foundation construction method for the same
JP2009024430A (en) Concrete filled steel pipe pile head structure
JP2009162034A (en) Method of constructing foundation of structure
JP4900091B2 (en) Embankment structure, embankment method
JP2009108491A (en) Method for checking end bearing capacity of cast-in-place pile
RU2457292C2 (en) Earthquake-proof pile
JP2017172328A (en) Cast-in-place steel pipe concrete pile and steel pipe thereof
JP2019065457A (en) Underground continuous wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5978426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250