JP7430152B2 - Resin molding equipment and method for manufacturing resin molded products - Google Patents

Resin molding equipment and method for manufacturing resin molded products Download PDF

Info

Publication number
JP7430152B2
JP7430152B2 JP2021050848A JP2021050848A JP7430152B2 JP 7430152 B2 JP7430152 B2 JP 7430152B2 JP 2021050848 A JP2021050848 A JP 2021050848A JP 2021050848 A JP2021050848 A JP 2021050848A JP 7430152 B2 JP7430152 B2 JP 7430152B2
Authority
JP
Japan
Prior art keywords
resin
cavity
upper mold
plunger
filling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021050848A
Other languages
Japanese (ja)
Other versions
JP2022148957A (en
Inventor
冬彦 小河
祥人 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Corp
Original Assignee
Towa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Corp filed Critical Towa Corp
Priority to JP2021050848A priority Critical patent/JP7430152B2/en
Priority to CN202180083245.3A priority patent/CN116723923A/en
Priority to KR1020237019244A priority patent/KR20230104266A/en
Priority to US18/270,479 priority patent/US20240051199A1/en
Priority to PCT/JP2021/041834 priority patent/WO2022201625A1/en
Priority to TW110142331A priority patent/TW202237374A/en
Publication of JP2022148957A publication Critical patent/JP2022148957A/en
Application granted granted Critical
Publication of JP7430152B2 publication Critical patent/JP7430152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/10Moulds or cores; Details thereof or accessories therefor with incorporated venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7613Measuring, controlling or regulating the termination of flow of material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7653Measuring, controlling or regulating mould clamping forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/80Measuring, controlling or regulating of relative position of mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76498Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76545Flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76568Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76595Velocity
    • B29C2945/76598Velocity linear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76678Injection unit injection piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76702Closure or clamping device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76732Mould
    • B29C2945/76735Mould cavity
    • B29C2945/76739Mould cavity cavity walls
    • B29C2945/76742Mould cavity cavity walls movable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76869Mould clamping, compression of the cavity

Description

本発明は、樹脂成形装置、及び樹脂成形品の製造方法の技術に関する。 The present invention relates to a technology for a resin molding apparatus and a method for manufacturing a resin molded product.

特許文献1には、基板が載置される下型と、上型キャビティ枠部材及びキャビティブロックによってキャビティを形成する上型と、下型と上型とをクランプする型締め機構と、樹脂材料をキャビティへと供給するプランジャと、を具備する樹脂成形装置が開示されている。この樹脂成形装置は、上型キャビティ枠部材に対するキャビティブロックの位置を調整することで、キャビティの深さを適切な深さに調整することができる。 Patent Document 1 discloses a lower mold on which a substrate is placed, an upper mold in which a cavity is formed by an upper mold cavity frame member and a cavity block, a mold clamping mechanism for clamping the lower mold and the upper mold, and a resin material. A resin molding apparatus is disclosed that includes a plunger that supplies the resin to the cavity. This resin molding apparatus can adjust the depth of the cavity to an appropriate depth by adjusting the position of the cavity block with respect to the upper mold cavity frame member.

特開2020-179604号公報Japanese Patent Application Publication No. 2020-179604

ここで、近年では、樹脂成形品が適用される技術分野の拡大等に伴い、樹脂成形品に求められる精度の要求が高くなっている。このため、より精度の高い樹脂成形品を製造することが可能な技術が求められている。 Here, in recent years, with the expansion of technical fields to which resin molded products are applied, the requirements for precision required for resin molded products have become higher. Therefore, there is a need for a technology that can produce resin molded products with higher precision.

本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、精度の高い樹脂成形品を製造することが可能な樹脂成形装置及び樹脂成形品の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a resin molding apparatus and a method for manufacturing resin molded products that are capable of manufacturing resin molded products with high precision. That's true.

本発明の解決しようとする課題は以上の如くであり、この課題を解決するため、本発明に係る樹脂成形装置は、樹脂成形の対象となる基板に配置されたチップの体積を測定するチップ体積測定部と、前記基板の樹脂成形に用いられる樹脂材料の体積を測定する樹脂体積測定部と、前記基板を載置する下型と、サイドブロック、及び前記サイドブロックに対して上下に昇降可能となるように設けられたキャビティブロックによって、キャビティを形成する上型と、前記下型と前記上型とをクランプするクランプ機構と、プランジャによって前記キャビティへと樹脂材料を供給するトランスファ機構と、前記チップ体積測定部及び前記樹脂体積測定部の測定結果に基づいて、前記キャビティの樹脂充填率と前記プランジャの位置との関係を算出する算出部と、前記基板及び前記樹脂材料を用いて樹脂成形を行う場合に、前記算出部により算出された前記樹脂充填率と前記プランジャの位置との関係を用いて、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御を行う制御部と、を具備するものである。
The problem to be solved by the present invention is as described above, and in order to solve this problem, a resin molding apparatus according to the present invention provides a chip volumetric apparatus that measures the volume of a chip placed on a substrate to be resin molded. a measuring section, a resin volume measuring section that measures the volume of a resin material used for resin molding of the substrate, a lower mold on which the substrate is placed, a side block, and a device that can be raised and lowered up and down with respect to the side block. an upper die forming a cavity by means of a cavity block provided to a calculation unit that calculates the relationship between the resin filling rate of the cavity and the position of the plunger based on the measurement results of the volume measurement unit and the resin volume measurement unit; and resin molding using the substrate and the resin material. When the plunger reaches a position corresponding to a predetermined resin filling rate, using the relationship between the resin filling rate calculated by the calculation unit and the position of the plunger, A control unit that performs filling rate corresponding control to control the operation.

また、本発明に係る樹脂成形品の製造方法は、前記樹脂成形装置を用いて樹脂成形品を製造するものである。 Moreover, the method for manufacturing a resin molded article according to the present invention is for manufacturing a resin molded article using the resin molding apparatus.

また、本発明に係る樹脂成形品の製造方法は、基板に配置されたチップの体積を測定するチップ体積測定工程と、樹脂材料の体積を測定する樹脂体積測定工程と、前記チップ体積測定工程及び前記樹脂体積測定工程において測定された前記チップの体積及び前記樹脂材料の体積に基づいて、キャビティの樹脂充填率とプランジャの位置との関係を算出するプランジャ位置算出工程と、前記基板及び前記樹脂材料を用いて樹脂成形を行う場合に、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程と、を具備するものである。 Further, the method for manufacturing a resin molded product according to the present invention includes a chip volume measuring step of measuring the volume of a chip placed on a substrate, a resin volume measuring step of measuring the volume of a resin material, the chip volume measuring step and a plunger position calculation step of calculating the relationship between the resin filling rate of the cavity and the position of the plunger based on the volume of the chip and the volume of the resin material measured in the resin volume measurement step; and the substrate and the resin material. When resin molding is performed using the plunger, the method includes a filling rate corresponding control step of controlling operations related to resin molding when the plunger reaches a position corresponding to a predetermined resin filling rate.

本発明によれば、精度の高い樹脂成形品を製造することができる。 According to the present invention, highly accurate resin molded products can be manufactured.

一実施形態に係る樹脂成形装置の全体的な構成を示した平面模式図。FIG. 1 is a schematic plan view showing the overall configuration of a resin molding apparatus according to an embodiment. 一実施形態に係る樹脂成形モジュールの構成を示した正面断面図。FIG. 1 is a front sectional view showing the configuration of a resin molded module according to an embodiment. (a)一実施形態に係る下型を型面側(上方)から見た構成を示した平面模式図。(b)一実施形態に係る上型を型面側(下方)から見た構成を示した底面模式図。(a) A schematic plan view showing the configuration of a lower mold according to an embodiment viewed from the mold surface side (above). (b) A schematic bottom view showing the configuration of the upper mold according to one embodiment viewed from the mold surface side (lower side). (a)カル部同士を連結する連結溝を示した平面模式図。(b)カル部同士がキャビティを介して連結された例を示した平面模式図。(a) A schematic plan view showing a connecting groove that connects the cull portions. (b) A schematic plan view showing an example in which the cull parts are connected to each other via a cavity. (a)型締め機構によりクランプされた際にキャビティの深さが浅くなる様子を示した正面断面図。(b)プランジャにより樹脂が供給された際にキャビティの深さが深くなる様子を示した正面断面図。(a) A front sectional view showing how the depth of the cavity becomes shallow when clamped by the mold clamping mechanism. (b) A front sectional view showing how the depth of the cavity increases when resin is supplied by the plunger. 樹脂成形品の製造方法の一例を示したフローチャート。The flowchart which showed an example of the manufacturing method of a resin molded article. 第一制御態様に係るクランプ荷重、プランジャ位置及びプランジャ荷重の時間変化を示した図。The figure which showed the time change of the clamp load, plunger position, and plunger load based on a 1st control aspect. 充填率対応制御の具体例を示したフローチャート。5 is a flowchart showing a specific example of filling rate corresponding control. (a)型締めされた状態の下型及び上型を示した正面断面図。(b)クランプ荷重が低下された状態の下型及び上型を示した正面断面図。(a) A front sectional view showing the lower mold and the upper mold in a clamped state. (b) A front sectional view showing the lower die and the upper die in a state where the clamp load is reduced. 第二制御態様に係るクランプ荷重、プランジャ位置及びプランジャ荷重の時間変化を示した図。The figure which showed the time change of the clamp load, plunger position, and plunger load based on a 2nd control aspect.

以下では、図中に示した矢印U、矢印D、矢印L、矢印R、矢印F及び矢印Bで示した方向を、それぞれ上方向、下方向、左方向、右方向、前方向及び後方向と定義して説明を行う。 In the following, the directions shown by arrow U, arrow D, arrow L, arrow R, arrow F, and arrow B shown in the figures will be referred to as upward direction, downward direction, left direction, right direction, front direction, and backward direction, respectively. Define and explain.

<樹脂成形装置1の全体構成>
まず、図1を用いて、第一実施形態に係る樹脂成形装置1の構成について説明する。樹脂成形装置1は、半導体チップなどの電子素子(以下、単に「チップ2a」と称する)を樹脂封止し、樹脂成形品を製造するものである。特に本実施形態では、トランスファーモールド法を利用して樹脂成形を行う樹脂成形装置1を例示している。
<Overall configuration of resin molding device 1>
First, the configuration of a resin molding apparatus 1 according to the first embodiment will be described using FIG. 1. The resin molding apparatus 1 seals an electronic element such as a semiconductor chip (hereinafter simply referred to as a "chip 2a") with a resin, and manufactures a resin molded product. In particular, this embodiment illustrates a resin molding apparatus 1 that performs resin molding using a transfer molding method.

樹脂成形装置1は、構成要素として、供給モジュール10、樹脂成形モジュール20及び搬出モジュール30を具備する。各構成要素は、他の構成要素に対して着脱可能かつ交換可能である。 The resin molding apparatus 1 includes a supply module 10, a resin molding module 20, and a carry-out module 30 as components. Each component is removable and replaceable with respect to other components.

<供給モジュール10>
供給モジュール10は、チップ2aを装着した基板の一種であるリードフレーム(以下、単に「基板2」と称する)、及び樹脂タブレットTを樹脂成形モジュール20へと供給するものである。なお、本実施形態では基板2としてリードフレームを例示しているが、リードフレーム以外にも、その他種々の基板(ガラスエポキシ製基板、セラミック製基板、樹脂製基板、金属製基板等)を用いることが可能である。供給モジュール10は、主としてフレーム送出部11、フレーム測定部12、フレーム供給部13、樹脂送出部14、樹脂測定部15、樹脂供給部16、ローダ17及び制御部18を具備する。
<Supply module 10>
The supply module 10 supplies a lead frame (hereinafter simply referred to as "substrate 2"), which is a type of substrate on which the chip 2a is mounted, and a resin tablet T to the resin molding module 20. Note that in this embodiment, a lead frame is illustrated as the substrate 2, but in addition to the lead frame, various other substrates (glass epoxy substrate, ceramic substrate, resin substrate, metal substrate, etc.) may be used. is possible. The supply module 10 mainly includes a frame delivery section 11, a frame measurement section 12, a frame supply section 13, a resin delivery section 14, a resin measurement section 15, a resin supply section 16, a loader 17, and a control section 18.

フレーム送出部11は、インマガジンユニット(不図示)に収容された樹脂封止されていない基板2を、フレーム測定部12に送り出すものである。フレーム測定部12は、基板2に装着されたチップ2aの体積を測定するものである。なお、フレーム測定部12は、本願のチップ体積測定部の実施の一形態である。フレーム測定部12についての詳細は後述する。フレーム測定部12における測定が完了した基板2は、フレーム供給部13に送り出される。フレーム供給部13は、フレーム測定部12から基板2を受け取り、受け取った基板2を適宜整列させてローダ17に受け渡すものである。 The frame sending section 11 sends out the substrate 2 that is not sealed with resin and is accommodated in an in-magazine unit (not shown) to the frame measuring section 12 . The frame measuring section 12 measures the volume of the chip 2a mounted on the substrate 2. Note that the frame measuring section 12 is an embodiment of the chip volume measuring section of the present application. Details regarding the frame measuring section 12 will be described later. The substrate 2 that has been completely measured in the frame measurement section 12 is sent to the frame supply section 13. The frame supply section 13 receives the substrates 2 from the frame measurement section 12, appropriately aligns the received substrates 2, and delivers them to the loader 17.

樹脂送出部14は、ストッカ(不図示)から樹脂タブレットTを受け取り、樹脂測定部15に樹脂タブレットTを送り出すものである。樹脂測定部15は、樹脂タブレットTの重量(体積)を測定するものである。なお、樹脂測定部15は、本願の樹脂体積測定部の実施の一形態である。樹脂測定部15についての詳細は後述する。樹脂測定部15における測定が完了した樹脂タブレットTは、樹脂供給部16に送り出される。樹脂供給部16は、樹脂測定部15から樹脂タブレットTを受け取り、受け取った樹脂タブレットTを適宜整列させてローダ17に受け渡すものである。 The resin delivery section 14 receives the resin tablets T from a stocker (not shown) and sends the resin tablets T to the resin measuring section 15. The resin measuring section 15 measures the weight (volume) of the resin tablet T. Note that the resin measuring section 15 is an embodiment of the resin volume measuring section of the present application. Details of the resin measuring section 15 will be described later. The resin tablet T for which the measurement in the resin measurement section 15 has been completed is sent to the resin supply section 16. The resin supply section 16 receives the resin tablets T from the resin measurement section 15, appropriately arranges the received resin tablets T, and delivers them to the loader 17.

ローダ17は、フレーム供給部13及び樹脂供給部16から受け取った基板2及び樹脂タブレットTを、樹脂成形モジュール20に搬送するものである。 The loader 17 transports the substrate 2 and resin tablets T received from the frame supply section 13 and the resin supply section 16 to the resin molding module 20.

制御部18は、樹脂成形装置1の各モジュールの動作を制御するものである。なお、制御部18は、本願の算出部の実施の一形態である。制御部18によって、供給モジュール10、樹脂成形モジュール20及び搬出モジュール30の動作が制御される。また、制御部18を用いて、各モジュールの動作を任意に変更(調整)することができる。 The control unit 18 controls the operation of each module of the resin molding apparatus 1. Note that the control unit 18 is an embodiment of the calculation unit of the present application. The control unit 18 controls the operations of the supply module 10, resin molding module 20, and unloading module 30. Further, using the control unit 18, the operation of each module can be arbitrarily changed (adjusted).

なお本実施形態においては、制御部18を供給モジュール10に設けた例を示しているが、制御部18をその他のモジュールに設けることも可能である。また、制御部18を複数設けることも可能である。例えば、制御部18をモジュールごとや装置ごとに設け、各モジュール等の動作を互いに連動させながら個別に制御することも可能である。 In addition, in this embodiment, although the example which provided the control part 18 in the supply module 10 is shown, it is also possible to provide the control part 18 in other modules. Further, it is also possible to provide a plurality of control sections 18. For example, it is also possible to provide the control section 18 for each module or for each device, and to control the operations of each module individually while interlocking with each other.

<樹脂成形モジュール20>
樹脂成形モジュール20は、基板2に装着されたチップ2aを樹脂封止するものである。本実施形態においては、樹脂成形モジュール20は2つ並べて配置される。2つの樹脂成形モジュール20によって基板2の樹脂封止を並行して行うことで、樹脂成形品の製造効率を向上させることができる。樹脂成形モジュール20は、主として成形型(下型110及び上型140)及び型締め機構190(図2参照)を具備する。
<Resin molding module 20>
The resin molding module 20 seals the chip 2a mounted on the substrate 2 with resin. In this embodiment, two resin molded modules 20 are arranged side by side. By performing the resin sealing of the substrate 2 in parallel using the two resin molding modules 20, it is possible to improve the manufacturing efficiency of the resin molded product. The resin molding module 20 mainly includes a mold (a lower mold 110 and an upper mold 140) and a mold clamping mechanism 190 (see FIG. 2).

成形型(下型110及び上型140)は、溶融した樹脂材料を用いて、基板2に装着されたチップ2aを樹脂封止するものである。成形型は、上下一対の型、すなわち、下型110及び上型140(図2等参照)を具備する。成形型には、ヒータ等の加熱部(不図示)が設けられる。 The molds (lower mold 110 and upper mold 140) are used to resin-seal the chip 2a mounted on the substrate 2 using a molten resin material. The mold includes a pair of upper and lower molds, that is, a lower mold 110 and an upper mold 140 (see FIG. 2, etc.). The mold is provided with a heating section (not shown) such as a heater.

型締め機構190(図2参照)は、下型110を上下に移動させることによって、成形型(下型110及び上型140)を型締め又は型開きするものである。 The mold clamping mechanism 190 (see FIG. 2) clamps or opens the molds (lower mold 110 and upper mold 140) by moving the lower mold 110 up and down.

<搬出モジュール30>
搬出モジュール30は、樹脂封止された基板2を樹脂成形モジュール20から受け取って搬出するものである。搬出モジュール30は、主としてアンローダ31及び基板収容部32を具備する。
<Export module 30>
The carry-out module 30 receives the resin-sealed substrate 2 from the resin molding module 20 and carries it out. The unloading module 30 mainly includes an unloader 31 and a substrate storage section 32.

アンローダ31は、樹脂封止された基板2を保持して基板収容部32へと搬出するものである。基板収容部32は、樹脂封止された基板2を収容するものである。 The unloader 31 holds the resin-sealed substrate 2 and carries it out to the substrate storage section 32 . The substrate accommodating portion 32 accommodates the resin-sealed substrate 2.

<樹脂成形装置1の動作の概要>
次に、図1及び図2を用いて、上述の如く構成された樹脂成形装置1の動作(樹脂成形装置1を用いた樹脂成形品の製造方法)の概要について説明する。
<Overview of operation of resin molding device 1>
Next, an outline of the operation of the resin molding apparatus 1 configured as described above (a method for manufacturing a resin molded product using the resin molding apparatus 1) will be explained using FIGS. 1 and 2.

供給モジュール10において、フレーム送出部11は、インマガジンユニット(不図示)に収容された基板2を、フレーム測定部12に送り出す。フレーム測定部12は、受け取った基板2のチップ2aの体積を測定した後、基板2をフレーム供給部13に送り出す。フレーム供給部13は、受け取った基板2を適宜整列させて、ローダ17に受け渡す。 In the supply module 10 , the frame sending section 11 sends out the substrate 2 housed in an in-magazine unit (not shown) to the frame measuring section 12 . The frame measuring section 12 measures the volume of the chip 2a of the received substrate 2, and then sends out the substrate 2 to the frame supply section 13. The frame supply unit 13 appropriately aligns the received substrates 2 and delivers them to the loader 17.

また、樹脂送出部14は、ストッカ(不図示)から受け取った樹脂タブレットTを樹脂測定部15に送り出す。樹脂測定部15は、受け取った樹脂タブレットTの重量(体積)を測定した後、樹脂タブレットTを樹脂供給部16に送り出す。樹脂供給部16は、受け取った樹脂タブレットTのうち必要な個数をローダ17に受け渡す。ローダ17は、受け取った基板2と樹脂タブレットTを樹脂成形モジュール20の成形型に搬送する。 Further, the resin sending section 14 sends out the resin tablet T received from the stocker (not shown) to the resin measuring section 15. The resin measuring section 15 measures the weight (volume) of the received resin tablet T, and then sends out the resin tablet T to the resin supply section 16. The resin supply unit 16 delivers a necessary number of the received resin tablets T to the loader 17. The loader 17 transports the received substrate 2 and resin tablet T to the mold of the resin molding module 20.

樹脂成形モジュール20において、型締め機構190は、成形型を型締めする。そして、成形型の加熱部(不図示)によって樹脂タブレットTを加熱して溶融させ、生成された溶融樹脂を用いて基板2を樹脂封止する。 In the resin molding module 20, the mold clamping mechanism 190 clamps the mold. Then, the resin tablet T is heated and melted by a heating section (not shown) of the mold, and the substrate 2 is resin-sealed using the generated molten resin.

樹脂封止が完了した後、型締め機構190は成形型を型開きする。そして、樹脂封止された基板2を離型させる。その後、アンローダ31は、基板2を成形型から搬出し、搬出モジュール30の基板収容部32に収容する。この際、樹脂成形された基板2の不要部分(カル、ランナ等の不要樹脂)は適宜除去される。このようにして、樹脂封止された基板2(樹脂成形品)が製造される。 After the resin sealing is completed, the mold clamping mechanism 190 opens the mold. Then, the resin-sealed substrate 2 is released from the mold. Thereafter, the unloader 31 unloads the substrate 2 from the mold and stores it in the substrate accommodating section 32 of the unloading module 30. At this time, unnecessary portions (unnecessary resin such as culls and runners) of the resin-molded substrate 2 are appropriately removed. In this way, a resin-sealed substrate 2 (resin molded product) is manufactured.

<樹脂成形モジュール20の詳細な構成>
次に、樹脂成形モジュール20の構成について、より詳細に説明する。図2に示すように、樹脂成形モジュール20は、主として下型設置部100、下型110、下型キャビティ調整機構120、上型設置部130、上型140、皿バネ150、上型キャビティ調整機構160、エアベント開閉機構170、トランスファ機構180及び型締め機構190を具備する。
<Detailed configuration of resin molding module 20>
Next, the configuration of the resin molded module 20 will be explained in more detail. As shown in FIG. 2, the resin molding module 20 mainly includes a lower mold installation section 100, a lower mold 110, a lower mold cavity adjustment mechanism 120, an upper mold installation section 130, an upper mold 140, a disc spring 150, and an upper mold cavity adjustment mechanism. 160, an air vent opening/closing mechanism 170, a transfer mechanism 180, and a mold clamping mechanism 190.

<下型設置部100>
図2に示す下型設置部100は、下型110が設けられる部分である。下型設置部100は、主として下型可動ベース部101及び下型取付部102を具備する。
<Lower mold installation section 100>
The lower mold installation part 100 shown in FIG. 2 is a part where the lower mold 110 is provided. The lower mold installation section 100 mainly includes a lower mold movable base section 101 and a lower mold mounting section 102 .

下型可動ベース部101は、下型設置部100の下部を形成するものである。下型取付部102は、下型110が取り付けられる部分である。下型取付部102は、下型可動ベース部101の上部に設けられる。 The lower mold movable base part 101 forms the lower part of the lower mold installation part 100. The lower mold attachment part 102 is a part to which the lower mold 110 is attached. The lower mold attachment part 102 is provided on the upper part of the lower mold movable base part 101.

<下型110>
図2、図3(a)及び図9に示す下型110は、成形型の下部を形成するものである。下型110は、主として下型サイドブロック111、ポットブロック112、下型キャビティブロック113、下型ピラー114及び下型弾性部材115を具備する。本実施形態の下型110では、図3(a)に示すように、中央にポットブロック112があり、その左右に下型キャビティブロック113が配置され、下型キャビティブロック113のさらに外側に下型サイドブロック111が配置されている。
<Lower mold 110>
The lower mold 110 shown in FIGS. 2, 3(a), and 9 forms the lower part of the mold. The lower mold 110 mainly includes a lower mold side block 111, a pot block 112, a lower mold cavity block 113, a lower mold pillar 114, and a lower mold elastic member 115. In the lower mold 110 of this embodiment, as shown in FIG. A side block 111 is arranged.

下型サイドブロック111は、下型110の外周部分を形成するものである。下型サイドブロック111は、下型取付部102の上面に設けられる。 The lower die side block 111 forms the outer peripheral portion of the lower die 110. The lower mold side block 111 is provided on the upper surface of the lower mold mounting portion 102.

ポットブロック112は、供給モジュール10から供給された樹脂タブレットTが収容される部分である。ポットブロック112には、樹脂タブレットTを収容するための貫通孔(ポット)が複数形成される。ポットブロック112は、左右を下型キャビティブロック113に挟まれて配置される。ポットブロック112は、下型取付部102の上面に設けられる。 The pot block 112 is a portion in which the resin tablets T supplied from the supply module 10 are accommodated. A plurality of through holes (pots) for accommodating resin tablets T are formed in the pot block 112. The pot block 112 is placed between the lower mold cavity blocks 113 on the left and right sides. The pot block 112 is provided on the upper surface of the lower mold attachment part 102.

下型キャビティブロック113は、基板2が載置される部分である。下型キャビティブロック113は、下型サイドブロック111とポットブロック112の間に配置される。下型キャビティブロック113は、下型サイドブロック111及びポットブロック112に対して上下方向に相対的に移動可能となるように配置されている。 The lower mold cavity block 113 is a portion on which the substrate 2 is placed. The lower mold cavity block 113 is arranged between the lower mold side block 111 and the pot block 112. The lower mold cavity block 113 is arranged so as to be movable relative to the lower mold side blocks 111 and the pot block 112 in the vertical direction.

下型ピラー114は、下型キャビティブロック113から下方に向かって延びるように配置される部材である。下型ピラー114の上端は、下型キャビティブロック113の下部に固定される。 The lower mold pillar 114 is a member arranged to extend downward from the lower mold cavity block 113. The upper end of the lower mold pillar 114 is fixed to the lower part of the lower mold cavity block 113.

下型弾性部材115は、下型キャビティブロック113に対して上方に向かって力を付与するものである。下型弾性部材115は、例えば圧縮コイルばね等により形成される。下型弾性部材115は、下型キャビティブロック113と下型取付部102との間に配置される。下型弾性部材115の付勢力によって、下型キャビティブロック113には、常に上向きの力が付与される。 The lower mold elastic member 115 applies an upward force to the lower mold cavity block 113. The lower mold elastic member 115 is formed of, for example, a compression coil spring. The lower mold elastic member 115 is arranged between the lower mold cavity block 113 and the lower mold mounting portion 102. The biasing force of the lower mold elastic member 115 always applies an upward force to the lower mold cavity block 113.

<下型キャビティ調整機構120>
図2に示す下型キャビティ調整機構120は、下型キャビティブロック113の位置を調整するものである。下型キャビティ調整機構120は、主として下型第一楔形部材121、下型第二楔形部材122及び下型楔形部材駆動部123を具備する。
<Lower mold cavity adjustment mechanism 120>
The lower mold cavity adjustment mechanism 120 shown in FIG. 2 is for adjusting the position of the lower mold cavity block 113. The lower mold cavity adjustment mechanism 120 mainly includes a lower mold first wedge-shaped member 121 , a lower mold second wedge-shaped member 122 , and a lower mold wedge-shaped member driving section 123 .

下型第一楔形部材121及び下型第二楔形部材122は、互いに向き合う面にテーパ部が形成された一対の部材である。下型第二楔形部材122は、下型第一楔形部材121の上側に配置される。下型第二楔形部材122は、下型ピラー114の下方に配置される。下型ピラー114の下端が下型第二楔形部材122に当接することによって、下型キャビティブロック113の下方への移動が規制される。これによって、下型キャビティブロック113の位置が規定される。 The first lower wedge-shaped member 121 and the second lower wedge-shaped member 122 are a pair of members in which tapered portions are formed on surfaces facing each other. The lower mold second wedge-shaped member 122 is arranged above the lower mold first wedge-shaped member 121. The lower mold second wedge-shaped member 122 is arranged below the lower mold pillar 114. The lower end of the lower mold pillar 114 comes into contact with the lower mold second wedge-shaped member 122, thereby restricting the downward movement of the lower mold cavity block 113. This defines the position of the lower mold cavity block 113.

下型楔形部材駆動部123は、下型第一楔形部材121を水平方向(左右方向)に移動させるものである。下型楔形部材駆動部123は、例えばサーボモータやエアシリンダ等により形成される。下型楔形部材駆動部123は、適宜の動力伝達部材を介して下型第一楔形部材121に連結される。下型楔形部材駆動部123を駆動させることにより、下型第一楔形部材121を左右方向に任意に移動させることができる。 The lower mold wedge-shaped member driving section 123 moves the lower mold first wedge-shaped member 121 in the horizontal direction (left-right direction). The lower wedge-shaped member driving section 123 is formed by, for example, a servo motor, an air cylinder, or the like. The lower mold wedge-shaped member driving section 123 is connected to the lower mold first wedge-shaped member 121 via an appropriate power transmission member. By driving the lower mold wedge-shaped member driving section 123, the lower mold first wedge-shaped member 121 can be arbitrarily moved in the left-right direction.

このように構成された下型キャビティ調整機構120によって、下型キャビティブロック113の位置を調整することができる。具体的には、下型楔形部材駆動部123を駆動させて下型第一楔形部材121を左右方向に移動させると、下型第一楔形部材121と接している下型第二楔形部材122がテーパ部に沿って上下に変位することになる。下型第二楔形部材122が上下に変位することで、下型ピラー114の下方への移動が規制される位置が変位することになり、ひいては下型キャビティブロック113の位置を調整することができる。 The position of the lower mold cavity block 113 can be adjusted by the lower mold cavity adjustment mechanism 120 configured in this way. Specifically, when the lower mold wedge-shaped member driving section 123 is driven to move the lower mold first wedge-shaped member 121 in the left-right direction, the lower mold second wedge-shaped member 122 in contact with the lower mold first wedge-shaped member 121 moves. It will be displaced up and down along the tapered portion. By vertically displacing the lower mold second wedge-shaped member 122, the position where the downward movement of the lower mold pillar 114 is restricted is displaced, and as a result, the position of the lower mold cavity block 113 can be adjusted. .

<上型設置部130>
図2及び図9に示す上型設置部130は、上型140が設けられる部分である。なお、上型設置部130は、本願の上型支持部の実施の一形態である。上型設置部130は、主として上型固定ベース部131、上型取付部132及びヒータプレート133を具備する。
<Upper mold installation section 130>
The upper mold installation part 130 shown in FIGS. 2 and 9 is a part where the upper mold 140 is provided. Note that the upper die installation section 130 is an embodiment of the upper die support section of the present application. The upper mold installation section 130 mainly includes an upper mold fixing base section 131, an upper mold mounting section 132, and a heater plate 133.

上型固定ベース部131は、上型設置部130の上部を形成するものである。上型取付部132は、上型140が取り付けられる部分である。上型取付部132は、複数の部材を組み合わせて形成される。上型取付部132は、上型固定ベース部131の下部に設けられる。上型取付部132の外周部には、後述する上型140(上型ベース部141)を下方から支持する支持部132aが設けられる。ヒータプレート133は、上型140を加熱するためのものである。ヒータプレート133は、上型取付部132の底面に設けられる。 The upper mold fixing base part 131 forms the upper part of the upper mold installation part 130. The upper mold attachment part 132 is a part to which the upper mold 140 is attached. The upper mold attachment part 132 is formed by combining a plurality of members. The upper mold attachment part 132 is provided at the lower part of the upper mold fixed base part 131. A support portion 132a that supports an upper mold 140 (upper mold base portion 141), which will be described later, from below is provided on the outer periphery of the upper mold mounting portion 132. The heater plate 133 is for heating the upper mold 140. The heater plate 133 is provided on the bottom surface of the upper die mounting portion 132.

<上型140>
図2、図3(b)及び図9に示す上型140は、成形型の上部を形成するものである。上型140は、主として上型ベース部141、上型サイドブロック142、上型キャビティブロック143、上型サポート145及び上型ピラー146を具備する。本実施形態では、図3(b)に示すように、中央にカルブロック144があり、その左右に上型キャビティブロック143が配置され、上型キャビティブロック143の外周(カルブロック側を除く)に上型サイドブロック142が配置されている。
<Upper mold 140>
The upper mold 140 shown in FIGS. 2, 3(b), and 9 forms the upper part of the mold. The upper mold 140 mainly includes an upper mold base portion 141, an upper mold side block 142, an upper mold cavity block 143, an upper mold support 145, and an upper mold pillar 146. In this embodiment, as shown in FIG. 3(b), there is a cull block 144 in the center, upper mold cavity blocks 143 are arranged on the left and right sides of the cull block 144, and the outer periphery of the upper mold cavity block 143 (excluding the cull block side) An upper mold side block 142 is arranged.

上型ベース部141は、後述する上型サイドブロック142を支持する部材である。上型ベース部141は、上下に所定の厚さを有する板状に形成される。上型ベース部141の外周部分は、上型取付部132の支持部132aによって下方から支持される。これによって上型ベース部141は、上型設置部130に対して上下方向に移動可能となるように支持されている。 The upper die base portion 141 is a member that supports an upper die side block 142, which will be described later. The upper die base portion 141 is formed into a plate shape having a predetermined thickness at the top and bottom. The outer peripheral portion of the upper mold base portion 141 is supported from below by the support portion 132a of the upper mold mounting portion 132. Thereby, the upper mold base part 141 is supported so as to be movable in the vertical direction with respect to the upper mold installation part 130.

上型サイドブロック142は、上型140が形成するキャビティCの側面を形成するものである。なお、上型サイドブロック142は、本願のサイドブロックの実施の一形態である。上型サイドブロック142は、樹脂成形品(キャビティC)に対応する位置に開口部が形成された枠状に形成される。上型サイドブロック142は、上型ベース部141の下面に設けられる。上型サイドブロック142には、エアベント溝142aが形成される。 The upper mold side block 142 forms the side surface of the cavity C formed by the upper mold 140. Note that the upper die side block 142 is an embodiment of the side block of the present application. The upper mold side block 142 is formed into a frame shape with an opening formed at a position corresponding to the resin molded product (cavity C). The upper die side block 142 is provided on the lower surface of the upper die base portion 141. An air vent groove 142a is formed in the upper mold side block 142.

図2に示すエアベント溝142aは、キャビティC内の空気を外部に排出するためのものである。エアベント溝142aは、上型サイドブロック142の下面の適宜の位置に形成される。 The air vent groove 142a shown in FIG. 2 is for discharging the air inside the cavity C to the outside. The air vent groove 142a is formed at an appropriate position on the lower surface of the upper die side block 142.

上型キャビティブロック143は、上型140が形成するキャビティCの上面を形成するものである。なお、上型キャビティブロック143は、本願のキャビティブロックの実施の一形態である。上型キャビティブロック143は、上型サイドブロック142の内側(より詳細には、上型サイドブロック142の開口部の内側)に配置される。上型キャビティブロック143は、上型サイドブロック142に対して上下方向に相対的に移動可能となるように配置されている。 The upper mold cavity block 143 forms the upper surface of the cavity C formed by the upper mold 140. Note that the upper mold cavity block 143 is an embodiment of the cavity block of the present application. The upper mold cavity block 143 is arranged inside the upper mold side block 142 (more specifically, inside the opening of the upper mold side block 142). The upper mold cavity block 143 is arranged so as to be movable relative to the upper mold side block 142 in the vertical direction.

カルブロック144は、下型110のポットブロック112に対向する位置に配置され、上型140が形成するキャビティCの側面を形成するものである。カルブロック144の下面には、樹脂材料をキャビティCへと案内するための溝状のカル部144a及びランナ部144bが形成される(図3(b)参照)。なお、図2では、樹脂の流れを容易に理解できるように、ポットブロック112の貫通孔(ポット)がカル部144a、ランナ部144bを経て後述するキャビティCへ連通している様子を模式的に示している。 The cull block 144 is arranged at a position facing the pot block 112 of the lower mold 110 and forms the side surface of the cavity C formed by the upper mold 140. A groove-shaped cull portion 144a and a runner portion 144b for guiding the resin material to the cavity C are formed on the lower surface of the cull block 144 (see FIG. 3(b)). In addition, in order to easily understand the flow of resin, FIG. 2 schematically shows how the through hole (pot) of the pot block 112 communicates with the cavity C, which will be described later, via the cull part 144a and the runner part 144b. It shows.

上型サポート145は、上型設置部130と接することで上型140の上方への移動を規制し、上型140の位置を規定するものである。上型サポート145は、上型ベース部141の上面に固定される。上型サポート145は、上型ベース部141の上面の適宜の位置に複数設けられる。 The upper mold support 145 restricts upward movement of the upper mold 140 by contacting the upper mold installation part 130 and defines the position of the upper mold 140. The upper die support 145 is fixed to the upper surface of the upper die base portion 141. A plurality of upper die supports 145 are provided at appropriate positions on the upper surface of the upper die base portion 141.

上型ピラー146は、上型キャビティブロック143から上方に向かって延びるように配置される部材である。上型ピラー146の下端は、上型キャビティブロック143の上部に固定される。上型ピラー146は、上型ベース部141を貫通するように配置される。 The upper mold pillar 146 is a member arranged to extend upward from the upper mold cavity block 143. The lower end of the upper mold pillar 146 is fixed to the upper part of the upper mold cavity block 143. The upper mold pillar 146 is arranged to penetrate the upper mold base portion 141.

なお、図2には、上型140の下面(キャビティCを形成する面)に離型フィルムFを吸着させた状態を示している。 Note that FIG. 2 shows a state in which the release film F is adsorbed to the lower surface of the upper mold 140 (the surface forming the cavity C).

<皿バネ150>
皿バネ150は、上型140に対して下方に向かって力を付与するものである。なお、皿バネ150は、本願の付与部の実施の一形態である。皿バネ150は、上型設置部130(ヒータプレート133)の下面と、上型140(上型ベース部141)の上面と、の間に配置される。皿バネ150の付勢力によって、上型140には、常に上型設置部130から離れる方向(下方)に向かう力が付与される。
<Disc spring 150>
The disc spring 150 applies a downward force to the upper die 140. Note that the disc spring 150 is an embodiment of the application section of the present application. The disc spring 150 is arranged between the lower surface of the upper mold installation section 130 (heater plate 133) and the upper surface of the upper mold 140 (upper mold base section 141). Due to the biasing force of the disc spring 150, a force is always applied to the upper mold 140 in a direction away from the upper mold installation portion 130 (downward).

<上型キャビティ調整機構160>
上型キャビティ調整機構160は、上型キャビティブロック143の位置を調整するものである。なお、上型キャビティ調整機構160は、本願の位置調整機構の実施の一形態である。上型キャビティ調整機構160は、上型キャビティブロック保持部材161、上型キャビティブロック駆動部162、規制部材163、上型弾性部材164、上型第一楔形部材165、上型第二楔形部材166及び上型楔形部材駆動部167を具備する。
<Upper mold cavity adjustment mechanism 160>
The upper mold cavity adjustment mechanism 160 adjusts the position of the upper mold cavity block 143. Note that the upper mold cavity adjustment mechanism 160 is an embodiment of the position adjustment mechanism of the present application. The upper mold cavity adjustment mechanism 160 includes an upper mold cavity block holding member 161, an upper mold cavity block drive section 162, a regulating member 163, an upper mold elastic member 164, an upper mold first wedge-shaped member 165, an upper mold second wedge-shaped member 166, and An upper wedge-shaped member driving section 167 is provided.

上型キャビティブロック保持部材161は、上型キャビティブロック143を保持するものである。上型キャビティブロック保持部材161は、正面視において中空の枠状に形成される。上型キャビティブロック保持部材161は、複数の部材(上下の板状部材とその上下の板状部材を繋ぐ複数の円柱状部材等)を組み合わせて形成される。上型キャビティブロック保持部材161は、上型固定ベース部131を上下に貫通するように配置される。上型キャビティブロック保持部材161は、上型固定ベース部131に対して上下に移動可能となるように設けられる。上型キャビティブロック保持部材161の下面には、上型ピラー146の上端が固定される。これによって、上型キャビティブロック保持部材161は、上型ピラー146を介して上型キャビティブロック143を保持することができる。 The upper mold cavity block holding member 161 holds the upper mold cavity block 143. The upper mold cavity block holding member 161 is formed into a hollow frame shape when viewed from the front. The upper mold cavity block holding member 161 is formed by combining a plurality of members (upper and lower plate members and a plurality of cylindrical members connecting the upper and lower plate members, etc.). The upper mold cavity block holding member 161 is arranged so as to vertically penetrate the upper mold fixing base portion 131. The upper mold cavity block holding member 161 is provided so as to be movable up and down with respect to the upper mold fixed base portion 131. The upper end of the upper mold pillar 146 is fixed to the lower surface of the upper mold cavity block holding member 161. Thereby, the upper mold cavity block holding member 161 can hold the upper mold cavity block 143 via the upper mold pillar 146.

上型キャビティブロック駆動部162は、上型キャビティブロック保持部材161を垂直方向(上下方向)に移動させるものである。上型キャビティブロック駆動部162は、例えばサーボモータやエアシリンダ等により形成される。上型キャビティブロック駆動部162は、上型キャビティブロック保持部材161の上部に設けられる。上型キャビティブロック駆動部162を駆動させることにより、上型キャビティブロック保持部材161(ひいては上型キャビティブロック143)を上型設置部130に対して上下方向に任意に移動させることができる。 The upper mold cavity block drive section 162 moves the upper mold cavity block holding member 161 in the vertical direction (up and down direction). The upper mold cavity block drive section 162 is formed by, for example, a servo motor, an air cylinder, or the like. The upper mold cavity block drive section 162 is provided above the upper mold cavity block holding member 161. By driving the upper mold cavity block drive section 162, the upper mold cavity block holding member 161 (and thus the upper mold cavity block 143) can be arbitrarily moved in the vertical direction with respect to the upper mold installation section 130.

規制部材163は、上型キャビティブロック保持部材161と接することで、上型キャビティブロック保持部材161の移動を規制するものである。規制部材163は、複数の部材(板状部材等)を組み合わせて形成される。規制部材163は、上型キャビティブロック保持部材161を左右に跨ぐ上方部と、上型キャビティブロック保持部材161の内側に配置される中央部とを含む。規制部材163の中央部は、上型キャビティブロック保持部材161の下部(底部)に対して上方から接することができるように配置されている。規制部材163は、上型キャビティブロック保持部材161の下部に対して上方から接することで、上型キャビティブロック保持部材161の上方への移動を規制することができる。これによって、キャビティCの深さを規定することができる。 The regulating member 163 restricts the movement of the upper mold cavity block holding member 161 by coming into contact with the upper mold cavity block holding member 161. The regulating member 163 is formed by combining a plurality of members (plate-like members, etc.). The regulating member 163 includes an upper part that straddles the upper mold cavity block holding member 161 from side to side, and a central part disposed inside the upper mold cavity block holding member 161. The center portion of the regulating member 163 is arranged so as to be able to contact the lower portion (bottom portion) of the upper mold cavity block holding member 161 from above. The regulating member 163 can restrict upward movement of the upper mold cavity block holding member 161 by contacting the lower part of the upper mold cavity block holding member 161 from above. This allows the depth of the cavity C to be defined.

上型弾性部材164は、規制部材163に対して上方に向かって力を付与するものである。上型弾性部材164は、例えば圧縮コイルばね等により形成される。上型弾性部材164は、規制部材163と上型取付部132との間に配置される。上型弾性部材164の付勢力によって、規制部材163には、常に上向きの力が付与される。 The upper mold elastic member 164 applies an upward force to the regulating member 163. The upper mold elastic member 164 is formed of, for example, a compression coil spring. The upper mold elastic member 164 is arranged between the regulating member 163 and the upper mold mounting part 132. Due to the biasing force of the upper mold elastic member 164, an upward force is always applied to the regulating member 163.

上型第一楔形部材165及び上型第二楔形部材166は、互いに向き合う面にテーパ部が形成された一対の部材である。上型第二楔形部材166は、上型第一楔形部材165の下側に配置される。上型第一楔形部材165及び上型第二楔形部材166は、上型キャビティブロック保持部材161の内側に配置される。より具体的には、上型第一楔形部材165及び上型第二楔形部材166は、上型固定ベース部131と規制部材163との間に配置される。上型第二楔形部材166は、規制部材163の上面に固定される。 The first upper wedge-shaped member 165 and the second upper wedge-shaped member 166 are a pair of members having tapered portions formed on surfaces facing each other. The upper mold second wedge-shaped member 166 is arranged below the upper mold first wedge-shaped member 165. The upper mold first wedge-shaped member 165 and the upper mold second wedge-shaped member 166 are arranged inside the upper mold cavity block holding member 161. More specifically, the upper mold first wedge-shaped member 165 and the upper mold second wedge-shaped member 166 are arranged between the upper mold fixed base part 131 and the regulating member 163. The upper mold second wedge-shaped member 166 is fixed to the upper surface of the regulating member 163.

上型楔形部材駆動部167は、上型第一楔形部材165を水平方向(左右方向)に移動させるものである。上型楔形部材駆動部167は、例えばサーボモータやエアシリンダ等により形成される。上型楔形部材駆動部167は、適宜の動力伝達部材を介して上型第一楔形部材165に連結される。上型楔形部材駆動部167を駆動させることにより、上型楔形部材駆動部167を左右方向に任意に移動させることができる。 The upper mold wedge-shaped member driving section 167 moves the upper mold first wedge-shaped member 165 in the horizontal direction (left-right direction). The upper wedge-shaped member driving section 167 is formed by, for example, a servo motor, an air cylinder, or the like. The upper mold wedge-shaped member driving section 167 is connected to the upper mold first wedge-shaped member 165 via a suitable power transmission member. By driving the upper wedge-shaped member drive section 167, the upper wedge-shaped member drive section 167 can be arbitrarily moved in the left-right direction.

このように構成された上型キャビティ調整機構160によって、上型キャビティブロック143の位置を調整することができる。具体的には、上型キャビティブロック駆動部162を駆動させて上型キャビティブロック保持部材161を下方に移動させると、規制部材163と上型キャビティブロック保持部材161の下部との間に隙間ができる。すなわち、この隙間を利用して規制部材163が上下に移動することができるようになる。この状態で、上型楔形部材駆動部167を駆動させて上型第一楔形部材165を左右方向に移動させると、上型第一楔形部材165と接している上型第二楔形部材166がテーパ部に沿って上下に変位することになる。また上型第二楔形部材166と共に、規制部材163も上下に変位する。規制部材163を所定の位置に調整した後、再び上型キャビティブロック駆動部162を駆動させて、上型キャビティブロック保持部材161が規制部材163と接するまで上方に移動させる。このように規制部材163を上下に変位させることで、上型キャビティブロック保持部材161の上方への移動が規制される位置が変位することになるため、上型キャビティブロック143の位置を調整することができる。 The position of the upper mold cavity block 143 can be adjusted by the upper mold cavity adjustment mechanism 160 configured in this way. Specifically, when the upper mold cavity block drive unit 162 is driven to move the upper mold cavity block holding member 161 downward, a gap is created between the regulating member 163 and the lower part of the upper mold cavity block holding member 161. . That is, the regulating member 163 can move up and down using this gap. In this state, when the upper mold wedge-shaped member driving section 167 is driven to move the upper mold first wedge-shaped member 165 in the left-right direction, the upper mold second wedge-shaped member 166 in contact with the upper mold first wedge-shaped member 165 tapers. It will be displaced up and down along the section. Further, the regulating member 163 is also vertically displaced together with the upper mold second wedge-shaped member 166. After adjusting the regulating member 163 to a predetermined position, the upper mold cavity block drive section 162 is driven again to move the upper mold cavity block holding member 161 upward until it comes into contact with the regulating member 163. By vertically displacing the regulating member 163 in this way, the position where the upward movement of the upper die cavity block holding member 161 is regulated is displaced, so the position of the upper die cavity block 143 can be adjusted. I can do it.

<エアベント開閉機構170>
図2に示すエアベント開閉機構170は、キャビティCと外部とを連通するエアベント溝142aを開閉するものである。エアベント開閉機構170は、主としてエアベントピン171及びエアベント駆動部172を具備する。
<Air vent opening/closing mechanism 170>
The air vent opening/closing mechanism 170 shown in FIG. 2 opens and closes the air vent groove 142a that communicates the cavity C with the outside. The air vent opening/closing mechanism 170 mainly includes an air vent pin 171 and an air vent drive section 172.

エアベントピン171は、エアベント溝142aを閉塞するためのものである。エアベントピン171は、エアベント溝142aと連通された上型サイドブロック142内の貫通孔に、上下に移動可能に設けられる。 The air vent pin 171 is for closing the air vent groove 142a. The air vent pin 171 is vertically movably provided in a through hole in the upper die side block 142 that communicates with the air vent groove 142a.

エアベント駆動部172は、エアベントピン171を上下方向に移動させるものである。エアベント駆動部172は、例えばサーボモータやエアシリンダ等により形成される。エアベント駆動部172は、適宜の動力伝達部材を介してエアベントピン171に連結される。エアベント駆動部172を駆動させることにより、エアベントピン171を上下方向に任意に移動させることができる。例えば、エアベントピン171を下方に移動させることで、エアベント溝142aを閉塞することができる。 The air vent drive unit 172 moves the air vent pin 171 in the vertical direction. The air vent drive section 172 is formed by, for example, a servo motor, an air cylinder, or the like. Air vent drive section 172 is connected to air vent pin 171 via a suitable power transmission member. By driving the air vent drive section 172, the air vent pin 171 can be arbitrarily moved in the vertical direction. For example, by moving the air vent pin 171 downward, the air vent groove 142a can be closed.

<トランスファ機構180>
トランスファ機構180は、キャビティCへと樹脂材料を供給するものである。トランスファ機構180は、主としてトランスファ駆動部181、プランジャ182及びプランジャ荷重測定部183を具備する。
<Transfer mechanism 180>
The transfer mechanism 180 supplies resin material to the cavity C. The transfer mechanism 180 mainly includes a transfer drive section 181, a plunger 182, and a plunger load measurement section 183.

トランスファ駆動部181は、後述するプランジャ182を垂直方向(上下方向)に移動させるもの(駆動源)である。なお、トランスファ駆動部181は、本願の駆動源の実施の一形態である。トランスファ駆動部181は、例えばサーボモータやエアシリンダ等により形成される。トランスファ駆動部181は、ポットブロック112の下方において、下型可動ベース部101に設けられる。 The transfer drive unit 181 is a drive source that moves a plunger 182, which will be described later, in the vertical direction (up and down direction). Note that the transfer drive unit 181 is an embodiment of the drive source of the present application. The transfer drive unit 181 is formed by, for example, a servo motor, an air cylinder, or the like. The transfer drive section 181 is provided on the lower mold movable base section 101 below the pot block 112.

プランジャ182は、ポットブロック112に収容された樹脂タブレットT(樹脂材料)を射出してキャビティCへと供給するものである。プランジャ182は、ポットブロック112内に上下に移動(昇降)可能となるように配置される。 The plunger 182 injects the resin tablet T (resin material) housed in the pot block 112 and supplies it to the cavity C. The plunger 182 is arranged within the pot block 112 so that it can move up and down (raise and lower).

プランジャ荷重測定部183は、プランジャ182に加わる力(プランジャ荷重)を測定するものである。プランジャ182に加わる力とは、具体的には、トランスファ駆動部181がプランジャ182を押す力である。プランジャ荷重測定部183は、例えばロードセル等により形成される。プランジャ荷重測定部183は、トランスファ駆動部181とプランジャ182との間に設けられる。 The plunger load measurement unit 183 measures the force (plunger load) applied to the plunger 182. Specifically, the force applied to the plunger 182 is the force by which the transfer drive unit 181 pushes the plunger 182. The plunger load measuring section 183 is formed by, for example, a load cell or the like. Plunger load measuring section 183 is provided between transfer drive section 181 and plunger 182.

なお、本実施形態においては、トランスファ駆動部181とプランジャ182との間には、各プランジャ182によって樹脂材料に付与される力(ひいては、キャビティC内の樹脂圧力)の均一化を図るための弾性部材等(等圧機構)が配置されていない。このためプランジャ182は、トランスファ駆動部181の出力に比例した移動量だけ移動することになる。例えばトランスファ駆動部181として伸縮可能なロッドを有するエアシリンダを用いて、プランジャ182を下方から押し上げる場合には、トランスファ駆動部181のロッドの移動量と同じ量だけプランジャ182も移動する。また例えばトランスファ駆動部181が適宜の減速機構を介してプランジャ182を移動させる場合には、トランスファ駆動部181の出力に対して減速機構の減速比を乗じた移動量だけプランジャ182が移動する。 In this embodiment, an elastic layer is provided between the transfer drive unit 181 and the plunger 182 in order to equalize the force applied to the resin material by each plunger 182 (as a result, the resin pressure in the cavity C). No members, etc. (equal pressure mechanism) are arranged. Therefore, the plunger 182 moves by an amount proportional to the output of the transfer drive section 181. For example, when pushing up the plunger 182 from below using an air cylinder having an extendable rod as the transfer drive unit 181, the plunger 182 also moves by the same amount as the movement of the rod of the transfer drive unit 181. Further, for example, when the transfer drive unit 181 moves the plunger 182 via a suitable speed reduction mechanism, the plunger 182 moves by an amount equal to the output of the transfer drive unit 181 multiplied by the reduction ratio of the speed reduction mechanism.

<カル部144aの形状>
このように、プランジャ182がトランスファ駆動部181の出力に比例した移動量だけ移動する構成であるため、複数のプランジャ182でキャビティCへと樹脂材料を供給する場合には、キャビティC内の樹脂圧力が均一となるような構成であることが望ましい。本実施形態では、複数のプランジャ182(ポット)から共通のキャビティCへと樹脂材料を供給する構成となっており、キャビティCを介して樹脂圧力が均一となるになっている。その他のキャビティC内の樹脂圧力を均一とする方法としては、例えば図4(a)に示すように、カル部144a同士を連結する連結溝144cを形成する方法や、図4(b)に示すように、キャビティCが複数ある場合、さらに、キャビティC同士を連結する連結溝144dを形成する(複数のカル部144aから共通のキャビティCへと樹脂材料を供給する)方法等がある。このようにカル部144a同士を連結する等することで、各プランジャ182のプランジャ荷重のばらつきによって樹脂材料に加わる圧力がばらつくのを抑制することができる。
<Shape of cull portion 144a>
In this way, since the plunger 182 is configured to move by an amount proportional to the output of the transfer drive unit 181, when a plurality of plungers 182 are used to supply resin material to the cavity C, the resin pressure in the cavity C is It is desirable that the configuration is such that the values are uniform. In this embodiment, the resin material is supplied from a plurality of plungers 182 (pots) to a common cavity C, and the resin pressure is made uniform through the cavity C. Other methods of making the resin pressure in the cavity C uniform are, for example, as shown in FIG. 4(a), a method of forming connecting grooves 144c connecting the cull portions 144a, and as shown in FIG. 4(b). When there are a plurality of cavities C, there is also a method of forming a connecting groove 144d that connects the cavities C (supplying the resin material from the plurality of cull parts 144a to the common cavity C). By connecting the cull portions 144a together in this manner, it is possible to suppress variations in the pressure applied to the resin material due to variations in the plunger loads of the respective plungers 182.

<型締め機構190>
図2に示す型締め機構190は、下型110を上昇させて、下型110と上型140とを型締め(クランプ)するものである。なお、型締め機構190は、本願のクランプ機構の実施の一形態である。型締め機構190は、主として固定盤191、支柱192、駆動機構193及びクランプ荷重測定部194を具備する。
<Mold clamping mechanism 190>
The mold clamping mechanism 190 shown in FIG. 2 raises the lower mold 110 and clamps the lower mold 110 and the upper mold 140 together. Note that the mold clamping mechanism 190 is an embodiment of the clamping mechanism of the present application. The mold clamping mechanism 190 mainly includes a fixed platen 191, a support column 192, a drive mechanism 193, and a clamp load measuring section 194.

固定盤191は、地面に設置され、他の部材を支持する部分である。固定盤191の上部には、後述する駆動機構193を介して下型110(下型設置部100)が設けられる。 The fixed platen 191 is a part that is installed on the ground and supports other members. A lower mold 110 (lower mold installation section 100) is provided on the upper part of the fixed platen 191 via a drive mechanism 193, which will be described later.

支柱192は、上型140(上型設置部130)を支持するものである。支柱192は、固定盤191から上方に延びるように設けられる。支柱192の上部には、上型設置部130の上型固定ベース部131が固定される。これによって上型140(上型設置部130)は、下型110(下型設置部100)の上方に配置される。 The support column 192 supports the upper mold 140 (upper mold installation section 130). The support column 192 is provided to extend upward from the fixed platen 191. An upper mold fixing base part 131 of the upper mold installation part 130 is fixed to the upper part of the support column 192 . As a result, the upper mold 140 (upper mold installation section 130) is placed above the lower mold 110 (lower mold installation section 100).

駆動機構193は、下型110(下型設置部100)を垂直方向(上下方向)に移動させるものである。駆動機構193は、例えばサーボモータ等の駆動源と、適宜の動力伝達機構等により形成される。駆動機構193は、固定盤191と下型設置部100との間に配置される。駆動機構193を駆動させることにより、下型設置部100を上下方向に任意に移動(昇降)させることができる。例えば駆動機構193により下型110を上型140に向かって上昇させることで、型締めすることができる。また駆動機構193により下型110を上型140から離れる方向に下降させることで、型開きすることができる。 The drive mechanism 193 moves the lower mold 110 (lower mold installation section 100) in the vertical direction (up and down direction). The drive mechanism 193 is formed by, for example, a drive source such as a servo motor, and an appropriate power transmission mechanism. The drive mechanism 193 is arranged between the fixed platen 191 and the lower mold installation section 100. By driving the drive mechanism 193, the lower die installation section 100 can be arbitrarily moved (elevated) in the vertical direction. For example, by raising the lower mold 110 toward the upper mold 140 using the drive mechanism 193, the mold can be clamped. Furthermore, by lowering the lower mold 110 in a direction away from the upper mold 140 using the drive mechanism 193, the mold can be opened.

クランプ荷重測定部194は、型締め機構190によって下型110と上型140とを型締めする際の力(クランプ荷重)を測定するものである。クランプ荷重測定部194は、例えばロードセルや歪ゲージ等により形成される。クランプ荷重測定部194は、支柱192に設けられる。クランプ荷重測定部194は、支柱192に加わる荷重に基づいて、クランプ荷重を測定することができる。 The clamp load measurement unit 194 measures the force (clamp load) when the mold clamping mechanism 190 clamps the lower mold 110 and the upper mold 140 together. The clamp load measuring section 194 is formed by, for example, a load cell, a strain gauge, or the like. The clamp load measuring section 194 is provided on the support column 192. The clamp load measurement unit 194 can measure the clamp load based on the load applied to the support column 192.

なお、図2では、成形型に基板2と樹脂タブレットTが搬送された後で、下型110と上型140とが型締め(クランプ)された状態を示している。 Note that FIG. 2 shows a state in which the lower mold 110 and the upper mold 140 are clamped after the substrate 2 and the resin tablet T are transferred to the mold.

<樹脂成形品の製造方法の概要>
以下では、上述の如く構成された樹脂成形装置1を用いた樹脂成形品の製造方法について説明する。
<Overview of the manufacturing method of resin molded products>
Below, a method for manufacturing a resin molded product using the resin molding apparatus 1 configured as described above will be described.

本実施形態では、樹脂成形モジュール20において樹脂成形を行う際に、製品の寸法精度(具体的には、成形された樹脂の厚みの寸法精度)の向上を図るための制御が行われる。この制御の理解を助けるため、まずは、樹脂成形装置1において製品の寸法がばらつく要因について、図5を用いて説明する。 In this embodiment, when resin molding is performed in the resin molding module 20, control is performed to improve the dimensional accuracy of the product (specifically, the dimensional accuracy of the thickness of the molded resin). To help understand this control, first, factors that cause variations in product dimensions in the resin molding apparatus 1 will be explained using FIG. 5.

図5(a)に示すように、型締め機構190によって下型110を上昇させて、下型110と上型140をクランプした場合、上型140のうち、上型サイドブロック142が下型110と接することになる。従って、型締め機構190によるクランプ荷重は、主に上型サイドブロック142に加わることになる。上型サイドブロック142にクランプ荷重が加わると、上型サイドブロック142が上下に圧縮されて微小ながら変形するため、キャビティCの深さ(上下方向の厚さ)が浅くなるおそれがある。 As shown in FIG. 5A, when the lower mold 110 is raised by the mold clamping mechanism 190 and the lower mold 110 and the upper mold 140 are clamped, the upper mold side block 142 of the upper mold 140 is attached to the lower mold 110. You will come into contact with Therefore, the clamping load by the mold clamping mechanism 190 is mainly applied to the upper mold side block 142. When a clamp load is applied to the upper die side block 142, the upper die side block 142 is vertically compressed and slightly deformed, so that the depth (vertical thickness) of the cavity C may become shallow.

また図5(b)に示すように、トランスファ機構180のプランジャ182によってキャビティC内へと樹脂が供給された場合、キャビティC内の樹脂材料からの圧力が上型キャビティブロック143に上向きに作用する。このため、上型キャビティブロック143が上方へと押し上げられて微小ながら移動又は変形するため、キャビティCの深さが深くなるおそれがある。 Further, as shown in FIG. 5B, when resin is supplied into the cavity C by the plunger 182 of the transfer mechanism 180, pressure from the resin material in the cavity C acts upward on the upper mold cavity block 143. . For this reason, the upper mold cavity block 143 is pushed upward and slightly moves or deforms, so there is a possibility that the depth of the cavity C becomes deeper.

このように、樹脂成形装置1を用いた樹脂成形を行う場合、各部の動作に応じてキャビティCの深さが変化する可能性があるため、この変化を抑制することで、樹脂成形品の寸法精度の向上を図ることができる。以下では、このような寸法精度の向上を図ることが可能な樹脂成形品の製造方法(クランプ荷重とプランジャ荷重の制御態様)について説明する。 In this way, when performing resin molding using the resin molding device 1, the depth of the cavity C may change depending on the operation of each part, so by suppressing this change, the dimensions of the resin molded product can be adjusted. Accuracy can be improved. Below, a method of manufacturing a resin molded product (control mode of clamp load and plunger load) that can improve such dimensional accuracy will be described.

図6のステップS10において、樹脂タブレットT及び基板2上のチップ2aの体積が測定される。以下、具体的に説明する。 In step S10 of FIG. 6, the volumes of the resin tablet T and the chip 2a on the substrate 2 are measured. This will be explained in detail below.

樹脂タブレットTの体積は、上述のように供給モジュール10の樹脂測定部15において測定される。樹脂測定部15では、任意の測定機器を用いて樹脂タブレットTの体積を測定することができる。樹脂測定部15の一例として、樹脂タブレットTの重量を測定する重量計が挙げられる。重量計により測定された樹脂タブレットTの重量と、樹脂タブレットTの比重から、樹脂タブレットTの体積が算出される。なお、樹脂タブレットTの体積の測定方法は特に限定するものではなく、その他種々の機器を用いて測定することが可能である。例えば、各種方式の三次元スキャナー、レーザ光を用いたレーザ体積計等を用いることが可能である。 The volume of the resin tablet T is measured in the resin measuring section 15 of the supply module 10 as described above. The resin measuring section 15 can measure the volume of the resin tablet T using any measuring device. An example of the resin measuring section 15 is a scale that measures the weight of the resin tablet T. The volume of the resin tablet T is calculated from the weight of the resin tablet T measured by a weight scale and the specific gravity of the resin tablet T. Note that the method for measuring the volume of the resin tablet T is not particularly limited, and measurement can be performed using various other devices. For example, it is possible to use various types of three-dimensional scanners, laser volume meters using laser light, and the like.

また基板2上のチップ2aの体積は、上述のように供給モジュール10のフレーム測定部12において測定される。フレーム測定部12では、任意の測定機器を用いて基板2上のチップ2aの体積を測定することができる。フレーム測定部12の一例として、基板2上のチップ2aの体積を測定する体積計が挙げられる。体積計は、レーザ光を用いて基板2上のチップ2aまでの距離を検出することで、チップ2aの形状(ひいては、体積)を測定するレーザ体積計である。なお、チップ2aの体積の測定方法は特に限定するものではなく、その他種々の機器を用いて測定することが可能である。例えば、各種方式の三次元スキャナー等を用いることが可能である。 Further, the volume of the chip 2a on the substrate 2 is measured by the frame measuring section 12 of the supply module 10 as described above. The frame measuring section 12 can measure the volume of the chip 2a on the substrate 2 using any measuring device. An example of the frame measurement unit 12 is a volume meter that measures the volume of the chip 2a on the substrate 2. The volume meter is a laser volume meter that measures the shape (and thus the volume) of the chip 2a by detecting the distance to the chip 2a on the substrate 2 using laser light. Note that the method for measuring the volume of the chip 2a is not particularly limited, and measurement can be performed using various other devices. For example, it is possible to use various types of three-dimensional scanners.

次に、図6のステップS20において、キャビティCの所定の樹脂充填率におけるプランジャ182の位置を算出する。以下、具体的に説明する。 Next, in step S20 of FIG. 6, the position of the plunger 182 at a predetermined resin filling rate of the cavity C is calculated. This will be explained in detail below.

制御部18は、予め記憶されている各部(上型サイドブロック142、上型キャビティブロック143、ポットブロック112、カルブロック144等)の寸法と、上型キャビティブロック143の上下位置に基づいてキャビティCの容量を算出する。なお、上型キャビティブロック143の上下位置は、上型楔形部材駆動部167の駆動量等に基づいて把握することができる。制御部18は、算出されたキャビティCの容量、並びにステップS10において測定された樹脂タブレットTとチップ2aの体積に基づいて、プランジャ182がどの位置まで上昇した時点で、キャビティCの容量のうち何%が溶融した樹脂材料で充填されたか(樹脂充填率)を算出することができる。 The control unit 18 controls the cavity C based on the dimensions of each part (upper mold side block 142, upper mold cavity block 143, pot block 112, cull block 144, etc.) stored in advance and the vertical position of the upper mold cavity block 143. Calculate the capacity of Note that the vertical position of the upper mold cavity block 143 can be determined based on the amount of drive of the upper mold wedge-shaped member driving section 167, etc. The control unit 18 determines, based on the calculated capacity of the cavity C and the volumes of the resin tablet T and the chip 2a measured in step S10, how much of the capacity of the cavity C should the plunger 182 rise to? % filled with molten resin material (resin filling rate) can be calculated.

本実施形態では、図5に示すように、制御部18はキャビティCの樹脂充填率が0%、25%、50%、75%及び100%となるプランジャ182の位置(以下では、それぞれ位置P0、P25、P50、P75及びP100と称する)を算出する。 In this embodiment, as shown in FIG. 5, the control unit 18 controls the positions of the plunger 182 at which the resin filling rate of the cavity C is 0%, 25%, 50%, 75%, and 100% (hereinafter, each position P0 , P25, P50, P75 and P100) are calculated.

なお、厳密には、プランジャ182が位置P0よりも低い位置にある状態では、キャビティCの樹脂充填率はプランジャ182の位置にかかわらず0%となるが、本実施形態ではプランジャ182が上昇してキャビティC内へ樹脂材料の供給され始める位置を、樹脂充填率が0%の位置P0と定義している。 Strictly speaking, when the plunger 182 is at a position lower than the position P0, the resin filling rate of the cavity C is 0% regardless of the position of the plunger 182, but in this embodiment, the resin filling rate is 0% when the plunger 182 is raised. The position where the resin material starts to be supplied into the cavity C is defined as a position P0 where the resin filling rate is 0%.

次に、図6のステップS30において、基板2と樹脂タブレットTがそれぞれ樹脂成形モジュール20の成形型に搬送される。具体的には、基板2が下型110に載置されると共に、樹脂タブレットTがポットブロック112のポット内に収容される。 Next, in step S30 of FIG. 6, the substrate 2 and the resin tablet T are each transported to the mold of the resin molding module 20. Specifically, the substrate 2 is placed on the lower die 110, and the resin tablet T is housed in the pot of the pot block 112.

次に、図6のステップS40において、型締め機構190によって下型110と上型140とが型締めされる。具体的には、型締め機構190によって下型110が上昇し、下型110が上型140に下方から接触する。これによって、キャビティCが閉塞される。この際、図9(a)に示すように、上型サポート145が上型設置部130(ヒータプレート133)に接する位置まで上型140が上昇する。 Next, in step S40 in FIG. 6, the lower mold 110 and the upper mold 140 are clamped by the mold clamping mechanism 190. Specifically, the lower mold 110 is raised by the mold clamping mechanism 190, and the lower mold 110 contacts the upper mold 140 from below. This closes cavity C. At this time, as shown in FIG. 9(a), the upper mold 140 rises to a position where the upper mold support 145 contacts the upper mold installation part 130 (heater plate 133).

以降、図7に示すグラフを用いて、樹脂成形装置1の動作に伴うクランプ荷重(単位は例えばtonf、N等)、プランジャ位置(初期位置を0としたプランジャ182の上下位置、単位は例えばmm等)、プランジャ荷重(単位は例えばtonf、N等)の時間変化の一例についても併せて説明する。 Hereinafter, using the graph shown in FIG. 7, the clamp load (unit: tonf, N, etc.) accompanying the operation of the resin molding device 1, the plunger position (the vertical position of the plunger 182 with the initial position as 0, the unit: mm, for example) etc.), and an example of the time change of the plunger load (unit: tonf, N, etc.) will also be explained.

ステップS40において下型110と上型140とが型締めされることによって、図7では時間t1においてクランプ荷重がCL1まで上昇している。 By clamping the lower mold 110 and the upper mold 140 in step S40, the clamp load increases to CL1 at time t1 in FIG.

次に、図6のステップS50において、プランジャ182の上昇が開始される(図7の時間t2)。 Next, in step S50 in FIG. 6, the plunger 182 starts rising (time t2 in FIG. 7).

次に、図6のステップS60において、充填率対応制御が実行される。充填率対応制御とは、キャビティCの樹脂充填率に基づいて樹脂成形装置1の動作を制御するものである。 Next, in step S60 of FIG. 6, filling rate corresponding control is executed. The filling rate corresponding control is to control the operation of the resin molding apparatus 1 based on the resin filling rate of the cavity C.

充填率対応制御の一例を図8に示している。図8は、樹脂充填率に基づいてクランプ荷重及びプランジャ182の移動速度を制御する例を示したものである。 An example of filling rate corresponding control is shown in FIG. FIG. 8 shows an example of controlling the clamp load and the moving speed of the plunger 182 based on the resin filling rate.

具体的には、プランジャ182の位置が位置P50(樹脂充填率が50%となる位置)に到達した場合(ステップS61でYES)、クランプ荷重がCL1からCL2に上昇される(ステップS62)。図7では、時間t3においてプランジャ182が位置P50に到達し、時間t3から時間t4にかけてクランプ荷重がCL1からCL2へと増加されている。 Specifically, when the position of the plunger 182 reaches position P50 (position where the resin filling rate is 50%) (YES in step S61), the clamp load is increased from CL1 to CL2 (step S62). In FIG. 7, the plunger 182 reaches position P50 at time t3, and the clamp load is increased from CL1 to CL2 from time t3 to time t4.

また、プランジャ182の位置が位置P50(樹脂充填率が50%となる位置)に到達した場合(ステップS61でYES)、プランジャ182の移動速度が調整される(ステップS62)。図7では、時間t3においてプランジャ182の時間変化(プランジャ位置のグラフの傾斜)が緩やかになっている。すなわち、プランジャ182の移動速度が遅くなるように調整されている。 Further, when the position of the plunger 182 reaches position P50 (position where the resin filling rate is 50%) (YES in step S61), the moving speed of the plunger 182 is adjusted (step S62). In FIG. 7, the change in the plunger 182 over time (the slope of the graph of the plunger position) becomes gentle at time t3. That is, the moving speed of plunger 182 is adjusted to be slow.

次に、プランジャ182の位置が位置P100(樹脂充填率が100%となる位置)に到達した場合(ステップS63でYES)、プランジャ182が停止される(ステップS64)。図7では、時間t5においてプランジャ182が位置P100に到達し、プランジャ182の移動(上昇)が停止されている。 Next, when the position of the plunger 182 reaches position P100 (the position where the resin filling rate is 100%) (YES in step S63), the plunger 182 is stopped (step S64). In FIG. 7, the plunger 182 reaches the position P100 at time t5, and the movement (rise) of the plunger 182 is stopped.

なお、図8では樹脂充填率が50%に到達したことを契機としてクランプ荷重及びプランジャ182の移動速度を1回だけ調整する例を示したが、調整回数はこれに限るものではなく、複数回の調整を行うことも可能である。例えば、樹脂充填率が25%、50%、75%(プランジャ182が位置P25、P50及びP75)に到達するごとにクランプ荷重等を調整することも可能である。またこの調整の契機となる樹脂充填率は上記の例に限るものではなく、任意に設定することが可能である。 Although FIG. 8 shows an example in which the clamp load and the moving speed of the plunger 182 are adjusted only once when the resin filling rate reaches 50%, the number of adjustments is not limited to this, and may be adjusted multiple times. It is also possible to make adjustments. For example, it is also possible to adjust the clamp load, etc. each time the resin filling rate reaches 25%, 50%, and 75% (positions P25, P50, and P75 of the plunger 182). Further, the resin filling rate that triggers this adjustment is not limited to the above example, and can be set arbitrarily.

このように樹脂充填率に応じてクランプ荷重を段階的に増加させることで、キャビティCの深さの変化を抑制することができる。具体的には、樹脂充填率の増加に伴って、樹脂材料が上型キャビティブロック143を上方へと押し上げる力が増加するため、キャビティCの深さが深くなる(図5(b)参照)。そこで、上述のように樹脂充填率に応じてクランプ荷重を増加させることで、キャビティCの深さを浅くすることで(図5(a)参照)、キャビティCの深さの変化の傾向(深さの増加と減少)を相殺し、キャビティCの深さの変化を抑制することができる。 By increasing the clamp load in stages according to the resin filling rate in this way, changes in the depth of the cavity C can be suppressed. Specifically, as the resin filling rate increases, the force of the resin material to push the upper mold cavity block 143 upward increases, so that the depth of the cavity C becomes deeper (see FIG. 5(b)). Therefore, by increasing the clamping load according to the resin filling rate as described above and making the depth of the cavity C shallower (see Fig. 5(a)), the tendency of the change in the depth of the cavity C (the depth (increase and decrease in depth) can be offset, and changes in the depth of cavity C can be suppressed.

また樹脂充填率に応じてプランジャ182の移動速度を調整することで、樹脂材料の未充填等の発生を抑制することができる。具体的には、キャビティC内を流動する樹脂材料は、比較的流動し易い部分(例えば、基板2のチップ2aが設けられていない部分等)と比較的流動し難い部分(例えば、基板2のチップ2a部分等)を流動するため、樹脂の回りを良くするため、流動速度を調整することが望ましい場合がある。そこで、上述のように樹脂充填率に応じてプランジャ182の移動速度を調整することで、樹脂の回りの向上を図ることができる。 Further, by adjusting the moving speed of the plunger 182 according to the resin filling rate, it is possible to suppress the occurrence of unfilled resin material, etc. Specifically, the resin material flowing inside the cavity C is divided into a relatively easy-to-flow portion (for example, a portion of the substrate 2 where the chip 2a is not provided) and a relatively difficult-to-flow portion (for example, a portion of the substrate 2 where the chip 2a is not provided). It may be desirable to adjust the flow rate in order to improve the circulation of the resin. Therefore, by adjusting the moving speed of the plunger 182 according to the resin filling rate as described above, it is possible to improve the circulation of the resin.

また本実施形態においては、樹脂タブレットT及び基板2のチップ2aの体積を実際に測定した値に基づいて樹脂充填率(樹脂充填率に対応するプランジャ182の位置)を算出しているため、樹脂タブレットTごとの体積のばらつき等にかかわらず、キャビティCの樹脂充填率を精度良く把握することができる。これによって、キャビティCの深さの変化をより精度よく抑制することができる。 Furthermore, in this embodiment, the resin filling rate (the position of the plunger 182 corresponding to the resin filling rate) is calculated based on the actually measured values of the volumes of the resin tablet T and the chip 2a of the substrate 2. Regardless of variations in the volume of each tablet T, the resin filling rate of the cavity C can be determined with high accuracy. Thereby, changes in the depth of the cavity C can be suppressed with higher accuracy.

なお、樹脂充填率に対する適切なクランプ荷重の値や適切なプランジャ182の移動速度は、予め実験や数値解析等で決定することができる。 Note that an appropriate clamp load value and an appropriate moving speed of the plunger 182 for the resin filling rate can be determined in advance through experiments, numerical analysis, or the like.

次に、図6のステップS70において、キャビティ制御が実行される。キャビティ制御とは、後述する圧力調整制御の前に、上型キャビティブロック143の位置を調整するものである。 Next, in step S70 of FIG. 6, cavity control is performed. Cavity control is to adjust the position of the upper mold cavity block 143 before pressure adjustment control, which will be described later.

具体的には、図9(a)に示すように下型110と上型140とがクランプされた状態において、図9(b)に示すようにクランプ荷重が低下される。この際、上型キャビティブロック駆動部162で上型キャビティブロック保持部材161を下方に向かって押さえながら、クランプ荷重が低下される。図7では、時間t6においてクランプ荷重がCL2からCLdownへと低下されている。この際、クランプ荷重が低下することでキャビティCの深さが深くなるおそれがあるが、上型キャビティブロック駆動部162で上型キャビティブロック保持部材161を下方に向かって押さえているため、キャビティCが深くなるのを抑制することができる。 Specifically, in a state where the lower mold 110 and the upper mold 140 are clamped as shown in FIG. 9(a), the clamping load is reduced as shown in FIG. 9(b). At this time, the clamp load is reduced while the upper mold cavity block holding member 161 is pressed downward by the upper mold cavity block drive section 162. In FIG. 7, the clamp load is decreased from CL2 to CLdown at time t6. At this time, there is a risk that the depth of the cavity C will become deeper due to a decrease in the clamping load, but since the upper mold cavity block drive unit 162 presses the upper mold cavity block holding member 161 downward, can be suppressed from deepening.

クランプ荷重が低下すると、図9(b)に示すように、皿バネ150によって上型140が上型設置部130から離れる方向に相対的に移動するため、規制部材163と上型キャビティブロック保持部材161との間に若干の隙間(図9(b)のA部分参照)が形成される。 When the clamp load decreases, as shown in FIG. 9(b), the upper mold 140 is relatively moved in the direction away from the upper mold installation part 130 by the disc spring 150, so that the regulating member 163 and the upper mold cavity block holding member 161 (see part A in FIG. 9(b)).

このような隙間が形成されることで、上型第二楔形部材166の可動域が確保される。すなわち、上型第二楔形部材166が上下に移動できるようになる。この状態で上型楔形部材駆動部167を駆動させることで、上型キャビティブロック143の位置を任意に調整することができる。 By forming such a gap, the movable range of the upper mold second wedge-shaped member 166 is ensured. That is, the upper die second wedge-shaped member 166 can move up and down. By driving the upper mold wedge-shaped member driving section 167 in this state, the position of the upper mold cavity block 143 can be adjusted as desired.

例えば図7に示した例では、上型キャビティブロック143を若干下降させている。これによって、キャビティCの深さを若干浅くすることができ、後述する圧力調整制御(ステップS80)、第一最終調整制御(ステップS90)及び第二最終調整制御(ステップS100)において、キャビティC内の樹脂材料に高い圧力を付与し易くなる。 For example, in the example shown in FIG. 7, the upper mold cavity block 143 is slightly lowered. As a result, the depth of the cavity C can be made slightly shallower, and in the pressure adjustment control (step S80), the first final adjustment control (step S90), and the second final adjustment control (step S100), which will be described later, the depth of the cavity C can be made slightly shallower. It becomes easier to apply high pressure to the resin material.

次に、図6のステップS80において、圧力調整制御が実行される。圧力調整制御とは、クランプ荷重を調整して、キャビティC内の樹脂材料に加わる圧力を上昇させるものである。 Next, in step S80 of FIG. 6, pressure adjustment control is executed. Pressure adjustment control is to adjust the clamp load to increase the pressure applied to the resin material in the cavity C.

具体的には、図7に示すように、クランプ荷重をCLdownから、CLM(予め設定されたクランプ荷重)まで増加させる(時間t7)。この際、プランジャ182は停止されている。このため、クランプ荷重が増加してキャビティCが浅くなろうとするのを、キャビティCに充填された樹脂材料が支えることになるため、キャビティCの深さの変化が抑制される。また、これによってキャビティC内の樹脂材料に加わる圧力が上昇し、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。なお図7には、キャビティC内の圧力の増加に伴ってプランジャ荷重が増加している様子が現れている。 Specifically, as shown in FIG. 7, the clamp load is increased from CLdown to CLM (preset clamp load) (time t7). At this time, the plunger 182 is stopped. Therefore, the resin material filled in the cavity C supports the tendency of the cavity C to become shallower due to an increase in the clamp load, so that changes in the depth of the cavity C are suppressed. Moreover, this increases the pressure applied to the resin material in the cavity C, suppresses the occurrence of unfilled resin, etc., and improves the accuracy of the resin molded product. Note that FIG. 7 shows that the plunger load increases as the pressure inside the cavity C increases.

次に、図6のステップS90において、第一最終調整制御が実行される。第一最終調整制御とは、クランプ荷重を予め設定された最終クランプ荷重となるように調整するものである。 Next, in step S90 of FIG. 6, first final adjustment control is executed. The first final adjustment control is to adjust the clamp load to a preset final clamp load.

具体的には、図7に示すように、クランプ荷重をCLMからCLf(最終クランプ荷重)まで増加させる(時間t8)。この際、プランジャ182は停止されている。このため、クランプ荷重が増加してキャビティCが浅くなろうとするのを、キャビティCに充填された樹脂材料が支えることになるため、キャビティCの深さの変化が抑制される。また、これによってキャビティC内の樹脂材料に加わる圧力が上昇し、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。 Specifically, as shown in FIG. 7, the clamp load is increased from CLM to CLf (final clamp load) (time t8). At this time, the plunger 182 is stopped. Therefore, the resin material filled in the cavity C supports the tendency of the cavity C to become shallower due to an increase in the clamp load, so that changes in the depth of the cavity C are suppressed. Moreover, this increases the pressure applied to the resin material in the cavity C, suppresses the occurrence of unfilled resin, etc., and improves the accuracy of the resin molded product.

次に、図6のステップS100において、第二最終調整制御が実行される。第二最終調整制御とは、プランジャ荷重を予め設定された最終プランジャ荷重となるように調整するものである。 Next, in step S100 of FIG. 6, second final adjustment control is executed. The second final adjustment control is to adjust the plunger load to a preset final plunger load.

具体的には、図7に示すように、プランジャ荷重がTrfとなるように、プランジャ182を移動させる(時間t9)。図7に示した例では、第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfに満たないため、プランジャ182を上昇させてプランジャ荷重をTrfまで増加させている。 Specifically, as shown in FIG. 7, the plunger 182 is moved so that the plunger load becomes Trf (time t9). In the example shown in FIG. 7, since the plunger load at the time when the first final adjustment control is completed (time t8) is less than Trf, the plunger 182 is raised to increase the plunger load to Trf.

なお、例えば第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfよりも大きい場合には、ステップS100においてプランジャ182を下降させてプランジャ荷重をTrfまで低下させる。また、第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfである場合には、ステップS100においてプランジャ182を移動させることなく、プランジャ荷重をTrfに保持する。このように、最終的なプランジャ荷重を予め設定された値となるように調整することで、樹脂成形品の精度の向上を図ることができる。
For example, if the plunger load at the time when the first final adjustment control is completed (time t8) is greater than Trf, the plunger 182 is lowered in step S100 to reduce the plunger load to Trf. Further, if the plunger load at the time when the first final adjustment control is completed (time t8) is Trf, the plunger load is maintained at Trf without moving the plunger 182 in step S100. In this way, by adjusting the final plunger load to a preset value, it is possible to improve the accuracy of the resin molded product.

なお、第二最終調整制御のようにプランジャ182を移動させると、キャビティC内の樹脂材料に加わる圧力を効率的に調整できる反面、キャビティC内の樹脂材料の量が変化してキャビティCの深さが変化し易い。そこで本実施形態においては、第一最終調整制御において予めクランプ力を最終クランプ力まで増加させ、これに伴ってプランジャ荷重を最終プランジャ荷重に近い値まで増加させている。これによって、第二最終調整制御におけるプランジャ182の移動量を小さく抑えることができるため、キャビティCの深さの変化を抑制することができる。 Note that by moving the plunger 182 as in the second final adjustment control, the pressure applied to the resin material in the cavity C can be efficiently adjusted, but on the other hand, the amount of the resin material in the cavity C changes and the depth of the cavity C changes. It is easy to change the temperature. Therefore, in this embodiment, the clamping force is increased in advance to the final clamping force in the first final adjustment control, and the plunger load is accordingly increased to a value close to the final plunger load. As a result, the amount of movement of the plunger 182 in the second final adjustment control can be kept small, so that changes in the depth of the cavity C can be suppressed.

次に、図6のステップS110において、クランプ荷重及びプランジャ荷重を保持しながら、キュア時間(硬化時間)が経過するまで待機する。 Next, in step S110 of FIG. 6, the clamp load and plunger load are held while waiting until a curing time (hardening time) has elapsed.

次に、図6のステップS120において、プランジャ182を下降させてプランジャ荷重を低下させると共に、型締め機構190によって下型110と上型140とが型開きされる。 Next, in step S120 of FIG. 6, the plunger 182 is lowered to reduce the plunger load, and the lower mold 110 and the upper mold 140 are opened by the mold clamping mechanism 190.

次に、図6のステップS130において、樹脂成形(樹脂封止)が完了した基板2が成形型から搬出される。搬出された基板2は搬出モジュール30へ搬送される。 Next, in step S130 of FIG. 6, the substrate 2 that has been resin molded (resin sealed) is taken out from the mold. The unloaded substrate 2 is transported to the unload module 30.

以上のように、クランプ荷重とプランジャ荷重を適宜制御することで、キャビティCの深さの変化を抑制し、樹脂成形品の寸法精度の向上を図ることができる。 As described above, by appropriately controlling the clamp load and the plunger load, it is possible to suppress changes in the depth of the cavity C and improve the dimensional accuracy of the resin molded product.

<制御態様の別例>
以下では、樹脂成形品の製造方法(クランプ荷重とプランジャ荷重の制御態様)の別例について説明する。
<Another example of control mode>
Below, another example of the method for manufacturing a resin molded product (control mode of clamp load and plunger load) will be described.

図10に示す例は、図7に示すクランプ荷重等の制御態様の別例を示したものである。なお、以下では便宜上、図7に示した制御態様を第一制御態様、図10に示した制御態様を第二制御態様とそれぞれ称する。図10に示す第二制御態様は、主に時間t6から時間t7にかけての制御内容(図6のステップS70及びステップS80)が図7の第一制御態様と異なっている。以下ではこの相違点について説明する。 The example shown in FIG. 10 shows another example of the control mode of the clamp load, etc. shown in FIG. 7. Note that, for convenience, the control mode shown in FIG. 7 is hereinafter referred to as a first control mode, and the control mode shown in FIG. 10 is referred to as a second control mode. The second control mode shown in FIG. 10 differs from the first control mode shown in FIG. 7 mainly in the control contents from time t6 to time t7 (steps S70 and S80 in FIG. 6). This difference will be explained below.

第一制御態様では、図6のステップS70におけるキャビティ制御において、キャビティCの深さが浅くなるように上型キャビティブロック143の位置を調整したが、第二制御態様では、キャビティCの深さが深くなるように上型キャビティブロック143の位置を調整している。 In the first control mode, the position of the upper die cavity block 143 was adjusted so that the depth of the cavity C becomes shallow in the cavity control in step S70 in FIG. The position of the upper mold cavity block 143 is adjusted so that it becomes deeper.

すなわち第二制御態様では、ステップS70においてクランプ荷重をCLdownへと低下させた状態で上型楔形部材駆動部167を駆動させ、上型キャビティブロック143を若干上昇させる。これによって、キャビティCの深さが若干深くなる。 That is, in the second control mode, the upper mold wedge-shaped member driving section 167 is driven with the clamp load reduced to CLdown in step S70, and the upper mold cavity block 143 is slightly raised. As a result, the depth of the cavity C becomes slightly deeper.

次に、図6のステップS80において、圧力調整制御が実行される。ここで、上述のように第二制御態様では、ステップS70においてキャビティCの深さが深くなるように調整されている。このようにキャビティCの深さが深くなると、キャビティCの容量も変化(増加)するため、100%であった樹脂充填率が低下し、100%を下回ることになる。 Next, in step S80 of FIG. 6, pressure adjustment control is executed. Here, as described above, in the second control mode, the depth of the cavity C is adjusted to become deeper in step S70. As the depth of the cavity C increases in this way, the capacity of the cavity C also changes (increases), so the resin filling rate, which was 100%, decreases and becomes less than 100%.

そこで制御部18は、この時点で再びキャビティCの樹脂充填率とプランジャ182の位置との関係を算出し直す。なお、この算出方法は、ステップS20と同様である。 Therefore, the control unit 18 recalculates the relationship between the resin filling rate of the cavity C and the position of the plunger 182 at this point. Note that this calculation method is the same as step S20.

次に、クランプ荷重をCLdownからCLM2まで増加させる(時間t7)。この際、樹脂充填率が100%を下回っているため、プランジャ182を上昇させて樹脂材料をキャビティC内へと供給しながら、クランプ荷重CLを段階的に上昇させる。すなわち、前述の充填率対応制御(ステップS60)と同様に、プランジャ182が所定の樹脂充填率に相当する位置に到達したことを契機として、クランプ荷重を段階的に増加させる。またこの際、プランジャ182の移動速度を調整することも可能である。図10に示す例では、クランプ荷重をCLM1、CLM2の2段階増加させた例を示している。 Next, the clamp load is increased from CLdown to CLM2 (time t7). At this time, since the resin filling rate is less than 100%, the clamp load CL is increased stepwise while the plunger 182 is raised to supply the resin material into the cavity C. That is, similar to the above-described filling rate corresponding control (step S60), the clamp load is increased in stages when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. Further, at this time, it is also possible to adjust the moving speed of the plunger 182. The example shown in FIG. 10 shows an example in which the clamp load is increased by two steps, CLM1 and CLM2.

このように圧力調整制御(ステップS80)においても、前述の充填率対応制御(ステップS60)と同様に樹脂充填率に応じてクランプ荷重を段階的に増加させることで、キャビティCの深さの変化を抑制することができる。但し、圧力調整制御において、前述の充填率対応制御を行わない構成とすることも可能である。 In this way, in the pressure adjustment control (step S80), the clamp load is increased in stages according to the resin filling rate, similarly to the filling rate corresponding control (step S60) described above, so that the depth of the cavity C can be changed. can be suppressed. However, in the pressure adjustment control, it is also possible to adopt a configuration in which the above-mentioned filling rate corresponding control is not performed.

また、上述の充填率対応制御(ステップS60)では、樹脂充填率に応じてクランプ荷重やプランジャ182の移動速度を調整する例を示したが、さらに別例として、樹脂充填率に応じてエアベント開閉機構170(図2参照)の動作を制御することも可能である。例えば、樹脂充填率が所定の値となった場合(プランジャ182が所定の樹脂充填率に相当する位置に到達した場合)に、エアベントピン171を下降させてエアベント溝142aを閉塞することもできる。これによって、エアベント溝142aの開閉を、樹脂充填率に応じて精度よく制御することができる。 In addition, in the above-mentioned filling rate corresponding control (step S60), an example was shown in which the clamp load and the moving speed of the plunger 182 were adjusted according to the resin filling rate. It is also possible to control the operation of mechanism 170 (see FIG. 2). For example, when the resin filling rate reaches a predetermined value (when the plunger 182 reaches a position corresponding to the predetermined resin filling rate), the air vent pin 171 can be lowered to close the air vent groove 142a. Thereby, opening and closing of the air vent groove 142a can be precisely controlled according to the resin filling rate.

また、上述の充填率対応制御(ステップS60)では、各樹脂充填率(0%、25%、50%、75%及び100%)に対応するプランジャ182の位置を契機として各部を制御する例を示したが、制御方法はこれに限るものではなく、例えばこれらの位置を基準とした他の位置を契機とする制御を行うことも可能である。 In addition, in the filling rate corresponding control (step S60) described above, an example is given in which each part is controlled using the position of the plunger 182 corresponding to each resin filling rate (0%, 25%, 50%, 75%, and 100%). Although shown, the control method is not limited to this, and for example, it is also possible to perform control using other positions as a trigger based on these positions.

例えば、プランジャ182を上昇させる際(樹脂材料をキャビティCに供給する際)に、樹脂充填率が0%のプランジャ182の位置P0を基準として、プランジャ182が位置P0から所定の距離(たとえば、5mm等)だけ下の位置に到達したことを契機として、プランジャ182の移動速度を調整する、エアベント溝142aを閉塞する等の制御が可能である。 For example, when raising the plunger 182 (when supplying resin material to the cavity C), the plunger 182 moves a predetermined distance (for example, 5 mm etc.), it is possible to perform controls such as adjusting the moving speed of the plunger 182 and closing the air vent groove 142a.

このように、位置P0を基準として、それ以下の位置にプランジャ182が到達したことを契機とした制御を行うことで、キャビティCに樹脂材料が供給される前のプランジャ182の位置に基づく制御を実行することができる。これによって、例えば樹脂材料がキャビティCへと供給され始める直前や、供給され始めるのと同時といったタイミング(樹脂充填率に依らないタイミング)でも、各部の制御を行うことができる。 In this way, by performing control triggered by the plunger 182 reaching a position below the position P0 as a reference, control based on the position of the plunger 182 before the resin material is supplied to the cavity C can be performed. can be executed. As a result, each part can be controlled, for example, just before the resin material starts to be supplied to the cavity C, or at the same time as the resin material starts to be supplied (timing that does not depend on the resin filling rate).

以上の如く、本実施形態に係る樹脂成形装置1は、基板2を載置する下型110と、上型サイドブロック142(サイドブロック)、及び前記上型サイドブロック142に対して上下に昇降可能となるように設けられた上型キャビティブロック143(キャビティブロック)によって、キャビティCを形成する上型140と、前記下型110と前記上型140とをクランプする型締め機構190(クランプ機構)と、プランジャ182によって前記キャビティCへと樹脂材料を供給するトランスファ機構180と、前記トランスファ機構180から供給された前記樹脂材料によって前記キャビティCが充填された後で、前記型締め機構190によるクランプ荷重が最終クランプ荷重となるように調整する第一最終調整制御(ステップS90)、並びに、前記第一最終調整制御が完了した後で、前記プランジャ182を駆動させることにより、前記プランジャ182に加わるプランジャ荷重が最終プランジャ荷重となるように調整する第二最終調整制御(ステップS100)を行う制御部18と、を具備するものである。 As described above, the resin molding apparatus 1 according to the present embodiment can move up and down with respect to the lower mold 110 on which the substrate 2 is placed, the upper mold side block 142 (side block), and the upper mold side block 142. An upper mold 140 that forms a cavity C by an upper mold cavity block 143 (cavity block) provided so that , a transfer mechanism 180 that supplies resin material to the cavity C by a plunger 182, and after the cavity C is filled with the resin material supplied from the transfer mechanism 180, a clamping load by the mold clamping mechanism 190 is applied. The plunger load applied to the plunger 182 is reduced by driving the plunger 182 after the first final adjustment control (step S90) for adjusting the final clamp load and the first final adjustment control are completed. The control unit 18 includes a control unit 18 that performs second final adjustment control (step S100) to adjust the plunger load to the final plunger load.

このように構成することにより、精度の高い樹脂成形品を製造することができる。すなわち、第二最終調整制御(プランジャ182によるプランジャ荷重の調整)より前に、予め第一調整制御でクランプ荷重を調整することで、第二最終調整制御におけるプランジャ182の移動量を抑えることができる。これによって、キャビティCの深さの変化を抑制することができる。 With this configuration, a resin molded product with high precision can be manufactured. That is, by adjusting the clamp load in advance in the first adjustment control before the second final adjustment control (adjustment of the plunger load by the plunger 182), the amount of movement of the plunger 182 in the second final adjustment control can be suppressed. . Thereby, changes in the depth of the cavity C can be suppressed.

また、前記制御部18は、前記第一最終調整制御において、前記型締め機構190によるクランプ荷重を上昇させるものである。 Further, the control unit 18 increases the clamping load by the mold clamping mechanism 190 in the first final adjustment control.

このように構成することにより、第二最終調整制御におけるプランジャ182の移動量を効果的に抑えることができる。これによって、キャビティCの深さの変化を抑制することができる。 With this configuration, the amount of movement of the plunger 182 in the second final adjustment control can be effectively suppressed. Thereby, changes in the depth of the cavity C can be suppressed.

また、前記制御部18は、前記樹脂材料によって前記キャビティCが充填された後、かつ前記第一最終調整制御を行う前に、前記型締め機構190によるクランプ荷重を調整して前記キャビティC内の樹脂圧力を上昇させる圧力調整制御(ステップS80)を行うものである。 Further, after the cavity C is filled with the resin material and before performing the first final adjustment control, the control unit 18 adjusts the clamping load by the mold clamping mechanism 190 so that the inside of the cavity C is filled with the resin material. This is to perform pressure adjustment control (step S80) to increase the resin pressure.

このように構成することにより、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。 By configuring in this way, the occurrence of unfilled resin, etc. can be suppressed, and the accuracy of the resin molded product can be improved.

また、前記制御部18は、前記圧力調整制御を行う前に、前記上型サイドブロック142に対する前記上型キャビティブロック143の相対的な位置を調整するキャビティ制御(ステップS70)を行うものである。 Furthermore, before performing the pressure adjustment control, the control section 18 performs cavity control (step S70) to adjust the relative position of the upper mold cavity block 143 with respect to the upper mold side block 142.

このように構成することにより、圧力調整制御におけるキャビティCの深さを予め任意に調整することができる。 With this configuration, the depth of the cavity C during pressure adjustment control can be arbitrarily adjusted in advance.

また、前記制御部18は、前記キャビティ制御において、前記型締め機構190によるクランプ荷重を低下させた状態で、前記上型キャビティブロック143を前記上型サイドブロック142に対して相対的に移動させるものである。 Further, in the cavity control, the control unit 18 moves the upper mold cavity block 143 relative to the upper mold side block 142 while reducing the clamping load by the mold clamping mechanism 190. It is.

このように構成することにより、クランプ荷重を低下させることで上型キャビティブロック143を容易に移動させることができる。 With this configuration, the upper mold cavity block 143 can be easily moved by reducing the clamp load.

また、樹脂成形装置1は、前記上型140を上下に移動自在となるように支持する上型設置部130(上型支持部)と、前記上型設置部130に設けられ、前記上型キャビティブロック143の位置を調整可能な上型キャビティ調整機構160(位置調整機構)と、前記上型キャビティ調整機構160の可動域を確保する方向に向かって前記上型140に力を付与する皿バネ150(付与部)と、をさらに具備するものである。 Further, the resin molding apparatus 1 includes an upper mold installation part 130 (upper mold support part) that supports the upper mold 140 so as to be movable up and down, and a An upper mold cavity adjustment mechanism 160 (position adjustment mechanism) that can adjust the position of the block 143, and a disc spring 150 that applies force to the upper mold 140 in a direction that ensures the range of motion of the upper mold cavity adjustment mechanism 160. (applying part).

このように構成することにより、上型キャビティ調整機構160(上型第二楔形部材166)の可動域を確保して、上型キャビティ調整機構160による上型キャビティブロック143の位置調整を容易に行うことができる。 With this configuration, the movable range of the upper mold cavity adjustment mechanism 160 (upper mold second wedge-shaped member 166) is ensured, and the position adjustment of the upper mold cavity block 143 by the upper mold cavity adjustment mechanism 160 is easily performed. be able to.

また、前記制御部18は、前記キャビティ制御において、前記皿バネ150によって確保された前記可動域を利用して前記キャビティCが深くなるように前記上型キャビティブロック143の位置を調整し、前記圧力調整制御において、前記トランスファ機構180によって前記樹脂材料を前記キャビティCに供給しながら、前記型締め機構190によるクランプ荷重を上昇させるものである。 Further, in the cavity control, the control unit 18 adjusts the position of the upper mold cavity block 143 so that the cavity C becomes deeper by utilizing the movable range ensured by the disc spring 150, and adjusts the position of the upper mold cavity block 143 so that the cavity C becomes deeper. In the adjustment control, the clamping load by the mold clamping mechanism 190 is increased while the resin material is supplied to the cavity C by the transfer mechanism 180.

このように構成することにより、樹脂材料が一旦充填されたキャビティCに対して再度樹脂材料の供給を行うことで、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。 With this configuration, by supplying the resin material again to the cavity C once filled with the resin material, occurrences such as unfilled resin can be suppressed, and the accuracy of the resin molded product can be improved. I can do it.

また、前記トランスファ機構180は、前記プランジャ182を駆動させるトランスファ駆動部181(駆動源)を具備し、前記トランスファ駆動部181の出力に比例した移動量で前記プランジャ182を移動させるものである。 Further, the transfer mechanism 180 includes a transfer drive section 181 (drive source) that drives the plunger 182, and moves the plunger 182 by an amount of movement proportional to the output of the transfer drive section 181.

このように構成することにより、クランプ荷重やプランジャ荷重をより精度良く調整することができる。すなわち、トランスファ駆動部181とプランジャ182との間に弾性部材等を介さず、トランスファ駆動部181の出力に完全に追従するようにプランジャ182を移動させることができるため、プランジャ182の位置(ひいては樹脂充填率)を契機とする各部の制御を精度良く行うことができる。また、プランジャ182によるプランジャ荷重の調整も精密に行うことができる。 With this configuration, the clamp load and plunger load can be adjusted with higher accuracy. That is, since the plunger 182 can be moved to completely follow the output of the transfer drive unit 181 without using an elastic member or the like between the transfer drive unit 181 and the plunger 182, the position of the plunger 182 (and thus the resin Each part can be controlled accurately based on the filling rate. Further, the plunger load by the plunger 182 can also be precisely adjusted.

また、本実施形態に係る樹脂成形品の製造方法は、前記樹脂成形装置1を用いて樹脂成形品を製造するものである。 Moreover, the method for manufacturing a resin molded product according to the present embodiment is for manufacturing a resin molded product using the resin molding apparatus 1.

このように構成することにより、精度の高い樹脂成形品を製造することができる。 With this configuration, a resin molded product with high precision can be manufactured.

また、本実施形態に係る樹脂成形品の製造方法は、基板2を載置する下型110と、上型サイドブロック142、及び前記上型サイドブロック142に対して上下に昇降可能となるように設けられた上型キャビティブロック143によってキャビティCを形成する上型140とを型締め機構190によりクランプするクランプ工程(ステップS40)と、プランジャ182によって前記キャビティCへと樹脂材料を供給する樹脂材料供給工程(ステップS50、ステップS60)と、前記樹脂材料によって前記キャビティC内が充填された後で前記型締め機構190によるクランプ荷重が最終クランプ荷重となるように調整する第一最終調整工程(ステップS90)と、前記型締め機構190によるクランプ荷重が前記最終クランプ荷重になった後で前記プランジャ182に加わるプランジャ荷重が最終プランジャ荷重となるように前記プランジャ182を駆動させる第二最終調整工程(ステップS100)と、を具備するものである。 In addition, the method for manufacturing a resin molded product according to the present embodiment includes a lower mold 110 on which the substrate 2 is placed, an upper mold side block 142, and a structure that can be moved up and down with respect to the upper mold side block 142. A clamping step (step S40) in which the upper mold 140 forming the cavity C is clamped by the mold clamping mechanism 190 using the upper mold cavity block 143 provided, and a resin material supply in which the resin material is supplied to the cavity C by the plunger 182. steps (step S50, step S60), and a first final adjustment step (step S90) of adjusting the clamping load by the mold clamping mechanism 190 to be the final clamping load after the cavity C is filled with the resin material. ), and a second final adjustment step (step S100) in which the plunger 182 is driven so that the plunger load applied to the plunger 182 becomes the final plunger load after the clamp load by the mold clamping mechanism 190 reaches the final clamp load. ).

このように構成することにより、精度の高い樹脂成形品を製造することができる。すなわち、第二最終調整制御(プランジャ182によるプランジャ荷重の調整)より前に、予め第一調整制御でクランプ荷重を調整することで、第二最終調整制御におけるプランジャ182の移動量を抑えることができる。これによって、キャビティCの深さの変化を抑制することができる。 With this configuration, a resin molded product with high precision can be manufactured. That is, by adjusting the clamp load in advance in the first adjustment control before the second final adjustment control (adjustment of the plunger load by the plunger 182), the amount of movement of the plunger 182 in the second final adjustment control can be suppressed. . Thereby, changes in the depth of the cavity C can be suppressed.

また、以上の如く、本実施形態に係る樹脂成形装置1は、基板2を載置する下型110と、上型サイドブロック142(サイドブロック)、及び前記上型サイドブロック142に対して上下に昇降可能となるように設けられた上型キャビティブロック143(キャビティブロック)によって、キャビティCを形成する上型140と、前記下型110と前記上型140とをクランプする型締め機構190(クランプ機構)と、プランジャ182によって前記キャビティCへと樹脂材料を供給するトランスファ機構180と、前記基板2に配置されたチップ2aの体積及び前記樹脂材料(樹脂タブレットT)の体積に基づいて算出された前記キャビティCの樹脂充填率と前記プランジャ182の位置との関係を用いて、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御(ステップS60、第二制御態様におけるステップS80)を行う制御部18と、を具備するものである。 Further, as described above, the resin molding apparatus 1 according to the present embodiment includes the lower mold 110 on which the substrate 2 is placed, the upper mold side block 142 (side block), and the upper mold side block 142 located above and below the upper mold side block 142. An upper mold 140 forming a cavity C, a mold clamping mechanism 190 (clamping mechanism) that clamps the lower mold 110 and the upper mold 140 by an upper mold cavity block 143 (cavity block) provided so as to be movable up and down. ), a transfer mechanism 180 that supplies the resin material to the cavity C by a plunger 182, and a transfer mechanism 180 that supplies the resin material to the cavity C using a plunger 182; Filling rate corresponding control that uses the relationship between the resin filling rate of the cavity C and the position of the plunger 182 to control operations related to resin molding when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. (Step S60, step S80 in the second control mode).

このように構成することにより、精度の高い樹脂成形品を製造することができる。すなわち、実際に用いられる樹脂タブレットT及び基板2のチップ2aの体積に基づいて樹脂充填率を精度良く把握することができるため、この樹脂充填率に基づく各部の制御を行うことができる。これによって樹脂成形品の精度の向上を図ることができる。 With this configuration, a resin molded product with high precision can be manufactured. That is, since the resin filling rate can be accurately grasped based on the volume of the resin tablet T and the chip 2a of the substrate 2 actually used, each part can be controlled based on this resin filling rate. This makes it possible to improve the accuracy of the resin molded product.

また、前記制御部18は、前記充填率対応制御において、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として前記型締め機構190によるクランプ荷重を調整するクランプ力調整制御(ステップS60)を行うものである。 In addition, in the filling rate corresponding control, the control unit 18 performs clamp force adjustment control that adjusts the clamping load by the mold clamping mechanism 190 when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. (Step S60) is performed.

このように構成することにより、樹脂充填率に応じたキャビティCの深さの変化を抑制するようにクランプ荷重を調整することで、樹脂成形品の精度の向上を図ることができる。 With this configuration, the accuracy of the resin molded product can be improved by adjusting the clamp load so as to suppress changes in the depth of the cavity C depending on the resin filling rate.

また、前記制御部18は、前記クランプ力調整制御において、前記型締め機構190によるクランプ荷重を段階的に上昇させるものである。 Further, the control section 18 increases the clamping load by the mold clamping mechanism 190 in stages in the clamping force adjustment control.

このように構成することにより、樹脂充填率が増加するのに伴ってキャビティCの深さが深くなろうとするのを、クランプ荷重を上昇させることで抑制することができる。 With this configuration, it is possible to prevent the depth of the cavity C from becoming deeper as the resin filling rate increases by increasing the clamp load.

また、前記制御部18は、前記充填率対応制御において、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として前記プランジャ182の移動速度を調整するプランジャ速度調整制御(ステップS60)を行うものである。 In addition, in the filling rate corresponding control, the control unit 18 performs plunger speed adjustment control (step S60).

このように構成することにより、樹脂充填率に応じて樹脂材料の流動速度を調整することができ、ひいては樹脂成形品の精度の向上を図ることができる。 With this configuration, the flow rate of the resin material can be adjusted according to the resin filling rate, and the precision of the resin molded product can be improved.

また、前記制御部18は、前記充填率対応制御において、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として前記キャビティCに接続されたエアベント溝142aの開閉の切り替えを行うエアベント切替制御(ステップS60)を行うものである。 Further, in the filling rate corresponding control, the control unit 18 switches the opening and closing of the air vent groove 142a connected to the cavity C when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. The air vent switching control (step S60) is performed.

このように構成することにより、樹脂充填率に応じてエアベント溝142aを開閉させることで、樹脂材料の流動を精度良く調整することができ、ひいては樹脂成形品の精度の向上を図ることができる。 With this configuration, by opening and closing the air vent groove 142a according to the resin filling rate, the flow of the resin material can be adjusted with high precision, and the precision of the resin molded product can be improved.

また、樹脂成形装置1は、前記基板2に配置されたチップ2aの体積を測定するフレーム測定部12(チップ体積測定部)と、前記樹脂材料(樹脂タブレットT)の体積を測定する樹脂測定部15(樹脂体積測定部)と、前記フレーム測定部12及び前記樹脂測定部15の測定結果に基づいて、前記樹脂充填率と前記プランジャ182の位置との関係を算出する算出部(制御部18)と、をさらに具備するものである。 The resin molding apparatus 1 also includes a frame measuring section 12 (chip volume measuring section) that measures the volume of the chip 2a placed on the substrate 2, and a resin measuring section that measures the volume of the resin material (resin tablet T). 15 (resin volume measurement unit), and a calculation unit (control unit 18) that calculates the relationship between the resin filling rate and the position of the plunger 182 based on the measurement results of the frame measurement unit 12 and the resin measurement unit 15. It further comprises:

このように構成することにより、実際に測定したチップ2aと樹脂材料の体積に基づいてプランジャ182の位置(樹脂充填率)を把握することができるため、例えば樹脂材料(樹脂タブレットT)やチップ2aの体積がばらついていたとしても、精度の高い制御を行うことができる。 With this configuration, the position of the plunger 182 (resin filling rate) can be determined based on the actually measured volumes of the chip 2a and the resin material. Even if there are variations in volume, highly accurate control can be performed.

また、樹脂成形装置1は、前記上型140を上下に移動自在となるように支持する上型設置部130(上型支持部)と、前記上型設置部130に設けられ、前記上型キャビティブロック143の位置を調整可能な上型キャビティ調整機構160(位置調整機構)と、前記上型キャビティ調整機構160の可動域を確保する方向に向かって前記上型140に力を付与する皿バネ150(付与部)と、をさらに具備し、前記制御部18は、前記樹脂材料によって前記キャビティCが充填された後に、前記皿バネ150によって確保された前記可動域を利用して前記キャビティCが深くなるように、前記上型サイドブロック142に対する前記上型キャビティブロック143の相対的な位置を調整するキャビティ制御と、前記キャビティ制御の後に、前記型締め機構190によるクランプ荷重を調整して前記キャビティC内の樹脂圧力を上昇させる圧力調整制御と、を行い、前記圧力調整制御において、前記充填率対応制御を行うものである。 Further, the resin molding apparatus 1 includes an upper mold installation part 130 (upper mold support part) that supports the upper mold 140 so as to be movable up and down, and a An upper mold cavity adjustment mechanism 160 (position adjustment mechanism) that can adjust the position of the block 143, and a disc spring 150 that applies force to the upper mold 140 in a direction that ensures the range of motion of the upper mold cavity adjustment mechanism 160. (applying part), and the control part 18 controls the cavity C to be deep by utilizing the movable range ensured by the disc spring 150 after the cavity C is filled with the resin material. The cavity control is performed to adjust the relative position of the upper mold cavity block 143 to the upper mold side block 142, and after the cavity control, the clamp load by the mold clamping mechanism 190 is adjusted to A pressure adjustment control is performed to increase the resin pressure inside the container, and in the pressure adjustment control, the filling rate corresponding control is performed.

このように構成することにより、圧力調整制御においても樹脂充填率に基づく各部の制御を行うことができるため、樹脂成形品の精度の向上を図ることができる。 With this configuration, each part can be controlled based on the resin filling rate even in pressure adjustment control, so it is possible to improve the accuracy of the resin molded product.

また、本実施形態に係る樹脂成形品の製造方法は、前記樹脂成形装置1を用いて樹脂成形品を製造するものである。 Moreover, the method for manufacturing a resin molded product according to the present embodiment is for manufacturing a resin molded product using the resin molding apparatus 1.

このように構成することにより、精度の高い樹脂成形品を製造することができる。 With this configuration, a resin molded product with high precision can be manufactured.

また、本実施形態に係る樹脂成形品の製造方法は、基板2に配置されたチップ2aの体積を測定するチップ体積測定工程(ステップS10)と、樹脂材料の体積を測定する樹脂体積測定工程(ステップS10)と、測定された前記チップ2aの体積及び前記樹脂材料の体積に基づいて、前記キャビティCの樹脂充填率と前記プランジャ182の位置との関係を算出するプランジャ位置算出工程(ステップS20)と、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程(ステップS60、第二制御態様におけるステップS80)と、を具備するものである。 Furthermore, the method for manufacturing a resin molded product according to the present embodiment includes a chip volume measuring step (step S10) of measuring the volume of the chip 2a placed on the substrate 2, and a resin volume measuring step (step S10) of measuring the volume of the resin material. step S10), and a plunger position calculation step (step S20) of calculating the relationship between the resin filling rate of the cavity C and the position of the plunger 182 based on the measured volume of the chip 2a and the volume of the resin material. and a filling rate corresponding control step (step S60, step S80 in the second control mode) of controlling operations related to resin molding when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. It is something to do.

このように構成することにより、精度の高い樹脂成形品を製造することができる。すなわち、実際に用いられる樹脂タブレットT及び基板2のチップ2aの体積に基づいて樹脂充填率を精度良く把握することができるため、この樹脂充填率に基づく各部の制御を行うことができる。これによって樹脂成形品の精度の向上を図ることができる。 With this configuration, a resin molded product with high precision can be manufactured. That is, since the resin filling rate can be accurately grasped based on the volume of the resin tablet T and the chip 2a of the substrate 2 actually used, each part can be controlled based on this resin filling rate. This makes it possible to improve the accuracy of the resin molded product.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の技術的思想の範囲内で適宜の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and appropriate changes can be made within the scope of the technical idea of the invention described in the claims. .

例えば、上記実施形態の樹脂成形装置1に用いた構成要素(供給モジュール10等)は一例であり、適宜着脱や交換することが可能である。例えば、樹脂成形モジュール20の個数を変更することが可能である。また、本実施形態の樹脂成形装置1に用いた構成要素(供給モジュール10等)の構成や動作は一例であり、適宜変更することが可能である。 For example, the components (supply module 10, etc.) used in the resin molding apparatus 1 of the embodiment described above are just one example, and can be detached or replaced as appropriate. For example, it is possible to change the number of resin molded modules 20. Further, the configuration and operation of the components (supply module 10, etc.) used in the resin molding apparatus 1 of this embodiment are merely examples, and can be changed as appropriate.

また、上記実施形態においては、タブレット状の樹脂材料(樹脂タブレットT)を用いる例を示したが、本発明はこれに限るものではない。すなわち、樹脂材料としては、タブレット状のものだけでなく、顆粒状、粉末状、液状など任意の形態のものを用いることが可能である。 Further, in the above embodiment, an example is shown in which a tablet-shaped resin material (resin tablet T) is used, but the present invention is not limited to this. That is, the resin material can be in any form such as not only tablets but also granules, powders, liquids, etc.

また、上記実施形態においては、カル部144a及びランナ部144bがカルブロック144に形成されている例を示したが、例えば、ポットブロック112にカル部144a、ランナ部144bの一部が形成されていてもよい。また、上記実施形態においては、ポットブロック112には複数の貫通孔(ポット)が備えられている例を示したが、貫通孔は1つであってもよい。 Further, in the above embodiment, an example is shown in which the cull portion 144a and the runner portion 144b are formed in the cull block 144, but for example, a portion of the cull portion 144a and the runner portion 144b may be formed in the pot block 112. You can. Further, in the above embodiment, an example is shown in which the pot block 112 is provided with a plurality of through holes (pots), but the number of through holes may be one.

また、上記実施形態において例示した制御態様は一例であり、詳細な制御内容(例えば、クランプ荷重やプランジャ荷重の目標値や、制御タイミング等)は任意に変更することができる。例えば、上記実施形態では、第一最終調整制御(ステップS90)が完了した後で第二最終調整制御(ステップS100)を実行する例を示しているが、第一最終調整制御が完了する前に第二最終調整制御を開始することも可能である。 Further, the control mode illustrated in the above embodiment is an example, and detailed control contents (for example, target values of clamp load and plunger load, control timing, etc.) can be changed arbitrarily. For example, in the above embodiment, an example is shown in which the second final adjustment control (step S100) is executed after the first final adjustment control (step S90) is completed, but the second final adjustment control (step S100) is executed before the first final adjustment control is completed. It is also possible to start a second final adjustment control.

また、上記実施形態においては、上型140に力を付与する付与部として皿バネ150を例示したが、本発明はこれに限るものではなく、その他種々の構成を採用することが可能である。例えば、付与部として各種の弾性部材や、エアシリンダ等のアクチュエータを用いることも可能である。 Further, in the above embodiment, the disc spring 150 is illustrated as the applying portion that applies force to the upper die 140, but the present invention is not limited to this, and various other configurations can be adopted. For example, it is also possible to use various elastic members or actuators such as air cylinders as the applying section.

また、上記実施形態においては、樹脂成形装置1が具備するフレーム測定部12及び樹脂測定部15において基板2のチップ2a等の体積を測定する例を示したが、本発明はこれに限るものではない。例えば、樹脂成形装置1は、外部で体積が測定された基板2や樹脂タブレットTを用いて樹脂成形を行うことも可能である。この場合、樹脂成形装置1はフレーム測定部12や樹脂測定部15を備える必要はない。 Further, in the above embodiment, an example was shown in which the volume of the chip 2a, etc. of the substrate 2 is measured in the frame measuring section 12 and the resin measuring section 15 included in the resin molding apparatus 1, but the present invention is not limited to this. do not have. For example, the resin molding apparatus 1 can perform resin molding using a substrate 2 or a resin tablet T whose volume has been measured externally. In this case, the resin molding apparatus 1 does not need to include the frame measuring section 12 or the resin measuring section 15.

また、上記実施形態においては、充填率対応制御の一例として、クランプ荷重を調整するクランプ力調整制御、プランジャ182の移動速度を調整するプランジャ速度調整制御、エアベント溝142aの開閉の切り替えを行うエアベント切替制御を例示したが、本発明はこれに限るものではなく、樹脂成形に関する任意の動作を制御することが可能である。 In the above embodiment, examples of the filling rate corresponding control include clamp force adjustment control that adjusts the clamp load, plunger speed adjustment control that adjusts the moving speed of the plunger 182, and air vent switching that switches between opening and closing the air vent groove 142a. Although the control is illustrated, the present invention is not limited to this, and it is possible to control any operation related to resin molding.

1 樹脂成形装置
12 フレーム測定部
15 樹脂測定部
18 制御部
110 下型
130 上型設置部
140 上型
142 上型サイドブロック
143 上型キャビティブロック
150 皿バネ
160 上型キャビティ調整機構
170 エアベント開閉機構
180 トランスファ機構
181 トランスファ駆動部
182 プランジャ
190 型締め機構
1 Resin molding device 12 Frame measurement section 15 Resin measurement section 18 Control section 110 Lower mold 130 Upper mold installation section 140 Upper mold 142 Upper mold side block 143 Upper mold cavity block 150 Belleville spring 160 Upper mold cavity adjustment mechanism 170 Air vent opening/closing mechanism 180 Transfer mechanism 181 Transfer drive section 182 Plunger 190 Mold clamping mechanism

Claims (8)

樹脂成形の対象となる基板に配置されたチップの体積を測定するチップ体積測定部と、
前記基板の樹脂成形に用いられる樹脂材料の体積を測定する樹脂体積測定部と、
前記基板を載置する下型と、
サイドブロック、及び前記サイドブロックに対して上下に昇降可能となるように設けられたキャビティブロックによって、キャビティを形成する上型と、
前記下型と前記上型とをクランプするクランプ機構と、
プランジャによって前記キャビティへと樹脂材料を供給するトランスファ機構と、
前記チップ体積測定部及び前記樹脂体積測定部の測定結果に基づいて、前記キャビティの樹脂充填率と前記プランジャの位置との関係を算出する算出部と、
前記基板及び前記樹脂材料を用いて樹脂成形を行う場合に、前記算出部により算出された前記樹脂充填率と前記プランジャの位置との関係を用いて、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御を行う制御部と、
を具備する樹脂成形装置。
a chip volume measuring unit that measures the volume of a chip placed on a substrate to be resin molded;
a resin volume measurement unit that measures the volume of a resin material used for resin molding of the substrate;
a lower mold on which the substrate is placed;
an upper mold forming a cavity by a side block and a cavity block provided so as to be movable up and down with respect to the side block;
a clamp mechanism that clamps the lower mold and the upper mold;
a transfer mechanism that supplies resin material to the cavity by a plunger;
a calculation unit that calculates the relationship between the resin filling rate of the cavity and the position of the plunger based on the measurement results of the chip volume measurement unit and the resin volume measurement unit;
When resin molding is performed using the substrate and the resin material, the plunger reaches a predetermined resin filling rate using the relationship between the resin filling rate calculated by the calculation unit and the position of the plunger. a control unit that performs filling rate corresponding control that controls operations related to resin molding upon reaching the corresponding position;
A resin molding device comprising:
前記制御部は、前記充填率対応制御において、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として前記クランプ機構によるクランプ荷重を調整するクランプ力調整制御を行う、
請求項1に記載の樹脂成形装置。
In the filling rate corresponding control, the control unit performs clamping force adjustment control that adjusts the clamping load by the clamping mechanism when the plunger reaches a position corresponding to a predetermined resin filling rate.
The resin molding apparatus according to claim 1.
前記制御部は、前記クランプ力調整制御において、前記クランプ機構によるクランプ荷重を段階的に上昇させる、
請求項2に記載の樹脂成形装置。
In the clamping force adjustment control, the control unit increases the clamping load by the clamping mechanism in stages;
The resin molding apparatus according to claim 2.
前記制御部は、前記充填率対応制御において、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として前記プランジャの移動速度を調整するプランジャ速度調整制御を行う、
請求項1から請求項3までのいずれか一項に記載の樹脂成形装置。
In the filling rate corresponding control, the control unit performs plunger speed adjustment control that adjusts the moving speed of the plunger when the plunger reaches a position corresponding to a predetermined resin filling rate.
The resin molding apparatus according to any one of claims 1 to 3.
前記制御部は、前記充填率対応制御において、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として前記キャビティに接続されたエアベント溝の開閉の切り替えを行うエアベント切替制御を行う、
請求項1から請求項4までのいずれか一項に記載の樹脂成形装置。
In the filling rate corresponding control, the control unit performs air vent switching control for switching opening and closing of an air vent groove connected to the cavity when the plunger reaches a position corresponding to a predetermined resin filling rate. ,
A resin molding apparatus according to any one of claims 1 to 4.
前記上型を上下に移動自在となるように支持する上型支持部と、
前記上型支持部に設けられ、前記キャビティブロックの位置を調整可能な位置調整機構と、
前記位置調整機構の可動域を確保する方向に向かって前記上型に力を付与する付与部と、
をさらに具備し、
前記制御部は、
前記樹脂材料によって前記キャビティが充填された後に、前記付与部によって確保された前記可動域を利用して前記キャビティが深くなるように、前記サイドブロックに対する前記キャビティブロックの相対的な位置を調整するキャビティ制御と、
前記キャビティ制御の後に、前記クランプ機構によるクランプ荷重を調整して前記キャビティ内の樹脂圧力を上昇させる圧力調整制御と、
を行い、
前記圧力調整制御において、前記充填率対応制御を行う、
請求項1から請求項5までのいずれか一項に記載の樹脂成形装置。
an upper mold support part that supports the upper mold so as to be movable up and down;
a position adjustment mechanism provided in the upper mold support part and capable of adjusting the position of the cavity block;
an applying unit that applies force to the upper die in a direction that ensures a range of motion of the position adjustment mechanism;
further comprising;
The control unit includes:
After the cavity is filled with the resin material, the relative position of the cavity block with respect to the side block is adjusted so that the cavity becomes deeper by utilizing the movable range secured by the applying section. control and
After the cavity control, pressure adjustment control adjusts the clamp load by the clamp mechanism to increase the resin pressure in the cavity;
and
performing the filling rate corresponding control in the pressure adjustment control;
A resin molding apparatus according to any one of claims 1 to 5.
請求項1から請求項6までのいずれか一項に記載の樹脂成形装置を用いて樹脂成形品を製造する、 Producing a resin molded product using the resin molding apparatus according to any one of claims 1 to 6,
樹脂成形品の製造方法。 Method for manufacturing resin molded products.
基板に配置されたチップの体積を測定するチップ体積測定工程と、 a chip volume measurement step of measuring the volume of the chip placed on the substrate;
樹脂材料の体積を測定する樹脂体積測定工程と、 a resin volume measuring step of measuring the volume of the resin material;
前記チップ体積測定工程及び前記樹脂体積測定工程において測定された前記チップの体積及び前記樹脂材料の体積に基づいて、キャビティの樹脂充填率とプランジャの位置との関係を算出するプランジャ位置算出工程と、 a plunger position calculation step of calculating the relationship between the resin filling rate of the cavity and the position of the plunger based on the volume of the chip and the volume of the resin material measured in the chip volume measurement step and the resin volume measurement step;
前記基板及び前記樹脂材料を用いて樹脂成形を行う場合に、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程と、 When performing resin molding using the substrate and the resin material, a filling rate corresponding control step of controlling operations related to resin molding when the plunger reaches a position corresponding to a predetermined resin filling rate;
を具備する樹脂成形品の製造方法。 A method for manufacturing a resin molded product comprising:
JP2021050848A 2021-03-24 2021-03-24 Resin molding equipment and method for manufacturing resin molded products Active JP7430152B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021050848A JP7430152B2 (en) 2021-03-24 2021-03-24 Resin molding equipment and method for manufacturing resin molded products
CN202180083245.3A CN116723923A (en) 2021-03-24 2021-11-15 Resin molding device and method for manufacturing resin molded product
KR1020237019244A KR20230104266A (en) 2021-03-24 2021-11-15 Resin Molding Apparatus and Method for Manufacturing Resin Molded Articles
US18/270,479 US20240051199A1 (en) 2021-03-24 2021-11-15 Resin molding device and method for producing resin molded article
PCT/JP2021/041834 WO2022201625A1 (en) 2021-03-24 2021-11-15 Resin molding device and method for producing resin molded article
TW110142331A TW202237374A (en) 2021-03-24 2021-11-15 Resin molding device and method for producing resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021050848A JP7430152B2 (en) 2021-03-24 2021-03-24 Resin molding equipment and method for manufacturing resin molded products

Publications (2)

Publication Number Publication Date
JP2022148957A JP2022148957A (en) 2022-10-06
JP7430152B2 true JP7430152B2 (en) 2024-02-09

Family

ID=83395319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021050848A Active JP7430152B2 (en) 2021-03-24 2021-03-24 Resin molding equipment and method for manufacturing resin molded products

Country Status (6)

Country Link
US (1) US20240051199A1 (en)
JP (1) JP7430152B2 (en)
KR (1) KR20230104266A (en)
CN (1) CN116723923A (en)
TW (1) TW202237374A (en)
WO (1) WO2022201625A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736757B2 (en) * 1995-03-16 1998-04-02 日精樹脂工業株式会社 Mold clamping force control method for injection molding machine
JP5944866B2 (en) * 2013-06-20 2016-07-05 Towa株式会社 Compressed resin sealing method and compressed resin sealing device for electronic parts
JP7084349B2 (en) 2019-04-25 2022-06-14 Towa株式会社 Resin molding equipment and manufacturing method of resin molded products

Also Published As

Publication number Publication date
CN116723923A (en) 2023-09-08
JP2022148957A (en) 2022-10-06
KR20230104266A (en) 2023-07-07
US20240051199A1 (en) 2024-02-15
TW202237374A (en) 2022-10-01
WO2022201625A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP5824765B2 (en) Resin molding method, resin molding apparatus, and supply handler
JP5352896B2 (en) Transfer molding method and transfer molding apparatus
KR101440218B1 (en) Resin-sealing molding apparatus
KR20160006784A (en) Resin moulding device, and resin moulding method
JP5906527B2 (en) Mold and resin molding apparatus provided with the same
CN109719898B (en) Resin molding apparatus and method for manufacturing resin molded product
JP7084349B2 (en) Resin molding equipment and manufacturing method of resin molded products
JP5215886B2 (en) Resin sealing molding equipment for electronic parts
JP7430152B2 (en) Resin molding equipment and method for manufacturing resin molded products
JP7447047B2 (en) Resin molding equipment and method for manufacturing resin molded products
US10960583B2 (en) Molding system for applying a uniform clamping pressure onto a substrate
CN112976475B (en) Resin sealing device
WO2024034203A1 (en) Resin-material feeding mechanism, resin molding device, and method for producing molded resin article
KR20230054717A (en) Resin molding device and manufacturing method of resin molding
TW202406718A (en) Resin material supply mechanism, resin molding device, and method for manufacturing resin molded products
JP7447050B2 (en) Molding mold, resin molding equipment, and method for manufacturing resin molded products
TW202404780A (en) Mold die, resin molding apparatus, and method for producing resin molded product
JP2001287236A (en) Apparatus for molding resin and mold
KR20210124429A (en) Resin molding apparatus and manufacturing method of resin molded article
JP2004014936A (en) Sealing molding apparatus
JP2001047459A (en) Resin sealing device
JP2010105270A (en) Apparatus and method for manufacturing resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240130

R150 Certificate of patent or registration of utility model

Ref document number: 7430152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150