JP7440206B2 - レーザー溶着体 - Google Patents

レーザー溶着体 Download PDF

Info

Publication number
JP7440206B2
JP7440206B2 JP2018203591A JP2018203591A JP7440206B2 JP 7440206 B2 JP7440206 B2 JP 7440206B2 JP 2018203591 A JP2018203591 A JP 2018203591A JP 2018203591 A JP2018203591 A JP 2018203591A JP 7440206 B2 JP7440206 B2 JP 7440206B2
Authority
JP
Japan
Prior art keywords
resin
mass
laser
laser light
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018203591A
Other languages
English (en)
Other versions
JP2019081364A (ja
Inventor
明宏 岡
有希 樋渡
康史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Mitsubishi Chemical Corp
Original Assignee
Mitsuba Corp
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp, Mitsubishi Chemical Corp filed Critical Mitsuba Corp
Publication of JP2019081364A publication Critical patent/JP2019081364A/ja
Application granted granted Critical
Publication of JP7440206B2 publication Critical patent/JP7440206B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリブチレンテレフタレート系材料からなる2つの部材をレーザー溶着によって接合一体化してなる構成を備えたレーザー溶着体に関する。
レーザー溶着は、2つの樹脂部材の重なり部分にレーザービームを樹脂部材の厚さ方向に照射し、当該レーザービームが一方の樹脂部材を透過して、樹脂部材の境目付近で樹脂部材を溶かして樹脂部材間に溶融プールを形成し、この溶融プールが冷却固化して樹脂部材間を接合する方法である。
このようなレーザー溶着は、接合部品や接着剤を使用せずに効率良く接合できるばかりか、複雑な形状の部材の接合も容易に行うことができ、局所加熱であるため周辺部への熱影響がごく僅かであり、振動によってダメージを与えることなく接合することができ、接合強度も高く、さらに気密性の高い接合をすることができるため、自動車部品や電気・電子部品などの接合において広く利用されている。
この種のレーザー溶着に関しては、例えば特許文献1(特開2007-112127号公報)において、ニグロシンのみからなる着色剤0.001~0.3重量%及び熱可塑性樹脂を含有するレーザー光透過吸収性成形部材と、ニグロシンおよび/またはカーボンブラックを含む別な着色剤0.1~5重量%及び熱可塑性樹脂を含有するレーザー光吸収性成形部材とが、重ねられたまま、該レーザー光の照射による発熱で溶着されて一体化されてなるレーザー溶着体が開示されている。
また、特許文献2(特開2013-155277号公報)には、レーザー光による溶着に用いる樹脂組成物として、(A)熱可塑性ポリエステル樹脂100質量部に対し、(B)強化充填材5~150質量部、(C)耐衝撃改良剤0~20質量部、(D)エポキシ化合物0~5質量部、(E)流動改質剤0~10質量部、および、(F)ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体及びインモニウムから選ばれる1つ以上のレーザー光吸収性染料0.001~0.2質量部を含有するレーザー溶着用樹脂組成物が開示されている。
ところで、ポリブチレンテレフタレート系樹脂は、耐熱性、機械的強度、寸法安定性、電気的性質、耐油性、耐溶剤性、表面光沢性、着色性、難燃性などに優れているばかりか、結晶化速度が大きく、流動性も良好で、成形性に優れているため、電気・電子分野や自動車分野などの分野で広く利用されている樹脂である。
しかしながら、ポリブチレンテレフタレート系樹脂は、ポリカーボネート樹脂やポリスチレン系樹脂等に比べて、レーザー透過性が比較的低く、しかも反りが生じ易いため、レーザー溶着による接合強度が不十分になり易いという課題を抱えていた。
そこで、レーザー溶着に用いるポリブチレンテレフタレート系材料に関して、例えば共重合ポリブチレンテレフタレートを使用する方法(特許文献3(特許第3510817号公報))や、ポリブチレンテレフタレートにポリカーボネート樹脂又はスチレン系樹脂をアロイ化する方法(特許文献4(特開2003-292752号公報)及び特許文献5(特許第4641377号公報))などが開示されている。
また、特許文献6(特開2013-155278号公報)には、ポリブチレンテレフタレート樹脂に、特定のその他樹脂、特定のレーザー光吸収性染料、さらに必要に応じて、強化充填材、エポキシ化合物、流動改質剤等を配合した樹脂組成物を用いることにより、成形性に優れ、極めて優れたレーザー溶着加工性を有する樹脂組成物として、
レーザー光による溶着に用いる樹脂組成物であって、(A)ポリブチレンテレフタレート系樹脂、及び(B)以下の(B-1)~(B-5)から選ばれる少なくとも1つの樹脂を、(A)及び(B)の合計100質量部基準で、(A)50~95質量部、(B)50~5質量部含有し、
さらに、(A)及び(B)の合計100質量部に対し、(D)強化充填材を0~120質量部、(E)エポキシ化合物を0~5質量部、(F)流動改質剤を0~10質量部、及び、(G)ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体及びインモニウムから選ばれる1つ以上のレーザー光吸収性染料を0.001~0.2質量部含有するレーザー溶着用樹脂組成物が開示されている。
(B-1)ポリエチレンテレフタレート系樹脂
(B-2)ポリカーボネート系樹脂
(B-3)芳香族ビニル系樹脂
(B-4)アクリル系樹脂
(B-5)ポリアミド系樹脂
特開2007-112127号公報 特開2013-155277号公報 特許第3510817号公報 特開2003-292752号公報 特許第4641377号公報 特開2013-155278号公報
上述の特許文献1のように、ニグロシンのみからなる着色剤を含有するレーザー光透過吸収性成形部材と、ニグロシンおよび/またはカーボンブラックを含む着色剤を含有するレーザー光吸収性成形部材とをレーザー溶着によって一体化してなるレーザー溶着体は、レーザー光透過吸収性成形部材を厚み方向に貫いてレーザー光吸収性成形部材に至るまで溶融プールが形成されるため、レーザー光透過吸収性成形部材とレーザー光吸収性成形部材との間に隙間があっても溶融樹脂によって充填され、比較的しっかりと溶着することができるという特徴を有している。
しかしながら、レーザー光透過吸収性成形部材及びレーザー光吸収性成形部材の双方の部材がポリブチレンテレフタレートホモポリマー同士である場合、それぞれ反りが生じ易いため、反りによって生じた隙間によって溶着強度にムラが出来て、上記のような構成のレーザー溶着体であっても、溶着強度を高めることが難しいという問題を抱えていた。
そこで本発明は、上記双方の部材がポリブチレンテレフタレート系材料からなる場合、すなわちポリブチレンテレフタレート系材料からなるレーザー光透過吸収性成形部材と、ポリブチレンテレフタレート系材料からなるレーザー光吸収性成形部材とをレーザー溶着によって一体化してなるレーザー溶着体に関して、接合強度をより一層高めることができる、新たなレーザー溶着体を提供せんとするものである。
本発明は、部材Iと部材IIとが接合一体化してなる構成を備えたレーザー溶着体であって、
部材Iは、ポリエステル系樹脂Aと、該ポリエステル系樹脂A100質量部に対して0.0005~5.0質量部のレーザー光を透過し且つ吸収し得る色素材(「レーザー光透過吸収色素材」と称する)とを含み、且つ、前記ポリエステル系樹脂Aは、ポリブチレンテレフタレートホモポリマーとポリエチレンテレフタレートを含む樹脂であり、
部材IIは、ポリエステル系樹脂Bと、該ポリエステル系樹脂B100質量部に対して0.15~10.00質量部のレーザー光を透過せずに吸収し得る色素材(「レーザー光吸収色素材」と称する)とを含み、且つ、前記ポリエステル系樹脂Bは、以下の(B1)(B2)(B3)及び(B4)のうちのいずれかを含有する樹脂であることを特徴とするレーザー溶着体を提案する。
(B1)ポリブチレンテレフタレートホモポリマー
(B2)ポリブチレンテレフタレート共重合樹脂
(B3)ポリブチレンテレフタレートホモポリマー(B3-1)と、ポリブチレンテレフタレート共重合樹脂、ポリカーボネート樹脂及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(B3-2)とを含む樹脂
(B4)ポリブチレンテレフタレート共重合樹脂(B4-1)と、ポリカーボネート樹脂及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(B4-2)とを含む樹脂
本発明が提案するレーザー溶着体において、部材Iは、レーザー光を透過し且つ吸収し得るレーザー光透過吸収色素材を含み、レーザー溶着時には、レーザー光を透過しつつ吸収発熱するため、部材Iのベース樹脂として、部材Iの透過率を5~90%にすることができるポリブチレンテレフタレートホモポリマーとポリエチレンテレフタレートを含む樹脂を選択した。ポリエチレンテレフタレートを含むことによって、成形体の結晶化度が低くなり、反りが小さくなる。そのため、部材Iと部材IIの間の隙間が小さくなるため溶着強度が高くなる。他方、部材IIは、レーザー光を透過せずに吸収し得るレーザー光吸収色素材を含み、レーザー溶着時には、レーザー光を吸収し、発熱溶融して部材Iに熱を効率良く伝えることができ、さらには、部材Iと部材IIの間の隙間を減らすために反りが少ないものが好ましいため、部材IIのベース樹脂であるポリエステル系樹脂Bとして、上記(B1)(B2)(B3)及び(B4)のうちのいずれかのポリブチレンテレフタレート系樹脂を選択した。このように、部材I及びIIの材料組成を互いの組み合わせを考慮しながらそれぞれ選択することにより、反りが少なくなるため、部材IとIIの間の隙間が小さくなり、接合強度をより一層高めることができるようになった。
実施例で作製した部材Iを示した図である。 実施例で作製した部材IIを示した図である。 実施例で作製した部材I及びIIをレーザー溶着する状態の一例を示した斜視図である。 実施例における溶着強度(コップ形状)の測定方法の説明図である。 実施例における溶着強度(ダンベル片)の測定方法の説明図である。 実施例における反りの測定方法の説明図である。
次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
[本レーザー溶着体]
本発明の実施形態の一例に係るレーザー溶着体(「本レーザー溶着体」と称する)は、ポリブチレンテレフタレート系材料からなる2つの部材である部材Iと部材IIとがレーザー溶着によって接合一体化してなる構成を備えたレーザー溶着体である。
本レーザー溶着体は、かかる構成を備えていればよいから、他の構成を備えることは任意に可能である。
なお、ポリブチレンテレフタレート系材料とは、その材料を構成する樹脂成分の50質量%以上をポリブチレンテレフタレート又はポリブチレンテレフタレート共重合体が占める材料をいう。
<<部材I>>
部材Iは、ポリエステル系樹脂Aと、レーザー光を透過し且つ吸収し得るレーザー光透過吸収色素材とを含む樹脂組成物から成形された部材であればよい。
部材Iは、後述するようにポリエステル系樹脂A及びレーザー光透過吸収色素材以外の成分を適宜含有することができる。
<ポリエステル系樹脂A>
ポリエステル系樹脂Aは、ポリブチレンテレフタレートホモポリマー(「ホモPBT」とも称する)とポリエチレンテレフタレート(「PET」とも称する)を含む樹脂であることが好ましい。
(ホモPBT)
ホモPBTは、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有する高分子であり、テレフタル酸単位及び1,4-ブタンジオール単位からなる重合体である。
ホモPBTの末端カルボキシル基量は、好ましくは60eq/ton以下であり、50eq/ton以下であることがより好ましく、30eq/ton以下であることが更に好ましい。
なお、ポリブチレンテレフタレートホモポリマーの末端カルボキシル基量は、ベンジルアルコール25mLに樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定することにより、求めることができる。
末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
ホモPBTの固有粘度は0.5~2.0dl/gであるものが好ましい。
当該固有粘度が0.5dl/g以上であれば、溶着体の機械的強度が低くなり過ぎることがなく、2.0dl/g以下であれば、流動性が低下して成形性が悪化したりレーザー溶着性が低下したりするのを防ぐことができる。
かかる観点から、ホモPBTの固有粘度は、0.5~2dl/gであるものが好ましく、中でも0.6dl/g以上或いは1.5dl/g以下、その中でも0.7dl/g以上或いは1.2dl/g以下であることがさらに好ましい。
なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
(PET)
PETは、全構成繰り返し単位に対するテレフタル酸及びエチレングリコールからなるオキシエチレンオキシテレフタロイル単位を主たる構成単位とする樹脂である。
オキシエチレンオキシテレフタロイル単位以外の構成の繰り返し単位を含んでいてもよい。
PETは、テレフタル酸又はその低級アルキルエステルとエチレングリコールとを主たる原料として製造される。他の酸成分及び/又は他のグリコール成分を併せて原料として用いてもよい。
テレフタル酸以外の酸成分としては、例えばフタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、4,4’-ビフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-フェニレンジオキシジ酢酸及びこれらの構造異性体、マロン酸、コハク酸、アジピン酸等のジカルボン酸及びその誘導体、p-ヒドロキシ安息香酸、グリコール酸等のオキシ酸又はその誘導体などを挙げることができる。
また、エチレングリコール以外のジオール成分としては、例えば1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環式グリコール、ビスフェノールA、ビスフェノールS等の芳香族ジヒドロキシ化合物誘導体等を挙げることができる。
PETは、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能、もしくはピロメリット酸の如き四官能のエステル形性能を有する酸またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを、好ましくは1.0モル%以下、より好ましくは0.5モル%以下、更に好ましくは0.3モル%以下を共重合せしめたものであってもよい。
PETの固有粘度は、0.3~1.5dl/gであることが好ましく、中でも0.4dl/g以上或いは1.2dl/g以下、その中でも0.5dl/g以上或いは0.8dl/g以下であることがさらに好ましい。
なお、ポリエチレンテレフタレート樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
PETの末端カルボキシル基量は、3~60eq/tonであることが好ましい。
末端カルボキシル基量を60eq/ton以下とすることで、樹脂材料の溶融成形時にガスが発生しにくくなり、得られるレーザー溶着用部材の機械的特性が向上する傾向にあり、逆に末端カルボキシル基量を3eq/ton以上とすることで、レーザー溶着用部材の耐熱性、滞留熱安定性や色相が向上する傾向にあり、好ましい。
かかる観点から、PETの末端カルボキシル基量は、3~60eq/tonであることが好ましく、中でも5eq/ton以上或いは50eq/ton以下、その中でも8eq/ton以上或いは40eq/ton以下であることがさらに好ましい。
なお、ポリエチレンテレフタレート樹脂の末端カルボキシル量は、ベンジルアルコール25mLにポリエチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定することにより、求められる値である。
末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
(ホモPBT+PET)
ポリエステル系樹脂Aが、ホモPBTとPETを含む樹脂である場合、PETの含有割合は、ホモPBT及びPETの合計100質量%中、5~50質量%であることが好ましい。
PETの当該含有割合が5質量%以上であれば、部材Iの反りが小さくなることで部材Iと部材IIの間の隙間が小さくなるため溶着強度が高くなるから好ましく、当該含有割合が50質量%以下であれば成形性がよくなるので好ましい。
かかる観点から、ホモPBT及びPETの合計100質量%中、PETの含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
(ポリエステル樹脂Aを構成する樹脂)
部材Iを構成するポリエステル樹脂Aは、ホモPBT及びPET以外にも、本発明の効果を損なわない範囲で「他の樹脂」を含有してもよい。但し、ホモPBT及びPETが、部材Iを構成するポリエステル樹脂Aの主成分樹脂であることが好ましく、部材Iを構成する樹脂のうちホモPBT及びPETが50質量%以上を占めるのが好ましく、中でも60質量%以上、その中でも70質量%以上を占めるのがさらに好ましい。
部材Iを構成するポリエステル樹脂Aが、ホモPBT及びPET以外に「他の樹脂」を含有する場合、後述する部材IIを構成するポリエステル系樹脂Bとは異なる組成とする必要がある。異なる組成とは、含有する樹脂の種類が異なる場合、含有する樹脂の種類は同じであってもその配合割合が異なる場合、樹脂を構成する共重合成分や共重合割合が異なる場合を包含する意味である。
ポリエステル樹脂Aに含有し得る「他の樹脂」としては、例えば共重合PBT、ポリカーボネート樹脂、芳香族ビニル系樹脂等を挙げることができる。
<レーザー光透過吸収色素材>
部材Iが含有する上記レーザー光透過吸収色素材としては、例えばニグロシンやアニリンブラックなどのアジン系、フタロシアニン系、ナフタロシアニン系、ポルフィリン系、クオテリレン系、アゾ系、アゾメチン系、アントラキノン系、スクエア酸誘導体及びインモニウム、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、ペリノン系、ペリレン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系などの各種有機染顔料を挙げることができる。これらのうちの一種を選択して使用することも、二種以上を組み合わせて使用することもできる。
なお、本発明において「染顔料」とは、染料乃至顔料の意味である。
部材Iが含有する上記レーザー光透過吸収色素材としては、以上の中でも、黒色度を高めるために、レーザー光波長において主に吸収する染顔料(X)とレーザー光を主に透過する染顔料(Y)とを組合せて使用することが好ましい。
上記レーザー光波長において主に吸収する染顔料(X)としては、アジン(Azine)骨格を有するアジン系化合物の縮合混合物を含むのが好ましい。
アジン骨格を有するアジン系化合物の縮合混合物として、ニグロシンが好ましい。
ニグロシンは、レーザー光吸収性を有する染顔料として働き、800nm~1200nmのレーザー光の範囲に、緩やかな吸収を有している。
ニグロシンは、C.I.Solvent Black 5やC.I.Solvent Black 7として、Color Indexに記載されているような、黒色のアジン系縮合混合物である。
ニグロシンは、例えばアニリン、アニリン塩酸塩及びニトロベンゼンを、塩化鉄の存在下、反応温度160~190℃で酸化及び脱水縮合することにより合成することができる。ニグロシンの市販品としては、例えば、「NUBIAN(登録商標) BLACK シリーズ」(商品名、オリヱント化学工業社製)等を挙げることができる。
他方、レーザー光を主に透過する染顔料(Y)としては、例えばアントラキノン系染顔料、ペリノン系染顔料及びアゾメチン系染顔料を挙げることができる。
これら染顔料は、光線の吸収波長により呈する色が決まるが、黒色度を高めるためには、具体的には、青色を呈する染顔料(以下、青色染料と言うことがある)と、黄色を呈する染顔料(以下、黄色染料と言うことがある)と、赤色を呈する染顔料(以下、赤色染料と言うことがある)の組合せ、紫色を呈する染顔料(以下、紫色染料と言うことがある)と、黄色染料の組合せ、緑色を呈する染顔料(以下、緑色染料と言うことがある)と、赤色染料、青色染料と、茶色を呈する染顔料(以下、茶色染料と言うことがある)などの染顔料の組合せを挙げることができる。
好ましい青色染料は、最大吸収波長が590~635nmの範囲のアントラキノン染顔料である。アントラキノン染顔料は通常青色の油溶性染顔料である。
部材Iが含有する上記レーザー光透過吸収色素材として、この染顔料を組み合わせることにより、例えば、緑色アントラキノン染顔料より、視認性が高く、黒色混合染顔料を組み合わせる場合にも、減法混色で、赤色染料、黄色染料を組み合わせることにより、着色力の高い黒色を示す着色剤を得ることができる。
最大吸収波長が590~635nmの範囲であるアントラキノン染顔料としては、更に、空気存在下における熱重量分析計TG/DTAの測定値(分解開始温度)が300℃以上のものを選択することが好ましい。
好ましいアントラキノン染顔料は、COLOR INDEXに記載されているようなC.I.ソルベントブルー97(分解開始温度320℃)、C.I.ソルベントブルー104(分解開始温度320℃)等が例示される。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。
市販されているアントラキノン染顔料としては、例えば、「NUBIAN(登録商標)BLUE シリーズ」、「OPLAS(登録商標) BLUE シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
好ましい赤色染料としては、耐熱性が良好なペリノン染顔料が選ばれ、最大吸収波長が460~480nmの範囲である赤色ペリノン染顔料が挙げられる。このようなペリノン染顔料C2の具体例は、C.I.ソルベント レッド 135、162、178、179等を使用することができる。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。
赤色ペリノン染顔料の市販品としては、例えば、「NUBIAN(登録商標) RED シリーズ、OPLAS(登録商標) RED シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
好ましい黄色染料としては、耐熱性が良好なアントラキノン染顔料が選ばれ、最大吸収波長が435~455nmの範囲のアントラキノン染顔料が好適である。最大吸収波長が435~455nmの範囲にあるアントラキノン染顔料は、通常黄色の油溶性染顔料である。
黄色アントラキノン染顔料の具体例は、C.I.ソルベント イエロー 163、C.I.バット イエロー 1、2、3等を使用することができる。それらは、1種または2種以上使用されてもよい。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。黄色アントラキノン染顔料の市販品としては、例えば、「NUBIAN(登録商標) YELLOW シリーズ、OPLAS(登録商標) YELLOW シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
好ましい茶色染料として、アゾメチン系染顔料が選ばれる。例えば、下記式(1)に示す1:1型アゾメチンニッケル錯体を少なくとも含有する染顔料を挙げることができる。
Figure 0007440206000001
[式(1)中、R~Rは、互いに同一又は異なるものであり、水素原子、炭素数1~18のアルキル基、炭素数1~18のアルコキシ基、カルボキシ基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基またはハロゲン原子である。]
式(1)におけるR~R中の炭素数1~18のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、neo-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-デシル基等が好ましく挙げられ、炭素数1~18のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、neo-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基等が好ましく、アルキルアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ、ジエチルアミノ等を好ましく挙げることができ、ハロゲン原子は、例えばF、Cl、Br等である。
1:1型アゾメチンニッケル錯体に用いるアゾメチン色素は、公知の方法で製造出来る。例えば、以下の反応式で示すようなジアミノマレオニトリルと置換基を有しても良いサリチルアルデヒドを反応させることで得られる。
Figure 0007440206000002
式(2)中のR~Rは、前記式(1)中のR~Rと同義である。
このアゾメチン色素をニッケル化剤、例えば、酢酸ニッケルを用いて金属化することにより、下記に示すように、1:1型アゾメチンニッケル錯体が得られる。
Figure 0007440206000003
式(3)中のR~Rは、前記式(1)中のR~Rと同義である。
得られたニッケル錯体は、アゾメチン色素がキレート性の4配位子として働き、安定な錯体を構成する。
1:1型アゾメチンニッケル錯体は、耐熱性、耐光性等の堅牢性が良好であるため、屋外の部材や熱にさらされる部材用樹脂組成物に有用であり、レーザー溶着時の溶融時に熱変化が起こりにくく、レーザー溶着部材用の着色剤として好適である。
前記式(1)に示す1:1型アゾメチンニッケル錯体の具体例としては、R~Rが以下のとおりである下記表1の化合物例1~7等を好ましく挙げることができる。
なお、部材Iが含有する上記レーザー光透過吸収色素材として用いるアゾメチンニッケル錯体はこれらに限定されるものではない。
Figure 0007440206000004
部材Iが含有する上記レーザー光透過吸収色素材として用いるレーザー光を主に透過する染顔料(Y)は、最大吸収波長が590~635nmの範囲であるアントラキノン染顔料(C1)と、最大吸収波長が460~480nmの範囲であるペリノン染顔料(C2)と、最大吸収波長が435~455nmの範囲であるアントラキノン染顔料(C3)を用いることが好ましい。
熱可塑性ポリエステル樹脂Aとの相溶性によって、レーザー光波長において主に吸収する染顔料(X)であるニグロシン及レーザー光を主に透過する染顔料(Y)を構成する油溶性染顔料の色相が変化するため、黒色色相として好適な漆黒の成形板を得るためには、染顔料(Y)を構成する油溶性染顔料の割合を調整する必要がある。そのため、C1~C3の含有割合は、質量比で(C1、C2、C3の合計100質量部基準で)C1:C2:C3=24~42:24~48:22~46であることが好ましい。更に好ましいC1:C2:C3の比率は、24~41:24~39:22~46である。
更に、部材Iが含有する上記レーザー光透過吸収色素材として用いるレーザー光を主に透過する染顔料(Y)は、最大吸収波長が460~480nmの範囲であるペリノン染顔料C2及び最大吸収波長が590~635nmの範囲であるアントラキノン染顔料C1を、両者の質量比C2/C1が0.4~2の割合で含有する着色剤であることが好ましい。本発明の樹脂組成物による発色性や、ブリードアウト抑制を考慮すると、より好ましくは0.4~1.5、更に好ましくは0.6以上或いは1.5以下である。
併用してよいその他の染顔料としては、アゾ染料、キナクリドン染料、ジオキサジン染料、キノフタロン染料、ペリレン染料、ペリノン染料(上記したC2とは異なる波長の化合物)、イソインドリノン染料、トリフェニルメタン染料、アントラキノン染料(上記したC1、C3とは異なる波長の化合物)、アゾメチン染料等の染顔料を挙げることができる。ただし、ニッケルを含まないほうが好ましい。
レーザー光透過吸収色素材の含有量は、ポリエステル系樹脂材料A100質量部に対し、0.0005~5.0質量部であるのが好ましい。透過吸収色素材の含有量が0.0005質量部以上であればレーザー光を樹脂が吸収し溶融するので好ましい。他方、当該含有量が5.0質量部以下であれば染顔料のブリードアウトを抑制でき、かつ発熱量をコントロールできるため好ましい。
かかる観点から、レーザー光透過吸収色素材の含有量は、ポリエステル系樹脂A100質量部に対して0.0005~5.0質量部であるのが好ましく、中でも0.001質量部以上或いは4.0質量部以下、その中でも0.005質量部以上或いは3.0質量部以下であることがさらに好ましい。
上記したように、レーザー光透過吸収色素材として、レーザー光波長において主に吸収する染顔料(X)とレーザー光を主に透過する染顔料(Y)とを組み合わせる場合には、染顔料(X)はポリエステル系樹脂A100質量部に対して0.0005~0.6質量部であることが好ましい。
レーザー光を主に吸収する洗顔料(X)の含有量が0.0005質量部以上であれば吸収洗顔料がむらなく分散し、レーザー光を樹脂が吸収しむらなく溶融するので好ましい。他方、当該含有量が0.6質量部以下であれば、レーザー光を透過し、樹脂の分解による発泡が起こり難いため、好ましい。
かかる観点から、レーザー光吸収する洗顔料(X)含有量は、ポリエステル系樹脂A100質量部に対して0.0005~0.6質量部であることが好ましく、中でも0.001質量部以上或いは0.3質量部以下、その中でも0.003質量部以上或いは0.1質量部以下であることがさらに好ましい。
染顔料(Y)はポリエステル系樹脂A100質量部に対して0.0005~5質量部であることが好ましい。
レーザー光を主に透過する染顔料(Y)の含有量が5.0質量部以下であれば、染顔料のブリードアウトが起こり難いため、好ましい。
かかる観点から、レーザー光を主に透過する染顔料(Y)の含有量は、ポリエステル系樹脂A100質量部に対して、0.0005~5質量部であることが好ましく、中でも0.05質量部以上或いは4質量部以下、その中でも0.1質量部以上或いは3質量部以下であることがさらに好ましい。
染顔料(X)含有量に対する、染顔料(Y)含有量の比率(Y/X)は、1~100であるのが好ましく、中でも10以上或いは90以下、その中でも20以上或いは80以下であるのがさらに好ましい。
<他の含有成分>
部材Iは、所望に応じ、種々の添加剤を含有することが可能である。このような添加剤としては、例えば、強化充填材、耐衝撃改良剤、流動改質剤、助色剤、分散剤、安定剤、可塑剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、潤滑剤、離型剤、結晶促進剤、結晶核剤、難燃剤、及びエポキシ化合物等を挙げることができる。
<部材Iの形状>
部材Iの形状は任意である。例えば板状であっても、矩形状であっても、その他の複雑な形状であってもよい。例えば端部突き合わせて溶着に供するような異形押出品(棒、パイプ等)でもよく、また高い防水性、気密性が必要とされる通電部品、電子部品等に用いられる金属インサートされた成形品であってもよい。
部材Iの成形方法も任意である。例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等を挙げることができる。
部材Iは、その全厚さに渡ってレーザー光を透過する必要があるから、厚過ぎるのは好ましくない。他方、薄過ぎると、成形品の強度が弱くなるため好ましくない。
かかる観点から、部材Iのレーザー溶着する接合部の厚さは、0.2mm~4.0mmであることが好ましく、中でも0.4mm以上或いは3.5mm以下、その中でも0.5mm以上或いは3.0mm以下であることがさらに好ましい。
部材Iの透過率は、限定されるものではない。但し、部材Iの透過率は、高ければ高いほど、レーザー光を透過しやすく、それにより成形品の接合強度が高くなる傾向がある。そのため、部材Iの透過率は、波長940nmの光線を用いて測定する場合、部材Iが厚み1.5mm以上において、10~80%であるのが好ましく、中でも10%以上或いは70%以下、その中でも15%以上或いは60%以下、その中でも20%以上或いは50%以下であるのが特に好ましい。
また、部材Iの反射率も、限定されるものではない。但し、部材Iの反射率は、低ければ低いほど、レーザー光の損失が少なく、より多くのレーザー光が部材Iに入射される傾向がある。そのため、部材Iの反射率は、波長940nmの光線を用いて測定する場合、部材Iの厚み1.5mm以上において、1~90%であるのが好ましく、中でも5%以上或いは80%以下、その中でも10%以上或いは70%以下、その中でも10%以上或いは60%以下であるのが特に好ましい。
<<部材II>>
部材IIは、ポリエステル系樹脂Bとレーザー光を透過せずに吸収し得るレーザー光吸収色素材を含む樹脂組成物から成形された部材であればよい。
部材IIは、後述するようにポリエステル系樹脂B及びレーザー光吸収色素材以外の成分を適宜含有することができる。
<ポリエステル系樹脂B>
ポリエステル系樹脂Bは、以下の(B1)(B2)(B3)及び(B4)のうちの何れかであることが好ましい。
部材IIのポリエステル系樹脂Bとして以下の(B1)(B2)(B3)及び(B4)のうちのいずれかを含有することにより、部材IIの反りを低減させることができ、溶着時の部材IとIIとの間の隙間を小さくすることができるので溶着強度を高くすることができる。また、溶着体の残留応力を減少させることもできる。
(B1)ポリブチレンテレフタレートホモポリマー
(B2)ポリブチレンテレフタレート共重合樹脂
(B3):ポリブチレンテレフタレートホモポリマーを含むホモPBT系混合樹脂
(B4):ポリブチレンテレフタレート共重合樹脂を含む共重合PBT系混合樹脂
<(B1)ポリブチレンテレフタレートホモポリマー>
部材IIのポリエステル系樹脂BがホモPBTである場合、当該ホモPBTは、上記部材Iのポリエステル系樹脂AにおけるホモPBTと同様のものを使用することができる。
<(B2)ポリブチレンテレフタレート共重合樹脂>
ポリブチレンテレフタレート共重合樹脂(「共重合PBT」とも称する)は、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体である。
テレフタル酸以外の他のジカルボン酸単位としては、例えばイソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸などの芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸などの脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸などの脂肪族ジカルボン酸類などを挙げることができる。
1,4-ブタンジオール以外の他のジオール単位としては、炭素原子数2~20の脂肪族または脂環族ジオール類、ビスフェノール誘導体類などを挙げることができる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオぺンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノ一ル、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノ一ルAのエチレンオキシド付加ジオールなどを挙げることができる。
共重合PBTは、機械的性質、耐熱性の観点から、ジカルボン酸単位中のテレフタル酸の割合が、70モル%以上であることが好ましく、中でも90モル%以上であることがさらに好ましい。
また、ジオール単位中の1,4-ブタンジオールの割合が、70モル%以上であることが好ましく、中でも90モル%以上、特に95モル%以上であることがさらに好ましい。
共重合PBTは、上記のような二官能性モノマー以外に、分岐構造を導入するため、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の三官能、もしくはピロメリット酸等の四官能のエステル形成能を有する酸、またはグリセリン、トリメチロールプロパン、ペンタエリスリトール等の三官能もしくは四官能のエステル形成能を有するアルコール等の多官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
共重合PBTは、特に、共重合成分として、ポリアルキレングリコール類(特にはポリテトラメチレングリコール(PTMG))を共重合したポリブチレンテレフタレート樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、特にはイソフタル酸共重合ポリブチレンテレフタレート樹脂であることが好ましい。
ポリテトラメチレングリコール(PTMG)を共重合した共重合PBTにおいては、共重合体中のテトラメチレングリコール成分の割合が3~40質量%であることが好ましく、中でも5質量%以上或いは30質量%以下、その中でも10質量%以上或いは25質量%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性と耐熱性とのバランスに優れる傾向となり好ましい。
他方、ダイマー酸を共重合した共重合PBTの場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5~30モル%であることが好ましく、中でも1モル%以上或いは20モル%以下、その中でも3モル%以上或いは15モル%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、長期耐熱性及び靭性のバランスに優れる傾向となり好ましい。
また、イソフタル酸を共重合した共重合PBTの場合には、全カルボン酸成分に占めるイソフタル酸成分の割合は、カルボン酸基として1~30モル%であることが好ましく、中でも2モル%以上或いは20モル%以下、その中でも3モル%以上或いは15モル%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、耐熱性、射出成形性及び靭性のバランスに優れる傾向となり好ましい。
共重合PBTとしては、レーザー溶着性と成形性の観点から、ポリテトラメチレングリコールを共重合した共重合PBT若しくはイソフタル酸を共重合した共重合PBTが特に好ましい。
共重合PBTの固有粘度は0.5~2.0dl/gであるものが好ましい。
当該固有粘度が0.5dl/g以上であれば、溶着体の機械的強度が低くなり過ぎることがなく、2.0dl/g以下であれば、流動性が低下して成形性が悪化したりレーザー溶着性が低下したりするのを防ぐことができる。
かかる観点から、共重合PBTの固有粘度は、0.5~2.0dl/gであるものが好ましく、中でも0.6dl/g以上或いは1.5dl/g以下、その中でも0.7dl/g以上或いは1.2dl/g以下であることがさらに好ましい。
なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
共重合PBTの末端カルボキシル基量は、60eq/ton以下であることが好ましい。
当該末端カルボキシル基量が60eq/ton以下であれば、樹脂組成物の溶融成形時にガスの発生を抑えることができる。
かかる観点から、共重合PBTの末端カルボキシル基量は、60eq/ton以下であることが好ましく、中でも50eq/ton以下、その中でも30eq/ton以下であることがさらに好ましい。
他方、末端カルボキシル基量の下限値は特に定めるものではない。通常は5eq/ton以上である。
なお、共重合PBTの末端カルボキシル基量は、ベンジルアルコール25mLに樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定することにより、求めることができる。
末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
<(B3)ホモPBT系混合樹脂組成物>
ホモPBT系混合樹脂(B3)は、ホモPBT(B3-1)と、共重合PBT、ポリカーボネート樹脂及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(B3-2)とからなる樹脂組成物であることが好ましい。
(ポリブチレンテレフタレートホモポリマー(B3-1))
ポリブチレンテレフタレートホモポリマー(B3-1)は、ポリエステル系樹脂Aで用いるホモPBTと同様である。
(ポリブチレンテレフタレート共重合樹脂(B3-2))
上記ポリブチレンテレフタレート共重合樹脂(B3-2)は、上述したポリブチレンテレフタレート共重合樹脂(B2)と同様である。
(ポリカーボネート樹脂(B3-2))
上記ポリカーボネート樹脂(「PC」とも称する)は、ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。
PCの製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができるが、溶融重合法で製造したポリカーボネート樹脂が、レーザー光透過性、レーザー溶着性の点から好ましい。
原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ちビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
PCとしては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の共重合体であってもよい。更には、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。
PCの粘度平均分子量は5000~30000であることが好ましい。
粘度平均分子量が5000以上のPCを用いると、得られる溶着体の機械的強度を維持することができ、また30000以下であれば、樹脂組成物の流動性が悪くなり成形性が悪化したり、レーザー溶着性が低下したりするのを抑えることができる。
かかる観点から、PCの粘度平均分子量は5000~30000であることが好ましく、中でも10000以上或いは28000以下、その中でも14000以上或いは24000以下であることが更に好ましい。
なお、PCの粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される粘度平均分子量[Mv]である。
PCのゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定したポリスチレン換算の質量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)は、2~5であることが好ましく、中でも2.5以上或いは4以下であることがさらに好ましい。Mw/Mnが過度に小さいと、溶融状態での流動性が増大し成形性が低下する傾向にある。一方、Mw/Mnが過度に大きいと、溶融粘度が増大し成形困難となる傾向がある。
また、PCの末端ヒドロキシル基量は、熱安定性、加水分解安定性、色調等の点から、100質量ppm以上であることが好ましく、より好ましくは120質量ppm以上、更に好ましくは150質量ppm以上、最も好ましくは200質量ppm以上である。但し、通常1500質量ppm以下、好ましくは1300質量ppm以下、更に好ましくは1200質量ppm以下、最も好ましくは1000質量ppm以下である。ポリカーボネート樹脂の末端ヒドロキシル基量が過度に小さいと、レーザー透過性が低下しやすい傾向にあり、また、成形時の初期色相が悪化する場合がある。末端ヒドロキシル基量が過度に大きいと、滞留熱安定性や耐湿熱性が低下する傾向がある。
(芳香族ビニル系樹脂(B3-2))
芳香族ビニル系樹脂は、芳香族ビニル構造を主成分とする重合体であり、例えば芳香族ビニル化合物としては、スチレン、α-メチルスチレン、パラメチルスチレン、ビニルトルエン、ビニルキシレン等を挙げることができる。
また、芳香族ビニル系樹脂として、芳香族ビニル化合物に他の単量体を共重合させた共重合体も用いることができる。代表的なものとしては、例えばスチレンとアクリロニトリルを共重合させたアクリロニトリル-スチレン共重合体(AS樹脂)、スチレンと無水マレイン酸を共重合させた無水マレイン酸-スチレン共重合体(無水マレイン酸変性ポリスチレン樹脂)を挙げることができる。
芳香族ビニル系樹脂としては、例えばポリスチレン(PS)、アクリロニトリル-スチレン(AS)、メチルメタクリレート-スチレン(MS)、スチレン-マレイン酸共重合体などが代表的なものである。
芳香族ビニル系樹脂には、ゴム成分を共重合することができる。ゴム成分の例としては、ブタジエン、イソプレン、1,3-ペンタジエンなどの共役ジエン系炭化水素を挙げることができる。ゴム成分を共重合する場合、共重合するゴム成分の量は、芳香族ビニル系樹脂全セグメント中の1質量%以上50質量%未満とする。ゴム成分の量は、好ましくは3~40質量%、さらに好ましくは、5~30質量%である。
ゴム成分共重合芳香族ビニル系樹脂としては、例えばゴム変性ポリスチレン(HIPS)、アクリロニトリル-ブタジエン-スチレン(ABS)、アクリロニトリル-スチレン-アクリルゴム共重合体、メチルメタクリレート-ブタジエン-スチレン(MBS)、アクリロニトリル-スチレン-アクリル酸(ASA)、スチレン-ブタジエン共重合体(SBS)、およびその水素化物(SEBS)、スチレン-イソプレン共重合体(SIS)、およびその水素化物(SEPS)等を挙げることができる。
共重合可能な他の単量体としては、例えばアクリル酸、メタクリル酸などのα,β-不飽和カルボン酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-t-ブチル、メタクリル酸シクロヘキシルなどのα,β-不飽和カルボン酸エステル類、無水マレイン酸、無水イタコン酸などのα,β-不飽和ジカルボン酸無水物類、N-フェニルマレイミド、N-メチルマレイミド、N-t-ブチルマレイミドなどのα,β-不飽和ジカルボン酸のイミド化合物類などを挙げることができる。
芳香族ビニル系樹脂としては、GPCにより測定した質量平均分子量が50000~500000であることが好ましい。
当該分子量が50000以上であれば、ブリードアウトを抑制することができ、成形時の分解ガス発生によるウエルド強度の低下を抑えることができる。他方、当該分子量が500000以下であれば、流動性及びレーザー溶着強度を高めることができる。
かかる観点から、芳香族ビニル系樹脂としては、GPCにより測定した質量平均分子量が50000~500000であることが好ましく、中でも100000以上或いは400000以下、その中でも150000以上或いは300000以下であることがさらに好ましい。
芳香族ビニル系樹脂は、アクリロニトリル-スチレン共重合体の場合、220℃、98Nで測定されたメルトフローレート(MFR)が、0.1~50g/10分であることが好ましい。
当該MFRが0.1g/10分以上であれば、ポリブチレンテレフタレート樹脂と相溶性がよく、射出成形時に層剥離などの外観不良が生じるのを抑えることができる。他方、当該MFRが50g/10分以下であれば、耐衝撃性の低下を抑えることができる。
かかる観点から、芳香族ビニル系樹脂の上記メルトフローレート(MFR)は、0.1~50g/10分であることが好ましく、中でも0.5g/10分以上或いは30g/10分以下、その中でも1g/10分以上或いは20g/10分以下であることがさらに好ましい。
また、芳香族ビニル系樹脂がポリスチレンである場合は、200℃、48Nで測定されたMFRが1~50g/10分であることが好ましく、中でも3g/10分以上或いは35g/10分以下、その中でも5g/10分以上或いは20g/10分以下であることがさらに好ましい。
芳香族ビニル系樹脂がブタジエンゴム含有ポリスチレンである場合は、200℃、49Nで測定されたMFRが0.1~40g/10分であることが好ましく、中でも0.5g/10分以上或いは30g/10分以下、その中でも0.8g/10分以上或いは20g/10分以下であることが更に好ましい。
(ホモPBT+共重合PBT)
ホモPBT系混合樹脂(B3)が、ホモPBT(B3-1)と共重合PBT(B3-2)とを含有する場合、共重合PBT(B3-2)の含有割合は、ホモPBT(B3-1)及び共重合PBT(B3-2)の合計100質量%中、10~90質量%部であることが好ましい。
共重合PBT(B3-2)の当該含有割合が10質量%以上であればレーザー溶着性能が高くなるため好ましく、当該含有割合が90質量%以下であれば成形性が良くなるため好ましい。
かかる観点から、ホモPBT(B3-1)及び共重合PBT(B3-2)の合計100質量%に対して共重合PBT(B3-2)の含有割合は10~90質量%であることが好ましく、中でも15質量%以上或いは85質量%以下、その中でも20質量%以上或いは80質量%以下であることがさらに好ましい。
(ホモPBT+PC)
ホモPBT混合樹脂(B3)が、ホモPBT(B3-1)とPC(B3-2)とを含有する場合、PC(B3-2)の含有割合は、ホモPBT(B3-1)及びPC(B3-2)の合計100質量%中、5~50質量%であることが好ましい。
PC(B3-2)の当該含有割合が5質量%以上であればレーザー溶着性能が高くなるため好ましく、当該含有割合が50質量%以下であれば成形性が良くなるため好ましい。
かかる観点から、ホモPBT(B3-1)及びPC(B3-2)の合計100質量%中、PC(B3-2)の含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
(ホモPBT+芳香族ビニル系樹脂)
ホモPBT混合樹脂(B3)が、ホモPBT(B3-1)と芳香族ビニル系樹脂(B3-2)とを含有する場合、芳香族ビニル系樹脂(B3-2)の含有割合は、ホモPBT(B3-1)及び芳香族ビニル系樹脂(B3-2)の合計100質量%中、5~50質量%であることが好ましい。
芳香族ビニル系樹脂(B3-2)の当該含有割合が5質量%以上であればレーザー溶着性能が高くなるため好ましく、当該含有割合が50質量%以下であれば成形性が良くなるため好ましい。
かかる観点から、ホモPBT(B3-1)及び芳香族ビニル系樹脂(B3-2)の合計100質量%中、芳香族ビニル系樹脂(B3-2)の含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
尚、上記には、ホモPBT(B3-1)と、共重合PBT、PC、芳香族ビニル系樹脂(B3-2)の中の1つとを組み合わせた場合の好ましい含有割合を記載した。ただし、上記(B3-2)の中から適宜選択して、複数種を用いてもよく、その場合のそれぞれの含有割合は、ホモPBT又はホモPBT+共重合PBTを全体の50質量%以上とし、かつ、上記した(B3-2)をそれぞれの割合範囲で合計が100質量%を越えないようすることが好ましい。
例えば、(B3-2)として、芳香族ビニル系樹脂とPCを併用する場合には、ホモPBT50質量%以上、芳香族ビニル系樹脂5~50質量%、及び、PC5~50質量%で、合計を100質量%とすることが好ましい。
また、後述する(B4)においても、(B4-2)から複数種を用いる場合には、上記と同じ考え方にて、組み合わせることができる。
<(B4)共重合PBT系混合樹脂組成物>
共重合PBT系混合樹脂(B4)は、共重合PBT(B4-1)と、PC及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(B4-2)とを含む樹脂組成物であることが好ましい。
この際、共重合PBT系混合樹脂(B4)における共重合PBT(B4-1)は、ホモPBT系混合樹脂(B3)における共重合PBT(B3-2)と同様である。
また、共重合PBT系混合樹脂(B4)におけるPC及び芳香族ビニル系樹脂は、ホモPBT系混合樹脂(B3)におけるPC及び芳香族ビニル系樹脂とそれぞれ同様である。
(共重合PBT+PC)
共重合PBT系混合樹脂(B4)が、共重合PBT(B4-1)とPC(B4-2)とを含有する場合、PC(B4-2)の含有割合は、共重合PBT(B4-1)及びPC(B4-2)の合計100質量%中、50質量%以下であることが好ましい。
PC(B4-2)の含有割合が50質量%以下であれば、成形性に優れるから好ましい。
かかる観点から、共重合PBT(B4-1)及びPC(B4-2)の合計100質量%中、PC(B4-2)の含有割合は50質量%以下であることが好ましく、中でも5質量%以上或いは40質量%以下、その中でも5質量%以上或いは30質量%以下であることがさらに好ましい。
(共重合PBT+芳香族ビニル系樹脂)
共重合PBT系混合樹脂(B4)が、共重合PBT(B4-1)と芳香族ビニル系樹脂(B4-2)とを含有する場合、芳香族ビニル系樹脂(B4-2)の含有割合は、共重合PBT(B4-1)及び共重合PBT(B4-1)の合計100質量%中、50質量%以下であることが好ましい。
芳香族ビニル系樹脂(B4-2)の当該含有割合が50質量%以下であれば、成形性に優れるから好ましい。
かかる観点から、共重合PBT(B4-1)及び共重合PBT(B4-1)の合計100質量%中、芳香族ビニル系樹脂(B4-2)の含有割合は50質量%以下であることが好ましく、中でも5質量%以上或いは45質量%以下、その中でも5質量%以上或いは40質量%以下であることがさらに好ましい。
<ポリエステル系樹脂Bを構成する樹脂>
部材IIを構成するポリエステル樹脂Bは、上記した(B1)、(B2)、(B3)又は(B4)以外に、本発明の効果を損なわない範囲で「他の樹脂」を含有してもよい。但し、上記した(B1)、(B2)、(B3)又は(B4)が、部材IIを構成するポリエステル樹脂Bの主成分樹脂であることが好ましく、部材IIを構成する樹脂のうち(B1)、(B2)、(B3)又は(B4)が50質量%以上を占めるのが好ましく、中でも60質量%以上、その中でも70質量%以上を占めるのがさらに好ましい。
部材IIを構成するポリエステル樹脂Bが、上記「他の樹脂」を含有する場合、前述した部材Iを構成するポリエステル系樹脂Aとは異なる組成とする必要がある。異なる組成とは、含有する樹脂の種類が異なる場合、含有する樹脂の種類は同じであってもその配合割合が異なる場合、樹脂を構成する共重合成分や共重合割合が異なる場合を包含する意味である。
ポリエステル樹脂Bが含有し得る「他の樹脂」としては、例えばホモPBT、共重合PBT、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、芳香族ビニル系樹脂等を挙げることができる。
<レーザー光吸収色素材>
部材IIが含有する上記レーザー光吸収色素材としては、カーボンブラックなどの黒色系着色剤、酸化チタンや硫化亜鉛等の白色系着色剤などを挙げることができ、これらのうちの少なくとも一種又は二種以上を組み合わせて用いることができる。中でも、カーボンブラックを含むものが好ましい。
カーボンブラックとしては、例えばファーネスブラック、サーマルブラック、チャンネルブラック、ランプブラック及びアセチレンブラックなどのうちの少なくとも一種又は二種以上を組み合わせて用いることができる。
カーボンブラックは、分散を容易にするため予めマスターバッチ化されたものを使用することも好ましい。
カーボンブラックの一次粒子径は、分散性の観点から、10nm~30nmであることが好ましく、中でも15nm以上或いは25nm以下であることがさらに好ましい。分散性が良いと、レーザー溶着時の溶着ムラが減少する。
また、カーボンブラックは、漆黒性の観点から、JIS K6217で測定した窒素吸着比表面積が30~400m/gのものが好ましく、中でも50m/g以上その中でも80m/g以上であることがさらに好ましい。
さらに、カーボンブラックは、分散性の観点から、JIS K6221で測定したDBP吸収量が20~200cm/100gであることが好ましく、中でも40cm/100g以上或いは170cm/100g以下、その中でも50cm/100g以上或いは150cm/100g以下であることがさらに好ましい。分散性が良いと、レーザー溶着時の溶着ムラが減少する。
レーザー光吸収色素材の含有量は、ポリエステル系樹脂B100質量部に対して0.15~10.00質量部であることが好ましい。
レーザー光吸収色素材の含有量が0.15質量部以上であれば、レーザー照射時に樹脂が発熱して溶融し、当該含有量が10.00質量部以下であれば、急激かつ過剰な発熱による樹脂の分解を防ぐことができ、好ましい。
かかる観点から、レーザー光吸収色素材の含有量は、ポリエステル系樹脂B100質量部に対して0.15~10.00質量部であることが好ましく、中でも5質量部以下、1質量部以下であることがさらに好ましい。
なお、部材IIは、レーザー光透過吸収色素材、例えばニグロシンを含有しても、含有しなくてもよい。レーザー光透過吸収色素材、特にニグロシンを部材IIが含有しないことにより、耐熱変色や、耐光性変色を防止することができる。
<他の含有成分>
部材IIは、所望に応じ、種々の添加剤を含有することが可能である。このような添加剤としては、例えば、強化充填材、耐衝撃改良剤、流動改質剤、助色剤、分散剤、安定剤、可塑剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、潤滑剤、離型剤、結晶促進剤、結晶核剤、難燃剤、及びエポキシ化合物等を挙げることができる。
<部材IIの形状>
部材IIの形状は任意である。例えば板状であっても、矩形状であっても、箱状であっても、その他の複雑な形状であってもよい。例えば端部突き合わせて溶着に供するような異形押出品(棒、パイプ等)でもよく、また高い防水性、気密性が必要とされる通電部品、電子部品等に用いられる金属インサートされた成形品であってもよい。
部材IIの成形方法も任意である。例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等を挙げることができる。
部材IIの透過率は、溶着体の製造効率及び溶着強度を高める観点から、波長940nmの光線を用いて測定する場合、その厚みが1.5mm以上において、10%以下であるのが好ましく、中でも5%以下、その中でも0%であるのが特に好ましい。
また、部材IIの反射率は、特に限定されるものではない。
<部材Iと部材IIとの関係>
溶着強度及び耐圧強度の観点から、部材Iと部材IIとの関係に関して、部材Iの融点Tm-Aと結晶化温度Tc-Aとの差((Tm-A)-(Tc-A))が、部材IIの融点Tm-Bと結晶化温度Tc-Bとの差((Tm-B)-(Tc-B))よりも大きいことがさらに好ましい。特に、吸収側部材に用いる樹脂に影響を強く受けるものの、両者の差(((Tm-A)-(Tc-A))-((Tm-B)-(Tc-B))、「部材I-部材IIの(Tm-Tc)の差」とも称する)は、0~30℃であるのが好ましく、その中でも2℃以上或いは20℃以下であるのがより好ましく、その中でも3℃以上或いは15℃以下、その中でも4℃以上或いは10℃以下であるのがさらに好ましい。
このようにするには、例えば部材IIに用いられるポリエステル樹脂Bの混合比率の調整、各種添加材の選択ならびに配合量の調整、部材Iに用いられるポリエステル樹脂Aのレーザー光透過吸収染顔料の選択および配合量の調整などをすればよい。但しこれらの調整方法に限定するものではない。
また、溶着強度及び耐圧強度の観点から、部材Iの融解エンタルピーΔHm-Aと部材IIの融解エンタルピーΔHm-Bとは、部材Iの融解エンタルピーΔHm-Aが、ポリエステル系樹脂Bの融解エンタルピーΔHm-Bよりも高いことがさらに好ましい。部材Iの融解エンタルピーΔHm-Aと部材IIの融解エンタルピーΔHm-Bの差(ΔHm-A)-(ΔHm-B)は、0~20J/gであるのが好ましく、中でも0.5J/g以上或いは10J/g以下であるのがさらに好ましく、その中でも2J/g以上或いは9J/g以下であるのがさらに好ましい。
このようにするには、例えば部材IIに用いられるポリエステル樹脂Bの混合比率の調整、各種添加材の選択ならびに配合量の調整、部材Iに用いられるポリエステル樹脂Aのレーザー光透過吸収染顔料の選択および配合量の調整をすればよい。但しこれらの調整方法に限定するものではない。
なお、融点Tm、結晶化温度Tc及び融解エンタルピーΔHmは、射出成形により成形された部材I及び部材IIの、射出成形金型のゲートからの距離が5mm以上離れた箇所からサンプルを切り出して測定することが好ましい。
[本レーザー溶着体の製造方法]
部材I又は部材IIの製造方法はそれぞれ、通常の方法により樹脂組成物を作成し、通常の方法により樹脂組成物を成形すればよい。
例えば、部材I又はIIの構成する原料を混合し、一軸または二軸押出機で溶融混練すればよい。また、各成分を予め混合することなく、若しくはその一部のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して樹脂組成物を調製してもよい。
また、部材I又はIIの構成する樹脂の一部に他の樹脂の一部を配合したものを溶融混練してマスターバッチを調製し、次いでこれに残りの樹脂や他の成分を配合して溶融混練してもよい。
なお、ガラス繊維等の繊維状の強化充填材を用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
溶融混練に際しての加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練り時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。
部材I及び部材IIの成形方法は、任意の方法を採用することができる。
例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等を挙げることができる。
次に、部材Iと部材IIとを重ねて、部材I側がレーザー光の光源側となるように配置し、厚み方向両側から内側方向に押し力を掛けつつ、部材Iと部材IIの重なり部分にレーザー光を照射すればよい。
照射されたレーザー光は、部材Iを厚み方向に貫いて部材IIに至るまで縦長の溶融プールを形成し、この溶融プールが冷却固化することで、部材Iと部材IIとを接合することができる。
部材Iと部材IIとを重ねる場合、例えば面接触または突合せ接触させることができる。
好ましいレーザー溶着条件については、以下に詳述する。
(レーザー溶着条件)
次に、好ましいレーザー溶着条件について説明する。但し、下記に説明する溶着条件に制限する趣旨ではない。
レーザー溶着条件は、例えば装置の仕様、レーザー種類、レーザー径、レーザー出力、走査速度の組み合わせにより、好ましい条件を適宜選択することが好ましい。
照射するレーザー光の種類としては、例えば固体レーザー、ファイバーレーザー、半導体レーザー、気体レーザー、液体レーザー等を挙げることができる。例えばYAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1064nm、1070nm)、LD(レーザーダイオード)レーザー(波長808nm、840nm、940nm、980nm)等を好ましく用いることができる。中でも、波長940nm、980nm、1070nmのレーザー光が好ましい。
発振形態はCWまたはパルスのいずれでもよい。
照射方式も特に制限はない。例えばレーザーヘッドをロボットにより移動させるものや、レーザー光をミラーで反射させてスキャンするガルバノスキャン方式、多数のレーザーヘッドを装備し、溶着面に同時に照射する方式等から適宜選択できる。
レーザースポット径は、0.1mm以上30mm以下であることが好ましく、中でも0.2mm以上或いは10mm以下、その中でも0.7mm以上或いは3.0mm以下であることがさらに好ましい。
レーザースポット径が0.1mm以上であれば、所望の溶着強度を得るための溶着を行いやすくなり、30mm以下であれば、容易に溶着幅を制御することが可能となる。なお、溶着面の幅、高さに合わせて、レーザー光のスポット径を選択することができる。
また、レーザー光は、接合面にフォーカスしてもよいし、デフォーカスしてもよく、求める溶着体に応じて適宜選択することが好ましい。
レーザー出力は、1W~1000Wであることが好ましく、中でも10W以上或いは500W以下、その中でも15W以上或いは200W以下であることがさらに好ましい。
レーザー出力が1000W以下であれば、レーザー溶着設備費用が高くなりすぎるのを抑えることができ、1W以上であれば、十分な溶着強度を得やすくなる。
レーザー走査速度は、0.1mm/s~20000mm/sであることが好ましく、中でも1mm/s以上或いは10000mm/s以下、その中でも10mm/s以上或いは1000mm/s以下であることがさらに好ましい。
また、レーザー走査方法に関しては、溶着効率、溶着強度、溶着外観および装置負荷の観点から、接合面の形状に合わせて、レーザーの出力、溶着予定ライン、走査速度、及び/又は走査方法を調整することが好ましい。
レーザー溶着を行うに当たっては、まず、部材Iと、部材IIを重ね合わせ、部材Iと部材IIが重ね合わされた状態を維持する。重ね合わされた状態を維持する際、透過側部材Iの上、つまりレーザー照射側にガラス板、石英板、アクリル板などの透明板材を配置してもよい。特にガラス板、または石英板を配置する場合は、レーザー溶着時に発生する熱の放熱を促進し、良好な外観を得るのに適している。
次いで、部材Iの上方から、部材IIの周縁に対応する溶着予定箇所の上に、レーザー光を走査し照射する。このとき、レーザー光の殆ど或いは大部分が部材Iを透過及び一部吸収する。そして、レーザー光は、部材Iと部材IIの接合面に吸収され、該接合面の表面付近が発熱し、溶融する。
このようにすることで、部材IIの接合面と部材Iとが溶け合い、レーザー光の照射が停止された後には、部材Iと部材IIの溶融した部分が冷却され、固化して両部材が高い強度で溶着でき一体化することができる。
この際、少なくとも両部材のレーザー溶着の接合時には、両部材に治具或いは加圧手段によって押し力(N/mm)をかけるのが好ましい。
この押し力(N/mm)は、0.0002N/mm以上160N/mm以下であることが好ましく、中でも80N/mm以下、その中でも50N/mm以下、その中でも40N/mm以下、その中でも30N/mm以下、その中でも20N/mm以下であるのが特に好ましい。この範囲の押し力をかけることによって、成形品に残留応力が残りにくくなり、反り変形が小さくなり、十分な溶着強度を得やすくなる。
他方、下限としては、0.4N/mm以上であるのが好ましい。0.4N/mm以上とすることにより、接合面の密着が十分に保ちやすく、溶着を十分に行うことが可能となりやすい。
但し、レーザー走査距離が長い部材、例えばレーザー走査距離が200mm以上となる部材を溶着する際には、前記押し力(N/mm)は、10N/mm以下であることが好ましく、特には9N/mm以下であることが好ましく、より特には5N/mm以下であることが好ましく、最も好ましくは3N/mm以下である。
なお、上記の押し力(N/mm)は、単位距離当たりの押し力であり、一例として加圧用シリンダー(SMC製エアシリンダー(φ100mm))を取り付けた加圧ステージ上にコイン型ロードセル(株式会社イマダ、LM-20M)をセットし、実際の押し力(N)を計測する。そして、得られた当該実際の押し力(N)を溶着予定ラインの1周の長さ(mm)で除した値を単位距離当たりの押し力(N/mm)として求めることができる。
上記のようにすることで、部材IIの接合面と部材Iとが溶け合い、レーザー光の照射が停止された後には、部材Iと部材IIの溶融した部分が冷却され、固化して両部材が高い強度で溶着でき一体化することができる。
本レーザー溶着体の隙間溶着強度(隙間0.2mmt、溶着条件は以下のダンベル片の溶着条件。)は、400N以上であることが好ましく、より好ましくは500N以上、更に好ましくは600N以上である。
また、本レーザー溶着体の溶着強度(溶着条件は以下のコップ形状時の溶着条件。押し力 4.92N/mm。)は、500N以上であることが好ましく、より好ましくは550N以上、更に好ましくは600N以上である。
さらには、本レーザー溶着体の耐圧強度(溶着条件は以下のコップ形状時の溶着条件。押し力 15.8N/mm。)は、400kPa以上であることが好ましく、より好ましくは600kPa以上であり、更に好ましくは800kPa以上であり、中でも好ましくは850kPa以上である。
なお、上記各種強度の測定において、試験片は、記載した押し力で溶着できる大きさのものを用いることとする。
(ダンベル片の溶着条件)
レーザー溶着機;ファインディバイス社製 FD-2330
波長;940nm
出力;80W
スポット径;2.1mmφ
走査速度;30mm/s
照射エネルギー:2.67J/mm
走査距離;16mm
押し力;44.9N/mm
(コップ形状時の溶着条件)
レーザー溶着機;ファインディバイス社製 FD-2330
波長;940nm
出力;140W
スポット径;2.1mmφ
走査速度;93mm/s
照射エネルギー:1.51J/mm
走査距離;137mm
本レーザー溶着体は、その形状、大きさ、厚み等は任意であり、様々な用途に用いることができる。例えば、自動車等の輸送機器用の電装部品、電気電子部品、産業機械用部品、その他民生用部品等が挙げられ、中でも、溶着強度が高く、また、耐圧強度も高いため、内部に電子基盤、回路、センサー、ソレノイド、モーター、トランス、電池等の電気電子部品を内蔵するための容器等、気密性が必要な用途に用いるのが特に好ましい。
<語句の説明>
本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
以下、本発明を実施例に基づいてさらに詳述する。
<光学特性:透過率、反射率の測定>
下記実施例・比較例で得られた樹脂組成物ペレット、すなわち下記表3に示された部材I形成用の樹脂組成物ペレット又は下記表4及び5に示された部材II形成用の樹脂組成物ペレットを、120℃で7時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80-9E」)を用いてシリンダー温度260℃、金型温度60℃、及び、以下の射出条件で、透過率、反射率測定用の60mm×60mm×厚さ1.5mmの平板状の試験片を射出成形した。
(射出条件)
保圧時間:15sec
冷却時間:15sec
射出速度:120mm/sec
背圧:4MPa
スクリュー回転数:80rpm
上記で得られた試験片(60mm×60mm×厚さ1.5mm)のうち、ゲート側部より35mmの地点から、幅10mm、縦20mmで、かつ、試験片の幅の中心部において、紫外可視近赤外分光光度計(島津製作所社製「UV-3100PC」)を用いて、波長940nmにおける透過率(%)及び反射率(%)を求め、部材I及び部材IIの透過率及び反射率として下記表に示した。
<色調の測定方法>
下記実施例・比較例で得られた樹脂組成物ペレット、すなわち下記表3に示された部材I形成用の樹脂組成物ペレット又は下記表4及び5に示された部材II形成用の樹脂組成物ペレットを、120℃で7時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80-9E」)を用いてシリンダー温度260℃、金型温度60℃、及び、上記した透過率、反射率測定用の試験片を成形した時と同じ射出条件にて、色調測定用の60mm×60mm×厚さ3mmの平板状の試験片を射出成形した。
上記で得られた平板状試験片について、L*値(SCE)を測定し、部材I又はIIのL値として下記表に示した。測定は、ISO7724/1に準拠した分光測色色差計(コニカミノルタオプティクス社製、CM-3600d)を用い、D65/10(反射照明・10°方向受光)、SCE(正反射光除去)測色法にて、ターゲットマスクCM-A(φ8mm)を用いて測定した。
<反り量の測定方法>
下記実施例・比較例で得られた樹脂組成物ペレット、すなわち下記表3に示された部材I形成用の樹脂組成物ペレット又は下記表4及び5に示された部材II形成用の樹脂組成物ペレットを、120℃で7時間乾燥した後、住友重機械工業社製「型式SE-50D」射出成形機を使用し、シリンダー温度260℃、金型温度80℃の条件で、図6に示す直方体状の箱型成形体を成形した。
図6は、反り性の評価のために使用した箱型成形体の斜視図であり、底面を下にした状態を示す。箱型成形体は、横25mm、縦30mm、高さ25mm、肉厚は底面が1mm、その他の側面は0.5mmである。ゲートは長径2.0mm、短径1.5mmの略楕円形の1点ゲートで、図6の手前側の側面の中央のサブマリンゲート(図6中、GATE)である。
成形後の成形品を箱底面が下になるよう置き、図6中の奥側の側面が箱の内側方向に内反りした際の奥側側面の頂部の内反り長さLを測定(単位:mm)し、部材I又はIIの反り量として下記表に示した。
この値が小さい程、成形品の内反り量が小さいため寸法精度が良いことを示す。
<融点Tm、結晶化温度Tc、融解エンタルピーΔHmの測定方法>
下記実施例・比較例で得られた樹脂組成物ペレット、すなわち下記表3に示された部材I形成用の樹脂組成物ペレット又は下記表4及び5に示された部材II形成用の樹脂組成物ペレットを、120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図1に示すような、厚さ1.5mmの黒色または乳白色の成形体(部材I)を作製した。
作製した部材Iの成形体の溶着予定部(ゲートからの距離:33mm部)を切削し、示差走査熱量測定(DSC)機(パーキンエルマー社製「Pyris Diamond」)を用いて、窒素雰囲気下、30℃から300℃まで昇温速度20℃/分で昇温し、300℃で3分保持した後、降温速度20℃/分にて降温し、融点Tm、融解エンタルピーΔHm、結晶化温度Tcを測定し、下記表において、部材IのTm、Tc、Tm-Tc及びΔHmとして示した。
部材Iの作製に当たっては、下記表2に示した成分を表2に示した割合で配合された染顔料を使用した。
Figure 0007440206000005
<部材Iの作製>
下記表3に示した成分を表3に示した配合割合で、ステンレス製タンブラーに入れ、1時間攪拌混合した。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、ガラス繊維はホッパーからサイドフィーダーより供給し、押出機バレル設定温度を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
得られたペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図1に示すような、厚さ1.5mmの黒色又は乳白色の成形体(部材I)を作製した。
Figure 0007440206000006
<部材IIの作製>
下記表4及び5に示した成分を表4及び5に示した配合割合で、ステンレス製タンブラーに入れ、1時間攪拌混合した。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、ガラス繊維はホッパーからサイドフィーダーより供給し、押出機バレル設定温度を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
得られたペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図2に示すような黒色又は乳白色の成形体(部材II)を作製した。
尚、光学特性、色調、及び、反り量、融点Tm、融解エンタルピーΔHm、結晶化温度Tcについては、部材Iにて説明したのと同様の方法で測定した。また、融点Tm、融解エンタルピーΔHm、結晶化温度Tcについては、作製した部材IIの成形体の溶着予定部(ゲートからの距離:42mm部)を測定した。
Figure 0007440206000007
Figure 0007440206000008
<レーザー溶着体の作製>
次に、下記表6及び7に示した組み合わせの部材I及び部材IIを選択し、図3に示すように、それぞれ穴21、22をあけて、溶着力測定用の冶具23,24を内部に入れた状態で、箱状の部材IIに蓋状の部材Iを重ね、部材I及び部材IIの重なり部分である鍔部の垂直上方位置にレーザー光源を配置し、ガラス板を用いて部材I及び部材IIの重なり部分に厚み方向両側から内側方向に4.92N/mm又は15.8N/mmの押し力(溶着時押し押し力)を掛けつつ、下記条件にて、レーザーを走査させながら、1周の周回走査を行い、冷却してレーザー溶着体を得た。
溶着条件は以下の通りである。
レーザー溶着機;ファインディバイス社製 FD2330
波長 ;940nm
出力 ;140W
スポット径 ;2.1mmφ
走査速度 ;93mm/s
照射エネルギー:1.51J/mm
走査距離 ;137mm
<レーザー溶着強度の評価:コップ形状>
図4に示すように、部材I及び部材IIからなる箱体の上面及び下面からそれぞれに測定用冶具25,26を挿入して、内部に収納した冶具23,24とそれぞれ結合させ、上下に引っ張って(引張速度:5mm/min)、部材I及び部材IIが離れる強度(溶着強度)を測定した。但し、試験前に部材Iと部材IIが剥離した場合には、試験は行うことができなかった(表中、不可と表記した)。
尚、装置はインストロン社製5544の万能型試験機を使用した。
<レーザー溶着強度の評価:ダンベル片の重ね合わせ溶着、隙間溶着強度>
下記表3、4及び5に示した成分を、表3、4及び5に示した配合割合で、ステンレス製タンブラーに入れ、1時間攪拌混合した。得られた混合物を、30mmのベントタイプ2軸押出機(日本製鋼所社製、「TEX30α」)のメインホッパーに投入し、ガラス繊維はホッパーからサイドフィーダーより供給し、押出機バレル設定温度を260℃、ダイを250℃、スクリュー回転数200rpm、吐出量40kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
得られたペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、1.5mm厚のダンベル片を射出速度100mm/secの条件で、作製した。図5に示すような黒色又は乳白色の成形体(部材I及びII)を作製した。
上記で得た1.5mm厚のASTM4号の部材Iと部材IIの2つのダンベル11、12を使用し、ファインディバイス社製レーザー溶着装置(レーザー波長:940nm、レーザースポット径:Φ2.1mm、レーザーヘッドと試験片間の距離:79.7mm)を用いて、図5に示すように、ダンベル11とダンベル12の樹脂注入ゲートとは反対側(反ゲート側)の端部同士を上下に重ね合わせ、その重ね合わせ部14に金属片スペーサー15,15’を挟んだものを、ガラス製土台(図示せず)の上に載せ、ダンベル11、12上にガラスプレート16を載せて、その上から44.9N/mmの加圧しながら、レーザービーム17をレーザー出力80W、レーザー走査速度30mm/sec、レーザー走査距離:16mmの条件にて照射させて溶着を行った。その際、金属スペーサー15,15’で作る0.2mmの隙間間隔を作製してレーザー溶着も実施した。またインストロン社製5544の万能型試験機を用いて、スパン間160mm、引張速度5mm/minの条件で、図5中の矢印aの引っ張り方向に荷重をかけて破壊する荷重(単位:N)を求めた。但し、試験前に部材Iと部材IIが剥離した場合には、試験は行うことができなかった(表中、不可と表記した)。
<耐圧強度の評価>
15.8N/mmの押し力下で溶着された溶着体の部材I中央の凸部の場所にΦ3.5mmの穴を開けた後、水注入用カプラを接合する。まず溶着体内部を水で満たした後、25℃水中に浸漬させる。次に溶着体内部に送水を開始し、溶着体内部圧力を196kPa刻みで昇圧し、溶着部から圧力が抜けた時点(圧力低下した時点)を破壊最大圧力とする。但し、試験前に部材Iと部材IIが剥離した場合には、試験は行うことができなかった(表中、不可と表記した)。
尚、装置は株式会社東洋精機製「ボトル耐圧試験機」を使用した。
<耐ブリード性能>
上記作製した溶着体を部材IIが下部になるように、PBTホモポリマー樹脂(NOVADURAN(登録商標) 5010R5ナチュラル)プレート(以下、ナチュラプレートと言う)上に置き、オーブンに入れて120℃で8時間加熱し、部材IIが接しているナチュラルプレートへ色素材が移行しているかを観察し、次の基準で評価した。但し、試験前に部材Iと部材IIが剥離した場合には、試験は行うことができなかった(表中、不可と表記した)。
〇(good):ブリードアウトは観察されなかった。
×(poor):ブリードアウトが観察された。
Figure 0007440206000009
Figure 0007440206000010
<参考例>
比較例7の組み合わせにて、出力50W、走査速度15mm/s、照射エネルギー3.33J/mm、溶着時の押し力4.92N/mm下の条件下で溶着した際には、溶着が可能であり、72Nの溶着強度、883Nの耐圧強度であった。走査時間が長くなったため生産性が悪化したと同時に、過剰なエネルギー照射条件のため溶着バリが多く確認され、溶着体内部に白粉も付着しており、内部電子基盤等を搭載していると電子回路への汚染が懸念された。
<総合考察>
上記実施例及びこれまで本発明者が行ってきた試験結果から、部材Iは、レーザー光を透過し且つ吸収し得るレーザー光透過吸収色素材を含み、レーザー溶着時には、レーザー光を透過しつつ吸収し、発熱溶融するため、ベース樹脂としては透過率が5~90%の、ポリブチレンテレフタレートホモポリマーとポリエチレンテレフタレートを含む樹脂であることが好ましいと考えることができる。
他方、部材IIのベース樹脂であるポリエステル系樹脂Bとして、次の(B1)又は(B3)のポリブチレンテレフタレート系樹脂を選択することにより、部材IIの反りが小さくなることで、溶着時に部材IとIIの間の隙間が減少するので溶着強度が高くなり、かつ残留応力が減少することが分かった。
(B1)ポリブチレンテレフタレートホモポリマー
(B3)ポリブチレンテレフタレートホモポリマー(B3-1)と、ポリブチレンテレフタレート共重合樹脂及びポリカーボネート樹脂からなる群から選択される少なくとも1種の樹脂(B3-2)とを含む樹脂
部材IIは、レーザー光を透過せずに吸収し得るレーザー光吸収色素材を含み、レーザー溶着時には、レーザー光を吸収し、発熱溶融して熱を透過材に伝えるため、ベース樹脂としては上記(B1)(B2)(B3)及び(B4)のうちのいずれかのポリブチレンテレフタレート系樹脂であることが好ましいと考えることができる。
よって、部材Iのベース樹脂としてポリブチレンテレフタレートホモポリマーを選択し、且つ、部材IIのベース樹脂として上記(B1)(B2)(B3)及び(B4)のうちのいずれかのポリブチレンテレフタレート系樹脂を選択することにより、接合強度をより一層高めることができることが分かった。

Claims (5)

  1. 部材Iと部材IIとが接合一体化してなる構成を備えたレーザー溶着体であって、
    部材Iは、ポリエステル系樹脂Aと、該ポリエステル系樹脂A100質量部に対して0.0005~5.0質量部のレーザー光を透過し且つ吸収し得る色素材(「レーザー光透過吸収色素材」と称する)とを含み、且つ、前記ポリエステル系樹脂Aは、ポリブチレンテレフタレートホモポリマーとポリエチレンテレフタレートを含む樹脂であり、
    部材IIは、ポリエステル系樹脂Bと、該ポリエステル系樹脂B100質量部に対して0.550~10.00質量部のレーザー光を透過せずに吸収し得る色素材(「レーザー光吸収色素材」と称する)とを含み、前記レーザー光吸収色素材は、カーボンブラックであり、且つ、前記ポリエステル系樹脂Bは、以下の(B1)又は(B3)を含有する樹脂であり、
    部材Iのポリエステル系樹脂Aと部材IIのポリエステル系樹脂Bは異なる組成であることを特徴とするレーザー溶着体。
    (B1)ポリブチレンテレフタレートホモポリマー
    (B3)ポリブチレンテレフタレートホモポリマー(B3-1)と、ポリブチレンテレフタレート共重合樹脂及びポリカーボネート樹脂からなる群から選択される少なくとも1種の樹脂(B3-2)とを含む樹脂
  2. 部材Iの上記ポリブチレンテレフタレートホモポリマーは、固有粘度が0.5~2dl/gであることを特徴とする請求項1に記載のレーザー溶着体。
  3. 部材IIの上記ポリブチレンテレフタレート共重合樹脂は、共重合成分としてイソフタル酸を含み、且つ全カルボン酸成分に占めるイソフタル酸成分の割合がカルボン酸基として1~30モル%であることを特徴とする請求項1又は2に記載のレーザー溶着体。
  4. 上記レーザー光透過吸収色素材は、アジン骨格を有するアジン系化合物の混合物を含有することを特徴とする請求項1~3の何れかに記載のレーザー溶着体。
  5. 部材Iは、レーザー光を透過すると共に吸収し得る部材であり、他方の部材IIはレーザー光を吸収し得る部材であることを特徴とする請求項1~の何れかに記載のレーザー溶着体。
JP2018203591A 2017-10-31 2018-10-30 レーザー溶着体 Active JP7440206B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209942 2017-10-31
JP2017209942 2017-10-31

Publications (2)

Publication Number Publication Date
JP2019081364A JP2019081364A (ja) 2019-05-30
JP7440206B2 true JP7440206B2 (ja) 2024-02-28

Family

ID=66670960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203591A Active JP7440206B2 (ja) 2017-10-31 2018-10-30 レーザー溶着体

Country Status (1)

Country Link
JP (1) JP7440206B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148494A4 (en) * 2020-05-07 2024-05-15 Mitsubishi Chem Corp RESIN COMPOSITION, MOLDED PRODUCT, KIT, VEHICLE ON-BOARD CAMERA COMPONENT, VEHICLE ON-BOARD CAMERA MODULE AND MOLDED PRODUCT MANUFACTURING PROCESS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112126A (ja) 2005-09-21 2007-05-10 Orient Chem Ind Ltd 成形部材のレーザー溶着体
JP2013155278A (ja) 2012-01-30 2013-08-15 Orient Chemical Industries Co Ltd レーザー溶着用樹脂組成物及びその溶着体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112126A (ja) 2005-09-21 2007-05-10 Orient Chem Ind Ltd 成形部材のレーザー溶着体
JP2013155278A (ja) 2012-01-30 2013-08-15 Orient Chemical Industries Co Ltd レーザー溶着用樹脂組成物及びその溶着体

Also Published As

Publication number Publication date
JP2019081364A (ja) 2019-05-30

Similar Documents

Publication Publication Date Title
JP7096264B2 (ja) レーザー溶着体
JP4446706B2 (ja) レーザー光透過性着色熱可塑性樹脂組成物及びレーザー溶着方法
JP3928734B2 (ja) アントラキノン系酸性染料のアルカリ土類金属塩を含有するレーザー光透過性部材のレーザー溶着体
US10781308B2 (en) Resin composition for laser welding and welded body thereof
JP6183822B1 (ja) レーザー溶着用樹脂組成物及びその溶着体
JP3928735B2 (ja) アントラピリドン系酸性染料のアルカリ土類金属塩を含有するレーザー光透過性部材のレーザー溶着体
JP2004514007A (ja) レーザー溶接用の着色された熱可塑性樹脂組成物、そのための着色剤としての特定の中性アントラキノン染料、およびそれから得られる成形製品
WO2021225154A1 (ja) 樹脂組成物、成形品、キット、車載カメラ部品、車載カメラモジュール、および、成形品の製造方法
CN110603138A (zh) 激光焊接体及其制造方法
JP7145167B2 (ja) レーザー溶着体の製造方法
JP4720149B2 (ja) レーザ溶着用着色樹脂組成物およびそれを用いた複合成形体
JP7440206B2 (ja) レーザー溶着体
WO2021225153A1 (ja) ガルバノ式レーザー溶着用樹脂組成物、成形品、ガルバノ式レーザー溶着用キット、車載カメラ部品、車載カメラモジュール、紫外線暴露体、および、成形品の製造方法
JP2004155888A (ja) レーザー光透過性着色熱可塑性樹脂組成物及びレーザー溶着方法
JP7122490B1 (ja) 樹脂組成物、成形品、樹脂組成物の使用、キット、レーザー溶着品、および、レーザー溶着品の製造方法
JP7168414B2 (ja) レーザー溶着体
JP7168413B2 (ja) レーザー溶着体の製造方法
JP7242245B2 (ja) レーザー溶着体の製造方法
JP7192164B1 (ja) 樹脂組成物、成形品、および、その応用
JP2022011052A (ja) 樹脂組成物、成形体、レーザー溶着用キット、車載カメラモジュール、および、成形体の製造方法
JP2005139445A (ja) レーザー光透過性着色樹脂組成物、及びそれを用いたレーザー溶着方法
JP2022091031A (ja) レーザー溶着体、キット、レーザー吸収樹脂部材用樹脂組成物、および、レーザー溶着体の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221227

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230303

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20231023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240215

R150 Certificate of patent or registration of utility model

Ref document number: 7440206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150