JP7425958B2 - Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors - Google Patents

Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors Download PDF

Info

Publication number
JP7425958B2
JP7425958B2 JP2019121655A JP2019121655A JP7425958B2 JP 7425958 B2 JP7425958 B2 JP 7425958B2 JP 2019121655 A JP2019121655 A JP 2019121655A JP 2019121655 A JP2019121655 A JP 2019121655A JP 7425958 B2 JP7425958 B2 JP 7425958B2
Authority
JP
Japan
Prior art keywords
thick film
powder
resistor
mass
film resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019121655A
Other languages
Japanese (ja)
Other versions
JP2021009878A (en
Inventor
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019121655A priority Critical patent/JP7425958B2/en
Publication of JP2021009878A publication Critical patent/JP2021009878A/en
Application granted granted Critical
Publication of JP7425958B2 publication Critical patent/JP7425958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、チップ抵抗器、ハイブリットIC、または、抵抗ネットワーク等の電子部品の製造において用いられる厚膜抵抗体用組成物および厚膜抵抗体用ペーストに関する。さらには、厚膜抵抗体用ペーストを用いて形成した厚膜抵抗体に関する。 The present invention relates to a composition for a thick film resistor and a paste for a thick film resistor used in the manufacture of electronic components such as chip resistors, hybrid ICs, or resistor networks. Furthermore, the present invention relates to a thick film resistor formed using a thick film resistor paste.

一般にチップ抵抗器、ハイブリットIC、または、抵抗ネットワーク等の厚膜抵抗体は、セラミック基板に抵抗ペーストを印刷、焼成して形成されている。
そのような厚膜抵抗体の内、面積抵抗値が30Ω以下の厚膜抵抗体は、その厚膜抵抗体用組成物に、導電粉末のAg粉末やPd粉末と、ガラス粉末を主な成分としたものが広く用いられている。
Generally, thick film resistors such as chip resistors, hybrid ICs, or resistor networks are formed by printing and firing a resistor paste on a ceramic substrate.
Among such thick film resistors, thick film resistors with a sheet resistance value of 30Ω or less have a composition for the thick film resistor containing conductive powder such as Ag powder or Pd powder and glass powder as main components. are widely used.

これらAg粉末やPd粉末と、ガラス粉末が厚膜抵抗体に用いられる理由は、空気中での焼成ができ、抵抗温度係数(TCR)を0に近づける事が可能である事に加え、30Ω以下の抵抗値領域の抵抗体が形成可能である事などが挙げられる。 The reason why these Ag powder, Pd powder, and glass powder are used for thick film resistors is that they can be fired in air and have a temperature coefficient of resistance (TCR) close to 0, as well as being 30Ω or less. For example, it is possible to form a resistor with a resistance value in the range of .

ここで、抵抗温度係数(TCR)は、以下のように求められる。
抵抗温度係数は、厚膜抵抗体を-55℃、25℃、125℃にそれぞれ保持してから抵抗値を測定し、各厚膜抵抗体の各温度での抵抗値をR-55、R25、R125として、下記(1)、(2)式で各種抵抗温度係数を求める。
Here, the temperature coefficient of resistance (TCR) is determined as follows.
The resistance temperature coefficient is determined by measuring the resistance value of the thick film resistor after holding it at -55°C, 25°C, and 125°C, respectively, and calculating the resistance value of each thick film resistor at each temperature as R -55 and R 25 , R 125 , various resistance temperature coefficients are determined using the following equations (1) and (2).

Figure 0007425958000001
Figure 0007425958000001

Ag粉末やPd粉末と、ガラス粉末からなる抵抗体は、AgとPdの配合比によって抵抗温度係数(TCR)が変わり、Agがおよそ44質量%、Pdがおよそ56質量%で抵抗温度係数が最小となり0に最も近くなり、この質量比からずれるにしたがって抵抗温度係数はプラスに大きくなる。特許文献1では、この事を利用し抵抗温度係数が0に近くなる抵抗体組成物を提案している。 The temperature coefficient of resistance (TCR) of a resistor made of Ag powder, Pd powder, and glass powder changes depending on the blending ratio of Ag and Pd, and the temperature coefficient of resistance is the lowest when Ag is approximately 44% by mass and Pd is approximately 56% by mass. is closest to 0, and as the mass ratio deviates from this mass ratio, the temperature coefficient of resistance increases in a positive direction. Patent Document 1 utilizes this fact to propose a resistor composition whose temperature coefficient of resistance is close to zero.

しかしながら、Ag粉末やPd粉末と、ガラス粉末から形成される抵抗体は、電極間の距離によって抵抗温度係数(TCR)が異なる欠点がある。
このような厚膜抵抗体を備えた抵抗器は、Agを主な成分とする対向する電極を跨ぐようにAg粉末やPd粉末とガラス粉末からなる厚膜抵抗体用組成物をペースト化した厚膜抵抗体用ペーストを印刷して焼成すると、厚膜抵抗体用ペーストの焼成過程において、電極のAgが厚膜抵抗体に拡散して抵抗体の設定したAgとPdの割合が変化してしまう事になる。
このため小さいサイズの抵抗器では電極間が狭くなり電極材料から抵抗体に拡散するAgの量が多くなり、サイズの大きな抵抗器に比べて抵抗温度係数(TCR)が高くなる問題がある。すなわち、ほぼ同じ抵抗値の抵抗器でもサイズの違いで抵抗温度係数(TCR)が変わることは、回路設計の自由度を下げるものとなっている。
However, a resistor formed from Ag powder, Pd powder, and glass powder has a drawback that the temperature coefficient of resistance (TCR) varies depending on the distance between the electrodes.
A resistor with such a thick film resistor is made by pasting a thick film resistor composition consisting of Ag powder, Pd powder, and glass powder so as to straddle opposing electrodes whose main component is Ag. When a paste for a film resistor is printed and fired, the Ag in the electrode diffuses into the thick film resistor during the firing process of the paste for a thick film resistor, changing the ratio of Ag and Pd set in the resistor. It's going to happen.
For this reason, in a small-sized resistor, the distance between the electrodes becomes narrow, and the amount of Ag that diffuses from the electrode material into the resistor increases, resulting in a problem that the temperature coefficient of resistance (TCR) becomes higher than that in a large-sized resistor. In other words, the temperature coefficient of resistance (TCR) changes depending on the size of resistors having approximately the same resistance value, which reduces the degree of freedom in circuit design.

特許第2986539号公報Patent No. 2986539

本発明の目的は、電極間距離が変わっても抵抗温度係数(TCR)の変動が少ないAg粉末やPd粉末とガラス粉末からなる厚膜抵抗体用組成物および厚膜抵抗体用ペースト、並びに厚膜抵抗体を提供することである。 The object of the present invention is to provide a composition for a thick film resistor, a paste for a thick film resistor, and a paste for a thick film resistor, which are made of Ag powder, Pd powder, and glass powder, and whose temperature coefficient of resistance (TCR) fluctuates little even when the distance between electrodes changes. An object of the present invention is to provide a membrane resistor.

本発明の第1の発明は、貴金属粉末と、鉛を実質的に含まないガラス粉末と、粒径50nm以下の非晶質シリカを含み、前記貴金属粉末が、Ag粉末を40~80質量%含み、残部Pd粉末からなる混合粉末、またはAgを40~80質量%含み、残部Pdと不可避的不純物とからなる合金粉末であり、前記ガラス粉末が、軟化点650℃以上、900℃以下で、前記貴金属粉末100質量部に対し、前記ガラス粉末を1~100質量部、前記非晶質シリカを0.5~20質量部が含まれることを特徴とする厚膜抵抗体用組成物である。 A first aspect of the present invention includes a noble metal powder, a glass powder that does not substantially contain lead, and amorphous silica with a particle size of 50 nm or less, and the noble metal powder includes 40 to 80% by mass of Ag powder. , a mixed powder consisting of Pd powder with the remainder being Pd powder, or an alloy powder containing 40 to 80% by mass of Ag and consisting of Pd and unavoidable impurities; The composition for a thick film resistor is characterized in that the glass powder is contained in an amount of 1 to 100 parts by weight and the amorphous silica is contained in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of the noble metal powder.

本発明の第2の発明は、第1の発明におけるガラス粉末の粒度分布D50が、0.5μm~5μmであることを特徴とする厚膜抵抗体用組成物である。 A second invention of the present invention is a composition for a thick film resistor, characterized in that the glass powder in the first invention has a particle size distribution D 50 of 0.5 μm to 5 μm.

本発明の第3の発明は、第1又は第2の発明の厚膜抵抗体用組成物と、溶剤に樹脂を溶解した有機ビヒクルを含む厚膜抵抗体用ペースト。 A third invention of the present invention is a paste for a thick film resistor comprising the composition for a thick film resistor according to the first or second invention and an organic vehicle in which a resin is dissolved in a solvent .

本発明の第4の発明は、貴金属と、鉛を実質的に含まないガラスと、粒径50nm以下の非晶質シリカを含む厚膜抵抗体であって、前記厚膜抵抗体が焼成体で、前記貴金属が、Agを40~80質量%含み、残部Pdと不可避的不純物とからなり、前記ガラスが、軟化点650℃以上、850℃以下で、前記貴金属100質量部に対し、前記ガラスを1~100質量部、前記非晶質シリカを0.5~20質量部が含まれることを特徴とする厚膜抵抗体である。 A fourth aspect of the present invention is a thick film resistor comprising a noble metal, glass substantially free of lead, and amorphous silica with a particle size of 50 nm or less, wherein the thick film resistor is a fired body. , the noble metal contains 40 to 80% by mass of Ag, and the balance consists of Pd and unavoidable impurities, and the glass has a softening point of 650° C. or more and 850° C. or less, and the glass is added to 100 parts by mass of the noble metal. 1 to 100 parts by mass of the amorphous silica, and 0.5 to 20 parts by mass of the amorphous silica.

本発明は、Ag、Pdと鉛を含有しないガラス粉末を主な成分とした厚膜抵抗体用組成物において、粒径50nm以下の非晶質シリカを含む厚膜抵抗体用組成物が、課題を解決する手段となるもので、本発明によれば、Agを主成分とする電極の電極間距離が変わっても抵抗温度係数(TCR)の変動が小さい厚膜抵抗体用組成物および厚膜抵抗体用ペーストを提供する事が可能となり、それらを用いることで、抵抗温度係数の変動が小さい厚膜抵抗体の提供が可能である。 The present invention solves the problem of a composition for a thick film resistor containing amorphous silica with a particle size of 50 nm or less in a composition for a thick film resistor mainly composed of glass powder not containing Ag, Pd, and lead. According to the present invention, a composition for a thick film resistor and a thick film whose temperature coefficient of resistance (TCR) changes little even if the distance between the electrodes of electrodes containing Ag as a main component are changed. It is now possible to provide pastes for resistors, and by using them, it is possible to provide thick film resistors with small fluctuations in temperature coefficient of resistance.

本発明は、厚膜抵抗体用組成物の焼成過程において、粒径50nm以下の非晶質シリカが電極のAgが抵抗体に拡散するのを阻害することを利用している。本発明によって、従来では困難であった、同じ厚膜抵抗体用組成物を用いて電極間距離が異なる厚膜抵抗体を得ても抵抗温度係数の違いが少ない厚膜抵抗体が提供できる。
より詳細に説明すると、本発明に係る厚膜抵抗体用組成物は、800℃から900℃のピーク温度で焼成して厚膜抵抗体を形成する。この厚膜抵抗体は、アルミナなどのセラミックス基板上にAgを主な成分とする厚膜電極を対向するように設けた基板に、厚膜抵抗体用組成物からなる厚膜抵抗体用ペーストをこれらの電極を跨ぐように印刷し、焼成して形成する。本発明に係る厚膜抵抗体用組成物は、含有する非晶質シリカが電極のAgが抵抗体に拡散するのを阻害することを利用している。
The present invention utilizes the fact that amorphous silica with a particle size of 50 nm or less inhibits the diffusion of Ag in the electrode into the resistor during the firing process of a composition for a thick film resistor. According to the present invention, it is possible to provide a thick film resistor with a small difference in temperature coefficient of resistance even when the same composition for a thick film resistor is used to obtain thick film resistors having different distances between electrodes, which has been difficult in the past.
To explain in more detail, the composition for a thick film resistor according to the present invention is fired at a peak temperature of 800° C. to 900° C. to form a thick film resistor. This thick film resistor is made by applying a paste for thick film resistors made of a composition for thick film resistors to a ceramic substrate such as alumina, on which thick film electrodes containing Ag as a main component are placed facing each other. It is formed by printing across these electrodes and firing. The composition for a thick film resistor according to the present invention utilizes the fact that the amorphous silica contained inhibits the diffusion of Ag in the electrode into the resistor.

本発明の厚膜抵抗体用組成物は、貴金属粉末として、AgとPdを含有している。
両者の含有率(単位が質量%での含有率)の比率はAg:Pd=40:60~80:20である。この比率以外では抵抗体の抵抗温度係数(TCR)が1000を超える場合もありプラス側に大きくなりすぎる。
そこで抵抗温度係数(TCR)を0に近くするには、その比/Ag:Pd=40:60から45:55とすることが望ましい。即ち、40質量%のAg粉末と、残部Pd粉末との混合粉末、またはAgを40質量%含み残部Pdと不可避的不純物から成る合金粉末が望ましい。
The composition for a thick film resistor of the present invention contains Ag and Pd as noble metal powder.
The ratio of both contents (content in mass %) is Ag:Pd=40:60 to 80:20. If the ratio is other than this, the temperature coefficient of resistance (TCR) of the resistor may exceed 1000 and become too large on the plus side.
Therefore, in order to make the temperature coefficient of resistance (TCR) close to 0, it is desirable that the ratio/Ag:Pd=40:60 to 45:55. That is, a mixed powder of 40% by mass of Ag powder and the balance of Pd powder, or an alloy powder containing 40% by mass of Ag and the balance of Pd and unavoidable impurities is desirable.

本発明によれば、Ag:Pd=44:56で、抵抗温度係数(TCR)を100ppm/℃以内とすることができる。また、Ag:Pd=70:30の割合で混合すると、得られる抵抗温度係数(TCR)は、400ppm/℃程度で、500ppm/℃以内とすることができる。
なお、本発明におけるAgとPdの存在形態は、Ag粉末とPd粉末の混合粉末でも良いし、合金粉末でも良く、その粒径は0.1μm~5.0μmが望ましい。
According to the present invention, when Ag:Pd=44:56, the temperature coefficient of resistance (TCR) can be made within 100 ppm/°C. Further, when mixed at a ratio of Ag:Pd=70:30, the resulting temperature coefficient of resistance (TCR) is about 400 ppm/°C, and can be within 500 ppm/°C.
In the present invention, Ag and Pd may exist in a mixed powder of Ag powder and Pd powder, or may be an alloy powder, and the particle size thereof is preferably 0.1 μm to 5.0 μm.

本発明に含有されるガラス粉末は鉛を含有せず、軟化点が650℃以上、900℃以下、粒度分布はD50で0.5μm~5.0μmが望ましい。より望ましくは、軟化点が650℃以上、850℃以下である。
このガラス粉末の軟化点が650℃より低いと、本発明の厚膜抵抗体用組成物の焼成過程においてPdの酸化により生じるPdOが残留し、貴金属のAgとPd割合が変化して抵抗値の抵抗温度係数が高くなってしまう。ガラス粉末の軟化点が650℃以上であれば、焼成過程において生成したPdOが還元しAgと共にAg-Pd合金となり抵抗体の抵抗温度係数が高くなりすぎることはない。一方、軟化点は、900℃以下が望ましく、900℃を超えると、厚膜抵抗体用組成物をピーク温度800℃から900℃で焼成することが困難となる。
The glass powder contained in the present invention preferably does not contain lead, has a softening point of 650° C. or higher and 900° C. or lower, and has a particle size distribution of D50 of 0.5 μm to 5.0 μm. More preferably, the softening point is 650°C or higher and 850°C or lower.
If the softening point of this glass powder is lower than 650°C, PdO produced by oxidation of Pd will remain during the firing process of the thick film resistor composition of the present invention, and the ratio of Ag and Pd in the noble metals will change, resulting in a decrease in resistance value. The temperature coefficient of resistance becomes high. If the softening point of the glass powder is 650° C. or higher, PdO generated during the firing process is reduced and forms an Ag--Pd alloy with Ag, so that the temperature coefficient of resistance of the resistor does not become too high. On the other hand, the softening point is desirably 900°C or lower; if it exceeds 900°C, it becomes difficult to sinter the thick film resistor composition at a peak temperature of 800°C to 900°C.

また、ガラス粉末の粒径が0.5μmより小さいとガラス粉末が過度に低温で軟化し、焼成過程で生成したPdOが還元し難くなる。逆にガラス粉末の粒径が5.0μmより大きいと厚膜抵抗体の抵抗値のバラツキが大きくなってしまう。 Furthermore, if the particle size of the glass powder is smaller than 0.5 μm, the glass powder will soften excessively at low temperatures, making it difficult to reduce PdO generated during the firing process. On the other hand, if the particle size of the glass powder is larger than 5.0 μm, the variation in the resistance value of the thick film resistor becomes large.

ところで、ガラス粉末の組成は限定されないが、アルカリ土類金属の酸化物を含むアルミノホウケイ酸系の組成が適している。また、ガラス粉末の組成に、Znやアルカリ金属元素等を適宜加えることができる。
なお、ここで、ガラス粉末の軟化点は、ガラス粉末を示差熱分析法(TG-DTA)にて得られた示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度である。
ガラス粉末の粒度D50は、レーザ回折散乱型の粒度分布計の体積分布径のメジアン値である。
By the way, the composition of the glass powder is not limited, but an aluminoborosilicate composition containing an oxide of an alkaline earth metal is suitable. Moreover, Zn, an alkali metal element, etc. can be appropriately added to the composition of the glass powder.
Note that the softening point of the glass powder is defined as a temperature higher than the temperature at which a decrease in the differential thermal curve on the lowest temperature side of the differential thermal curve obtained by the differential thermal analysis (TG-DTA) of the glass powder appears. The next differential thermal curve is the decreasing peak temperature.
The particle size D50 of the glass powder is the median value of the volume distribution diameter measured by a laser diffraction scattering type particle size distribution analyzer.

本発明の厚膜抵抗体用組成物には、粒径50nm以下の非晶質シリカが必須である。
この粒径50nm以下の非晶質シリカは貴金属粉末、およびガラス粉末の周囲を覆い、焼成過程において電極からのAgの拡散を抑制し、ガラス粉末の軟化を遅らせるが、ピーク温度に近づくと軟化したガラス中に溶け混んでしまう。これによって電極間の距離が小さくても電極からのAgの拡散が少なく、厚膜抵抗体のAgとPdの比率が設計した値に近くなり、厚膜抵抗体の抵抗温度係数を0に近づける事ができる。
非晶質シリカの粒径が50nmより大きいと貴金属粉末、ガラス粉末の周囲を覆う事ができなくなり、電極からのAgの拡散を抑制できない。
Amorphous silica having a particle size of 50 nm or less is essential to the composition for a thick film resistor of the present invention.
This amorphous silica with a particle size of 50 nm or less surrounds the noble metal powder and glass powder, suppresses the diffusion of Ag from the electrode during the firing process, and delays the softening of the glass powder, but it softens as it approaches the peak temperature. It will melt into the glass. As a result, even if the distance between the electrodes is small, the diffusion of Ag from the electrodes is small, the ratio of Ag and Pd in the thick film resistor becomes close to the designed value, and the temperature coefficient of resistance of the thick film resistor approaches 0. I can do it.
If the particle size of the amorphous silica is larger than 50 nm, it will not be possible to cover the surroundings of the noble metal powder and glass powder, and the diffusion of Ag from the electrode will not be suppressed.

本発明では、貴金属粉末100質量部に対し、ガラス粉末が1~100質量部、非晶質シリカが0.5~20質量部であることが必要である。ガラス粉末が1質量部より少ないと、厚膜抵抗体の密着強度が著しく弱くなる。また、ガラス粉末が100質量部より多いと、抵抗体の抵抗値のバラツキが大きくなりすぎる。非晶質シリカが0.5質量部より少ないと、電極からのAgの拡散を抑制する事が出来なくなり、電極間が小さい厚膜抵抗体の抵抗温度係数(TCR)が高くなってしまう。また、非晶質シリカが20質量部より多いと、シリカがガラスに溶け込みきれず、厚膜抵抗体の抵抗値のバラツキが大きくなりすぎる。 In the present invention, it is necessary that the glass powder be 1 to 100 parts by mass and the amorphous silica be 0.5 to 20 parts by mass relative to 100 parts by mass of the noble metal powder. If the amount of glass powder is less than 1 part by mass, the adhesion strength of the thick film resistor will be significantly weakened. Moreover, if the amount of glass powder is more than 100 parts by mass, the variation in the resistance value of the resistor becomes too large. When the amount of amorphous silica is less than 0.5 parts by mass, it becomes impossible to suppress the diffusion of Ag from the electrodes, and the temperature coefficient of resistance (TCR) of the thick film resistor with a small distance between the electrodes becomes high. Moreover, if the amount of amorphous silica is more than 20 parts by mass, the silica will not fully dissolve into the glass, and the variation in the resistance value of the thick film resistor will become too large.

本発明の厚膜抵抗体用組成物には、厚膜抵抗体の抵抗値や抵抗温度係数や負荷特性、トリミング性の改善、調整を目的として一般に使用される添加剤を加えても良い。代表的な添加剤としてはNb、Ta、TiO、CuO、MnO、ZrO、Al、ZrSiO等があげられる。添加する量は目的によって調整されるが、貴金属粉末とガラス粉末の合計100質量部に対して通常20質量部以下である。 Additives commonly used for the purpose of improving or adjusting the resistance value, temperature coefficient of resistance, load characteristics, and trimming properties of thick film resistors may be added to the composition for thick film resistors of the present invention. Typical additives include Nb 2 O 5 , Ta 2 O 5 , TiO 2 , CuO, MnO 2 , ZrO 2 , Al 2 O 3 , ZrSiO 4 and the like. The amount added is adjusted depending on the purpose, but is usually 20 parts by mass or less per 100 parts by mass of the noble metal powder and glass powder.

本発明の厚膜抵抗体用組成物は、必要に応じて添加剤と共に印刷用の厚膜抵抗体用ペーストとするために有機ビヒクル中に混合、分散される。有機ビヒクルは特に制限はなく、ターピネオール、ブチルカルビトール、ブチルカルビトールアセテート等の溶剤にエチルセルロース、アクリル酸エステル、メタアクリル酸エステル、ロジン、マレイン酸エステル等の樹脂を溶解した溶液が用いられる。また、必要に応じて、分散剤や可塑剤など加える事ができる。分散方法も特に制限されないが、微細な粒子を分散させる3本ロールミルやビーズミル、遊星ミル等を用いるのが一般的である。有機ビヒクルの配合比率は印刷や塗布方法によって適宣調整されるが、貴金属粉末、ガラス粉末、非晶質シリカの合計100質量部に対して20~200質量部である。 The composition for a thick film resistor of the present invention is mixed and dispersed in an organic vehicle together with additives as necessary to form a paste for a thick film resistor for printing. The organic vehicle is not particularly limited, and a solution of a resin such as ethyl cellulose, acrylic ester, methacrylic ester, rosin, or maleic ester dissolved in a solvent such as terpineol, butyl carbitol, or butyl carbitol acetate is used. Further, a dispersant, a plasticizer, etc. can be added as necessary. Although the dispersion method is not particularly limited, it is common to use a three-roll mill, a bead mill, a planetary mill, etc. for dispersing fine particles. The blending ratio of the organic vehicle is appropriately adjusted depending on the printing or coating method, but it is 20 to 200 parts by mass based on 100 parts by mass of the noble metal powder, glass powder, and amorphous silica.

厚膜抵抗体は、アルミナなどのセラミックス基板上にAgを主な成分とする厚膜電極を対向するように設けた基板に、厚膜抵抗体用組成物からなる厚膜抵抗体用ペーストをこれらの電極を跨ぐように印刷し、焼成して製造することができる。厚膜抵抗体の表面にガラスペーストなどを塗布し、厚膜抵抗体を焼成した温度よりも低い600℃程度の温度で焼成し、ガラスのコート膜等を形成することができる。 Thick film resistors are made by applying a paste for thick film resistors made of a composition for thick film resistors to a substrate made of ceramics such as alumina, with thick film electrodes containing Ag as a main component facing each other. It can be manufactured by printing across the electrodes and firing. A glass paste or the like can be applied to the surface of the thick film resistor and fired at a temperature of about 600° C., which is lower than the temperature at which the thick film resistor was fired, to form a glass coating film or the like.

本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本発明の実施例と比較例では、粒径1.0μmのAg粉末、粒径0.5μmのPd粉末、粒度D501.3μmで軟化点650℃のガラス粉末A、粒度D501.4μmで軟化点560℃のガラス粉末Bと、粒径45nmの非晶質シリカを用い、表2に示すペースト配合に従い、有機ビヒクル中に3本ロールミルで分散させて抵抗ペーストを作製した。
ガラス粉末Aとガラス粉末Bの詳細を表1に示す。
また、有機ビヒクルは、エチルセルロースとターピネオールを、質量比15:85で混合して作製した。
Although the present invention will be specifically explained, the present invention is not limited to these Examples.
In the examples and comparative examples of the present invention, Ag powder with a particle size of 1.0 μm, Pd powder with a particle size of 0.5 μm, glass powder A with a particle size D 50 of 1.3 μm and a softening point of 650° C., and a particle size D 50 of 1.4 μm A resistance paste was prepared by using glass powder B having a softening point of 560° C. and amorphous silica having a particle size of 45 nm and dispersing it in an organic vehicle using a three-roll mill according to the paste formulation shown in Table 2.
Details of glass powder A and glass powder B are shown in Table 1.
Further, an organic vehicle was prepared by mixing ethyl cellulose and terpineol at a mass ratio of 15:85.

Figure 0007425958000002
Figure 0007425958000002

次に、予めアルミナ基板に焼成して形成された1質量%Pd、99質量%Agの電極上に、作製した抵抗ペーストを印刷し、150℃×5分で乾燥した後、ピーク温度850℃×9分、トータル30分で焼成して厚膜抵抗体を形成した。
その厚膜抵抗体のサイズは、抵抗体幅を0.5mm、抵抗体長さ(電極間)を50mmとなるようにしたものと抵抗体幅を1mm、抵抗体長さ(電極間)を1mmとなるようにした2通りとした。
Next, the prepared resistance paste was printed on an electrode of 1 mass % Pd and 99 mass % Ag that had been previously formed by firing on an alumina substrate, and after drying at 150°C for 5 minutes, the paste was dried at a peak temperature of 850°C. A thick film resistor was formed by firing for 9 minutes, a total of 30 minutes.
The size of the thick film resistor is one in which the resistor width is 0.5 mm and the resistor length (between electrodes) is 50 mm, and the other is 1 mm in resistor width and 1 mm in resistor length (between electrodes). There are two ways to do this.

形成された厚膜抵抗体は、厚膜抵抗体の膜厚、面積抵抗値、および25℃から-55℃までの抵抗温度係数(COLD-TCR)、25℃から125℃までの抵抗温度係数(HOT-TCR)、を測定した。
膜厚は触針の厚さ粗さ計で5個の厚膜抵抗体の膜厚を測定した値を平均した。
抵抗値は、抵抗体幅を1mm、抵抗体長さ(電極間)を1mmの抵抗体サイズの25個の厚膜抵抗体の抵抗値をデジタルマルチメータで測定した値を平均した。
The formed thick film resistor has a film thickness, a sheet resistance value, a temperature coefficient of resistance (COLD-TCR) from 25°C to -55°C, and a temperature coefficient of resistance (COLD-TCR) from 25°C to 125°C. HOT-TCR) was measured.
The film thickness was determined by averaging the film thicknesses of five thick film resistors measured using a stylus thickness roughness meter.
The resistance value was determined by averaging the resistance values of 25 thick film resistors each having a resistor width of 1 mm and a resistor length (between electrodes) of 1 mm using a digital multimeter.

抵抗温度係数(TCR)は、厚膜抵抗体を-55℃、25℃、125℃にそれぞれ15分保持してから抵抗値を測定し、それぞれの抵抗値をR-55、R25、R125として以下の式(3)、(4)によって計算し、5個の厚膜抵抗体の平均をとった。抵抗温度係数は0に近いことが望ましい。 Temperature coefficient of resistance (TCR) is determined by holding the thick film resistor at -55°C, 25°C, and 125 °C for 15 minutes and then measuring the resistance value . It was calculated using the following equations (3) and (4), and the average of five thick film resistors was taken. It is desirable that the temperature coefficient of resistance is close to zero.

Figure 0007425958000003
Figure 0007425958000003

実施例1では、Ag粉末とPd粉末が、質量比で70:30の割合で混合された混合貴金属粉末を用い、表2に記載のペースト配合でペーストを作製して焼成を行ない、厚膜抵抗体を作製した。
作製した厚膜抵抗体の上記測定結果を表3に示す。
In Example 1, a mixed noble metal powder in which Ag powder and Pd powder were mixed at a mass ratio of 70:30 was used to prepare a paste with the paste composition shown in Table 2, and was fired to produce a thick film resistor. The body was created.
Table 3 shows the above measurement results of the produced thick film resistor.

(比較例1)
ペーストにシリカ粉末を含有しなかった以外は、実施例1と同条件で厚膜抵抗体を作製した。表2にペースト配合を、表3に測定結果を示す。
(Comparative example 1)
A thick film resistor was produced under the same conditions as in Example 1, except that the paste did not contain silica powder. Table 2 shows the paste formulation, and Table 3 shows the measurement results.

Figure 0007425958000004
Figure 0007425958000004

Figure 0007425958000005
Figure 0007425958000005

実施例2では、Ag粉末とPd粉末が、質量比で44:56の割合で混合された混合貴金属粉末を用い、表4に記載のペースト配合でペーストを作製して焼成を行ない、厚膜抵抗体を作製した。
作製した厚膜抵抗体の上記測定結果を表5に示す。
In Example 2, a mixed noble metal powder in which Ag powder and Pd powder were mixed at a mass ratio of 44:56 was used to prepare a paste with the paste composition shown in Table 4, and baked it to produce a thick film resistor. The body was created.
Table 5 shows the above measurement results of the produced thick film resistor.

実施例3でも、Ag粉末とPd粉末が、質量比で44:56の割合で混合された混合貴金属粉末を用い、表4のペースト配合でペーストを作製した焼成を行ない、厚膜抵抗体を作製した。
その厚膜抵抗体の測定結果を表5に示す。
In Example 3, a mixed noble metal powder in which Ag powder and Pd powder were mixed at a mass ratio of 44:56 was used, and a paste was prepared according to the paste composition shown in Table 4 and fired to produce a thick film resistor. did.
Table 5 shows the measurement results of the thick film resistor.

(比較例2)
ペーストにシリカ粉末を含有しなかった以外は、実施例2と同条件で厚膜抵抗体を作製した。表4にペースト配合を、表5に測定結果を示す。
(Comparative example 2)
A thick film resistor was produced under the same conditions as in Example 2, except that the paste did not contain silica powder. Table 4 shows the paste formulation, and Table 5 shows the measurement results.

(比較例3)
ガラス粉末Aの代わりにガラス粉末Bを用いた以外は、実施例2と同条件で厚膜抵抗体を作製した。表4にペースト配合を、表5に測定結果を示す。
(Comparative example 3)
A thick film resistor was produced under the same conditions as in Example 2, except that glass powder B was used instead of glass powder A. Table 4 shows the paste formulation, and Table 5 shows the measurement results.

Figure 0007425958000006
Figure 0007425958000006

Figure 0007425958000007
Figure 0007425958000007

表2、3から、実施例1と比較例1は、Ag粉末とPd粉末を質量比で、70:30の割合とした例で、実施例1では抵抗体幅0.5mm×抵抗体幅50mmの抵抗体と、抵抗体幅1mm×抵抗体幅1mmの抵抗体の抵抗温度係数(TCR)の差が小さく、抵抗体幅1mm×抵抗体幅1mmの抵抗体でも抵抗温度係数(TCR)≦±500[ppm/℃]となっている。
これに対してシリカを含有していない比較例1では、抵抗体幅0.5mm×抵抗体幅50mmの抵抗体と抵抗体幅1mm×抵抗体幅1mmの抵抗体の抵抗温度係数(TCR)の差が大きく、抵抗体幅1mm×抵抗体幅1mmの抵抗体では抵抗温度係数(TCR)が500[ppm/℃]を超えている。
From Tables 2 and 3, Example 1 and Comparative Example 1 are examples in which the mass ratio of Ag powder and Pd powder is 70:30, and in Example 1, the resistor width is 0.5 mm x the resistor width is 50 mm. There is a small difference in temperature coefficient of resistance (TCR) between a resistor with a resistor width of 1 mm x a resistor width of 1 mm, and even a resistor with a resistor width of 1 mm x a resistor width of 1 mm has a temperature coefficient of resistance (TCR) ≦±. 500 [ppm/°C].
On the other hand, in Comparative Example 1 which does not contain silica, the temperature coefficient of resistance (TCR) of a resistor with a resistor width of 0.5 mm x a resistor width of 50 mm and a resistor with a resistor width of 1 mm x a resistor width of 1 mm are The difference is large, and the temperature coefficient of resistance (TCR) exceeds 500 [ppm/° C.] for a resistor with a resistor width of 1 mm x a resistor width of 1 mm.

表4、5から、実施例2では抵抗体幅0.5mm×抵抗体幅50mmの抵抗体と抵抗体幅1mm×抵抗体幅1mmの抵抗体の抵抗温度係数(TCR)の差が小さく、抵抗体幅1mm×抵抗体幅1mmの抵抗体でも抵抗温度係数(TCR)≦±100[ppm/℃]となっている。
これに対してシリカを含有していない比較例2では、抵抗体幅0.5mm×抵抗体幅50mmの抵抗体と抵抗体幅1mm×抵抗体幅1mmの抵抗体の抵抗温度係数(TCR)の差が大きく、抵抗体幅1mm×抵抗体幅1mmの抵抗体では抵抗温度係数(TCR)が100[ppm/℃]を超えている。
From Tables 4 and 5, in Example 2, the difference in temperature coefficient of resistance (TCR) between the resistor with resistor width 0.5 mm x resistor width 50 mm and the resistor with resistor width 1 mm x resistor width 1 mm is small, and the resistance Even for a resistor having a body width of 1 mm x a resistor width of 1 mm, the temperature coefficient of resistance (TCR) is ≦±100 [ppm/° C.].
On the other hand, in Comparative Example 2, which does not contain silica, the temperature coefficient of resistance (TCR) of a resistor with a resistor width of 0.5 mm x a resistor width of 50 mm and a resistor with a resistor width of 1 mm x a resistor width of 1 mm are The difference is large, and the temperature coefficient of resistance (TCR) exceeds 100 [ppm/°C] for a resistor with a resistor width of 1 mm x a resistor width of 1 mm.

また、実施例3は、Ag粉末とPd粉末を質量比で、44:56としてガラス粉末、シリカ粉末を実施例2より多くした例である。ガラス粉末、シリカ粉末の増量によって面積抵抗値が増加しておよそ10Ωとなっているが、抵抗体幅0.5mm×抵抗体幅50mmの抵抗体と抵抗体幅1mm×抵抗体幅1mmの抵抗体の抵抗温度係数(TCR)の差が小さく、抵抗体幅1mm×抵抗体幅1mmの抵抗体でも抵抗温度係数(TCR)≦±100[ppm/℃]となっている。 Further, in Example 3, the mass ratio of Ag powder to Pd powder was 44:56, and the amount of glass powder and silica powder was increased compared to Example 2. By increasing the amount of glass powder and silica powder, the area resistance value increases to approximately 10Ω, but the resistor has a resistor width of 0.5 mm x 50 mm and a resistor width of 1 mm x 1 mm. The difference in temperature coefficient of resistance (TCR) is small, and the temperature coefficient of resistance (TCR) is ≦±100 [ppm/° C.] even for a resistor having a resistor width of 1 mm×resistor width of 1 mm.

さらに、実施例2のガラス粉末Aを軟化点560℃のガラス粉末Bに置き換えた比較例3では、シリカ粉末を含有していても、抵抗温度係数(TCR)が100[ppm/℃]を超えてしまう。 Furthermore, in Comparative Example 3 in which glass powder A in Example 2 was replaced with glass powder B having a softening point of 560°C, the temperature coefficient of resistance (TCR) exceeded 100 [ppm/°C] even though it contained silica powder. It ends up.

上記実施例、比較例から判るように、本発明によれば、従来困難であった形状が小さく電極間距離が小さい抵抗体においても、抵抗温度係数(TCR)を0[ppm/℃]に調整する事ができる。 As can be seen from the above examples and comparative examples, according to the present invention, the temperature coefficient of resistance (TCR) can be adjusted to 0 [ppm/°C] even in resistors with small shapes and short distances between electrodes, which has been difficult in the past. I can do that.

Claims (4)

貴金属粉末と、鉛を実質的に含まないガラス粉末と、粒径50nm以下の非晶質シリカを含み、
前記貴金属粉末が、Ag粉末を40~80質量%含み、残部Pd粉末からなる混合粉末、またはAgを40~80質量%含み、残部Pdと不可避的不純物とからなる合金粉末であり、
前記ガラス粉末が、軟化点650℃以上、900℃以下で、
前記貴金属粉末100質量部に対し、前記ガラス粉末を1~100質量部、前記非晶質シリカを0.5~20質量部が含まれることを特徴とする厚膜抵抗体用組成物。
Contains noble metal powder, glass powder that does not substantially contain lead, and amorphous silica with a particle size of 50 nm or less,
The noble metal powder is a mixed powder containing 40 to 80% by mass of Ag powder and the balance consisting of Pd powder, or an alloy powder containing 40 to 80% by mass of Ag and the balance consisting of Pd and inevitable impurities,
The glass powder has a softening point of 650°C or more and 900°C or less,
A composition for a thick film resistor, comprising 1 to 100 parts by mass of the glass powder and 0.5 to 20 parts by mass of the amorphous silica, per 100 parts by mass of the noble metal powder.
前記ガラス粉末の粒度分布D50が、0.5μm~5μmであることを特徴とする請求項1に記載の厚膜抵抗体用組成物。 The composition for a thick film resistor according to claim 1, wherein the glass powder has a particle size distribution D50 of 0.5 μm to 5 μm. 請求項1又は2に記載の厚膜抵抗体用組成物と、溶剤に樹脂を溶解した有機ビヒクルを含む厚膜抵抗体用ペースト。 A paste for thick film resistors comprising the composition for thick film resistors according to claim 1 or 2 and an organic vehicle in which a resin is dissolved in a solvent . 貴金属と、鉛を実質的に含まないガラスと、粒径50nm以下の非晶質シリカを含む厚膜抵抗体であって、
前記厚膜抵抗体が焼成体で、前記貴金属が、Agを40~80質量%含み、残部Pdと不可避的不純物とからなり、
前記ガラスが、軟化点650℃以上、850℃以下で、
前記貴金属100質量部に対し、前記ガラスを1~100質量部、前記非晶質シリカを0.5~20質量部が含まれることを特徴とする厚膜抵抗体。
A thick film resistor comprising a noble metal, glass substantially free of lead, and amorphous silica with a particle size of 50 nm or less,
The thick film resistor is a fired body, the noble metal contains 40 to 80% by mass of Ag, and the balance consists of Pd and inevitable impurities,
The glass has a softening point of 650°C or higher and 850°C or lower,
A thick film resistor characterized in that 1 to 100 parts by mass of the glass and 0.5 to 20 parts by mass of the amorphous silica are contained relative to 100 parts by mass of the noble metal.
JP2019121655A 2019-06-28 2019-06-28 Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors Active JP7425958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121655A JP7425958B2 (en) 2019-06-28 2019-06-28 Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121655A JP7425958B2 (en) 2019-06-28 2019-06-28 Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors

Publications (2)

Publication Number Publication Date
JP2021009878A JP2021009878A (en) 2021-01-28
JP7425958B2 true JP7425958B2 (en) 2024-02-01

Family

ID=74199610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121655A Active JP7425958B2 (en) 2019-06-28 2019-06-28 Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors

Country Status (1)

Country Link
JP (1) JP7425958B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133166A (en) 2017-02-14 2018-08-23 住友金属鉱山株式会社 Material for thick film resistor, paste for thick film resistor, thick film resistor, thick film resistor apparatus, manufacturing method of thick film resistor and manufacturing method of thick film resistor apparatus
WO2018216510A1 (en) 2017-05-26 2018-11-29 住友金属鉱山株式会社 Composition for forming conductive body and method for producing same, conductive body and method for producing same, and chip resistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246801A (en) * 1987-04-02 1988-10-13 アルプス電気株式会社 Resistor paste compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133166A (en) 2017-02-14 2018-08-23 住友金属鉱山株式会社 Material for thick film resistor, paste for thick film resistor, thick film resistor, thick film resistor apparatus, manufacturing method of thick film resistor and manufacturing method of thick film resistor apparatus
WO2018216510A1 (en) 2017-05-26 2018-11-29 住友金属鉱山株式会社 Composition for forming conductive body and method for producing same, conductive body and method for producing same, and chip resistor

Also Published As

Publication number Publication date
JP2021009878A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6708093B2 (en) Resistor paste and resistor produced by firing the paste
WO2018150890A1 (en) Resistor composition, resistor paste containing same, and thick-film resistor using same
JP2018092730A (en) Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith
JP2019040782A (en) Thick film resistor composition and thick film resistor paste containing the same
KR20230004485A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP7425958B2 (en) Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors
JP2004228094A (en) Terminal electrode composition material for multi-layer ceramic capacitor
JP4904888B2 (en) Conductive paste and Mn-based semiconductor thermistor
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP2986539B2 (en) Thick film resistor composition
JP7116362B2 (en) Resistor composition, resistor paste, and resistor
JP2022038818A (en) Composition for thick film resistor, paste for thick film resistor, thick film resistor, and manufacturing method of composition for thick film resistor
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
JP2013214591A (en) Thick film composition for forming thermistor, paste composition, and thermistor using the same
JP2900610B2 (en) Thick film conductor composition
JP2023064822A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2023135971A (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2022150862A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2022089460A (en) Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof
KR20230004487A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2023077053A (en) Composition for thick film resistor, paste for the thick film resistor, and the thick film resistor
JPWO2021221174A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240103

R150 Certificate of patent or registration of utility model

Ref document number: 7425958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150