JPS589131B2 - How do you know what to do? - Google Patents

How do you know what to do?

Info

Publication number
JPS589131B2
JPS589131B2 JP50085873A JP8587375A JPS589131B2 JP S589131 B2 JPS589131 B2 JP S589131B2 JP 50085873 A JP50085873 A JP 50085873A JP 8587375 A JP8587375 A JP 8587375A JP S589131 B2 JPS589131 B2 JP S589131B2
Authority
JP
Japan
Prior art keywords
copper
extraction
aqueous solution
metal sludge
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50085873A
Other languages
Japanese (ja)
Other versions
JPS529623A (en
Inventor
越村英雄
藤沢正尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYOTO
Original Assignee
TOKYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYOTO filed Critical TOKYOTO
Priority to JP50085873A priority Critical patent/JPS589131B2/en
Publication of JPS529623A publication Critical patent/JPS529623A/en
Publication of JPS589131B2 publication Critical patent/JPS589131B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は銅その他の金属を含む金属スラツジ中から溶媒
抽出によって銅を抽出分離する方法およびそのための装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for extracting and separating copper from metal sludge containing copper and other metals by solvent extraction.

金属の分離回収のために溶媒による抽出方法が効果的で
あることは一般に知られており、このような抽出溶媒と
して有機リン酸エステル、ホスフイン酸エステル等の有
機リン化合物(特開昭49−56823)あるいは液状
イオン交換体(特開昭49−46501)を用いること
についてはすでに報告されている。
It is generally known that extraction methods using solvents are effective for the separation and recovery of metals. ) or a liquid ion exchanger (JP-A-49-46501) has already been reported.

しかしこのような公知の抽出溶媒はいずれも目的とする
金属の抽出率が充分に高くなく、あるいはそれらの使用
寿命再生処理等の点でコスト高となり、実用規模での金
属の抽出回収には必ずしも適したものではなかった。
However, all of these known extraction solvents do not have a sufficiently high extraction rate of the target metal, or they are expensive due to their use life recycling treatment, so they are not necessarily suitable for extraction and recovery of metals on a practical scale. It wasn't suitable.

本発明者は金属キレート剤としてのβ−ジケトン化合物
の物理的、化学的性質に着目してこれらを金属スラツジ
中からの有用金属の抽出分離に実用化することについて
研究した結果、特定のβ−ジケトンを用いることによっ
て金属スラツジ中から特に銅をすぐれた抽出率で分離回
収できることを発見し、この知見に基いて本発明を完成
するに到った。
The present inventor focused on the physical and chemical properties of β-diketone compounds as metal chelating agents, and as a result of researching the practical application of these compounds in the extraction and separation of useful metals from metal sludge, the inventor found that a specific β-diketone compound It was discovered that by using a diketone, copper in particular can be separated and recovered from metal sludge with an excellent extraction rate, and based on this knowledge, the present invention was completed.

さらにまた上記の抽出工程の実施にあたって抽出の際の
攪拌を従来技術で慣用されていた回転によらず上下方向
の攪拌とすることによってその抽出率が著しく向上する
ことがはからずも発見された。
Furthermore, it has been unexpectedly discovered that the extraction rate can be significantly improved by performing the above-mentioned extraction process by using vertical stirring instead of the rotation conventionally used in the prior art.

本発明における銅のβ−ジケトンによる抽出分離方法は
これを従来公知の銅アミン形成工程と組合せさらに抽出
された銅をこれも公知の逆抽出工程および電解回収工程
によって回収することによって極めてすぐれた効果を有
する工業的な銅の分離回収方法とすることができる。
The method of extracting and separating copper using β-diketone in the present invention combines this with a conventionally known copper amine forming step and further recovers the extracted copper through a back extraction step and an electrolytic recovery step, which are also known, resulting in extremely excellent effects. This can be an industrial method for separating and recovering copper.

すなわち本発明の別の方法によれば、第1図のフロー図
で示すように(1)銅およびその他の金属を含む金属ス
ラツジを空気等の酸化剤の存在下にアンモニア水溶液中
に溶解させて銅アミン錯体等を形成させ、(2)これら
錯体を含む上記アンモニア水溶液に対してβ−ジケトン
の有機溶媒溶液を攪拌混合して銅をキレート化して有機
溶媒中に選択的に抽出し、(3)上記有機溶媒相に硫酸
水溶液を加えて銅を硫酸銅として逆抽出し次いで(4)
この硫酸銅水溶液を電気分解して銅を金属鋼として回収
する。
That is, according to another method of the present invention, as shown in the flow diagram of FIG. 1, (1) a metal sludge containing copper and other metals is dissolved in an ammonia aqueous solution in the presence of an oxidizing agent such as air; Copper amine complexes etc. are formed, (2) an organic solvent solution of β-diketone is stirred and mixed with the ammonia aqueous solution containing these complexes to chelate copper, and selectively extracted into the organic solvent; ) Add a sulfuric acid aqueous solution to the above organic solvent phase to back-extract copper as copper sulfate, and then (4)
This aqueous copper sulfate solution is electrolyzed to recover copper as metal steel.

本発明の実施によって得られる銅の後述するような高い
抽出率はβ−ジケトンと銅とのキレート化合物の分配比
、換言すれば該キレート化合物の有機溶媒相および水相
に対する溶解度比が極めて大きいことに因るものと考え
られる。
The high extraction rate of copper obtained by carrying out the present invention as described below is due to the extremely high distribution ratio of the chelate compound between β-diketone and copper, in other words, the solubility ratio of the chelate compound in the organic solvent phase and the aqueous phase. This is thought to be due to.

一般式RCOCH2CORで示されるアルキル置換β−
ジケトンについては、従来僅かに二、三のものがアダム
ス等の方法(アメリカ化学雑誌66巻(1944年)1
220頁参照)によって実験室的に合成が試みられたに
過ぎない。
Alkyl substituted β- represented by the general formula RCOCH2COR
Regarding diketones, only a few methods have been used so far, such as the method of Adams et al. (American Journal of Chemistry, Vol. 66 (1944), 1
(see page 220), the synthesis was only attempted in the laboratory.

分析用試薬等として市販されているのはR=CH3のア
セチルケトンのみであるがその分配比は必らずしも良好
ではなく、したがって一般にβ−ジケトンを実用的な金
属の抽出回収に用いることは従来技術においては全く考
慮されていなかった。
Only acetyl ketone with R=CH3 is commercially available as an analytical reagent, but its distribution ratio is not necessarily good, so β-diketones are generally not used for practical extraction and recovery of metals. has not been considered at all in the prior art.

本発明者は種々の1,3−アルキル置換基を有するβ−
ジケトンを合成しこれを銅の抽出分離に用いたところ、
炭素原子数3〜5の直鎖又は枝分れアルキル基を有する
β−ジケトンによって特にすぐれた抽出率で銅が分離回
収されることを発見した。
The inventors have discovered that β-
When a diketone was synthesized and used for extraction and separation of copper,
It has been discovered that copper can be separated and recovered with particularly good extraction efficiency using β-diketones having a straight chain or branched alkyl group having 3 to 5 carbon atoms.

前記一般式RCOCH2CORで表わされるアルキル置
換β−ジケトンの中、Rが炭素原子数2又はそれ以下の
アルキル基である場合には溶解度比が低いため所期の抽
出率が得られず、また炭素原子数が6又はそれ以上の場
合では溶解度比は充分であっても抽出平衡に到達する時
間が増大するため好ましくない。
Among the alkyl-substituted β-diketones represented by the general formula RCOCH2COR, when R is an alkyl group having 2 or less carbon atoms, the solubility ratio is low, so the desired extraction rate cannot be obtained, and the carbon atoms If the number is 6 or more, even if the solubility ratio is sufficient, it is not preferable because the time required to reach extraction equilibrium increases.

本発明で抽出溶媒として用いる有機溶媒はβ−ジケトン
の溶解度が充分であってかつ有機相−水相の分離が良い
ものであればよい。
The organic solvent used as the extraction solvent in the present invention may be any solvent as long as it has sufficient solubility for β-diketone and allows good separation of the organic phase and the aqueous phase.

か\る溶媒としてはアルキル炭化水素、ジクロアルキル
炭化水素、芳香族炭化水素ならびにそれらのハロゲン化
物等の通常の有機溶媒が挙げられる。
Examples of such solvents include common organic solvents such as alkyl hydrocarbons, dichloroalkyl hydrocarbons, aromatic hydrocarbons, and halides thereof.

以下、第1表にβ−ジケトンの具体例とその溶媒として
の有機溶媒を実験的に測定した溶解度と共に示す。
Table 1 below shows specific examples of β-diketones and organic solvents used as their solvents, along with experimentally measured solubility.

銅アミン錯体を生成するためのアンモニウム化合物とし
ては水溶液中でNH4+を生じる任意のもので良くNH
4Cl,NH4OH,(NH4)2CO3等がある。
The ammonium compound for producing the copper amine complex may be any ammonium compound that produces NH4+ in an aqueous solution.
4Cl, NH4OH, (NH4)2CO3, etc.

水溶液のpHをアンモニアアルカリ註とすることによっ
て共存するニッケル、コバルト亜鉛、カドミウム、鉄、
アルミニウムなどから銅を選択的に抽出を得ることがで
きる。
By adjusting the pH of the aqueous solution to ammonia alkaline note, nickel, cobalt, zinc, cadmium, iron, etc.
Selective extraction of copper from aluminum etc. can be obtained.

本発明において得られる銅の高い抽出率は基本的にはβ
−ジケトンによる銅の抽出平衡時の高い分配比、すなわ
ち水相および有機溶媒相中における銅のモル濃度比によ
るものと考えられる。
The high extraction rate of copper obtained in the present invention is basically due to β
- Extraction of copper with diketones This is thought to be due to the high distribution ratio at equilibrium, that is, the molar concentration ratio of copper in the aqueous phase and the organic solvent phase.

以下これについてキレート剤としてDIBMを有機溶媒
としてトルエンを用いた場合について考察する。
Hereinafter, a case will be discussed in which DIBM is used as a chelating agent and toluene is used as an organic solvent.

本発明において銅の抽出率におよぼす各種ファクター、
たとえば水相中の銅およびアンモニウムイオンの濃度、
pH値、有機相/水相。
In the present invention, various factors affecting the copper extraction rate,
For example the concentration of copper and ammonium ions in the aqueous phase,
pH value, organic phase/aqueous phase.

体積比等の影響を検討するため抽出工程におけるこれら
の条件を変化させて実験を行なった。
In order to examine the influence of volume ratio, etc., experiments were conducted by changing these conditions in the extraction process.

以下参考例1〜6としてそれらの結果を示す。The results are shown below as Reference Examples 1 to 6.

本発明の特色はあくまでも特定のβ−ジケトンを銅の抽
出分離に使用することであり本発明の実施は以下の各例
に示される条件に限定されることはない。
The feature of the present invention is that a specific β-diketone is used for extraction and separation of copper, and the implementation of the present invention is not limited to the conditions shown in the following examples.

以下の各例においては抽出試薬としてはジインプチリル
メタル(DIBM)アダムス等の方法に基いて調製した
ものを用い、これを有機溶媒としてのトルエン中におけ
る1モル溶液として用いた。
In each of the following examples, diimptyrylmetal (DIBM) prepared according to the method of Adams et al. was used as an extraction reagent, and this was used as a 1 molar solution in toluene as an organic solvent.

抽出される銅を含む試料としては塩化第二銅の水溶液に
NH4ClおよびNH4OHを加え水によって希釈した
ものを用いた。
The sample containing copper to be extracted was an aqueous solution of cupric chloride to which NH4Cl and NH4OH were added and diluted with water.

pHの調節にはアンモニウムイオン濃度の変化を避ける
ため塩酸および水酸化ナトリウムを使用した。
Hydrochloric acid and sodium hydroxide were used to adjust the pH to avoid changes in ammonium ion concentration.

銅およびpHの定量および測定にはパーキンエルマ13
9分光々度計(日立製作所製)およびHM8型pHガラ
ス電極(東亜電波製)をそれぞれ用いた。
PerkinElma 13 for copper and pH quantification and measurement
A 9-spectrophotometer (manufactured by Hitachi, Ltd.) and an HM8 type pH glass electrode (manufactured by Toa Denpa) were used.

参考例1 有機相と水相との体積比(VO/VW)が銅の抽出率(
%)に及ぼす影響を求めるため、DIBM(ジイソプチ
リルメタン) 濃度1. 0モルのトルエン溶液20m
lに対して、銅濃度0.302モルおよびアンモニウム
イオン濃113.55モルでpHを9.5としたアンモ
ニア水溶液をVO/VWが1/1〜1/5となるように
して夫々加えた。
Reference example 1 The volume ratio of organic phase to aqueous phase (VO/VW) is the extraction rate of copper (
%), DIBM (diisoptyrylmethane) concentration 1. 20ml of 0M toluene solution
1, an ammonia aqueous solution having a copper concentration of 0.302 mol and an ammonium ion concentration of 113.55 mol and having a pH of 9.5 was added at a VO/VW ratio of 1/1 to 1/5.

各混合液を30分間振とうし、静置後分相した有機相お
よび水相中の銅の濃度を測定した。
Each liquid mixture was shaken for 30 minutes, and after standing still, the concentration of copper in the organic phase and aqueous phase was measured.

結果を第3図に示す。The results are shown in Figure 3.

図中、aはVO/VWと銅の処理量(mg)との関係を
、そしてbはV0/VWと銅の抽出率(%)との関係を
示すグラフである。
In the figure, a is a graph showing the relationship between VO/VW and copper processing amount (mg), and b is a graph showing the relationship between VO/VW and copper extraction rate (%).

VO/VWが大きいほど、すなわち有機相の体積が大き
いほど抽出繊は増大するが、銅の処理量すなわち有機相
中の銅の濃度は水相の体積が大きいほど高くなる。
The larger the VO/VW, that is, the larger the volume of the organic phase, the greater the number of extracted fibers, but the larger the volume of the aqueous phase, the higher the copper throughput, that is, the concentration of copper in the organic phase.

VO/VW=1/5では有機相20ml中の銅濃度がほ
ゞ200mgとなる(0.157モル/l)。
When VO/VW=1/5, the copper concentration in 20 ml of the organic phase is approximately 200 mg (0.157 mol/l).

このことから銅の抽出率および処理量を高めるためには
、水相中の銅の濃度を高めさらにVO/VW=1/1と
することが望ましい。
Therefore, in order to increase the extraction rate and processing amount of copper, it is desirable to increase the concentration of copper in the aqueous phase and further set VO/VW to 1/1.

参考例2 抽出工程における有機相と水相との攪拌時間と抽出率E
(%)との関係を検討するため、DIBMのトルエン中
の1モル溶液10mlに対して0.0455モルの銅を
含むアンモニア水溶液40mlを加え種種の時間にわた
って振とうした。
Reference example 2 Stirring time of organic phase and aqueous phase in extraction process and extraction rate E
(%), 40 ml of an ammonia aqueous solution containing 0.0455 mol of copper was added to 10 ml of a 1 molar solution of DIBM in toluene and shaken for various times.

結果を第4図に示す。The results are shown in Figure 4.

なおpHは8.7アンモニウムイオンのモル濃度は1.
50とした。
The pH is 8.7 and the molar concentration of ammonium ions is 1.
It was set at 50.

図から明かなように実験開始後約5分で実質的な平衡に
到達した。
As is clear from the figure, substantial equilibrium was reached approximately 5 minutes after the start of the experiment.

参考例3 アミン錯化合物形成工程における水相中のアンモニウム
イオン濃度と抽出率との関係を検討するため、DIBM
のトルエン中における1モル溶液に対して加えるアンモ
ニア水溶液中のアンモニウムイオン濃度を種々に変え夫
々の場合について30分間振とう後の銅の抽出率を求め
た。
Reference Example 3 In order to examine the relationship between the ammonium ion concentration in the aqueous phase and the extraction rate in the amine complex compound formation step, DIBM
The concentration of ammonium ions in the aqueous ammonia solution added to a 1 molar solution of 1 molar solution in toluene was varied, and the extraction rate of copper after shaking for 30 minutes was determined for each case.

アンモニウムイオン形成源はpHの安定のためNH4O
HおよびNH4Clとした。
The source of ammonium ion formation is NH4O to stabilize the pH.
H and NH4Cl.

尚銅のモル濃度は0.0302モルとしVO/VWは1
:1および1:4としpHは9.5〜9.9および9.
1〜9.9とした結果を第5図に示す。
The molar concentration of copper is 0.0302 mol, and VO/VW is 1.
:1 and 1:4 and the pH is 9.5-9.9 and 9.
The results of 1 to 9.9 are shown in FIG.

尚図中aはVO/VW=1:1のbはVO/VW=1:
4の場合のグラフである。
In the figure, a indicates VO/VW=1:1 and b indicates VO/VW=1:
4 is a graph.

図から明らかなようにNH4+の増加と共に抽出率は減
少する。
As is clear from the figure, the extraction rate decreases as NH4+ increases.

したがってVO/VW=1/1の場合にはNH4+のモ
ル濃度を1.5以下にVO/VW=1/4の場合では0
.4以下にすることが好ましい。
Therefore, when VO/VW = 1/1, the molar concentration of NH4+ is 1.5 or less, and when VO/VW = 1/4, it is 0.
.. It is preferable to set it to 4 or less.

参考例4 DIBMをHAで表わし銅イオンとの反応は〔Cu2+
〕w+2〔HA〕o→←〔CuA2〕o+2H+で示さ
れる。
Reference Example 4 DIBM is expressed as HA, and the reaction with copper ions is [Cu2+
]w+2[HA]o→←[CuA2]o+2H+.

wは水相をoは有機相を示す。〔HA〕oの濃度、pH
値が大きいほど銅キレートの生成が大きくなる。
w represents an aqueous phase and o represents an organic phase. [HA] concentration of o, pH
The larger the value, the greater the copper chelate formation.

これを確認するため同様な抽出操作をpH3〜13の範
囲で行なった。
In order to confirm this, a similar extraction operation was performed in the pH range of 3 to 13.

また本例では水相中のNH4+および銅のモル濃度およ
びVO/VW比を夫々二段階に変化させて抽出率への影
響を検討した。
Furthermore, in this example, the molar concentrations of NH4+ and copper in the aqueous phase and the VO/VW ratio were each changed in two stages to examine their effects on the extraction rate.

結果を第6図に示す。図中各グラフ(a),(b),(
c),(d)および(e)は夫々次のファクターによる
実験結果を示す。
The results are shown in Figure 6. Each graph (a), (b), (
c), (d) and (e) respectively show experimental results based on the following factors.

有 機 相 水相NH4+モル
濃度 Cuモル濃度 VO/VW(a)トルエン中
のDIBM1モル溶液 10ml 1.78
0.03 1/4(b)
〃 〃 3.20
0.03 1/4(c) 〃
15ml 3.20
0.03 1/1(d) 〃
10ml 1.78
0.15 1/4(e) 〃
15ml 1.78
0.15 1/1図示のように抽出率はVO/
VWの大きいほどまたNH層濃度が低いほど高くなる。
Organic phase Aqueous phase NH4+ Molar concentration Cu Molar concentration VO/VW (a) 1 molar solution of DIBM in toluene 10 ml 1.78
0.03 1/4(b)
〃 〃 3.20
0.03 1/4(c) 〃
15ml 3.20
0.03 1/1(d) 〃
10ml 1.78
0.15 1/4(e) 〃
15ml 1.78
0.15 1/1 As shown in the diagram, the extraction rate is VO/
The larger the VW is, the lower the NH layer concentration is, the higher it becomes.

したがってpH(水相)は8〜8、5より小さいことが
望ましい。
Therefore, the pH (aqueous phase) is preferably 8 to 8 and less than 5.

なおp H 9.5以上で抽出率が再び増大するのはキ
レート剤(DIBM)の水相中におけるアニオン濃度の
増加に因る。
Note that the reason why the extraction rate increases again at pH 9.5 or higher is due to the increase in the anion concentration in the aqueous phase of the chelating agent (DIBM).

このことからpHの調節も重要な因子である。For this reason, pH adjustment is also an important factor.

しかし銅が水相中で高いアンモニア濃度下で存在すると
して、一般にここで用いたアンモニア濃度の条件では銅
1molに対しアミンが4mol配位していると仮定す
ると 〔Cu(NH3)42+〕w+2〔HA〕o→←〔Cu
A2〕o+2H++4〔NH3〕wで表わされるから、
分配比すなわち抽出率に及ぼすアンモニウムとpHとの
因子はpH調整するよりアンモニウム濃度を調節する方
が効果が大きい、これらの因子は分配比Dに対しpHは
2乗でアンモニウム濃度は4乗で影響する。
However, assuming that copper exists at a high ammonia concentration in the aqueous phase, and assuming that 4 mol of amine is coordinated to 1 mol of copper under the ammonia concentration conditions used here, [Cu(NH3)42+]w+2[ HA〕o→←〔Cu
Since it is expressed as A2]o+2H++4[NH3]w,
Regarding the factors of ammonium and pH that affect the distribution ratio, that is, the extraction rate, adjusting the ammonium concentration is more effective than adjusting the pH.These factors influence the distribution ratio D by the square of pH and the fourth power of ammonium concentration. do.

しかし第6図に示したように銅濃度0.15molNH
4+1.78molの場合pHを8以下に試みると銅の
加水分解を生じpHを調整することが困難となる。
However, as shown in Figure 6, the copper concentration is 0.15 molNH
In the case of 4+1.78 mol, if the pH is attempted to be lower than 8, copper will be hydrolyzed and it will be difficult to adjust the pH.

参考例5 水相中の銅イオン濃度と抽出率との関係を求めるため前
記抽出実験においてVO/VW=1/4,pH=8.9
NH4+モル濃度1.50として銅の水、相中の含有量
を種々に変えて抽出率の変化を確認した。
Reference Example 5 In order to determine the relationship between the copper ion concentration in the aqueous phase and the extraction rate, in the extraction experiment, VO/VW = 1/4, pH = 8.9
Changes in the extraction rate were confirmed by varying the content of copper in water and the phase, with the NH4+ molar concentration being 1.50.

結果を第7図に示す。図中グラフaは水相中に最初存在
した銅の濃度(mg/40ml)と銅の抽出率(%)の
関係を示し、bは同じく上記銅濃度と有機相中の銅抽出
量(mg/10ml)との関係を示す。
The results are shown in FIG. In the figure, graph a shows the relationship between the concentration of copper initially present in the aqueous phase (mg/40ml) and the copper extraction rate (%), and graph b shows the relationship between the above copper concentration and the amount of copper extracted in the organic phase (mg/40ml). 10ml).

図から明らかなように、水相中の銅濃度が160mg/
40ml以下では銅の抽出率は約95%であるが(グラ
フa)、銅濃度がそれ以上増加すると抽出率は急激に低
下する。
As is clear from the figure, the copper concentration in the aqueous phase is 160mg/
Below 40 ml, the copper extraction rate is about 95% (graph a), but as the copper concentration increases beyond that, the extraction rate decreases rapidly.

なお有機相中の銅最大抽出量は約170mg/10ml
(グラフb)でほゞ0.27モルに相当し、したがって
使用キレート剤DIBMの理論量の54%が銅に配位し
たことを示している。
The maximum amount of copper extracted in the organic phase is approximately 170 mg/10 ml.
(graph b) corresponds to approximately 0.27 mol, thus indicating that 54% of the theoretical amount of the chelating agent DIBM used was coordinated to copper.

なおp H=9.5,NH4+モル濃度=3.55とし
たVO/VW=1/1の場合では水相中の銅濃度の増加
にともなって有機相中の銅濃度も増大して行くが抽出率
には大きな変化はみられずほゞ42%であった(第8図
)。
Note that in the case of pH = 9.5, NH4 + molar concentration = 3.55, and VO/VW = 1/1, the copper concentration in the organic phase increases as the copper concentration in the aqueous phase increases. No major change was observed in the extraction rate, which was approximately 42% (Figure 8).

参考例6 所期の抽出率を得る迄に必要な抽出工程の反復回数と種
々のファクタとの関係を求めるため、抽出平衡に達した
下相の水相を分取してこれに新たらしい有機溶媒を加え
てさらに抽出をし、この操作を反復して行なった。
Reference Example 6 In order to determine the relationship between the number of repetitions of the extraction process required to obtain the desired extraction rate and various factors, the lower aqueous phase that has reached extraction equilibrium is separated and a new organic material is added to it. Further extraction was performed by adding a solvent, and this operation was repeated.

結果を第9図に示す。図中、各グラフ(a),(b),
(c)および(d)はVO/VW比、銅およびアンモニ
ウムイオンの水相中のモル濃、pH値等のファクタ夫々
二段階に変化させて組合せた場合の結果を示す。
The results are shown in Figure 9. In the figure, each graph (a), (b),
(c) and (d) show the results when factors such as the VO/VW ratio, the molar concentration of copper and ammonium ions in the aqueous phase, and the pH value were changed in two steps and combined.

有 機 相 NH4+モル濃度
銅モル濃度 pH VO/VW(a)DIBM
のトルエン中の1モル溶液 15ml 3.55
0.302 9.53 1/1(b)
〃 10ml 3.55
0.302 9.53 1/4(c)
〃 10ml 1.50
0.300 10.07 1/4(d)
〃 15ml 1.50
0.300 10.07 1/1図示のようにほ
ゞ一定の銅濃度に対してアンモニウムイオン濃度が高い
ほど抽出率は低下し、したがって必要な抽出率を得るた
めの所要反復サイクルが増加する。
Organic phase NH4+ molar concentration Copper molar concentration pH VO/VW (a) DIBM
15 ml of a 1 molar solution in toluene of 3.55
0.302 9.53 1/1(b)
〃 10ml 3.55
0.302 9.53 1/4(c)
〃 10ml 1.50
0.300 10.07 1/4(d)
〃 15ml 1.50
0.300 10.07 1/1 As shown, for a nearly constant copper concentration, the higher the ammonium ion concentration, the lower the extraction rate and therefore the more iterative cycles required to obtain the required extraction rate.

容積比VO/VWは小さいほど抽出率が増大して反復サ
イクルが少なくて済む。
The smaller the volume ratio VO/VW, the higher the extraction rate and the fewer repetitive cycles required.

本発明による銅の分離抽出に際しては銅錯アミン化合物
を含むアンモニア水溶液とβ−ジケトンを含む有機溶媒
溶液とを攪拌混合するが、この場合上記の攪拌を抽出塔
中で上下方向に行なうことによって従来の回転攪拌に比
較して遥かにすぐれた抽出率の得られることが発見され
た。
When separating and extracting copper according to the present invention, an ammonia aqueous solution containing a copper complex amine compound and an organic solvent solution containing β-diketone are stirred and mixed. It has been discovered that a far superior extraction rate can be obtained compared to rotary stirring.

これは上下動の攪拌によって向流的に流入させられる被
攪拌液が回転攪拌の場合よりも著しく小さな液滴に細分
されてそれらの間の接触面積が増大する結果と考えられ
る。
This is thought to be due to the fact that the liquid to be stirred, which is caused to flow in countercurrently by vertical stirring, is subdivided into droplets that are much smaller than in the case of rotary stirring, and the contact area between them increases.

本発明はまたかゝる溶媒抽出法に用いて極めてすぐれた
攪拌装置を提供するものであり、以下これを図面によっ
て説明する。
The present invention also provides an extremely excellent stirring device for use in such a solvent extraction method, which will be explained below with reference to the drawings.

第2図中、5は抽出塔を示し有機溶媒および水溶液の向
流的攪拌のための流入口6および7ならびに分相後のそ
れらの取出口8および9を備えている。
In FIG. 2, reference numeral 5 denotes an extraction column, which is equipped with inlets 6 and 7 for countercurrent stirring of organic solvents and aqueous solutions, and outlets 8 and 9 for them after phase separation.

塔5内には向流方向に対して実質的な攪拌作用面を有す
る攪拌円板11を一定段間ピツチで多段に設けこれらを
上下作動軸12で連結してなる攪拌装置10を塔長方向
に挿入してある。
Inside the column 5, stirring disks 11 having a substantial stirring surface in the counter-current direction are arranged in multiple stages at a constant pitch, and a stirring device 10 is connected in the column length direction. It has been inserted into.

作動軸12の上端は抽出塔5の上方へ突出させてこゝで
クランク14等の作動方向変換部材と結合させ、プーリ
イ13を介してモータ15と結合させてある。
The upper end of the operating shaft 12 projects above the extraction tower 5 and is connected to an operating direction changing member such as a crank 14, and is connected to a motor 15 via a pulley 13.

図示の実例では回転翼円板11の段間ピンチを50mm
とし一方クランクによって与えられる上下動ストローク
を25mmとしてあるがこのピッチは適宜に変えること
ができる。
In the illustrated example, the interstage pinch of the rotor blade disk 11 is 50 mm.
On the other hand, the vertical stroke given by the crank is 25 mm, but this pitch can be changed as appropriate.

前記の参考例1〜6の結果に基いてpH,VO/VWそ
の他のファクタを適宜に定め上に述べた上下動攪拌装置
を備えた抽出塔を用いて本発明の方法を実施した。
Based on the results of Reference Examples 1 to 6, the pH, VO/VW, and other factors were appropriately determined, and the method of the present invention was carried out using the extraction column equipped with the above-mentioned vertical stirring device.

結果を以下の実施例1および2で示す。The results are shown in Examples 1 and 2 below.

実施例1 塩化第二銅の水溶液と塩化アンモニウムおよびアンモニ
アの水溶液とを混合して0.06モル濃度の銅および0
.30モル濃度のNH4+を含む水溶液を調整し、HC
lおよびNaOHを添加してそのpHを10.0とした
Example 1 An aqueous solution of cupric chloride and an aqueous solution of ammonium chloride and ammonia were mixed to form a 0.06 molar concentration of copper and 0.
.. An aqueous solution containing 30 molar NH4+ was prepared and HC
1 and NaOH were added to bring the pH to 10.0.

一方DIBMのトルエン中の1モル溶液をつくり上記ア
ンモニア水溶液と有機溶媒溶液とを夫々20ml/分の
速度で(即ちVO/VW=1として)第2図示の抽出塔
の上下から夫々流入させた。
On the other hand, a 1 molar solution of DIBM in toluene was prepared, and the ammonia aqueous solution and organic solvent solution were respectively introduced from the top and bottom of the extraction column shown in the second diagram at a rate of 20 ml/min (ie, VO/VW = 1).

攪拌は毎秒3回、25mmの上下動によって行ない分相
した有機相および水相を夫々取出し有機相は硫酸水溶液
による逆抽出装置を経て電解槽に送り銅電極のまわりに
金属銅として析出させ回収した。
Stirring was performed by vertical movement of 25 mm three times per second, and the separated organic and aqueous phases were taken out, and the organic phase was sent to an electrolytic cell via a back extraction device using an aqueous sulfuric acid solution, where it was deposited as metallic copper around the copper electrode and recovered. .

水相は再循環させて上記アンモニア水溶液の調整に用い
た。
The aqueous phase was recycled and used to prepare the ammonia aqueous solution.

銅の抽出率は99.82%に達した。実施例2 銅濃度を0.19モルNH4+濃度を1.98モルとし
pHを9.73として上記実施例1と同様の操作を反復
した。
The copper extraction rate reached 99.82%. Example 2 The same procedure as in Example 1 above was repeated with a copper concentration of 0.19 molar and an NH4+ concentration of 1.98 molar and a pH of 9.73.

銅の抽出率は95.43%であった。The copper extraction rate was 95.43%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の工程を示すフロー図、第2図は本
発明の方法に用いる抽出装置の概略を示す縦断面図であ
り、第3図ないし第9図は本発明方法の実施において用
いる種々の条件と抽出率との関係を夫々示すグラフであ
る。 図中:1・・・アンモニア錯化工程、2・・・抽出工程
、3・・・逆抽出工程、4・・・電解回収工程、5・・
・抽出塔、6・・・DIBMトルエン溶液流入口、7・
・・アンモニア水溶液流入口、8・・・銅キレート液流
出口、9・・・アンモニア水溶液流出口、10・・・攪
拌部材、11・・・攪拌円板、12・・・作動軸、13
・・・プーリイ、14・・・クランク、15・・・モー
タ。
FIG. 1 is a flow diagram showing the steps of the method of the present invention, FIG. 2 is a vertical sectional view schematically showing the extraction apparatus used in the method of the present invention, and FIGS. It is a graph which shows the relationship between the various conditions used and extraction rate, respectively. In the figure: 1... Ammonia complexation process, 2... Extraction process, 3... Back extraction process, 4... Electrolytic recovery process, 5...
・Extraction column, 6... DIBM toluene solution inlet, 7.
... Ammonia aqueous solution inlet, 8... Copper chelate liquid outlet, 9... Ammonia aqueous solution outlet, 10... Stirring member, 11... Stirring disk, 12... Operating shaft, 13
...Pulley, 14...Crank, 15...Motor.

Claims (1)

【特許請求の範囲】 1 銅ならびにその他の金属を含む金属スラツジ中から
銅を抽出分離する方法において上記金属スラツジをアン
モニウムイオンを含む水溶液によって処理し、得られた
水溶液に次式: (式中Rは炭素原子数3〜5のアルキル基を表わす)を
有するβ−ジケトンの有機溶媒中の溶液を加えて攪拌混
合することを特徴とする方法。 2 銅ならびにその他の金属を含む金属スラツジ中から
銅を抽出分離する方法において、 (a)上記金属スラツジに対してアンモニア水溶液を空
気の送入下に加えるアミン錯化合物形成工程、 (b)上記アミン錯化合物を含む上記工程(a)からの
水溶液に対して次の一般式: (式中Rは炭素原子数3〜5のアルキル基を表わす)を
有するβ−ジケトンの有機溶媒中の溶液を加える銅抽出
工程、 (c)上記工程(b)でキレート化合物として抽出され
た銅を含む有機溶液に対して硫酸水溶液を加えて銅を硫
酸銅として抽出する逆抽出工程、および (d)上記工程(c)で抽出された硫酸銅を電気分解し
て金属銅を生成する電解回収工程を含むことを特徴とす
る方法。 3 銅ならびにその他の金属を含む金属スラツジから銅
を抽出分離する装置において、各アルキル基中に3〜5
の炭素原子を含むジアルキルβ−ジケトンの有機溶媒中
の溶液をたて型の抽出塔の下部から、銅ならびにその他
の金属を含む金属スラツジをアンモニウムイオンを含む
水溶液によって処理して得られた水溶液を上記抽出塔の
上部から互いに向流的に接触する流入方向において供給
するようになし、かつ上記抽出塔の内部に上記流入方向
に沿って上下動するようになされた攪拌のための作動部
材とこの作動部材に対して多段に設けられ各段に上下動
の方向に対する実質的な攪拌作用面が形成された攪拌板
とを設けたことを特徴とする装置。
[Claims] 1. In a method for extracting and separating copper from a metal sludge containing copper and other metals, the metal sludge is treated with an aqueous solution containing ammonium ions, and the resulting aqueous solution is treated with the following formula: represents an alkyl group having 3 to 5 carbon atoms) in an organic solvent, and the mixture is stirred and mixed. 2. A method for extracting and separating copper from a metal sludge containing copper and other metals, including (a) an amine complex formation step in which an ammonia aqueous solution is added to the metal sludge while introducing air; (b) the amine To the aqueous solution from step (a) above containing the complex compound is added a solution of a β-diketone in an organic solvent having the following general formula: where R represents an alkyl group having 3 to 5 carbon atoms. a copper extraction step, (c) a back extraction step in which an aqueous sulfuric acid solution is added to the organic solution containing copper extracted as a chelate compound in step (b) to extract copper as copper sulfate; and (d) a back extraction step in which copper is extracted as copper sulfate. A method characterized by comprising an electrolytic recovery step of electrolyzing the copper sulfate extracted in c) to produce metallic copper. 3. In an apparatus for extracting and separating copper from metal sludge containing copper and other metals, each alkyl group contains 3 to 5
An aqueous solution obtained by treating a metal sludge containing copper and other metals with an aqueous solution containing ammonium ions is extracted from the bottom of a vertical extraction tower. an operating member for stirring, which is supplied from the upper part of the extraction tower in an inflow direction that contacts each other countercurrently, and is configured to move up and down inside the extraction tower along the inflow direction; 1. An apparatus characterized in that a stirring plate is provided in multiple stages relative to an operating member, and each stage is provided with a stirring plate that has a substantial stirring surface in the direction of vertical movement.
JP50085873A 1975-07-15 1975-07-15 How do you know what to do? Expired JPS589131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50085873A JPS589131B2 (en) 1975-07-15 1975-07-15 How do you know what to do?

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50085873A JPS589131B2 (en) 1975-07-15 1975-07-15 How do you know what to do?

Publications (2)

Publication Number Publication Date
JPS529623A JPS529623A (en) 1977-01-25
JPS589131B2 true JPS589131B2 (en) 1983-02-19

Family

ID=13871003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50085873A Expired JPS589131B2 (en) 1975-07-15 1975-07-15 How do you know what to do?

Country Status (1)

Country Link
JP (1) JPS589131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128840B2 (en) 2002-03-26 2006-10-31 Idaho Research Foundation, Inc. Ultrasound enhanced process for extracting metal species in supercritical fluids
CN113106260B (en) * 2021-05-18 2023-03-17 湘潭云萃环保技术有限公司 Copper sludge treatment method

Also Published As

Publication number Publication date
JPS529623A (en) 1977-01-25

Similar Documents

Publication Publication Date Title
JP6556685B2 (en) Platinum extractant, platinum extraction method, and platinum recovery method
WO2005083131A1 (en) Extractants for palladium and process for separation and recovery of palladium
FI69316B (en) EXTRAKTIONSMEDELBLANDNING OCH FOERFARANDE FOER SELEKTIV EXTRAKTION AV KOBOLT KOPPAR OCH NICKEL UR MALMLAKNINGSLOESNINGAR
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
JPS61159538A (en) Recovery of zinc
JP4406688B2 (en) Method for purifying electrolyte in monovalent copper electrowinning process
US4654145A (en) Direct recovery of precious metals by solvent extraction and selective removal
JPH0323229A (en) Recovery of metal by using monothiophosphinic acid
CN114436997A (en) Amide ionic liquid, synthesis method thereof and application thereof in gold extraction and separation
JPS589131B2 (en) How do you know what to do?
Galbraith et al. Cooperative sulfate binding by metal salt extractants containing 3-dialkylaminomethylsalicylaldimine units
US8241482B2 (en) Process for the recovery of acids
US4028412A (en) Novel chelate formers
JP7440865B2 (en) How to recover silver in copper electrolyte
Bennouna et al. Synthesis and Extraction Properties of 1, 3, 5-O-trimethyl-2, 4, 6-tri-O-hydroxamic Acid p-tert-butyl Calix [6] arene
US20040115107A1 (en) Extraction of metals with diquaternary amines
JP4321929B2 (en) Silver separation and recovery methods
CN110483378B (en) Pyridine ether compound, preparation method thereof and application of pyridine ether compound as copper extractant
Sorkinova Sorption of Copper Ions from the Nitric Acid Solution of Electrolytic Refining of Silver with Using Chelating Resin Axionit BPA
JP2007515552A (en) Separation of Pb and Ni from Co-containing mixtures
JPS6112010B2 (en)
JPS5943984B2 (en) Treatment method for nickel and cobalt-containing liquids containing zinc
CN114561538A (en) Extracting agent of adjacent hydroxyl aromatic olefin ketoxime with conjugated double bonds
RU2169601C2 (en) Lead ion removal method (options)
JP2021195587A (en) Silver recovery agent, ionic liquid