JP7440865B2 - How to recover silver in copper electrolyte - Google Patents

How to recover silver in copper electrolyte Download PDF

Info

Publication number
JP7440865B2
JP7440865B2 JP2020042778A JP2020042778A JP7440865B2 JP 7440865 B2 JP7440865 B2 JP 7440865B2 JP 2020042778 A JP2020042778 A JP 2020042778A JP 2020042778 A JP2020042778 A JP 2020042778A JP 7440865 B2 JP7440865 B2 JP 7440865B2
Authority
JP
Japan
Prior art keywords
ionic liquid
silver
copper
copper electrolyte
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020042778A
Other languages
Japanese (ja)
Other versions
JP2021143386A (en
Inventor
澄志 蟹江
淳司 村松
寛人 渡邉
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2020042778A priority Critical patent/JP7440865B2/en
Publication of JP2021143386A publication Critical patent/JP2021143386A/en
Application granted granted Critical
Publication of JP7440865B2 publication Critical patent/JP7440865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅電解精錬により銅電解液中に不純物として含まれる銀を回収する方法に関するものである。 The present invention relates to a method for recovering silver contained as an impurity in a copper electrolyte by copper electrolytic refining.

銅の電解精製は、硫酸酸性の硫酸銅水溶液を電解液とし、銅精鉱から乾式処理の工程を経て製造される粗銅をアノードとして用いて電解することで、カソード表面に純度の高い銅(電気銅)を製造するというものである。なお、カソードには、電気銅から別途作製した種板と呼ばれる薄い銅板や繰り返し使用可能なステンレス板等を用いる。 Electrolytic refining of copper is performed using a sulfuric acid acidic copper sulfate aqueous solution as an electrolyte and blister copper produced from copper concentrate through a dry processing process as an anode. Copper). Note that, for the cathode, a thin copper plate called a seed plate separately produced from electrolytic copper, a reusable stainless steel plate, or the like is used.

銅の電解精製における主要なアノード反応は、銅の溶解反応である。アノードとして使用する粗銅には、不純物として、金、銀、鉛、ニッケル、鉄、アンチモン、ビスマス、セレン、テルル、ヒ素等が含まれる。その中で、銀は、そのほとんどがアノードスライムと呼ばれる泥状の固体物質として電解槽の底にたまるが、塩化銀の溶解度分は電解液中に溶出可能であって電解液中に溶出した銀は銅と共にカソードに析出するようになる。 The main anode reaction in copper electrolytic refining is the copper dissolution reaction. The blister copper used as an anode contains impurities such as gold, silver, lead, nickel, iron, antimony, bismuth, selenium, tellurium, and arsenic. Among them, most of the silver accumulates at the bottom of the electrolytic cell as a muddy solid substance called anode slime, but the solubility of silver chloride can be eluted into the electrolyte, and the silver eluted into the electrolyte is begins to precipitate on the cathode together with copper.

銀は貴金属であり、カソードへの銀の析出を抑えて回収率を高くすることで、銅の電解精製プロセス全体の付加価値を向上させることができる。銀の回収率を向上させる方法として、例えば特許文献1に開示されているように電解条件を最適化する方法があるが、電解液中に溶出した銀の回収は困難であった。 Silver is a noble metal, and by suppressing the precipitation of silver on the cathode and increasing the recovery rate, it is possible to improve the added value of the entire copper electrolytic refining process. As a method for improving the recovery rate of silver, there is a method of optimizing electrolytic conditions as disclosed in Patent Document 1, for example, but it has been difficult to recover silver eluted into the electrolytic solution.

特開平8-176878号公報Japanese Patent Application Publication No. 8-176878 特開2017-043556号公報JP2017-043556A

本発明は、このような実情に鑑みて提案されたものであり、銅の電解精製により銅電解液中に溶出した銀を効率的に回収することができる方法を提供することを目的とする。 The present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a method that can efficiently recover silver eluted into a copper electrolyte by electrolytic refining of copper.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた結果、特定の濃度範囲で塩化物イオンを含有する銅電解液をアンモニウム塩型イオン液体に接触させることで、効率的に銀を抽出して回収できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have discovered that by bringing a copper electrolyte containing chloride ions in a specific concentration range into contact with an ammonium salt type ionic liquid, an efficient solution can be obtained. They discovered that silver can be extracted and recovered, leading to the completion of the present invention.

(1)本発明の第1の発明は、銅電解液に含まれる銀を回収する方法であって、アンモニウム塩型イオン液体を含むイオン液体相に前記銅電解液を接触させることにより該銅電解液に含まれる銀を抽出する抽出工程を含み、前記抽出工程では、前記イオン液体相に、塩化物イオン濃度を0.1mmol/L以上10mmol/L以下とした銅電解液を接触させることにより、該イオン液体相に銀のクロロ錯イオンを抽出する、銀の回収方法である。 (1) The first aspect of the present invention is a method for recovering silver contained in a copper electrolyte, which comprises bringing the copper electrolyte into contact with an ionic liquid phase containing an ammonium salt type ionic liquid. It includes an extraction step of extracting silver contained in the liquid, and in the extraction step, the ionic liquid phase is brought into contact with a copper electrolyte having a chloride ion concentration of 0.1 mmol/L or more and 10 mmol/L or less, This is a silver recovery method in which chlorocomplex ions of silver are extracted into the ionic liquid phase.

(2)本発明の第2の発明は、第1の発明において、前記アンモニウム塩型イオン液体は、下記式(I)

Figure 0007440865000001
(式中、R、R及びRは、炭素数1~12の置換又は非置換の炭化水素基を表し、RとRとRとは、同じであってもよく、互いに異なっていてもよく、それらが結合する窒素原子と共に互いに結合して環状アミンを形成してもよい。Rは、炭素数1~4の置換又は非置換の炭化水素基を表す。A及びBは、対アニオンを表す。nは、2~8の整数を表す。)で表される化合物である、銀の回収方法である。 (2) A second invention of the present invention is that in the first invention, the ammonium salt type ionic liquid has the following formula (I).
Figure 0007440865000001
(In the formula, R 1 , R 2 and R 3 represent a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, and R 1 , R 2 and R 3 may be the same or each other. They may be different, and may be bonded to each other together with the nitrogen atom to which they are bonded to form a cyclic amine. R 4 represents a substituted or unsubstituted hydrocarbon group having 1 to 4 carbon atoms. A - and B represents a counter anion. n represents an integer from 2 to 8.) This is a method for recovering silver, which is a compound represented by

(3)本発明の第3の発明は、第2の発明において、前記式(I)において、Aはハロゲン化物イオンであり、BはN(CFSOであり、さらに、nは3である、銀の回収方法である。 (3) The third invention of the present invention is the second invention, in which in the formula (I), A - is a halide ion, B - is N - (CF 3 SO 2 ) 2 , and further , n is 3, which is a silver recovery method.

本発明によれば、銅の電解精製により銅電解液中に溶出した銀を効率的に回収することができる。 According to the present invention, silver eluted into a copper electrolyte can be efficiently recovered by electrolytic refining of copper.

溶液中の塩化物イオン濃度に対する、銀の形態別のモル分率の関係を示すグラフ図である。FIG. 2 is a graph showing the relationship between the molar fraction of silver in each form and the chloride ion concentration in the solution.

以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, specific embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention. In this specification, the expression "X to Y" (X and Y are arbitrary numerical values) means "more than or equal to X and less than or equal to Y."

本実施の形態に係る銀の回収方法は、銅の電解精錬により電解液中に溶出した銀を回収する方法である。具体的には、アンモニウム塩型イオン液体を含むイオン液体相に銅電解液を接触させることによりその銅電解液に含まれる銀を抽出する抽出工程を含む。 The method for recovering silver according to the present embodiment is a method for recovering silver eluted into an electrolytic solution by electrolytic refining of copper. Specifically, it includes an extraction step of bringing a copper electrolyte into contact with an ionic liquid phase containing an ammonium salt type ionic liquid to extract silver contained in the copper electrolyte.

そして、この銀の回収方法では、抽出工程において、アンモニウム塩型イオン液体を含むイオン液体相に、塩化物イオン濃度を0.1mmol/L以上10mmol/L以下とした銅電解液を接触させることにより、そのイオン液体相に銀のクロロ錯イオンを抽出することを特徴としている。 In this silver recovery method, in the extraction step, a copper electrolyte with a chloride ion concentration of 0.1 mmol/L or more and 10 mmol/L or less is brought into contact with an ionic liquid phase containing an ammonium salt type ionic liquid. , is characterized by extracting silver chlorocomplex ions into its ionic liquid phase.

このような方法によれば、銅電解液中に含まれる銀を効率的に回収することができる。より具体的には、銅電解液中の銅や鉄等の抽出を抑制しながら、銀を選択的に、アンモニア塩型イオン液体を含むイオン液体相に抽出して回収することができる。 According to such a method, silver contained in the copper electrolyte can be efficiently recovered. More specifically, silver can be selectively extracted and recovered into an ionic liquid phase containing an ammonia salt type ionic liquid while suppressing the extraction of copper, iron, etc. in the copper electrolyte.

[アンモニア塩型イオン液体について]
上述したように、本実施の形態に係る銀の回収方法においては、銀を含む銅電解液を、アンモニウム塩型イオン液体を含むイオン液体相に接触させることを特徴としている。具体的に、そのアンモニア塩型イオン液体は、例えば下記式(I)で表される化合物を挙げることができる。
[About ammonia salt type ionic liquid]
As described above, the silver recovery method according to the present embodiment is characterized in that a copper electrolyte containing silver is brought into contact with an ionic liquid phase containing an ammonium salt type ionic liquid. Specifically, examples of the ammonia salt type ionic liquid include a compound represented by the following formula (I).

Figure 0007440865000002
Figure 0007440865000002

ここで、上記の式(I)において、R、R及びRは、それぞれ、炭素数1~12の置換又は非置換の炭化水素基を表し、RとRとRとは、同じであってもよく、互いに異なっていてもよい。また、R、R及びRは、それらが結合する窒素原子と共に互いに結合して環状アミンを形成してもよい。 Here, in the above formula (I), R 1 , R 2 and R 3 each represent a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, and R 1 , R 2 and R 3 are , may be the same or may be different from each other. Moreover, R 1 , R 2 and R 3 may be bonded to each other together with the nitrogen atom to which they are bonded to form a cyclic amine.

、R及びRの炭素数としては、水相と二相分離する特性を高める観点から、それぞれ、2~12が好ましく、3~8がより好ましく、4~8が特に好ましい。また、R、R及びRの炭化水素基としては、それぞれ、飽和であっても不飽和であってもよく、芳香族基、環状炭化水素基、直鎖炭化水素基、分岐鎖炭化水素基等が挙げられる。 The number of carbon atoms in R 1 , R 2 and R 3 is preferably 2 to 12, more preferably 3 to 8, particularly preferably 4 to 8, from the viewpoint of improving the property of separating into two phases from the aqueous phase. In addition, the hydrocarbon groups of R 1 , R 2 and R 3 may be saturated or unsaturated, and may include an aromatic group, a cyclic hydrocarbon group, a straight chain hydrocarbon group, a branched carbonized Examples include hydrogen groups.

、R及びRの置換炭化水素基における置換基としては、炭化水素基(飽和であっても不飽和であってもよく、芳香族基、環状炭化水素基、直鎖炭化水素基、分岐鎖炭化水素基等)、ヒドロキシル基、エーテル基、モルホリノ基、エステル基、アミド基、パーフルオロアルキル基、ニトリル基(シアノ基)、アミノ基、イミノ基、ウレア基、カルボキシル基、カルボニル基(アルデヒド基、ケトン基)、スルホン酸基(スルホ基)、ニトロ基、ハロゲン、等が挙げられる。これらの中でも、水相と二相分離する特性を高める観点から、直鎖炭化水素基、分岐鎖炭化水素基が好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Substituents in the substituted hydrocarbon groups of R 1 , R 2 and R 3 include hydrocarbon groups (which may be saturated or unsaturated, aromatic groups, cyclic hydrocarbon groups, linear hydrocarbon groups). , branched hydrocarbon group, etc.), hydroxyl group, ether group, morpholino group, ester group, amide group, perfluoroalkyl group, nitrile group (cyano group), amino group, imino group, urea group, carboxyl group, carbonyl group (aldehyde group, ketone group), sulfonic acid group (sulfo group), nitro group, halogen, etc. Among these, straight-chain hydrocarbon groups and branched-chain hydrocarbon groups are preferred from the viewpoint of enhancing the property of separating into two phases from the aqueous phase. These may be used alone or in combination of two or more.

また、Rは、炭素数1~4の置換又は非置換の炭化水素基を表す。Rの炭化水素基としては、直鎖炭化水素基、分岐鎖炭化水素基等が挙げられる。具体的には、メチル基、エチル基、プロピル基、ブチル基が挙げられる。 Further, R 4 represents a substituted or unsubstituted hydrocarbon group having 1 to 4 carbon atoms. Examples of the hydrocarbon group for R 4 include a straight chain hydrocarbon group and a branched chain hydrocarbon group. Specific examples include methyl group, ethyl group, propyl group, and butyl group.

また、A及びBは、対アニオンを表す。具体的に、Aは、合成の容易さの観点から、ハロゲン化物イオンが好ましい。また、Bは、N(CFSO(以下、「NTf 」とも称する)、P、B、Cl、CFSO 等が挙げられる。これらの中でも、Bとしては、化合物の疎水性を高める観点から、N(CFSOが好ましく、イオン液体の製造コストを低減する観点からすると、Clも好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Furthermore, A and B represent counteranions. Specifically, A - is preferably a halide ion from the viewpoint of ease of synthesis. Examples of B include N (CF 3 SO 2 ) 2 (hereinafter also referred to as “NTf 2 ”), P F 6 , B F 4 , Cl , CF 3 SO 3 −, and the like. Among these, B - is preferably N - (CF 3 SO 2 ) 2 from the viewpoint of increasing the hydrophobicity of the compound, and Cl - is also preferred from the viewpoint of reducing the production cost of the ionic liquid. These may be used alone or in combination of two or more.

また、nは、2~8の整数である。化合物の粘度及び疎水性を抽出剤として好適なものとする観点から、nは2~6が好ましく、nは3がより好ましい。 Further, n is an integer from 2 to 8. From the viewpoint of making the viscosity and hydrophobicity of the compound suitable as an extractant, n is preferably 2 to 6, and more preferably 3.

[イオン液体相]
本実施の形態に係る銀の回収方法では、上述したアンモニア塩型イオン液体を含むイオン液体相を用い、このイオン液体相に銀を含む銅電解液を接触させる。イオン液体相としては、上述したアンモニア塩型イオン液体の化合物を抽出剤とし、それに、抽出に関与しない他のイオン液体から構成される化合物を混合したものを使用することが好ましい。
[Ionic liquid phase]
In the silver recovery method according to the present embodiment, an ionic liquid phase containing the above-mentioned ammonia salt type ionic liquid is used, and a copper electrolyte containing silver is brought into contact with this ionic liquid phase. As the ionic liquid phase, it is preferable to use a mixture of the above-described ammonia salt type ionic liquid compound as an extractant and a compound composed of other ionic liquids that are not involved in extraction.

具体的に、他のイオン液体の化合物としては、例えば、カチオンが1-ブチル-3-メチルイミダゾリウム(以下、「BMIM」とも称する)、アニオンがN(CFSOから構成されるイオン液体を用いることができる。このようなイオン液体とアンモニア塩型イオン液体とを混合して構成されるイオン液体相を使用することで、常温で液体として安定する。 Specifically, other ionic liquid compounds include, for example, a cation composed of 1-butyl-3-methylimidazolium (hereinafter also referred to as "BMIM + ") and an anion composed of N - (CF 3 SO 2 ) 2 ionic liquids can be used. By using an ionic liquid phase formed by mixing such an ionic liquid and an ammonia salt type ionic liquid, it becomes stable as a liquid at room temperature.

イオン液体相において、アンモニア塩型イオン液体の含有割合としては、イオン液体100質量%に対して、1質量%~50質量%であることが好ましく、1質量%~10質量%であることがより好ましい。 In the ionic liquid phase, the content of the ammonia salt type ionic liquid is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 10% by mass, based on 100% by mass of the ionic liquid. preferable.

[抽出工程について]
抽出工程では、銅電解液に含まれる銀を、アンモニウム塩型イオン液体を含むイオン液体相に抽出する。処理対象の銅電解液は、粗銅をアノードとする銅の電解精製により、その粗銅に含まれる不純物の一部が溶出した電解液であり、特に、不純物としての銀が溶出した電解液である。また、この銅電解液には、カソード上に電着生成する電気銅の平滑化や均一電着の観点から、添加剤として添加した塩化物イオンが含まれている。
[About the extraction process]
In the extraction step, silver contained in the copper electrolyte is extracted into an ionic liquid phase containing an ammonium salt type ionic liquid. The copper electrolyte to be treated is an electrolytic solution in which some of the impurities contained in the blister copper have been eluted through electrolytic refining of copper using blister copper as an anode, and in particular, it is an electrolyte in which silver as an impurity has been eluted. In addition, this copper electrolytic solution contains chloride ions added as an additive from the viewpoint of smoothing and uniform electrodeposition of electrolytic copper formed on the cathode.

本実施の形態に係る銀の回収方法では、銀を含む銅電解液を、アンモニウム塩型イオン液体を含むイオン液体相に接触させることにより、そのイオン液体相に銀を抽出する。そのとき、イオン液体相に接触させる銅電解液中の塩化物イオン濃度が重要となり、具体的には、塩化物イオン濃度を0.1mmol/L以上10mmol/L以下とした銅電解液を接触させる。 In the silver recovery method according to the present embodiment, silver is extracted into the ionic liquid phase by bringing a copper electrolyte containing silver into contact with an ionic liquid phase containing an ammonium salt type ionic liquid. At that time, the chloride ion concentration in the copper electrolyte that is brought into contact with the ionic liquid phase is important, and specifically, the copper electrolyte that has a chloride ion concentration of 0.1 mmol/L or more and 10 mmol/L or less is brought into contact with the ionic liquid phase. .

図1は、溶液中の塩化物イオン濃度に対する、銀の形態別のモル分率の関係を示すグラフ図である。図1に示すように、銅電解液中の塩化物イオン濃度が0.1mmol(0.0001mol)/L未満であると、銀のクロロ錯体イオンである[AgCl ]のモル分率がほぼゼロとなり、イオン液体相への抽出が困難となる。また、銅電解液中の塩化物イオン濃度が10mmol(0.01mol)/Lを超えると、銅電解に際してカソード上に電着する銅がデンドライト状に析出するようになるという問題がある。 FIG. 1 is a graph showing the relationship between the mole fraction of each form of silver and the chloride ion concentration in a solution. As shown in FIG. 1, when the chloride ion concentration in the copper electrolyte is less than 0.1 mmol (0.0001 mol)/L, the molar fraction of [AgCl 2 ], which is a silver chloro complex ion, is approximately It becomes zero, making extraction into the ionic liquid phase difficult. Furthermore, if the chloride ion concentration in the copper electrolyte exceeds 10 mmol (0.01 mol)/L, there is a problem that copper electrodeposited on the cathode during copper electrolysis will precipitate in the form of dendrites.

これに対して、塩化物イオン濃度を0.1mmol/L以上10mmol/L以下の範囲とした銅電解液を、アンモニウム塩型イオン液体を含むイオン液体相に接触させることにより、そのイオン液体相に銀のクロロ錯イオンを効果的に抽出することができる。 In contrast, by bringing a copper electrolyte with a chloride ion concentration in the range of 0.1 mmol/L to 10 mmol/L into contact with an ionic liquid phase containing an ammonium salt type ionic liquid, the ionic liquid phase Silver chloro complex ions can be extracted effectively.

銅電解液中の塩化物イオン濃度の調整は、特に限定されないが、例えば、銅電解液の一部を採取して分析により塩化物イオン濃度を確認し、適宜塩酸を添加することにより行うことができる。例えば、アンモニウム塩型イオン液体を含むイオン液体相への抽出により塩化物イオン濃度が減少したと認められた場合には、塩酸を添加して塩化物イオン濃度が上記の範囲内となるように調整することができる。 Adjustment of the chloride ion concentration in the copper electrolyte is not particularly limited, but may be carried out, for example, by sampling a portion of the copper electrolyte, checking the chloride ion concentration by analysis, and adding hydrochloric acid as appropriate. can. For example, if it is recognized that the chloride ion concentration has decreased due to extraction into an ionic liquid phase containing an ammonium salt type ionic liquid, add hydrochloric acid to adjust the chloride ion concentration to within the above range. can do.

ここで、銀を含む銅電解液を、アンモニウム塩型イオン液体を含むイオン液体相に接触させる抽出操作による金属元素の抽出率は、以下のようにして算出できる。
(抽出率)
抽出操作前の銅電解液中の金属元素の濃度C、抽出操作後の銅電解液中の金属元素の濃度をCとしたとき、その金属元素の抽出率E(%)は次式により算出できる。
E=(C-C)/C×100
Here, the extraction rate of metal elements by an extraction operation in which a copper electrolyte containing silver is brought into contact with an ionic liquid phase containing an ammonium salt type ionic liquid can be calculated as follows.
(extraction rate)
When the concentration of the metal element in the copper electrolyte before the extraction operation is C0 , and the concentration of the metal element in the copper electrolyte after the extraction operation is C1 , the extraction rate E (%) of the metal element is calculated by the following formula: It can be calculated.
E=(C 0 - C 1 )/C 0 ×100

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by showing examples, but the present invention is not limited to the following examples.

なお、実施例での銅電解液中の金属元素の分析は、ICP発光分析法及び原子吸光分析法により行った。また、塩化物イオン濃度の分析は、塩化銀分離による蛍光X線法により行った。 In addition, the analysis of metal elements in the copper electrolyte in the examples was performed by ICP emission spectrometry and atomic absorption spectrometry. In addition, analysis of chloride ion concentration was performed by fluorescent X-ray method using silver chloride separation.

[アンモニウム塩型イオン液体の合成、イオン液体相の調製]
(アンモニウム塩型イオン液体の原材料)
下記の原材料を使用してアンモニア塩型イオン液体を合成した。なお、これらは特に断りのない限り、更なる精製を行うことなく使用した。
・1,3-ジブロモプロパン(富士フイルム和光純薬社製)
・1-メチルイミダゾール(東京化成社製)
・ビス(トリフルオロメタンスルホニル)イミドリチウム(アルドリッチ社製)
・ジメチルアミン(東京化成社製)
・ヨードメタン(東京化成社製)
[Synthesis of ammonium salt type ionic liquid, preparation of ionic liquid phase]
(Raw material for ammonium salt type ionic liquid)
An ammonia salt type ionic liquid was synthesized using the following raw materials. Note that these were used without further purification unless otherwise specified.
・1,3-dibromopropane (manufactured by Fujifilm Wako Pure Chemical Industries)
・1-Methylimidazole (manufactured by Tokyo Kasei Co., Ltd.)
・Lithium bis(trifluoromethanesulfonyl)imide (manufactured by Aldrich)
・Dimethylamine (manufactured by Tokyo Kasei Co., Ltd.)
・Iodomethane (manufactured by Tokyo Kasei Co., Ltd.)

具体的に、下記式(II)に示す合成スキームにより、化合物(アンモニウム塩型イオン液体)を合成した。なお、各プロセスにおいて得られた化合物のH-NMRについては、以下の解析機器を用いて解析した。
H-NMR:Bruker Daltonics社製、(商品名)AV400M digital NMR
・ICP-AES:日立ハイテクサイエンス社製、(商品名)SPECTRO ARCOS
Specifically, a compound (ammonium salt type ionic liquid) was synthesized according to the synthesis scheme shown in the following formula (II). Note that 1 H-NMR of the compounds obtained in each process was analyzed using the following analytical equipment.
1H -NMR: Bruker Daltonics, (product name) AV400M digital NMR
・ICP-AES: Manufactured by Hitachi High-Tech Science Co., Ltd. (product name) SPECTRO ARCOS

Figure 0007440865000003
Figure 0007440865000003

([1-(3-ブロモプロピル)-3-メチルイミダゾリウムブロミド](「化合物[1])の合成)
四口丸底フラスコ(1000mL)に、1、3-ジブロモプロパン200g(1.08mol)のアセトン溶液250mLを加え、フラスコ内をアルゴン置換した。アセトン50mLに1-メチルイミダゾール8.21g(100mmol)を溶解させ、この溶液を30分間かけて滴下した。その後、反応溶液を、45℃に設定したオイルバスで20時間、加熱環流させ、反応を行った。反応の際に生じた白色固体と反応溶液とを、デカンテーションにより分離した。また、白色固体を少量のエタノールで溶解させた後、アセトンを多量に加えることによって白色固体を再沈殿させ、白色固体中の生成物をアセトンに溶解させた。残った固体と溶液とを、再びデカンテーションにより分離した。反応溶液とこの溶液とを合わせた後、ロータリーエバポレーター及び真空乾燥機を用いて減圧濃縮した。この後、反応溶液/水で分液操作を行い、上相の水相を取り出した。次いで、水(HO)/ヘキサンで分液操作を行い、下相の水相を取り出した。得られた水溶液を、ロータリーエバポレーター及び真空乾燥機を用いて減圧濃縮した。こうして、無色液体の化合物1(C12Br)を収率81%で得た(23.3g、81.7mmol)。
(Synthesis of [1-(3-bromopropyl)-3-methylimidazolium bromide] (“Compound [1]))”
250 mL of an acetone solution of 200 g (1.08 mol) of 1,3-dibromopropane was added to a four-necked round-bottomed flask (1000 mL), and the inside of the flask was purged with argon. 8.21 g (100 mmol) of 1-methylimidazole was dissolved in 50 mL of acetone, and this solution was added dropwise over 30 minutes. Thereafter, the reaction solution was heated and refluxed in an oil bath set at 45° C. for 20 hours to carry out the reaction. The white solid produced during the reaction and the reaction solution were separated by decantation. Further, after dissolving the white solid in a small amount of ethanol, the white solid was reprecipitated by adding a large amount of acetone, and the product in the white solid was dissolved in acetone. The remaining solid and solution were again separated by decantation. The reaction solution and this solution were combined and concentrated under reduced pressure using a rotary evaporator and a vacuum dryer. Thereafter, a liquid separation operation was performed using the reaction solution/water, and the upper aqueous phase was taken out. Next, a liquid separation operation was performed using water (H 2 O)/hexane, and the lower aqueous phase was taken out. The resulting aqueous solution was concentrated under reduced pressure using a rotary evaporator and a vacuum dryer. In this way, Compound 1 (C 7 H 12 Br 2 N 2 ) as a colorless liquid was obtained in a yield of 81% (23.3 g, 81.7 mmol).

得られた化合物のH-NMRの結果は下記の通りであった。
H-NMR(400MHz,CDCl)δ=2.58(quin,J=6.6Hz,2H),3.50(t,J=6.2Hz,2H),4.13(s,3H),4.61(t,J=6.8Hz,2H),7.58(t,J=1.8Hz,1H),7.64(t,J=1.8Hz,1H),10.35(s,1H)
The results of 1 H-NMR of the obtained compound were as follows.
1 H-NMR (400 MHz, CDCl 3 ) δ = 2.58 (quin, J = 6.6 Hz, 2H), 3.50 (t, J = 6.2 Hz, 2H), 4.13 (s, 3H) , 4.61 (t, J = 6.8 Hz, 2H), 7.58 (t, J = 1.8 Hz, 1H), 7.64 (t, J = 1.8 Hz, 1H), 10.35 ( s, 1H)

([1-(3-ブロモプロピル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド)](「化合物[2]」)の合成)
ナスフラスコ(300mL)に、水(HO)150mLを加え、化合物[1]23.20g(81.7mmol)、ビス(トリフルオロメタンスルホニル)イミドリチウム25.8g(89.9mmol)を、水に溶解させた。その後、室温で1時間撹拌しながら反応を行い、反応溶液をクロロホルム(CHCl)で抽出した。抽出溶液について、無水硫酸マグネシウム(MgSO)を用いた脱水操作、セライト濾過、ロータリーエバポレーター及び真空乾燥機を用いた減圧濃縮を行った。こうして、無色液体の化合物[2](C12BrF)を収率91%で得た(35.91g、74.2mmol)。
(Synthesis of [1-(3-bromopropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide)] (“Compound [2]”))
Add 150 mL of water (H 2 O) to an eggplant flask (300 mL), and add 23.20 g (81.7 mmol) of compound [1] and 25.8 g (89.9 mmol) of lithium bis(trifluoromethanesulfonyl)imide to the water. Dissolved. Thereafter, the reaction was carried out with stirring at room temperature for 1 hour, and the reaction solution was extracted with chloroform (CHCl 3 ). The extracted solution was dehydrated using anhydrous magnesium sulfate (MgSO 4 ), filtered through Celite, and concentrated under reduced pressure using a rotary evaporator and a vacuum dryer. In this way, a colorless liquid compound [2] (C 9 H 12 BrF 6 N 3 O 4 S 2 ) was obtained in a yield of 91% (35.91 g, 74.2 mmol).

得られた化合物のH-NMRの結果は下記の通りであった。
H-NMR(400MHz,CDCl)δ=2.44(quin,J=6.5Hz,2H),3.50(t,J=6.0Hz,2H),3.97(s,3H),4.42(t,J=7.0Hz,2H),7.29(t,J=1.8Hz,1H),7.35(t,J=1.8Hz,1H),8.85(s,1H)
The results of 1 H-NMR of the obtained compound were as follows.
1 H-NMR (400 MHz, CDCl 3 ) δ = 2.44 (quin, J = 6.5 Hz, 2H), 3.50 (t, J = 6.0 Hz, 2H), 3.97 (s, 3H) , 4.42 (t, J = 7.0 Hz, 2H), 7.29 (t, J = 1.8 Hz, 1H), 7.35 (t, J = 1.8 Hz, 1H), 8.85 ( s, 1H)

([1-3-(ジメチルアミノプロピル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド](「化合物[3]」)の合成)
三口丸底フラスコ(500mL)に、化合物[2]と、ジメチルアミンとを加え、フラスコ内をアルゴン置換した。その後、反応溶液を室温で24時間還流して反応させた。反応溶液をロータリーエバポレーターで減圧濃縮させた。濃縮した反応溶液をCHCl/5質量%NHaq.で分液操作を行い、上相の5質量%NHaq.を除去した。加えて、CHCl/HOで分液操作を行い、下相のCHCl相を洗浄した。無水MgSOで脱水操作を行った後、有機相をセライト濾過し、ロータリーエバポレーターで減圧濃縮した。さらに、得られた液体/ヘキサンでさらに分液操作を行い、イオン液体相を洗浄した。ロータリーエバポレーターと真空乾燥機で減圧濃縮することで、淡黄色の液体として化合物[3]を収率62%で得た(11.5g,25.6mmol)。
(Synthesis of [1-3-(dimethylaminopropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] (“Compound [3]”))
Compound [2] and dimethylamine were added to a three-neck round bottom flask (500 mL), and the inside of the flask was replaced with argon. Thereafter, the reaction solution was refluxed at room temperature for 24 hours to react. The reaction solution was concentrated under reduced pressure using a rotary evaporator. The concentrated reaction solution was mixed with CHCl 3 /5% by mass NH 3 aq. The upper phase was separated by 5% by mass NH 3 aq. was removed. In addition, a liquid separation operation was performed using CHCl 3 /H 2 O to wash the lower CHCl 3 phase. After dehydration with anhydrous MgSO 4 , the organic phase was filtered through Celite and concentrated under reduced pressure using a rotary evaporator. Further, a liquid separation operation was performed using the obtained liquid/hexane to wash the ionic liquid phase. By concentrating under reduced pressure using a rotary evaporator and a vacuum dryer, compound [3] was obtained as a pale yellow liquid in a yield of 62% (11.5 g, 25.6 mmol).

得られた化合物のH-NMRの結果は下記の通りであった。
H-NMR(400MHz,CDCl)δ=2.00(tt,J=6.8Hz,6.6Hz,2H),2.19(s,6H),2.25(t,J=6.4Hz,2H),3.96(s,3H),4.28(t,J=6.8Hz,2H),7.27(t,1H),7.33(t,1H),8.80(s,1H)
The results of 1 H-NMR of the obtained compound were as follows.
1 H-NMR (400 MHz, CDCl 3 ) δ=2.00 (tt, J=6.8 Hz, 6.6 Hz, 2H), 2.19 (s, 6H), 2.25 (t, J=6. 4Hz, 2H), 3.96 (s, 3H), 4.28 (t, J=6.8Hz, 2H), 7.27 (t, 1H), 7.33 (t, 1H), 8.80 (s, 1H)

(ヨウ化1-(3-トリメチルアンモニウムプロピル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(「化合物[4]」)の合成)
三口丸底フラスコ(300mL)に、化合物[3]と、ヨードメタンと、メタノールとを加えた後、反応溶液を室温で24時間撹拌した。反応溶液をロータリーエバポレーターと真空乾燥機で減圧濃縮することで淡黄色の固体として化合物[4]を収率100%で得た(1.41g,2.38mmol)。
(Synthesis of 1-(3-trimethylammoniumpropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (“Compound [4]”))
After adding compound [3], iodomethane, and methanol to a three-neck round bottom flask (300 mL), the reaction solution was stirred at room temperature for 24 hours. The reaction solution was concentrated under reduced pressure using a rotary evaporator and a vacuum dryer to obtain compound [4] as a pale yellow solid with a yield of 100% (1.41 g, 2.38 mmol).

得られた化合物のH-NMRの結果は下記の通りであった。
H-NMR(400MHz,MeOD)δ=2.46(m,2H),3.19(s,9H),3.50(tt,2H),3.95(s,3H),4.36(t,J=7.2Hz,2H),7.62(t,1H),7.70(t,1H),8.99(s,1H)
The results of 1 H-NMR of the obtained compound were as follows.
1 H-NMR (400MHz, MeOD) δ = 2.46 (m, 2H), 3.19 (s, 9H), 3.50 (tt, 2H), 3.95 (s, 3H), 4.36 (t, J=7.2Hz, 2H), 7.62 (t, 1H), 7.70 (t, 1H), 8.99 (s, 1H)

(イオン液体相の調製)
化合物[4]1.0g(1.7mmol)を5質量%の濃度になるように、「BMIM」「NTf 」と混合してイオン液体相を作製した。
(Preparation of ionic liquid phase)
An ionic liquid phase was prepared by mixing 1.0 g (1.7 mmol) of compound [4] with "BMIM + " and "NTf 2 - " to a concentration of 5% by mass.

[銅電解液からの銀の抽出]
(抽出工程)
下記表1に示す液組成の銅電解液2mLを、上記したように作製したイオン液体相0.4gと混合し、25℃、100rpmの条件で水平往復振盪させて、銅電解液とアンモニウム塩型イオン液体を含むイオン液体相とを接触させた。ここで、銅電解液中の塩化物イオン濃度は1.1mmol/Lであった。
[Extraction of silver from copper electrolyte]
(Extraction process)
2 mL of the copper electrolyte having the liquid composition shown in Table 1 below was mixed with 0.4 g of the ionic liquid phase prepared as described above, and the mixture was horizontally reciprocated at 25°C and 100 rpm to form the copper electrolyte and ammonium salt type. An ionic liquid phase containing an ionic liquid was brought into contact with the ionic liquid phase. Here, the chloride ion concentration in the copper electrolyte was 1.1 mmol/L.

Figure 0007440865000004
Figure 0007440865000004

下記表2に、抽出操作により得られたイオン液体相の分析結果を示す。表2に示す各金属元素の抽出率からわかるように、銅をほとんど抽出することなく、銀を100%抽出して回収することができた。 Table 2 below shows the analysis results of the ionic liquid phase obtained by the extraction operation. As can be seen from the extraction rates of each metal element shown in Table 2, 100% of silver could be extracted and recovered while hardly any copper was extracted.

Figure 0007440865000005
Figure 0007440865000005

Claims (1)

銅電解液に含まれる銀を回収する方法であって、
アンモニウム塩型イオン液体を含むイオン液体相に前記銅電解液を接触させることにより該銅電解液に含まれる銀を抽出する抽出工程を含み、
前記アンモニウム塩型イオン液体は、(ヨウ化1-(3-トリメチルアンモニウムプロピル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドであり、
前記抽出工程では、前記イオン液体相に、塩化物イオン濃度を0.1mmol/L以上10mmol/L以下とした銅電解液を接触させることにより、該イオン液体相に銀のクロロ錯イオンを抽出する、
銀の回収方法。

A method for recovering silver contained in a copper electrolyte, the method comprising:
an extraction step of extracting silver contained in the copper electrolyte by bringing the copper electrolyte into contact with an ionic liquid phase containing an ammonium salt type ionic liquid;
The ammonium salt type ionic liquid is (1-(3-trimethylammoniumpropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide),
In the extraction step, silver chlorocomplex ions are extracted into the ionic liquid phase by contacting the ionic liquid phase with a copper electrolyte having a chloride ion concentration of 0.1 mmol/L or more and 10 mmol/L or less. ,
How to recover silver.

JP2020042778A 2020-03-12 2020-03-12 How to recover silver in copper electrolyte Active JP7440865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042778A JP7440865B2 (en) 2020-03-12 2020-03-12 How to recover silver in copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042778A JP7440865B2 (en) 2020-03-12 2020-03-12 How to recover silver in copper electrolyte

Publications (2)

Publication Number Publication Date
JP2021143386A JP2021143386A (en) 2021-09-24
JP7440865B2 true JP7440865B2 (en) 2024-02-29

Family

ID=77766032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042778A Active JP7440865B2 (en) 2020-03-12 2020-03-12 How to recover silver in copper electrolyte

Country Status (1)

Country Link
JP (1) JP7440865B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285691A (en) 2007-05-15 2008-11-27 Sumitomo Metal Mining Co Ltd Method for recovering silver
JP2012149318A (en) 2011-01-20 2012-08-09 Chiba Univ Method for extracting palladium and platinum
US20140299543A1 (en) 2010-12-17 2014-10-09 University Of South Australia Extraction of metals
JP2015004135A (en) 2010-04-15 2015-01-08 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Method for recycling of obsolete printed circuit boards
JP2017043556A (en) 2015-08-26 2017-03-02 国立大学法人東北大学 Compound, ionic liquid, platinum group element extraction agent, and platinum group element extraction method
JP2018513281A (en) 2015-04-21 2018-05-24 ユニバーシティ オブ サスカチュワン Method for selectively leaching and extracting noble metals in organic solvents
JP2018525534A (en) 2015-08-10 2018-09-06 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Process for extracting and recovering tantalum present in acidic aqueous phase with ionic liquid, and use of such ionic liquid for extracting tantalum from acidic aqueous phase

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285691A (en) 2007-05-15 2008-11-27 Sumitomo Metal Mining Co Ltd Method for recovering silver
JP2015004135A (en) 2010-04-15 2015-01-08 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Method for recycling of obsolete printed circuit boards
JP2017041655A (en) 2010-04-15 2017-02-23 インテグリス・インコーポレーテッド Method for recycling obsolete printed circuit board
US20140299543A1 (en) 2010-12-17 2014-10-09 University Of South Australia Extraction of metals
JP2012149318A (en) 2011-01-20 2012-08-09 Chiba Univ Method for extracting palladium and platinum
JP2018513281A (en) 2015-04-21 2018-05-24 ユニバーシティ オブ サスカチュワン Method for selectively leaching and extracting noble metals in organic solvents
JP2018525534A (en) 2015-08-10 2018-09-06 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Process for extracting and recovering tantalum present in acidic aqueous phase with ionic liquid, and use of such ionic liquid for extracting tantalum from acidic aqueous phase
JP2017043556A (en) 2015-08-26 2017-03-02 国立大学法人東北大学 Compound, ionic liquid, platinum group element extraction agent, and platinum group element extraction method

Also Published As

Publication number Publication date
JP2021143386A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP2712940B1 (en) Scandium extraction method
JP6685039B2 (en) Compound, ionic liquid, platinum group element extractant, platinum group element extraction method
JP7440865B2 (en) How to recover silver in copper electrolyte
JP2015040332A (en) Method for recovering scandium
CN105074023A (en) Extraction agent for precious metals and rhenium, and extraction method for precious metals and rhenium using same
JP2023136040A (en) Silver collection method for collecting from copper electrolyte
WO2004080974A1 (en) A purification method of ionic liquids to obtain their high purity
JP2011519885A (en) Method for producing palladium (hydrogen) carbonate complex having amine ligand
JP2021195587A (en) Silver recovery agent, ionic liquid
FR2478078A2 (en) Olefin hydroformylation in presence of sulphonated phosphine - in aq. soln. contg. rhodium cpd. in specified concn.
EP0189120A1 (en) Process for the electrocarboxylation of carbonyl compounds for producing alpha-hydroxycarboxylic acids
JP2007070293A (en) Method for synthesizing ionic liquid and the ionic liquid
JP2008297221A (en) Method for producing brightener for plating
FI66653C (en) FOERFARANDE FOER SEPARERING OCH AOTERVINNING AV KOBOLT OCH NICKEL FRAON DERAS VATTENLOESNINGAR
Sargsyan et al. Polymer chelates of fe, co, and ni based on 5-ethynyl-2 H-tetrazole
JP2016044147A (en) Manufacturing method of organic halide
TWI324618B (en) Processes for the preparation of bis(trifluoromethyl)imido salts
CN110483378B (en) Pyridine ether compound, preparation method thereof and application of pyridine ether compound as copper extractant
JPS589131B2 (en) How do you know what to do?
JP5595543B1 (en) Valuable metal extraction method
CN110590676B (en) Method for separating 1-octyl-3-methylimidazole lactate ionic liquid in benzene-methanol system
JP3806181B2 (en) Method for producing naphthalene aldehydes
SU1527323A1 (en) Method of producing mercury-manganese alloy
Ojo et al. Activation of propargylic alcohols by dimolybdenum tris (μ-thiolate) complexes: Influence of the substituents R in HCCCR2 (OH)-vinylidene/allenylidene transformation. Reactivity of allenylidene complexes
RU2202541C2 (en) 1,4-dialkylethylenediamine-4'-thioaldehydes as extractants of precious metals and method of their synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7440865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150