JP2017172328A - Cast-in-place steel pipe concrete pile and steel pipe thereof - Google Patents

Cast-in-place steel pipe concrete pile and steel pipe thereof Download PDF

Info

Publication number
JP2017172328A
JP2017172328A JP2017134536A JP2017134536A JP2017172328A JP 2017172328 A JP2017172328 A JP 2017172328A JP 2017134536 A JP2017134536 A JP 2017134536A JP 2017134536 A JP2017134536 A JP 2017134536A JP 2017172328 A JP2017172328 A JP 2017172328A
Authority
JP
Japan
Prior art keywords
steel pipe
concrete
cast
restraining
place
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017134536A
Other languages
Japanese (ja)
Other versions
JP6406560B2 (en
Inventor
菅 一雅
Kazumasa Suga
一雅 菅
圭将 服部
Keisho Hattori
圭将 服部
那穂 吉川
Nao Yoshikawa
那穂 吉川
映 吉田
Ei Yoshida
映 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pile Corp
Original Assignee
Japan Pile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pile Corp filed Critical Japan Pile Corp
Priority to JP2017134536A priority Critical patent/JP6406560B2/en
Publication of JP2017172328A publication Critical patent/JP2017172328A/en
Application granted granted Critical
Publication of JP6406560B2 publication Critical patent/JP6406560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cast-in-place steel pipe concrete pile and a steel pipe thereof, capable of integrating the steel pipe and concrete, and capable of also setting a dimension of a spacer properly in response to an excavation hole diameter, while making a reinforced cage passable in the steel pipe.SOLUTION: In a cast-in-place steel pipe concrete pile composed of a steel pipe 1 installed in an excavation hole upper part, a reinforced cage having a plurality of spacers on the outer periphery and built up in an excavation hole via the inside of the steel pipe 1 and concrete placed in the excavation hole, a plurality of restricting members 2 for restricting axial directional dislocation between the steel pipe and hardened concrete are provided at an interval in the circumferential direction on the inner periphery of the steel pipe 1, and when building up the reinforced cage, the spacers are made passable between the restricting members 2 and 2, and a reinforcement member is provided on the outer periphery of the steel pipe at least just above the restricting members in the axial direction of the steel pipe.SELECTED DRAWING: Figure 1

Description

この発明は、場所打ち鋼管コンクリート杭及びその鋼管に関する。   The present invention relates to a cast-in-place steel pipe concrete pile and its steel pipe.

例えば、KCTB工法として知られている場所打ち鋼管コンクリート杭工法は、場所打ちコンクリート杭の頭部に、これを取り囲むように、スパイラル状の内面突起を有する鋼管を設置する工法である。   For example, the cast-in-place steel pipe concrete pile method known as the KCTB method is a method of installing a steel pipe having a spiral inner surface protrusion around the head of the cast-in-place concrete pile so as to surround it.

この工法によれば、杭頭部がスパイラル状突起によってコンクリートと一体化した鋼管で補強されるので、杭頭部の断面積を増やすことなく、大きな曲げモーメントやせん断力に対する必要な杭耐力が得られる。また、同時に高い変形性能(靱性)を得ることができ、より耐震性を向上させることができる。通常の鉄筋コンクリートだけの場所打ちコンクリート杭と比較して、杭頭部を細くすることができるため、拡底杭工法と組み合わせると、工期の短縮を図り、コンクリートや掘削残土の量を低減することができる。   According to this method, the pile head is reinforced with a steel pipe integrated with concrete by spiral protrusions, so the necessary pile strength against large bending moment and shear force can be obtained without increasing the cross-sectional area of the pile head. It is done. At the same time, high deformation performance (toughness) can be obtained, and the earthquake resistance can be further improved. Compared with cast-in-place concrete piles made of ordinary reinforced concrete, the pile head can be made thinner, so when combined with the expanded pile method, the construction period can be shortened and the amount of concrete and excavated soil can be reduced. .

しかしながら、スパイラル状の内面突起を有する鋼管は、多数の突条を有する帯状鋼板をスパイラル状に丸めることによって円筒形のものにするという製造方法によって作られるため、納期の問題やコストが高くなるという難点がある。   However, a steel pipe having a spiral inner protrusion is made by a manufacturing method in which a strip-shaped steel plate having a large number of protrusions is formed into a cylindrical shape by rounding it into a spiral shape, which leads to higher delivery problems and costs. There are difficulties.

また、場所打ちコンクリート杭工法には、鋼管内部をコンクリートのみとする場合(SCタイプ)と、鉄筋コンクリートとする場合(SRCタイプ)とがあるが、SRCタイプの場合、鉄筋籠は図12に示すようにして掘削孔に建て込まれる。すなわち、同図(a)に示すように、地盤に形成した掘削孔上部にケーシング50が建て込まれ、このケーシング50に鋼管51が預けられる。鉄筋籠52は一般には所定長さにユニット化され、この鉄筋籠ユニット52は順次接続しながら鋼管51の内部を通して掘削孔53に建て込まれる。   Moreover, in the cast-in-place concrete pile construction method, there are a case where the inside of the steel pipe is made of concrete only (SC type) and a case where the steel pipe is made of reinforced concrete (SRC type). In the case of the SRC type, the reinforcing bar is as shown in FIG. It is built in the excavation hole. That is, as shown in FIG. 2A, the casing 50 is built in the upper part of the excavation hole formed in the ground, and the steel pipe 51 is deposited in the casing 50. The rebar bar 52 is generally unitized to a predetermined length, and the rebar bar unit 52 is built into the excavation hole 53 through the inside of the steel pipe 51 while being sequentially connected.

鉄筋籠ユニット52の外周には、鉄筋籠を掘削孔53の軸心に保持するための複数のスペーサ54が設けられている。しかしながら、鋼管51は上述のように内面にスパイラル状の突起55を有しているため(同図(b)参照)、鉄筋籠ユニット52が鋼管51内を通過できるようにするためには、スペーサ54の鉄筋籠ユニット52からの径方向突出寸法を小さくせざるをえない。その結果、スペーサ54は鋼管51を通過したものの、掘削孔53の孔壁から大きく離れることとなり、スペーサとしての機能を果たさなくなってしまう。   A plurality of spacers 54 are provided on the outer periphery of the reinforcing bar rod unit 52 to hold the reinforcing bar rod at the axis of the excavation hole 53. However, since the steel pipe 51 has the spiral protrusion 55 on the inner surface as described above (see FIG. 5B), in order to allow the rebar rod unit 52 to pass through the steel pipe 51, the spacer Therefore, it is necessary to reduce the radial projecting dimension of the 54 reinforcing bar rod units 52. As a result, although the spacer 54 has passed through the steel pipe 51, the spacer 54 is greatly separated from the hole wall of the excavation hole 53, and the function as the spacer is not achieved.

上記問題点に言及したものではないが、場所打ち鋼管コンクリート杭に関する先行技術文献としては例えば、以下に記すようなものを挙げることができる。   Although it does not mention the said problem, as what is described below as a prior art literature regarding a cast-in-place steel pipe concrete pile, the following can be mentioned, for example.

特開2002−4271号公報JP 2002-4271 A 特開2011−74569号公報JP 2011-74569 A

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、コスト高となるスパイラル状突起を有する鋼管によらなくとも、鋼管とコンクリートとの一体化を図ることができ、加えて鉄筋籠が鋼管内を通過可能としつつ、スペーサの鉄筋籠からの突出寸法を掘削孔径に応じた適正なものとすることができ、それによって鉄筋籠を掘削孔軸心に保持することができる、場所打ち鋼管コンクリート杭及びその鋼管を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
The object of the present invention is to integrate the steel pipe and the concrete without using a steel pipe having spiral projections, which increases the cost, and in addition, allows the reinforcing bar rod to pass through the steel pipe, while the reinforcing bar of the spacer. PROBLEM TO BE SOLVED: To provide a cast-in-place steel pipe concrete pile and its steel pipe, in which the projecting dimension from the ridge can be made appropriate according to the diameter of the digging hole, and thereby the reinforcing bar can be held in the digging hole axis. .

スペーサの鉄筋籠からの突出寸法を制限しているスパイラル状突起は、上述のように、コンクリートと鋼管との付着力を増し、硬化コンクリートの軸方向ずれを拘束するためのものである。そこで、この発明の発明者らは、鋭意検討を重ねた結果、鋼管内面に設ける突起をスパイラル状としなくとも、単にリング状のものとするだけで硬化コンクリートを十分に拘束することができることを見出した。しかし、依然として、スペーサの寸法が制限されるので、これを解決すべく次のような解決手段を見出した。   As described above, the spiral protrusions that limit the protruding dimension of the spacer from the reinforcing bar are for increasing the adhesive force between the concrete and the steel pipe and restraining the axial displacement of the hardened concrete. Thus, as a result of extensive studies, the inventors of the present invention have found that the hardened concrete can be sufficiently constrained by simply forming a ring-shaped protrusion on the inner surface of the steel pipe without using a spiral shape. It was. However, since the size of the spacer is still limited, the following solution has been found to solve this.

すなわち、この発明は、掘削孔上部に設置される鋼管と、外周に複数のスペーサを有し、前記鋼管内を通して前記掘削孔に建て込まれる鉄筋籠と、前記掘削孔に打設されるコンクリートとからなる場所打ち鋼管コンクリート杭であって、
前記鋼管の内周に該鋼管と硬化コンクリートとの間の軸方向ずれを拘束するための複数の拘束部材を周方向に間隔を置いて設け、前記鉄筋籠の建て込み時に前記スペーサが前記拘束部材間を通過可能としたことを特徴とする場所打ち鋼管コンクリート杭にある。
That is, this invention has a steel pipe installed at the upper part of the excavation hole, a plurality of spacers on the outer periphery, a reinforcing bar to be built into the excavation hole through the steel pipe, and a concrete to be cast into the excavation hole, A cast-in-place steel pipe concrete pile consisting of
A plurality of restraining members for restraining axial displacement between the steel pipe and the hardened concrete are provided at intervals in the circumferential direction on the inner periphery of the steel pipe, and the spacer is used when the reinforcing bar is installed. It is in a cast-in-place steel pipe concrete pile characterized by being able to pass between.

上記場所打ち鋼管コンクリート杭において、前記拘束部材の少なくとも直上であって前記鋼管の外周に補強部材を設けるとよい。また、前記拘束部材の下方であって前記鋼管の内周に、コンクリートのブリーディングによる分離水が前記拘束部材に向かって上昇するのを阻止するための複数のブリーディング処理部材を、前記拘束部材の間隔に対応した間隔を置いて設けるようにしてもよい。   In the cast-in-place steel pipe concrete pile, a reinforcing member may be provided at least directly above the restraining member and on the outer periphery of the steel pipe. Further, a plurality of bleeding treatment members for preventing the separated water due to the concrete bleeding from rising toward the restraining member below the restraining member and on the inner periphery of the steel pipe, It may be provided with an interval corresponding to.

また、この発明は、掘削孔上部に設置されて、その内部を通して外周に複数のスペーサを有する鉄筋籠が前記掘削孔に建て込まれる、場所打ち鋼管コンクリート杭用の鋼管であって、
内周に該鋼管と硬化コンクリートとの間の軸方向ずれを拘束するための複数の拘束部材を周方向に間隔を置いて設け、前記鉄筋籠の建て込み時に前記スペーサが前記拘束部材間を通過可能としたことを特徴とする場所打ち鋼管コンクリート杭用鋼管にある。
Further, the present invention is a steel pipe for a cast-in-place steel pipe concrete pile, which is installed in the upper part of the excavation hole, and a reinforcing bar having a plurality of spacers on the outer periphery is built in the excavation hole,
A plurality of restraining members for restraining axial displacement between the steel pipe and the hardened concrete are provided on the inner periphery at intervals in the circumferential direction, and the spacer passes between the restraining members when the reinforcing bar is installed. It is in cast-in-place steel pipe for concrete pile.

上記場所打ちコンクリート杭用鋼管において、前記拘束部材の少なくとも直上であって前記鋼管の外周に補強部材を設けるとよい。また、前記拘束部材の下方であって前記鋼管の内周に、コンクリートのブリーディングによる分離水が前記拘束部材に向かって上昇するのを阻止するための複数のブリーディング処理部材を、前記拘束部材の間隔に対応した間隔を置いて設けるようにしてもよい。   In the cast-in-place concrete pile steel pipe, a reinforcing member may be provided at least directly above the restraining member and on the outer periphery of the steel pipe. Further, a plurality of bleeding treatment members for preventing the separated water due to the concrete bleeding from rising toward the restraining member below the restraining member and on the inner periphery of the steel pipe, It may be provided with an interval corresponding to.

この発明によれば、鋼管の内周に複数の拘束部材を設けることによってコンクリートと鋼管との一体化を図るようにしたので、鋼管は通常の平鋼板を丸めたものを使用することができ、納期の短縮やコストを安価なものとすることができる。また、複数の拘束部材間には間隔が形成されているので、鉄筋籠の建て込み時にはスペーサが拘束部材間を通過することができる。これにより、スペーサの鉄筋籠からの突出寸法を、その先端が鋼管の内周にほぼ達する大きなものとすることができる。その結果、スペーサの外周端が掘削孔の孔壁近くに位置することとなり、スペーサは鉄筋籠を掘削孔の軸心に保持する本来の機能を発揮する。   According to the present invention, since the concrete and the steel pipe are integrated by providing a plurality of restraining members on the inner periphery of the steel pipe, the steel pipe can be obtained by rounding a normal flat steel sheet, The delivery time can be shortened and the cost can be reduced. In addition, since a space is formed between the plurality of restraining members, the spacer can pass between the restraining members when the reinforcing bar is installed. Thereby, the protrusion dimension from the reinforcing bar rod of a spacer can be made into the big thing which the front-end | tip almost reaches the inner periphery of a steel pipe. As a result, the outer peripheral end of the spacer is positioned near the hole wall of the excavation hole, and the spacer exhibits the original function of holding the reinforcing bar rod at the axial center of the excavation hole.

この発明による鋼管の実施形態を示し、(a)は平面図、(b)は軸方向断面図である。Embodiment of the steel pipe by this invention is shown, (a) is a top view, (b) is an axial sectional view. 鋼管の別の実施形態を示し、(a)は平面図、(b)は軸方向断面図である。The other embodiment of a steel pipe is shown, (a) is a top view, (b) is an axial sectional view. 拘束部材の形態例を示す平面図である。It is a top view which shows the example of a form of a restraint member. 拘束部材の他の形態例を示す軸方向断面図である。It is an axial direction sectional view showing other examples of a restraining member. この発明による場所打ち鋼管コンクリート杭の施工手順を示す鉛直方向断面図である。It is a vertical direction sectional view which shows the construction procedure of the cast-in-place steel pipe concrete pile by this invention. 図5に引き続く施工手順を示す鉛直方向断面図である。FIG. 6 is a vertical sectional view showing a construction procedure subsequent to FIG. 5. 鋼管内のコンクリートを押し抜く力によって鋼管に作用する膨張圧を説明する断面図である。It is sectional drawing explaining the expansion pressure which acts on a steel pipe by the force which pushes out the concrete in a steel pipe. 鋼管に作用する膨張圧と鋼管円周方向に発生する引張力との関係を説明するための模式図(a)、及び拘束圧とD/tとの関係を示すグラフ(b)である。It is the schematic diagram (a) for demonstrating the relationship between the expansion pressure which acts on a steel pipe, and the tensile force generate | occur | produced in the steel pipe circumferential direction, and the graph (b) which shows the relationship between a restraint pressure and D / t. 拘束圧を考慮した鋼管の別の実施形態を示す軸方向断面図である。It is an axial direction sectional view showing another embodiment of a steel pipe in consideration of restraint pressure. コンクリートのブリーディングによる拘束部材への影響(a)と、対処法(b)を示す図である。It is a figure which shows the influence (a) on the restraint member by the bleeding of concrete, and a countermeasure (b). 鋼管にブリーディング処理部材を設けた実施形態を示す軸方向断面図である。It is an axial direction sectional view showing an embodiment which provided a bleeding processing member to a steel pipe. 従来例を示し、(a)は鉛直方向断面図、(b)は鉄筋籠建て込み時におけるスペーサとスパイラル状突起との関係を示す拡大断面図である。A prior art example is shown, (a) is a sectional view in the vertical direction, and (b) is an enlarged sectional view showing a relationship between the spacer and the spiral protrusion when the reinforcing bar is built.

この発明の実施形態を図面を参照しながら以下に説明する。図1に示すように、鋼管1の下部内周には複数の拘束部材2が周方向に間隔dを置いて設けられている。拘束部材2は、鋼管1内に打設されて硬化したコンクリートが、鋼管1との間で軸方向にずれるのを拘束するためのものであり、所定の厚みを持った断面四角形の鋼材で作られている。拘束部材2は突起あるいは突条と言い換えることもでき、その厚みが突起あるいは突条の高さとなる。   Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a plurality of restraining members 2 are provided on the inner periphery of the lower part of the steel pipe 1 at intervals d in the circumferential direction. The restraining member 2 is for restraining the concrete that has been cast and hardened in the steel pipe 1 from shifting in the axial direction with the steel pipe 1 and is made of a steel material having a predetermined thickness and a rectangular cross section. It has been. The restraining member 2 can be rephrased as a protrusion or a protrusion, and the thickness thereof becomes the height of the protrusion or protrusion.

拘束部材2の個数すなわち間隔dの数は、鉄筋籠に設けられるスペーサの周方向の個数に応じた数であり、一般には杭径に応じて同一円周上に4〜8個設けられる。図示の例では拘束部材2は鋼管1の軸方向に関して一段であるが、複数段となるように配置してもよい。   The number of restraining members 2, that is, the number of intervals d is a number corresponding to the number of spacers provided in the reinforcing bar rod in the circumferential direction, and generally 4 to 8 are provided on the same circumference according to the pile diameter. In the illustrated example, the restraining member 2 is one stage in the axial direction of the steel pipe 1, but it may be arranged in a plurality of stages.

拘束部材2の周方向長さは、コンクリートに対する必要な拘束力の大きさに応じて増減することができる。必要な拘束力が小さくてよい場合、図2に示すように、周方向長さを短くすることができ、その結果、間隔dを大きくすることができる。   The circumferential length of the restraining member 2 can be increased or decreased according to the magnitude of the necessary restraining force on the concrete. When the required restraining force may be small, as shown in FIG. 2, the circumferential length can be shortened, and as a result, the distance d can be increased.

拘束部材2は溶接により鋼管1の内周に固着されるが、ボルト止め等の他の手段によって固着してもよい。拘束部材2は図3,図4に示すように、種々の形態を採ることができる。同図(a)は、拘束部材2の両端に厚み(突起高さ)が徐々に減じるようなテーパ部3を設けた例である。このようなテーパ部3を設けることにより、間隔dは鋼管の内方側が広がることになるので、拘束部材2,2間をスペーサが通過しやすくなる。   The restraining member 2 is fixed to the inner periphery of the steel pipe 1 by welding, but may be fixed by other means such as bolting. As shown in FIGS. 3 and 4, the restraining member 2 can take various forms. FIG. 6A shows an example in which tapered portions 3 are provided at both ends of the restraining member 2 so that the thickness (projection height) is gradually reduced. By providing such a tapered portion 3, the interval d is widened on the inner side of the steel pipe, so that the spacer easily passes between the restraining members 2 and 2.

同図(b)は拘束部材2の両端に溶接ビード5を盛って厚みを部分的に増加させた例である。これによって、コンクリートと鋼管1との付着力を増すことができる。同図(c)は、リング部材を溶接した後、そのリング部材を周方向に間隔を置いた複数箇所で研削して複数の拘束部材2を形成した例である。   FIG. 2B shows an example in which the weld beads 5 are provided at both ends of the restraining member 2 to partially increase the thickness. Thereby, the adhesive force of concrete and the steel pipe 1 can be increased. FIG. 3C shows an example in which a plurality of restraining members 2 are formed by welding the ring member and then grinding the ring member at a plurality of locations spaced in the circumferential direction.

また、図4は拘束部材2の両端部に幅(鋼管の軸方向寸法)が徐々に減じるようなテーパ部4を設けた例を示している。このようなテーパ部4を設けることにより、間隔dは上方に向けて広がることになるので、図中矢印で示すスペーサの下降通過の際に、スペーサが拘束部材2,2間を通過しやすくなる。   FIG. 4 shows an example in which tapered portions 4 are provided at both ends of the restraining member 2 so that the width (dimension in the axial direction of the steel pipe) gradually decreases. By providing such a tapered portion 4, the distance d is widened upward, so that the spacer can easily pass between the restraining members 2, 2 when the spacer is moved downward as indicated by an arrow in the figure. .

図5,図6は、上記鋼管1を使用した場所打ち鋼管コンクリート杭の概略施工手順を示している。図5(a)に示すように、アースドリル機等によりケーシング10用の孔11を先行掘削した後、さらにその下方に先行掘削孔11よりも小径の杭軸部用の孔12を掘削する。そして、先行掘削孔11にケーシング10を設置し、このケーシング10に支持具13を介して鋼管1を預ける。   5 and 6 show a schematic construction procedure of a cast-in-place steel pipe concrete pile using the steel pipe 1 described above. As shown in FIG. 5 (a), the hole 11 for the casing 10 is preliminarily excavated by an earth drill machine or the like, and further, the hole 12 for the pile shaft portion having a smaller diameter than the prior excavation hole 11 is excavated further below. Then, the casing 10 is installed in the preceding excavation hole 11, and the steel pipe 1 is deposited in the casing 10 via the support tool 13.

次いで、同図(b)に示すように、所定長さに製作された鉄筋籠ユニット14aを鋼管1内を通して軸部掘削孔12に建て込む。この鉄筋籠ユニット14aには周方向に間隔を置いて、また軸方向に間隔を置いて複数のスペーサ15が設けられている。スペーサ15は一般にU字形に作られ、開放側の両端部が鉛直方向上下にそれぞれ位置するように鉄筋籠ユニット14aに固着されている。   Next, as shown in FIG. 2B, the reinforcing bar unit 14a manufactured to a predetermined length is built into the shaft excavation hole 12 through the steel pipe 1. The rebar rod unit 14a is provided with a plurality of spacers 15 spaced in the circumferential direction and spaced in the axial direction. The spacer 15 is generally formed in a U shape, and is fixed to the reinforcing bar unit 14a so that both ends on the open side are positioned vertically above and below.

先行する鉄筋籠ユニット14aを建て込んだら、これを支持具16を介して鋼管1に仮受けし、同図(c)に示すように、後行する鉄筋籠ユニット14aを吊り下げて、その下端部を先行する鉄筋籠ユニット14aの上端部に接続する。   When the preceding reinforcing bar rod unit 14a is installed, it is temporarily received by the steel pipe 1 through the support 16 and the following reinforcing bar rod unit 14a is suspended as shown in FIG. Is connected to the upper end portion of the preceding reinforcing bar rod unit 14a.

以下、同様にして鉄筋籠ユニット14aを順次接続しながら軸部掘削孔12に建て込むことにより、図6(d)に示すように、所定長さの鉄筋籠14が構成される。鉄筋籠14を仮受けする支持具16は、鋼管1に固定されており、所定長さとされた鉄筋籠14は支持具16に溶接により固着される。すなわち、鉄筋籠14の上端部が支持具16を介して鋼管1の上端部に固定される。   Thereafter, similarly, the reinforcing bar rod unit 14a is built in the shaft excavation hole 12 while being sequentially connected, thereby forming the reinforcing bar rod 14 having a predetermined length as shown in FIG. The support 16 that temporarily receives the reinforcing bar 14 is fixed to the steel pipe 1, and the reinforcing bar 14 having a predetermined length is fixed to the support 16 by welding. That is, the upper end portion of the reinforcing bar 14 is fixed to the upper end portion of the steel pipe 1 through the support 16.

次に、同図(e)に示すように、鋼管1及び鉄筋籠14を、鋼管1の下端部が地盤上方の適宜高さに位置するまで一旦引き上げ、この鋼管1の下端部と鉄筋籠14とを複数の連結鉄筋17で連結し、鋼管1の下端部に鉄筋籠14を固定する。そして、同図(f)に示すように、鋼管1及び鉄筋籠14を軸部掘削孔12までに下降させ、杭天端をセットする。すなわち、ケーシング10に治具18を取付け、吊りバー19により鋼管1を所定の高さ位置に保持する。その後、図示しないが、掘削孔11,12のスライムを除去した後、掘削孔11,12にコンクリートを打設し、ケーシング10を引き抜いて施工を完了する。   Next, as shown in FIG. 4E, the steel pipe 1 and the reinforcing bar 14 are once pulled up until the lower end of the steel pipe 1 is positioned at an appropriate height above the ground, and the lower end of the steel pipe 1 and the reinforcing bar 14 Are connected by a plurality of connecting reinforcing bars 17, and a reinforcing bar 14 is fixed to the lower end of the steel pipe 1. And as shown to the same figure (f), the steel pipe 1 and the reinforcing bar 14 are lowered | hung to the axial part excavation hole 12, and a pile top end is set. That is, the jig 18 is attached to the casing 10, and the steel pipe 1 is held at a predetermined height position by the suspension bar 19. Thereafter, although not shown, after removing slime from the excavation holes 11 and 12, concrete is placed in the excavation holes 11 and 12, and the casing 10 is pulled out to complete the construction.

上記のような施工手順において、鉄筋籠ユニット14aを鋼管1内を通過させる際(図5(b)(c))、拘束部材2,2間には間隔dが形成されているので、スペーサ15は拘束部材2,2間を通過することができる。これにより、スペーサ15の鉄筋籠ユニット14aからの突出寸法を、その先端が鋼管1の内周にほぼ達する大きなものとすることができる。その結果、スペーサ15の外周端が軸部掘削孔12の孔壁近くに位置することとなり、スペーサ15は鉄筋籠14を軸部掘削孔12の軸心に保持する本来の機能を発揮する。   In the construction procedure as described above, when the reinforcing bar unit 14a is allowed to pass through the steel pipe 1 (FIGS. 5B and 5C), since the distance d is formed between the restraining members 2 and 2, the spacer 15 Can pass between the restraining members 2 and 2. Thereby, the protrusion dimension from the reinforcing bar rod unit 14a of the spacer 15 can be made large so that the tip thereof reaches the inner circumference of the steel pipe 1 substantially. As a result, the outer peripheral end of the spacer 15 is positioned near the hole wall of the shaft excavation hole 12, and the spacer 15 exhibits the original function of holding the reinforcing bar 14 at the shaft center of the shaft excavation hole 12.

ところで、上記のようにして築造されたコンクリート杭において、図7(a)に示すように、鋼管1内の硬化コンクリートCに押し抜き力Fが作用すると、拘束部材2がコンクリートCを支圧拘束し、押し抜き力に対して抵抗する。しかし、その一方、拘束部材2の直上のコンクリート部分が拘束部材2による支圧で拘束されるため、拘束による膨張作用が発生する。そして、コンクリートが支圧破壊するため、最終破壊形状としては同図(b)に示すように拘束部材2の直上が膨らんだ状態となり、その結果、鋼管1も提灯状態に膨張変形する。   By the way, in the concrete pile constructed as described above, when the punching force F acts on the hardened concrete C in the steel pipe 1 as shown in FIG. And resists punching force. However, on the other hand, since the concrete portion immediately above the restraining member 2 is restrained by the bearing pressure by the restraining member 2, an expansion action due to restraint occurs. And since concrete breaks by bearing pressure, as shown in the figure (b), as the final fracture shape, it will be in the state where the upper part of the restraint member 2 swelled, and as a result, the steel pipe 1 will also expand and deform | transform into a lantern state.

鋼管1に作用する膨張圧と鋼管内周方向に発生する引張力との関係は、図8(a)を参照して、次のように表すことができる。
T(N) = p(N/mm) × D/2(mm) ・・・・・(1)
ただし、T:鋼管に発生する引張力
p:膨張等分布荷重
D:鋼管径
The relationship between the expansion pressure acting on the steel pipe 1 and the tensile force generated in the inner circumferential direction of the steel pipe can be expressed as follows with reference to FIG.
T (N) = p (N / mm) x D / 2 (mm) (1)
T: Tensile force generated in steel pipe
p: Expansion load
D: Steel pipe diameter

ここで、鋼管厚をtとすると、鋼管円周方向応力度σsr(N/mm2) = T(N)/(t(mm)×1(mm))、また膨張圧σp(N/mm2) = p(N/mm2)/1(mm) より、(1)式は次のようになる。
σp = (2×t)・σsr/D ・・・・・(2)
Here, when the steel pipe thickness is t, the steel pipe circumferential stress σ sr (N / mm 2 ) = T (N) / (t (mm) × 1 (mm)) and the expansion pressure σ p (N / From mm 2 ) = p (N / mm 2) / 1 (mm), equation (1) is as follows.
σ p = (2 × t) · σ sr / D (2)

鋼管円周方向応力度σsrは、設計値で定められていることから、図8(b)に示すように、同一鋼管厚tでは鋼管径Dが大きくなるほど鋼管の耐えうる膨張圧いわゆる拘束圧が小さくなることになる。この拘束圧が大きいほど、コンクリートの押し抜き抵抗力が向上する。 Since the steel pipe circumferential direction stress σ sr is determined by a design value, as shown in FIG. 8 (b), the expansion pressure that the steel pipe can withstand as the steel pipe diameter D becomes larger at the same steel pipe thickness t, so-called restraint pressure. Will become smaller. The greater the restraining pressure, the more the punching resistance of concrete is improved.

そこで、この発明では拘束部材2の支圧拘束効果により拘束部材2の直上部に作用する応力に対して補強するため、図9に示すように、拘束部材2の直上部から直下部にわたって鋼管1の外周に補強部材21を設けた。拘束部材2の直上部のみならず、直下部にも補強部材21を設けたのは、押し抜き力とは逆方向のコンクリートの引抜き力によって生じる応力に対して補強するためである。   Therefore, in this invention, in order to reinforce against the stress acting on the upper part of the restraining member 2 by the support pressure restraining effect of the restraining member 2, as shown in FIG. The reinforcing member 21 was provided on the outer periphery of the. The reason why the reinforcing member 21 is provided not only directly above the restraining member 2 but also directly below is to reinforce against the stress generated by the pulling force of the concrete in the direction opposite to the pushing force.

補強部材21は断面四角形の鋼材からなり、リング状に形成されているが、複数個を周方向に間隔を置いて部分的に設ける形態を採ってもよい。この補強部材21も拘束部材2のように溶接により鋼管1に固着されるが、ボルト止め等の他の手段を用いてもよい。このような補強部材21を設けることにより、(2)式における鋼管厚tが部分的に厚くなることから、コンクリートに対する拘束性能を向上させ、押し抜きや引抜き抵抗力を向上させることができる。なお、補強部材21は拘束部材2の直上部分から直下部分まで一体となっているが、拘束部材2の外周部分は必ずしも無くともよく、したがってこれら直上部分と直下部分は分離していてもよい。   The reinforcing member 21 is made of a steel material having a quadrangular section and is formed in a ring shape. However, a plurality of reinforcing members 21 may be provided partially at intervals in the circumferential direction. The reinforcing member 21 is also fixed to the steel pipe 1 by welding like the restraining member 2, but other means such as bolting may be used. By providing such a reinforcing member 21, the steel pipe thickness t in the equation (2) is partially increased, so that the restraining performance on concrete can be improved, and the punching and pulling resistance can be improved. The reinforcing member 21 is integrated from the portion directly above the restraining member 2 to the portion directly below, but the outer peripheral portion of the restraining member 2 is not necessarily required, and therefore the portion directly above and the portion directly below may be separated.

上述のように、拘束部材2はコンクリートの押し抜き力や引抜き力に抵抗する有効な手段であるが、コンクリートの打設後に発生するブリーディング現象によって拘束圧が働かないおそれがある。すなわち、図10(a)に示すように、コンクリートのブリーディングによって分離水が矢印Aのように上昇すると、拘束部材2の下部で遮られ、この部分に空洞などのコンクリートの不良部分22が発生する。   As described above, the restraining member 2 is an effective means for resisting the punching force and pulling force of the concrete, but there is a risk that the restraining pressure does not work due to the bleeding phenomenon that occurs after the concrete is placed. That is, as shown in FIG. 10 (a), when the separated water rises as indicated by arrow A due to the bleeding of concrete, it is blocked by the lower portion of the restraining member 2, and a defective portion 22 of concrete such as a cavity is generated in this portion. .

そうすると、矢印B,Cで示す押し抜き力及び引抜き力のうち、引抜き力Cが拘束部材2に伝達せず、引抜き抵抗が不十分になってしまう。このような、ブリーディングに対処するためには、拘束部材の下方における鋼管1の内周に分離水が拘束部材2に向かって上昇するのを阻止するブリーディング処理部材23を設ければよい。これにより不良部分22はブリーディング処理部材23の下部に発生するが、拘束部材2の下部には発生せず、したがって拘束部材2は押し抜き力及び引抜き力B,Cの双方に対してコンクリートを拘束し、十分に抵抗することができる。   If it does so, drawing force C will not be transmitted to restraint member 2 among punching force and drawing force shown by arrows B and C, and drawing resistance will become insufficient. In order to cope with such bleeding, a bleeding treatment member 23 for preventing the separated water from rising toward the restraining member 2 may be provided on the inner periphery of the steel pipe 1 below the restraining member. As a result, the defective portion 22 occurs in the lower portion of the bleeding processing member 23, but does not occur in the lower portion of the restraining member 2. Therefore, the restraining member 2 restrains the concrete against both the punching force and the pulling forces B and C. And can resist sufficiently.

ブリーディング処理部材23は、図11に示すように、拘束部材2と同様に断面四角形の部材であり、鋼管1の内周に間隔を置いて複数設けられている。ブリーディング処理部材23,23間の間隔は、鉄筋籠1のスペーサ15が通過できるように、拘束部材2,2間の間隔dに対応している。ブリーディング処理部材23の設置位置は、拘束部材2から離れすぎると処理効果が小さくなるので、拘束部材2の下方30cm以内とすることが望ましい。   As shown in FIG. 11, the bleeding processing member 23 is a member having a quadrangular cross section like the restraining member 2, and a plurality of bleeding processing members 23 are provided at intervals on the inner periphery of the steel pipe 1. The distance between the bleeding members 23 and 23 corresponds to the distance d between the restraining members 2 and 2 so that the spacer 15 of the reinforcing bar 1 can pass through. Since the treatment effect is reduced when the bleeding processing member 23 is set too far from the restraining member 2, it is desirable that the position of the bleeding processing member 23 be within 30 cm below the restraining member 2.

また、ブリーディング処理部材23は厚み(突起あるいは突条としての高さ)が拘束部材2の厚みと同等以上であることが望ましい。ブリーディング処理部材23は、その機能の点からは鋼材としなくともプラスチック材料等軽微な材料を用いることができるが、鋼材を使用することにより拘束部材2とともにコンクリートに対する拘束力を期待することができる。   Further, it is desirable that the thickness of the bleeding processing member 23 (height as a protrusion or a protrusion) is equal to or greater than the thickness of the restraining member 2. The bleeding treatment member 23 can be made of a light material such as a plastic material without using a steel material from the viewpoint of its function, but by using the steel material, a restraining force on the concrete can be expected together with the restraining member 2.

1:鋼管
2:拘束部材
11,12:掘削孔
14:鉄筋籠ユニット
15:スペーサ
21:補強部材
23:ブリーディング処理部材
d:間隔

1: Steel pipe 2: Restraint member 11, 12: Excavation hole 14: Reinforcing bar unit 15: Spacer 21: Reinforcement member 23: Bleeding treatment member d: Interval

Claims (4)

掘削孔上部に設置される鋼管と、外周に複数のスペーサを有し、前記鋼管内を通して前記掘削孔に建て込まれる鉄筋籠と、前記掘削孔に打設されるコンクリートとからなる場所打ち鋼管コンクリート杭であって、 前記鋼管の内周に該鋼管と硬化コンクリートとの間の軸方向ずれを拘束するための複数の拘束部材を周方向に間隔を置いて設け、前記鉄筋籠の建て込み時に前記スペーサが前記拘束部材間を通過可能とし、 前記鋼管の軸線方向にて前記拘束部材の少なくとも直上であって前記鋼管の外周に補強部材を設けたことを特徴とする場所打ち鋼管コンクリート杭。 Cast-in-place steel pipe concrete comprising: a steel pipe installed at the upper part of the excavation hole; a plurality of spacers on the outer periphery; a rebar bar built into the excavation hole through the steel pipe; and a concrete cast into the excavation hole A plurality of constraining members for constraining axial displacement between the steel pipe and the hardened concrete on the inner periphery of the steel pipe at intervals in the circumferential direction; A cast-in-place steel pipe concrete pile, characterized in that a spacer can pass between the restraining members, and a reinforcing member is provided at least directly above the restraining member in the axial direction of the steel pipe and on the outer periphery of the steel pipe. 前記拘束部材の下方であって前記鋼管の内周に、コンクリートのブリーディングによる分離水が前記拘束部材に向かって上昇するのを阻止するための複数のブリーディング処理部材を、前記拘束部材の間隔に対応した間隔を置いて設けたことを特徴とする請求項1記載の場所打ちコンクリート杭。 A plurality of bleeding treatment members for preventing water separated by concrete bleeding from rising toward the restraining member below the restraining member and on the inner periphery of the steel pipe correspond to the spacing between the restraining members. The cast-in-place concrete pile according to claim 1, wherein the cast-in-place concrete pile is provided at an interval. 掘削孔上部に設置されて、その内部を通して外周に複数のスペーサを有する鉄筋籠が前記掘削孔に建て込まれる、場所打ち鋼管コンクリート杭用の鋼管であって、 内周に該鋼管と硬化コンクリートとの間の軸方向ずれを拘束するための複数の拘束部材を周方向に間隔を置いて設け、前記鉄筋籠の建て込み時に前記スペーサが前記拘束部材間を通過可能とし、 前記鋼管の軸線方向にて前記拘束部材の少なくとも直上であって前記鋼管の外周に補強部材を設けたことを特徴とする場所打ち鋼管コンクリート杭用鋼管。 A steel pipe for a cast-in-place steel pipe concrete pile installed at the upper part of the excavation hole and having a plurality of spacers on the outer periphery through the inside of the excavation hole. A plurality of restraining members for constraining the axial displacement between are provided at intervals in the circumferential direction, and the spacer can pass between the restraining members when the reinforcing bar is installed, and in the axial direction of the steel pipe A cast-in-place steel pipe for concrete piles, wherein a reinforcing member is provided at least directly above the restraining member and on the outer periphery of the steel pipe. 前記拘束部材の下方であって前記鋼管の内周に、コンクリートのブリーディングによる分離水が前記拘束部材に向かって上昇するのを阻止するためのブリーディング処理部材を、前記拘束部材の間隔に対応した間隔を置いて設けたことを特徴とする請求項3記載の場所打ち鋼管コンクリート用鋼管。
A spacing corresponding to the spacing of the restraining members is provided on the inner periphery of the steel pipe below the restraining members, and a bleeding treatment member for preventing separation water due to concrete bleeding from rising toward the restraining members. The cast-in-place steel pipe for concrete according to claim 3, wherein the steel pipe is provided.
JP2017134536A 2017-07-10 2017-07-10 Cast-in-place steel pipe concrete pile and its steel pipe Active JP6406560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017134536A JP6406560B2 (en) 2017-07-10 2017-07-10 Cast-in-place steel pipe concrete pile and its steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134536A JP6406560B2 (en) 2017-07-10 2017-07-10 Cast-in-place steel pipe concrete pile and its steel pipe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012095276A Division JP6213758B2 (en) 2012-04-19 2012-04-19 Cast-in-place steel pipe concrete pile and its construction method

Publications (2)

Publication Number Publication Date
JP2017172328A true JP2017172328A (en) 2017-09-28
JP6406560B2 JP6406560B2 (en) 2018-10-17

Family

ID=59970546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134536A Active JP6406560B2 (en) 2017-07-10 2017-07-10 Cast-in-place steel pipe concrete pile and its steel pipe

Country Status (1)

Country Link
JP (1) JP6406560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705652A (en) * 2021-01-29 2021-04-27 天津和兴源建筑工程有限公司 Concrete square pile reinforcement cage weaving equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107403U (en) * 1976-02-12 1977-08-16
JPS56142921A (en) * 1980-04-03 1981-11-07 Taisei Corp Construction work of foundation of structure
JPS5771542U (en) * 1980-10-14 1982-05-01
JPS6332018A (en) * 1986-07-23 1988-02-10 Hasegawa Komuten Co Ltd Formation of cast-in-place pile
JPH02296928A (en) * 1989-05-09 1990-12-07 Takenaka Komuten Co Ltd H steel pile for placing soil cement
JP2010168734A (en) * 2009-01-20 2010-08-05 System Keisoku Kk Steel pipe for pile and the pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107403U (en) * 1976-02-12 1977-08-16
JPS56142921A (en) * 1980-04-03 1981-11-07 Taisei Corp Construction work of foundation of structure
JPS5771542U (en) * 1980-10-14 1982-05-01
JPS6332018A (en) * 1986-07-23 1988-02-10 Hasegawa Komuten Co Ltd Formation of cast-in-place pile
JPH02296928A (en) * 1989-05-09 1990-12-07 Takenaka Komuten Co Ltd H steel pile for placing soil cement
JP2010168734A (en) * 2009-01-20 2010-08-05 System Keisoku Kk Steel pipe for pile and the pile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705652A (en) * 2021-01-29 2021-04-27 天津和兴源建筑工程有限公司 Concrete square pile reinforcement cage weaving equipment
CN112705652B (en) * 2021-01-29 2023-03-07 天津和兴源建筑工程有限公司 Concrete square pile reinforcement cage weaving equipment

Also Published As

Publication number Publication date
JP6406560B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6648990B2 (en) Foundation structure
JP2010001608A (en) Pile head handling method in cast-in-place concrete pile construction method
JP6213758B2 (en) Cast-in-place steel pipe concrete pile and its construction method
CN107532398B (en) Rigid connection structure for lower end of support and concrete pile
JP5978426B2 (en) Calculation method of pulling resistance of pile
JP6406560B2 (en) Cast-in-place steel pipe concrete pile and its steel pipe
JP2018003304A (en) Anchor reinforcing structure, anchor reinforcing method and anchor reinforcing member
JP2006249808A (en) Joining structure of pile and footing
JP6768477B2 (en) How to build an underground structure
JP5942342B2 (en) Reinforcement structure of existing structures
JP2016132948A (en) Connection structure
JP2016223208A (en) Pile foundation structure
JP7304248B2 (en) Pile head connection structure and construction method of pile head connection structure
JP2007170099A (en) Method for preventing differential settlement by reducing liquefaction of existing building foundation
JP6849523B2 (en) Outer shell steel pipe concrete pile and its manufacturing method
JP6522450B2 (en) SC pile
JP6233753B2 (en) Pile head structure and construction method of pile head structure
JP2008002180A (en) Manhole
JP6677564B2 (en) Reinforced basket and connection method of reinforced basket
KR100593182B1 (en) Reinforcement structure of a pile for building
KR20190122929A (en) Pier Unification Method for Extended Rock Mass Boring
JP2012136841A (en) Method for excavating ground under spread foundation of existing building, and base-isolating method for existing building
JP6419040B2 (en) Mountain retaining structure and construction method of mountain retaining structure
JP2005307512A (en) Building and construction method of the same
JP6229212B2 (en) How to install underground pillars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6406560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180905

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250