JP2008285691A - Method for recovering silver - Google Patents

Method for recovering silver Download PDF

Info

Publication number
JP2008285691A
JP2008285691A JP2007128754A JP2007128754A JP2008285691A JP 2008285691 A JP2008285691 A JP 2008285691A JP 2007128754 A JP2007128754 A JP 2007128754A JP 2007128754 A JP2007128754 A JP 2007128754A JP 2008285691 A JP2008285691 A JP 2008285691A
Authority
JP
Japan
Prior art keywords
silver
aqueous solution
crown ether
organic solvent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128754A
Other languages
Japanese (ja)
Inventor
Miki Masuda
幹 増田
Masahiro Nabeshima
正宏 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007128754A priority Critical patent/JP2008285691A/en
Publication of JP2008285691A publication Critical patent/JP2008285691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, from a silver-containing aqueous solution in which silver and the other metal are coexistent, silver is efficiently and selectively separated and recovered by an extraction process. <P>SOLUTION: A silver-containing aqueous solution is admixed with inorganic acid at a concentration of 0.5 to 2 mol/l, the aqueous solution and a crown ether-containing organic solvent are contacted, so as to extract silver into the organic solvent, and thereafter, the silver is stripped from the organic solvent, so as to be recovered. As the crown ether, the one having a group comprising 6 pieces of oxygen such as dicyclohexano-18C6-crown ether and benzo-18C6-crown ether is preferable. Further, as the inorganic acid, nitric acid, perchloric acid or the like can be suitably used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銀を含有する水溶液中から、抽出法により銀を選択的に分離回収する方法に関するものである。   The present invention relates to a method for selectively separating and recovering silver from an aqueous solution containing silver by an extraction method.

メッキ工程からの洗浄排水、写真の現像排液、銅の電解排液などには銀が含まれているが、これら銀を含有する水溶液から銀を回収することは、有価金属の有効利用という点で重要である。また、銅の電解液には数ppmの銀が含まれているため、事前に銀だけを回収することで電気銅の品位向上も期待できる。   Cleaning drainage from the plating process, photographic developer drainage, copper electrolytic drainage, etc. contain silver, but recovery of silver from these silver-containing aqueous solutions is an effective use of valuable metals. Is important. Moreover, since several ppm of silver is contained in the copper electrolyte, the quality of electrolytic copper can be improved by collecting only silver in advance.

従来から、銀を含有する水溶液から銀を回収する方法としては、電気分解法、沈殿法、イオン交換法、抽出法などが知られている。このうち抽出法によれば、銀への選択性の高い捕集剤を利用することで、他の金属イオンが共存する水溶液から銀を選択的に分離、回収することができる。   Conventionally, as a method for recovering silver from an aqueous solution containing silver, an electrolysis method, a precipitation method, an ion exchange method, an extraction method, and the like are known. Among these, according to the extraction method, silver can be selectively separated and recovered from an aqueous solution in which other metal ions coexist by using a collector having high selectivity to silver.

例えば、特開昭60−228626号公報には、銀を含む硝酸性溶液をジアルキル燐酸とオキシムからなる混合抽出剤に接触させることで銀を溶媒抽出する方法が記載されている。しかし、他の金属が共存する場合の選択性については記載がなく、その影響は不明である。   For example, Japanese Patent Application Laid-Open No. 60-228626 describes a method of solvent extraction of silver by bringing a nitrate solution containing silver into contact with a mixed extractant composed of dialkyl phosphoric acid and oxime. However, there is no description about selectivity when other metals coexist, and its influence is unknown.

また、特開平08−169714号公報によれば、マンガン、ニッケル、亜鉛、鉄、カドミウム及び銅を含む銀含有水溶液を、O,O−ビス(2−エチルヘキシル)ハイドロジエンチオホスフェートを担持した多孔質樹脂と接触させて、これに銀を吸着させたのち有機溶剤で溶出させ、この銀を含む有機溶剤から銀を回収する方法が記載されている。しかし、水相中の塩酸が5モル/リットル程度存在しないと銀イオンと共に多くの銅が抽出されるため、多くの酸が必要である。更に、逆抽出剤としてチオ尿酸と塩酸を含む溶液を使用するため、取扱いが難しいという問題がある。   Further, according to Japanese Patent Application Laid-Open No. 08-169714, a silver-containing aqueous solution containing manganese, nickel, zinc, iron, cadmium and copper is supported by a porous material carrying O, O-bis (2-ethylhexyl) hydrogenthiophosphate. A method is described in which silver is adsorbed on a resin and then eluted with an organic solvent, and the silver is recovered from the organic solvent containing silver. However, if the hydrochloric acid in the aqueous phase is not present at about 5 mol / liter, a large amount of copper is extracted together with silver ions, so that a large amount of acid is required. Furthermore, since a solution containing thiouric acid and hydrochloric acid is used as a back extractant, there is a problem that handling is difficult.

また、銀の選択性の高い抽出剤として、クラウンエーテルが知られている。クラウンエーテルの配位子は環状構造を形成しているため、サイズ効果などにより高い選択性が期待できる。例えば、特開2002−97183号公報には、銀の選択的抽出試薬として、アルカノイルモノアザクラウンエーテルが開示されている。しかしながら、この公報には具体的な抽出条件に関する記載はない。   In addition, crown ether is known as an extractant with high silver selectivity. Since the ligand of the crown ether forms a cyclic structure, high selectivity can be expected due to the size effect and the like. For example, JP-A-2002-97183 discloses alkanoyl monoaza crown ether as a selective extraction reagent for silver. However, this publication does not describe specific extraction conditions.

特開昭60−228626号公報JP 60-228626 A 特開平08−169714号公報Japanese Patent Laid-Open No. 08-169714 特開2002−97183号公報JP 2002-97183 A

本発明は、上記した従来の事情に鑑み、銀と他の金属とが共存する銀含有水溶液から、抽出方法により銀を選択的に且つ効率よく分離、回収する方法を提供することを目的とする。   In view of the above-described conventional circumstances, an object of the present invention is to provide a method for selectively and efficiently separating and recovering silver by an extraction method from a silver-containing aqueous solution in which silver and other metals coexist. .

上記目的を達成するため、本発明が提供する銀の回収方法は、銀を含有する水溶液に無機酸を0.5〜2モル/リットルの濃度で添加し、該水溶液とクラウンエーテルを含む有機溶媒とを接触させて有機溶媒中に銀を抽出した後、該有機溶媒から銀を逆抽出することを特徴とする。   To achieve the above object, the silver recovery method provided by the present invention comprises adding an inorganic acid to an aqueous solution containing silver at a concentration of 0.5 to 2 mol / liter, and an organic solvent containing the aqueous solution and crown ether. And silver is extracted into the organic solvent, and then silver is back-extracted from the organic solvent.

本発明によれば、銀と他の金属とが共存する銀含有水溶液から、抽出方法により、銀だけを選択的に且つ効率よく回収することができる。従って、メッキ工程からの洗浄排水、写真の現像排液、銅の電解排液などから貴重な銀の回収が可能となる。また、銅の電解液に適用すれば、銀の回収だけでなく、より高純度の電気銅の生産に寄与することができる。   According to the present invention, only silver can be selectively and efficiently recovered by an extraction method from a silver-containing aqueous solution in which silver and other metals coexist. Therefore, valuable silver can be recovered from the washing waste water from the plating process, the photographic developing waste water, the electrolytic copper waste water, and the like. Moreover, if it applies to the electrolytic solution of copper, it can contribute not only to the recovery of silver but also to the production of higher purity electrolytic copper.

本発明による銀の回収方法においては、クラウンエーテルを含む有機溶媒を用いて銀含有水溶液から有機溶媒中に銀を抽出する際に、その銀含有水溶液に無機酸を添加して、無機酸の濃度を0.5〜2モル/リットルの範囲に調製する。この無機酸濃度を調製した水溶液に、クラウンエーテルを溶解させた有機溶媒を接触させることによって、銀含有水溶液から銀を選択的に且つ効率よく抽出して有機溶媒中に移行させることができる。   In the silver recovery method according to the present invention, when extracting silver from a silver-containing aqueous solution into an organic solvent using an organic solvent containing crown ether, an inorganic acid is added to the silver-containing aqueous solution, and the concentration of the inorganic acid Is prepared in the range of 0.5 to 2 mol / liter. By bringing an organic solvent in which crown ether is dissolved into contact with the aqueous solution prepared with the inorganic acid concentration, silver can be selectively and efficiently extracted from the silver-containing aqueous solution and transferred into the organic solvent.

クラウンエーテルによる銀の抽出の際に無機酸の共存が有効な理由は以下のとおりである。上記抽出工程において銀含有水溶液とクラウンエーテルを含む有機溶媒とが接触すると、一部のクラウンエーテルが水溶液中に分配し、そのクラウンエーテルと銀とがカチオンの錯体を形成し、続いて、その錯体がアニオンとイオン対を形成して有機溶媒中に移行する。従って、錯体とイオン対を形成するアニオンの濃度が大きくなるほど、平衡はイオン対を形成する方に傾く、即ち水溶液中の銀は有機溶媒に抽出されやすくなる。   The reason why the coexistence of the inorganic acid is effective in the extraction of silver with crown ether is as follows. When the silver-containing aqueous solution and the organic solvent containing crown ether are contacted in the extraction step, a part of the crown ether is distributed in the aqueous solution, and the crown ether and silver form a cation complex, and then the complex Forms an ion pair with the anion and moves into the organic solvent. Therefore, the greater the concentration of anions that form ion pairs with the complex, the more the equilibrium tends to form ion pairs, that is, the silver in the aqueous solution is more likely to be extracted into the organic solvent.

上記錯体とイオン対を形成するアニオンとしては、分子容が大きく、水和しにくい方が抽出性はよいため、一般的には有機アニオンの方が無機アニオンよりも優れているといえるが、扱い易さや廃棄などの後処理を考慮すると、無機アニオンが好適に使用できる。無機アニオン源としては、無機酸、カリウム塩、ナトリウム塩などが考えられる。しかし、カリウムやナトリウムはイオン半径が銀に近く、銀の抽出を妨害するため、無機酸が望ましい。更に、無機酸としては、硝酸や過塩素酸などが好適に使用できる。   As anions that form ion pairs with the above complexes, organic anions are generally better than inorganic anions because they have a large molecular volume and are less hydrated and have better extractability. In view of ease and post-treatment such as disposal, inorganic anions can be used preferably. As the inorganic anion source, inorganic acids, potassium salts, sodium salts and the like can be considered. However, since potassium and sodium have an ionic radius close to that of silver and interfere with silver extraction, inorganic acids are desirable. Furthermore, nitric acid or perchloric acid can be suitably used as the inorganic acid.

銀含有水溶液中の無機酸の濃度は、0.5〜2モル/リットルの範囲とすることが必要である。水溶液中の無機酸の濃度が2モル/リットルを超えると、無機酸から生成するオキソニウムイオン(化学式:HO+)が銀の抽出を妨害し、抽出効率が低下する。また、水溶液中の無機酸の濃度が0.5モル/リットルよりも少ないと、選択的な銀の抽出効果が期待できない。好ましい銀含有水溶液中の無機酸の濃度は1〜2モル/リットルである。 The concentration of the inorganic acid in the silver-containing aqueous solution needs to be in the range of 0.5 to 2 mol / liter. When the concentration of the inorganic acid in the aqueous solution exceeds 2 mol / liter, the oxonium ion (chemical formula: H 3 O +) generated from the inorganic acid hinders the extraction of silver, and the extraction efficiency decreases. If the concentration of the inorganic acid in the aqueous solution is less than 0.5 mol / liter, a selective silver extraction effect cannot be expected. The density | concentration of the inorganic acid in a preferable silver containing aqueous solution is 1-2 mol / l.

銀の抽出に使用するクラウンエーテルは、環状構造を形成している酸素原子や窒素原子などの配位子を有し、その空孔径と近い半径を有するイオンと高い親和力を持っている。従って、クラウンエーテルを用いることで、銅、カドミウム、鉄、亜鉛などはイオン半径が大きすぎたり、小さすぎたりするため、相互の親和力が小さくなるので抽出されず、イオン半径が同程度の銀のみを選択的に抽出することができる。   The crown ether used for silver extraction has a ligand such as an oxygen atom or a nitrogen atom forming a cyclic structure, and has a high affinity for ions having a radius close to the pore diameter. Therefore, by using crown ether, copper, cadmium, iron, zinc, etc. have an ionic radius that is too large or too small, so the mutual affinity becomes small, so they are not extracted and only silver with the same ionic radius is used. Can be selectively extracted.

更には、銀のイオン半径は約1.3オングストロームであることから、6個の配位子を有し、空孔半径がほぼ1.3〜1.4オングストロームであるクラウンエーテルが好ましい。また、一般的な配位子と銀との親和性は、イオウ原子が最も高く、続いて窒素原子、酸素原子である。しかし、イオウ原子を含むクラウンエーテルは、有機溶媒への溶解性が悪いため十分な濃度を得られない。また、窒素原子は、酸性溶液ではプロトンとの高い親和性のため、銀との反応性が低下する。   Furthermore, since the ionic radius of silver is about 1.3 angstroms, a crown ether having six ligands and having a pore radius of about 1.3 to 1.4 angstroms is preferable. Further, the affinity between a general ligand and silver is highest in the sulfur atom, followed by the nitrogen atom and the oxygen atom. However, a crown ether containing a sulfur atom cannot obtain a sufficient concentration because of poor solubility in an organic solvent. Moreover, since the nitrogen atom has high affinity with protons in an acidic solution, the reactivity with silver decreases.

このような理由から、本発明で用いるクラウンエーテルとしては、6個の酸素を含む基を有するものが特に望ましい。このようなクラウンエーテルの具体例としては、ジシクロヘキサノ18C6クラウンエーテル、ベンゾ18C6クラウンエーテルなどがある。   For these reasons, it is particularly desirable that the crown ether used in the present invention has a group containing 6 oxygens. Specific examples of such crown ethers include dicyclohexano 18C6 crown ether and benzo 18C6 crown ether.

クラウンエーテルを溶解させる有機溶媒としては、クラウンエーテルの溶解度が高く、水への溶解度が低いものであればよく、例えば、オクタノールなどのアルコール類、オクタンなどのアルカン類、トルエンやクロロホルムなどの有機塩素化合物などを好適に用いることができる。   The organic solvent for dissolving the crown ether is not particularly limited as long as the solubility of the crown ether is high and the solubility in water is low. For example, alcohols such as octanol, alkanes such as octane, and organic chlorines such as toluene and chloroform. A compound etc. can be used conveniently.

本発明方法では、上記抽出工程において銀含有水溶液とクラウンエーテルを含む有機溶媒を接触させて有機溶媒中に銀を抽出した後、有機相と水相を分離し、分離した有機相(有機溶媒)に逆抽出液を接触させて、逆抽出液中に銀を逆抽出する。逆抽出液としては、純水や薄い鉱酸などの扱いやすい水溶液を用いることが可能である。この逆抽出液中には銀以外の金属イオンがほとんど存在しないため、その後電解などを行うことにより、液中の銀を高純度の金属銀として回収することができる。   In the method of the present invention, the silver-containing aqueous solution and the organic solvent containing crown ether are contacted in the extraction step to extract silver into the organic solvent, and then the organic phase and the aqueous phase are separated, and the separated organic phase (organic solvent) The silver is back-extracted into the back extract by contacting the back extract with As the back extraction liquid, an easy-to-handle aqueous solution such as pure water or a thin mineral acid can be used. Since there are almost no metal ions other than silver in this back-extracted solution, the silver in the solution can be recovered as high-purity metallic silver by subsequent electrolysis or the like.

[実施例1]
銀を0.04モル/リットル又は0.1モル/リットル含む各水溶液に硝酸を添加して、硝酸濃度を0.0001〜5モル/リットルの範囲で変化させた。これら硝酸濃度を変化させた各銀含有水溶液10ミリリットルに、ジシクロヘキサノ18C6クラウンエーテルを銀濃度の1.5倍モル溶解させたクロロホルム溶液10ミリリットルを加え、撹拌振盪しながら10分間接触させて銀を抽出した。
[Example 1]
Nitric acid was added to each aqueous solution containing 0.04 mol / liter or 0.1 mol / liter of silver to change the concentration of nitric acid in the range of 0.0001 to 5 mol / liter. To 10 ml of each silver-containing aqueous solution having a changed concentration of nitric acid, 10 ml of a chloroform solution in which 1.5 times the silver concentration of dicyclohexano 18C6 crown ether was dissolved was added, and the mixture was brought into contact with stirring for 10 minutes while stirring. Extracted.

次に、それぞれ有機相と水相を分離し、各水溶液中に残留する銀の濃度を測定して、銀の分配比を求め、その結果を図1に示した。尚、銀の分配比=有機相に移行した銀濃度/水溶液中に残存する銀濃度であり、分配比が大きいほど銀の抽出率が高くなることを意味する。図1に示す結果から、水溶液中の硝酸濃度が0.5モル/リットル付近から濃度の上昇と共に銀の分配比が増加するが、硝酸濃度が2モル/リットルを超えると分配比が逆に減少することが分る。   Next, the organic phase and the aqueous phase were separated, the concentration of silver remaining in each aqueous solution was measured, the silver distribution ratio was determined, and the results are shown in FIG. The silver distribution ratio = the silver concentration transferred to the organic phase / the silver concentration remaining in the aqueous solution, and the larger the distribution ratio, the higher the silver extraction rate. From the results shown in FIG. 1, the distribution ratio of silver increases as the concentration of nitric acid in the aqueous solution increases from around 0.5 mol / liter, but when the concentration of nitric acid exceeds 2 mol / liter, the distribution ratio decreases conversely. I know what to do.

[比較例1]
0.04モル/リットルの銀を含む水溶液に、硝酸カリウム溶液又は硝酸ナトリウムを添加したこと以外は上記実施例1と同様にして、銀の抽出を行った。各水溶液中に残留する銀の濃度を測定し、上記実施例1と同様に銀の分配比を求め、その結果を上記実施例1の結果と併せて図1に示した。
[Comparative Example 1]
Silver was extracted in the same manner as in Example 1 except that potassium nitrate solution or sodium nitrate was added to an aqueous solution containing 0.04 mol / liter of silver. The concentration of silver remaining in each aqueous solution was measured, the silver distribution ratio was determined in the same manner as in Example 1, and the results are shown in FIG. 1 together with the results of Example 1.

図1から分るように、硝酸カリウムの場合、その濃度の増加と共に銀の分配比が低下した。また、硝酸ナトリウムの場合には、その濃度の増加と共に銀の分配比は増加するが、上記実施例1の硝酸を添加した場合に比べてはるかに低い分配比であった。   As can be seen from FIG. 1, in the case of potassium nitrate, the silver distribution ratio decreased with increasing concentration. Further, in the case of sodium nitrate, the silver distribution ratio increases with an increase in the concentration thereof, but the distribution ratio is much lower than that in the case of adding nitric acid of Example 1 above.

[実施例2]
0.001モル/リットルの銀の他に、同じ濃度の銅、カドミウム、ニッケル、亜鉛、マグネシウムを含む水溶液を準備した。この銀含有水溶液に、硝酸又は過塩素酸を1.5モル/リットルの濃度となるように添加した。各銀含有水溶液10ミリリットルに、ジシクロヘキサノ18C6クラウンエーテルを銀濃度の1.5倍モル溶解させたクロロホルム溶液10ミリリットルを加え、撹拌振盪しながら10分間接触させて銀を抽出した。
[Example 2]
In addition to 0.001 mol / liter of silver, an aqueous solution containing the same concentration of copper, cadmium, nickel, zinc and magnesium was prepared. To this silver-containing aqueous solution, nitric acid or perchloric acid was added to a concentration of 1.5 mol / liter. To 10 ml of each silver-containing aqueous solution, 10 ml of a chloroform solution in which dicyclohexano 18C6 crown ether was dissolved in 1.5 times mole of silver concentration was added and contacted for 10 minutes with stirring and shaking to extract silver.

次に、有機相と水相を分離し、分離したクロロホルム溶液に純水10ミリリットルを加え、撹拌振盪しながら10分接触させて、クロロホルム溶液に抽出された成分を水相に逆抽出させた。その後、有機相と水相を分離し、水溶液中に残留する各金属の濃度と逆抽出された銀の濃度を測定した。   Next, the organic phase and the aqueous phase were separated, 10 ml of pure water was added to the separated chloroform solution, and contacted for 10 minutes with stirring and shaking, so that the components extracted into the chloroform solution were back extracted into the aqueous phase. Thereafter, the organic phase and the aqueous phase were separated, and the concentration of each metal remaining in the aqueous solution and the concentration of back-extracted silver were measured.

その結果、銀の抽出率は、銀含有水溶液に硝酸を添加した場合は98%、過塩素酸を添加した場合は99%であり、どちらの場合も他の金属成分は全く抽出されなかった。また、抽出後の銀含有水溶液中に残留した銀量と逆抽出された銀量との和は、最初に銀含有水溶液中に存在していた0.001モル/リットルとほぼ同じであり、純水により銀の逆抽出が可能であることが確認できた。   As a result, the silver extraction rate was 98% when nitric acid was added to the silver-containing aqueous solution, and 99% when perchloric acid was added. In either case, no other metal component was extracted. Further, the sum of the amount of silver remaining in the silver-containing aqueous solution after extraction and the amount of back-extracted silver was substantially the same as 0.001 mol / liter that was initially present in the silver-containing aqueous solution, It was confirmed that silver could be back extracted with water.

銀含有水溶液の硝酸化合物濃度とAg分配比との関係を示すグラフである。It is a graph which shows the relationship between the nitric acid compound density | concentration and Ag distribution ratio of silver containing aqueous solution.

Claims (2)

銀を含有する水溶液から銀を選択的に抽出して回収する方法であって、銀を含有する水溶液に無機酸を0.5〜2モル/リットルの濃度で添加し、該水溶液とクラウンエーテルを含む有機溶媒とを接触させて有機溶媒中に銀を抽出した後、該有機溶媒から銀を逆抽出することを特徴とする銀の回収方法。   A method for selectively extracting and recovering silver from an aqueous solution containing silver, wherein an inorganic acid is added to the aqueous solution containing silver at a concentration of 0.5 to 2 mol / liter, and the aqueous solution and crown ether are added. A method for recovering silver, comprising: extracting silver from an organic solvent by contacting with an organic solvent, and then back-extracting silver from the organic solvent. 前記クラウンエーテルが6個の酸素を含む基を有することを特徴とする、請求項1に記載の銀の回収方法。   The method for recovering silver according to claim 1, wherein the crown ether has a group containing six oxygens.
JP2007128754A 2007-05-15 2007-05-15 Method for recovering silver Pending JP2008285691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128754A JP2008285691A (en) 2007-05-15 2007-05-15 Method for recovering silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128754A JP2008285691A (en) 2007-05-15 2007-05-15 Method for recovering silver

Publications (1)

Publication Number Publication Date
JP2008285691A true JP2008285691A (en) 2008-11-27

Family

ID=40145712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128754A Pending JP2008285691A (en) 2007-05-15 2007-05-15 Method for recovering silver

Country Status (1)

Country Link
JP (1) JP2008285691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069463A1 (en) 2012-10-29 2014-05-08 Jx日鉱日石金属株式会社 Method for collecting silver
JP2021143386A (en) * 2020-03-12 2021-09-24 国立大学法人東北大学 Method for recovering silver in copper electrolytic solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913412A4 (en) * 2011-11-30 2016-11-02 Jx Nippon Mining & Metals Corp Method for collecting silver
WO2014069463A1 (en) 2012-10-29 2014-05-08 Jx日鉱日石金属株式会社 Method for collecting silver
JP2021143386A (en) * 2020-03-12 2021-09-24 国立大学法人東北大学 Method for recovering silver in copper electrolytic solution
JP7440865B2 (en) 2020-03-12 2024-02-29 国立大学法人東北大学 How to recover silver in copper electrolyte

Similar Documents

Publication Publication Date Title
Zupanc et al. Sustainable and selective modern methods of noble metal recycling
JP4723629B2 (en) Silver recovery method using anion exchange resin
JP2011214132A (en) Recovery method for cobalt
JP4406688B2 (en) Method for purifying electrolyte in monovalent copper electrowinning process
JP2012167334A (en) METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
WO2013129017A1 (en) Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
WO2005023716A1 (en) Method of separation/purification for high-purity silver chloride and process for producing high-purity silver by the same
Lo et al. Preconcentration of trace metals in seawater matrix for inductively coupled plasma atomic emission spectrometry
JP2007016259A (en) System for collecting gold while recycling iodine ion in gold-removing liquid
JP5154622B2 (en) Method for recovering cobalt contained in copper-containing aqueous solution
JP2008285691A (en) Method for recovering silver
JP6658238B2 (en) Method for removing impurities from aqueous cobalt solution
JP5850966B2 (en) Cobalt extraction solution, cobalt solution, and cobalt recovery method
Fan et al. Recovery and purification of iridium from secondary resources: a review
JP5777150B2 (en) Method for recovering platinum and palladium
Abbott et al. Ionometallurgy: processing of metals using ionic liquids
JP5502178B2 (en) Silver recovery method
Lee et al. Solvent extraction of Cu (I) from waste etch chloride solution using tri-butyl phosphate (TBP) diluted in 1-octanol
JP2010264331A (en) Separation method of arsenic
JP6730706B2 (en) Recovery method for platinum group elements
FR3070692B1 (en) PROCESS FOR SEPARATING PALLADIUM FROM OTHER METALLIC ELEMENTS PRESENT IN A NITRIC AQUEOUS PHASE USING AS SPECIFIC MALONAMIDES AS EXTRACTANTS
Asrafi et al. Solvent extraction of cadmium (ii) from sulfate medium by Bis (2-ethylhexyl) Phosphoric Acid in Toluene
JPH11293357A (en) Selective recovery of cobalt compound
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP3479677B2 (en) Method for selectively recovering copper ions from alkaline solution