JP7424674B1 - Expansion/rotary engine - Google Patents

Expansion/rotary engine Download PDF

Info

Publication number
JP7424674B1
JP7424674B1 JP2022167210A JP2022167210A JP7424674B1 JP 7424674 B1 JP7424674 B1 JP 7424674B1 JP 2022167210 A JP2022167210 A JP 2022167210A JP 2022167210 A JP2022167210 A JP 2022167210A JP 7424674 B1 JP7424674 B1 JP 7424674B1
Authority
JP
Japan
Prior art keywords
cylindrical body
explosion
child
body housing
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022167210A
Other languages
Japanese (ja)
Other versions
JP2024047509A (en
Inventor
馨 林谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022167210A priority Critical patent/JP7424674B1/en
Application granted granted Critical
Publication of JP7424674B1 publication Critical patent/JP7424674B1/en
Publication of JP2024047509A publication Critical patent/JP2024047509A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Figure 0007424674000001

【課題】爆発行程で発生した運動エネルギーのさらなる回転エネルギーへの変換効率化を図り爆音を軽減した内燃機関を提供する。
【解決手段】軸芯回転のローターの1回転で、4工程が同時に連続稼働しながら、複数の回転機能の追加により、運動エネルギーの効率的な採取により燃費の向上を図り、爆発の騒音軽減を実現した。
【選択図】図4

Figure 0007424674000001

An object of the present invention is to provide an internal combustion engine that improves the efficiency of converting kinetic energy generated during an explosion stroke into rotational energy and reduces explosive noise.
[Solution] With one revolution of the rotor rotating on its axis, four processes are operated simultaneously and continuously, and by adding multiple rotation functions, efficient collection of kinetic energy improves fuel efficiency and reduces explosion noise. It was realized.
[Selection diagram] Figure 4

Description

母筒状体内のローターの回転軸と子筒状体のローターの回転軸を一直線状にして筒状体を重ねて一体化し、燃焼ガスの排気口または排出口と導入口を連通させて燃焼エネルギーの効率化により燃費の向上を図るロータリーエンジンに関する。
また、燃焼用気体を加圧して筒状体内に送り込む場合は、吸入を注入と呼び変える場合もある。
燃焼用気体の爆発は、燃焼であり膨張でもある
The rotational axis of the rotor in the mother cylinder and the rotational axis of the rotor in the child cylinder are aligned, and the cylinders are overlapped and integrated, and the combustion gas exhaust port or exhaust port and inlet are communicated to generate combustion energy. Related to rotary engines that aim to improve fuel efficiency by increasing efficiency.
Furthermore, when pressurizing combustion gas and sending it into the cylindrical body, suction may be called injection.
The explosion of combustion gas is both combustion and expansion.

ロータリーエンジンの、特公平7-30706や、特願2022-8978は燃焼行程で発生した運動エネルギーの未利用部分はそのまま爆音と共に排出されていた For rotary engines, the unused portion of the kinetic energy generated in the combustion process is directly emitted with an explosive sound in Patent Publication No. 7-30706 and Patent Application No. 2022-8978.

それは、前記内燃機関の燃焼行程で発生した運動エネルギーの未利用部分と爆音が構造的仕組みにより、そのまま排出せざるを得なかったためである。 This is because the unused portion of kinetic energy and loud noise generated during the combustion stroke of the internal combustion engine have to be emitted as is due to the structural mechanism.

先願のロータリーエンジンの、特公平7-30706はローターの回転時に該羽根の先端とロータリー内燃機関の内周壁曲面が乖離するのを防ぐために設けた羽根底のばねや燃焼圧取入孔に燃焼圧を導入して羽根の基端から羽根を押し上げる構成であり、特願2022-8978の羽根は、該羽根の先端部から内周曲面方向への縦方向、あるいは両側の側壁方向への横方向の突出部がロータリーエンジン内に周回掘削したガイド溝と周回自在に密接嵌合させることにより、ロータリーエンジン内は内周曲面と該羽根先端が常に密接周回するものであった The prior application for the rotary engine, JP-B-7-30706, uses a spring in the bottom of the blade and a combustion pressure intake hole provided to prevent the tips of the blades from separating from the curved surface of the inner peripheral wall of the rotary internal combustion engine when the rotor rotates. The blade is configured to push up the blade from the base end of the blade by introducing pressure, and the blade of Japanese Patent Application No. 2022-8978 is configured to push up the blade from the tip of the blade in the vertical direction toward the inner circumferential curved surface, or in the lateral direction toward the side walls on both sides. By tightly fitting the protruding part of the vane into a guide groove drilled in the rotary engine so that it can rotate freely, the inner curved surface and the tip of the vane always circulate closely in the rotary engine.

いずれも単一の筒状体形状の燃焼行程で発生したエネルギーを燃焼爆発時に回転エネルギーに一部変換する以外、未利用の運動エネルギーはそのまま外部に廃棄され、またエンジン内で爆音が軽減されることはなかったが、内燃機関の爆発行程で発生した運動エネルギーのさらなる回転エネルギーへの変換効率化を
図ることにより、爆音も軽減されるべきであった
In both cases, the energy generated during the combustion process of a single cylindrical body is partially converted into rotational energy during the combustion explosion, and the unused kinetic energy is discarded to the outside as is, and the explosion noise inside the engine is reduced. Although this was not the case, efforts were made to improve the efficiency of converting the kinetic energy generated during the internal combustion engine's explosion stroke into rotational energy.
The explosion noise should have been reduced by

円筒形の内周壁を有する筒状体の内半径の一部を大きくしたスペースのハウジングを設け、別設したローターの回転軸からの放射状方向に穿設した数本の羽根溝にハウジングの内周壁に向かって前進後退してハウジング内を区分けする羽根を装着したローターをそのハウジング内に挿嵌して、ローターの回転方向のそのスペースの始端部に点火素子を設けて前進した羽根の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が、点火素子の点火により爆発して該羽根の先端を押してローターを回転させ、そのスペースの終端部に排気口を設定して爆発排気スペースとして、該筒状体の両側を側壁により閉鎖した筒状体を母筒状体と称し、
円筒形の内周壁を有する他の筒状体の内半径の一部を一か所大きくしたスペースを、その始端部に導入口と終端部に排出口のある爆発延長スペースとしたハウジングを設け、前記様の羽根溝のローターをそのハウジング内に挿嵌して、該筒状体の両側を側壁により閉鎖した一つ以上の筒状体を子筒状体と称し、
それらローターの回転軸を一直線状に連結して筒状体を重ねて一体化し、排気口または排出口と導入口が連通したロータリーエンジンとする。
A housing with a space in which a part of the inner radius of a cylindrical body having a cylindrical inner circumferential wall is enlarged is provided, and several blade grooves bored in a radial direction from the rotating shaft of a separately installed rotor are connected to the inner circumferential wall of the housing. A rotor equipped with vanes that move forward and backward to partition the inside of the housing is inserted into the housing, and an ignition element is provided at the starting end of the space in the direction of rotation of the rotor to divide the space at the tips of the blades that move forward. The pressurized gas for explosion that is continuously supplied into the explosion chamber explodes when the ignition element ignites, pushing the tip of the blade and rotating the rotor, and an exhaust port is set at the end of the space. A cylindrical body whose both sides are closed by side walls as an explosion exhaust space is called a base cylindrical body,
A housing is provided in which a part of the inner radius of another cylindrical body having a cylindrical inner circumferential wall is enlarged by one place is used as an explosion extension space with an inlet at the starting end and an outlet at the terminal end, One or more cylindrical bodies in which the rotor with the blade grooves as described above is inserted into its housing and both sides of the cylindrical body are closed by side walls are referred to as child cylindrical bodies,
The rotating shafts of these rotors are connected in a straight line, and the cylindrical bodies are stacked and integrated to form a rotary engine in which the exhaust port or the exhaust port and the inlet port communicate with each other.

前記爆発室内に連続して補給される爆発用の加圧気体とは、特公平7-30706や、特願2022-8978にもいう筒状体内において、ハウジング内の注入、圧縮、爆発、排気、の各工程のうち、注入工程で注入口から爆発用の気体として注入され、圧縮行程で加圧圧縮されて爆発室に移送されて連続して補給されて爆発用となる加圧気体を言い、
あるいはその筒状体内においての注入口を無くして注入、圧縮の行程を省略し、筒状体外部の爆発用の加圧気体の収容装置と爆発室を連通させ、その爆発室側の連通口に設置した噴出弁がその加圧気体を爆発室内にローターの回転と同期して一定量噴出させては停止し、その一定量噴出分を点火素子が点火爆発させる、などして連続補給される爆発用の加圧気体をいうのである。
The pressurized gas for explosion that is continuously replenished into the explosion chamber means injection, compression, explosion, exhaust, Among these processes, pressurized gas is injected as an explosive gas from the injection port in the injection process, compressed under pressure in the compression stroke, transferred to the explosion chamber, and continuously replenished for explosion purposes.
Alternatively, the injection port in the cylindrical body can be eliminated to omit the injection and compression steps, and the explosion chamber can be communicated with the pressurized gas storage device for explosion outside the cylindrical body, and the communication port on the side of the explosion chamber can be connected to the explosion chamber. An explosion that is continuously replenished by an installed blowout valve that blows out a fixed amount of pressurized gas into the explosion chamber in synchronization with the rotation of the rotor, then stops, and then an ignition element ignites and explodes the fixed amount of gas ejected. It refers to pressurized gas for use.

そうして、
爆発行程での爆発エネルギーをローターの羽根の前記先端部分が受けて回転する母筒状体のローターの回転軸と、子筒状体のローターの回転軸を一直線状
に連結して筒状体を重ねて一体化するにおいて、母筒状体内でローターを回転させるエネルギーとなり得なかった残余の爆発エネルギーは排気口に連通する子筒状体の導入口から子筒状体内の爆発延長スペースに導入されてそのスペースのローターの羽根の前進した先端部分が受けて子筒状体のローターを回転させるもので、母筒状体に連通する子筒状体と、さらに追加の子筒状体を同様に排出口と導入口を連結増設すれば、さらなる回転エネルギー採取の効率化が図られ、また、
消音マフラーの如く爆発延長スペースの延長増加による消音効果で、それら問題解決に寄与するのである。
Then,
A cylindrical body is formed by connecting in a straight line the rotation axis of the rotor of the mother cylindrical body, which rotates when the tip portion of the blade of the rotor receives the explosion energy during the explosion stroke, and the rotation axis of the rotor of the child cylindrical body. When stacking and integrating, the remaining explosion energy that could not be used as energy to rotate the rotor in the mother cylinder is introduced into the explosion extension space in the child cylinder from the inlet of the child cylinder that communicates with the exhaust port. The advanced tip of the rotor blade in that space is received and rotates the rotor of the child cylindrical body, and the child cylindrical body communicating with the mother cylindrical body and additional child cylindrical bodies are similarly connected. By connecting and expanding the outlet and inlet, you can further improve the efficiency of harvesting rotational energy.
Like a sound-deadening muffler, the sound-deadening effect by increasing the length of the explosion extension space contributes to solving these problems.

本発明は、爆発延長スペースのある子筒状体を付加することにより爆発行程を延長する効果を生み、爆発行程で発生した運動エネルギーを、排気口や排出口と導入口が連通して隣接の爆発延長スペースにおいても爆発膨張ガス、すなわち運動エネルギーを導入してローターを回転させるので、母筒状体の爆発排気スペース部分の回転範囲に限られることなく、爆発行程で発生した運動エネルギーの利用採取範囲を拡大させて燃費の向上を図り、前記増設付加態様次第では母筒状体のローターの1回転以上の利用採取範囲も可能となり、例えば後記図面の3枚羽の母筒状体に、子筒状体を三個付加した場合、ハウジング円周の凡そ3分の4、1回転以上の利用採取範囲となり、
また、2枚羽の母筒状体の場合には筒状体外部の加圧気体の収容装置と爆発室を連通させて爆発室内に爆発用の加圧気体を連続して補給して爆発させ、慣性によりローターを回転させ、以上、爆発行程で発生した運動エネルギーの有効的存在が消滅するか、取り付け外形の収納容量の許す限り、増設付加を検討できる。
The present invention has the effect of extending the explosion stroke by adding a sub-cylindrical body with an explosion extension space, and the kinetic energy generated in the explosion stroke is transferred to the adjacent cylinder by communicating the exhaust port and the exhaust port with the inlet. Since the explosion expansion gas, that is, kinetic energy, is introduced into the explosion extension space to rotate the rotor, the kinetic energy generated during the explosion stroke can be used and harvested without being limited to the rotation range of the explosion exhaust space of the base cylinder. In order to improve fuel efficiency by expanding the range, depending on the above-mentioned expansion and addition mode, it is possible to use the collection range of more than one rotation of the rotor of the main cylinder. When three cylindrical bodies are added, the usable collection range is approximately 4/3 of the circumference of the housing, which is more than one rotation.
In addition, in the case of a two-blade base cylinder, the pressurized gas storage device outside the cylinder is connected to the explosion chamber, and the explosion chamber is continuously supplied with pressurized gas for explosion. , the rotor is rotated by inertia, and as long as the effective existence of the kinetic energy generated in the explosion stroke disappears, or as long as the storage capacity of the installed external shape allows, you can consider adding an extension.

加えて、燃焼室で発生する爆発膨張音は排気口や排出口と導入口が連通して延長する各燃焼室工程が消音の効果をもたらし、各筒状体内で爆発膨張音を閉じ込めることにより、回転エネルギーとなって爆発膨張の音を弱化させ、一方、自動車の消音マフラーや銃のサイレンサー装置においては運動エネルギー効率に寄与することはないのである。 In addition, the explosion and expansion noise generated in the combustion chamber is silenced by each combustion chamber process where the exhaust port and the exhaust port are connected and extended, and by trapping the explosion and expansion noise within each cylindrical body. It turns into rotational energy and weakens the sound of the explosion and expansion, but on the other hand, it does not contribute to the kinetic energy efficiency of automobile mufflers or gun silencers.

先願の、燃焼室における燃料の爆発による膨張圧を単体のローターの羽根
の前進先端部分のみが受け、ローターを回転させて回転エネルギーとしていたが、単体ゆえに排気口から多くの未利用エネルギーが廃棄されていた。この
事象はレシプロエンジン等、従来の内燃機関にも惹起しており、その解決のため、数多の提案がなされていた。
また、騒音となる燃焼による爆発音を軽減すべく従来既存の消音マフラーが付
随される場合、運動エネルギーに対する抵抗要素としてその効率を低下させていた
In the previous application, only the advancing tip of the blade of a single rotor received the expansion pressure caused by the explosion of fuel in the combustion chamber, causing the rotor to rotate and converting it into rotational energy, but because it was a single rotor, a lot of unused energy was discarded from the exhaust port. It had been. this
This phenomenon has also occurred in conventional internal combustion engines such as reciprocating engines, and many proposals have been made to solve the problem.
In addition, when conventional mufflers are attached to reduce the explosion noise caused by combustion, they reduce their efficiency as a resistance element to kinetic energy.

従来のピストン運動型のレシプロエンジンは注入、圧縮、爆発、排気の4工程を1サイクルとして同一のシリンダーを共用し、クランクロッドの進退運動により該工程が順次稼働するため、各4分の1が稼働工程となり、残り4分の3の工程は稼働待機態勢としての非効率性があるため、シリンダー数を増加して駆動力を強化する場合があり、また同一のシリンダーで燃料の注入工程と爆発工程を行えば、噴霧状燃料や水素等の燃焼用気体状の引火性の強い素材に対し安全上の脆弱性が常に危惧されるに対し、本発明のロータリーエンジンは前記各工程室を独立遮断して安全性を高めてその4工程は同時に稼働するため、3枚羽を装着したローターの場合、ローターの3分の1回転が1サイクルとなり、4枚羽を装着したローターの場合よりも膨張行程の円周距離は長く、1 回転ではその羽根の数と同数の各サイクルが実現し、いずれの枚数でも待機態勢のない効率的な駆動力により、エンジンの小型化と軽量化が実現する。 Conventional piston motion type reciprocating engines share the same cylinder with the four steps of injection, compression, explosion, and exhaust as one cycle, and each step is operated sequentially by the forward and backward movement of the crank rod, so one quarter of each cycle is The remaining three-quarters of the process is inefficient as it is on standby, so the number of cylinders may be increased to strengthen the driving force, and the same cylinder is used for the fuel injection process and the explosion process. When processes are carried out, there is always a concern about safety vulnerabilities due to highly flammable materials in the form of atomized fuel or combustion gases such as hydrogen.However, the rotary engine of the present invention isolates each of the process chambers independently. This increases safety and the four processes operate simultaneously, so in the case of a rotor equipped with three blades, one third rotation of the rotor is one cycle, and the expansion stroke is shorter than in the case of a rotor equipped with four blades. The circumferential distance of the blade is long, and in one rotation, each cycle is the same as the number of blades, and regardless of the number of blades, efficient driving force without standby allows the engine to be made smaller and lighter.

従来、バンケル型ロータリーエンジンと呼称する内部の三角状ローターの偏心運動により駆動力を発生させる内燃機関はその偏心駆動態様により、クランクレスレシプロエンジンと称されるべきであり、一方、本発明のロータリーエンジンは偏心ロスのない有効性を実現するのである。 Conventionally, an internal combustion engine that generates driving force by the eccentric movement of an internal triangular rotor, called a Wankel rotary engine, should be called a crankless reciprocating engine due to its eccentric drive mode.On the other hand, the rotary engine of the present invention The engine achieves effectiveness without eccentric losses.

本発明の実施の一例の形態を図1、図2、図3、図4に基づいて説明する。
なお、図面において、排気口や排出口や導入口の連通形状の一方が長径となるのは、筒状体のローターの回転軸方向に長く平行の開口部とすることにより、排気口や排出口や導入口、等開口部を筒状体の形状に合わせて大きくして工程気体の速やかな通過を可能とするためである。
また、本実施例においては母筒状体と子筒状体のローターや外周を同径サイズとしているが、異径サイズとすることによりローターの回転軸方向の筒状体の母筒状体と子筒状体の輪切り形状の幅を調整し本発明のロータリーエンジンの設置環境に合わせた荷姿とする場合もある。
An embodiment of the present invention will be described based on FIGS. 1, 2, 3, and 4.
In addition, in the drawings, one of the communication shapes of the exhaust port, discharge port, and inlet has a long diameter, because the opening is long and parallel to the rotational axis direction of the cylindrical rotor. This is because openings such as the inlet and the inlet are made large to match the shape of the cylindrical body to allow process gas to pass through quickly.
In addition, in this embodiment, the rotors and outer circumferences of the parent cylindrical body and the child cylindrical body are made of the same diameter size, but by making them different diameter sizes, In some cases, the width of the sliced shape of the child cylindrical body may be adjusted to provide a packaging style that matches the installation environment of the rotary engine of the present invention.

ロータリーエンジン1の母筒状体2の内半径の一部を二か所で大きくして爆発排気スペース221と吸入圧縮スペース223として、母筒状体ハウジング24内に挿嵌された母筒状体ローター21の回転軸Aに届かない深さで穿設された各羽根溝23に装着された母筒状体ハウジング24の内周壁に向かい3枚の前進後退する各羽根5の場合、母筒状体ハウジング24内は三つに区分けされ、その内周の3分の一に区分けされた爆発排気スペース221内の羽根5の先端部51が分割した点火素子8のある爆発室2211において、圧縮された燃焼用気体をその点火素子8が点火し爆発膨張させて先端部51を回転方向後面側から押してそのスペースの終端部の排気口26までBの方向に母筒状体ローター21を回転させる爆発工程と、先端部51の回転方向前面側にある燃焼気体が回転により押されて終端部の排気口26からCの方向に排気される排気工程があり吸入圧縮スペース223内では、母筒状体ローター21の回転により先端部51が導入口27を過ぎて燃焼用気体を始端部の導入口27からDの方向に吸入して、ローター回転方向後位の先端部51が導入口27を通過して吸入圧縮スペース223内に燃焼用気体を封鎖状態とする吸入行程と、前記先端部51の回転方向前面側がその封鎖状態の燃焼用気体を回転方向に押しやって母筒状体ローター21と母筒状体ハウジング24内周の狭い間隙を通過させて燃焼用気体の体積を加圧して圧縮縮小し、点火素子8に移送する圧縮行程があるとした状況の母筒状体2の断面概略図。A part of the inner radius of the base cylindrical body 2 of the rotary engine 1 is enlarged at two places to form an explosion exhaust space 221 and an intake compression space 223, and the base cylindrical body is inserted into the base cylindrical body housing 24. In the case of each blade 5 moving forward and backward toward the inner circumferential wall of the base cylindrical body housing 24 mounted in each vane groove 23 bored at a depth that does not reach the rotation axis A of the rotor 21, The inside of the body housing 24 is divided into three parts, and in the explosion chamber 2211 where the ignition element 8, which is divided by the tips 51 of the blades 5, is located in the explosion exhaust space 221, which is divided into one-third of the inner circumference, the air is compressed. The combustion gas ignited by the ignition element 8 explodes and expands, pushing the tip 51 from the rear side in the direction of rotation and rotating the base cylindrical rotor 21 in the direction B to the exhaust port 26 at the end of the space. process, and an exhaust process in which the combustion gas on the front side in the direction of rotation of the tip part 51 is pushed by rotation and exhausted from the exhaust port 26 at the end part in the direction C. As the rotor 21 rotates, the tip 51 passes the introduction port 27 and sucks combustion gas from the introduction port 27 at the starting end in the direction D, and the tip 51 at the rear in the rotor rotational direction passes through the introduction port 27. During the suction stroke, the combustion gas is sealed in the suction compression space 223, and the front side of the tip 51 in the rotational direction pushes the sealed combustion gas in the rotational direction to connect the base cylinder rotor 21 and the base cylinder. FIG. 3 is a schematic cross-sectional view of the base cylindrical body 2 in a situation where there is a compression stroke in which the volume of combustion gas is compressed and compressed by passing through a narrow gap on the inner periphery of the body housing 24 and transferred to the ignition element 8; ロータリーエンジン1の子筒状体3の内半径の一部を大きくした部分を、始端部に導入口37と終端部に排出口36のある爆発延長スペース324として、子筒状体ハウジング32内に挿嵌された子筒状体ローター31の回転軸Aに届かない深さで穿設された各子筒状体羽根溝33に装着された各羽根5により、子筒状体ハウジング32内は区分けされ、先端部53で区分けされた爆発延長スペース324の始端部の導入口37は当図では視認不可の前記排気口26と連通してCの方向からの燃焼気体を先端部53が受け、Bの方向に子筒状体ローター31を回転させ、終端部の排出口36に膨張エネルギーをCの方向に排出している状況の子筒状体3の断面概略図。A part of the inner radius of the child cylinder body 3 of the rotary engine 1 is enlarged as an explosion extension space 324 with an inlet 37 at the starting end and an outlet port 36 at the terminal end in the child cylinder body housing 32. The inside of the child cylindrical body housing 32 is divided by each blade 5 attached to each child cylindrical body blade groove 33, which is bored at a depth that does not reach the rotation axis A of the child cylindrical body rotor 31 inserted. The introduction port 37 at the starting end of the explosion extension space 324 divided by the tip 53 communicates with the exhaust port 26, which is not visible in this figure, so that the tip 53 receives the combustion gas from the direction C, and the tip 53 receives the combustion gas from the direction C. FIG. 3 is a schematic cross-sectional view of the child cylindrical body 3 in a state where the child cylindrical body rotor 31 is rotated in the direction of C and expansion energy is discharged in the direction of C through the discharge port 36 at the terminal end. ロータリーエンジン1の、同径サイズで重ねられた状態により視別認識不能の筒状体の母筒状体2と子筒状体3と子筒状体4の各筒状体ローター21,31,41が回転軸Aを一直線状として連結されて、母筒状体2の母筒状体ローター21の爆発排気スペース221と、子筒状体3の子筒状体ローター31の爆発延長スペース324、と子筒状体4の子筒状体ローター41の爆発延長スペース423、が各ハウジング内周を透視的な点線71の位置で各3分割してその合計でそれらハウジング内周の一周に及ぶとして、排気口26と導入口37、排出口36と導入口47が各連通し、点火素子8と、表見同位置の、後図で判別される排出口46の位置から排気ガスがCの方向に排出した状態のロータリーエンジン1の前記断面概略図側からの概略外観図である。Each of the cylindrical body rotors 21, 31 of the mother cylindrical body 2, the child cylindrical body 3, and the child cylindrical body 4, which are cylindrical bodies of the same diameter and cannot be visually recognized due to their overlapping state, of the rotary engine 1, 41 are connected with the rotation axis A in a straight line, and the explosion exhaust space 221 of the mother cylinder rotor 21 of the mother cylinder 2 and the explosion extension space 324 of the child cylinder rotor 31 of the child cylinder 3, Assuming that the explosion extension space 423 of the child cylindrical body rotor 41 of the child cylindrical body 4 divides the inner periphery of each housing into three parts each at the position of the transparent dotted line 71, and the total area covers one circumference of the inner periphery of each housing. , the exhaust port 26 and the inlet port 37, and the exhaust port 36 and the inlet port 47 are in communication with each other, and the exhaust gas is directed in the direction C from the position of the exhaust port 46, which is apparently in the same position as the ignition element 8, and which is identified in the later figure. FIG. 2 is a schematic external view of the rotary engine 1 in a state where the rotary engine is discharged from the side of the above-mentioned schematic cross-sectional view. ロータリーエンジン1の、母筒状体2の点線で概略図示の導入口27にCの方向から燃焼用気体が吸入され点火素子8のある母筒状体2の回転軸Aと子筒状体3と子筒状体4の点線で示した各回転軸Aが1直線状に連結されてそれら筒状体が重ねられて一体化し、母筒状体2での燃焼気体は、連通した排気口26と導入口37をEの方向に通過して子筒状体3内に移動し、さらに、対側位置にあり視認不可の、点線で概略図示の排出口36と導入口47が連通して子筒状体3内から子筒状体4内へFの方向に燃焼気体が移動し、点線で概略図示の排出口46ではCの方向に燃焼気体たる膨張エネルギーを連通することなく放出している様子のロータリーエンジン1の回転軸Aと平行側からの外観概略図。In the rotary engine 1, combustion gas is taken in from the direction C into the introduction port 27 schematically shown by the dotted line in the main cylindrical body 2, and the rotation axis A of the main cylindrical body 2 where the ignition element 8 is located and the child cylindrical body 3 The respective rotation axes A shown by dotted lines of the child cylindrical body 4 are connected in a straight line, and the cylindrical bodies are stacked and integrated, and the combustion gas in the mother cylindrical body 2 is discharged through the communicating exhaust port 26. The child passes through the inlet port 37 in the direction E and moves into the child cylindrical body 3, and the inlet port 47, which is located on the opposite side and is not visible, is connected to the inlet port 47, which is schematically shown by a dotted line. The combustion gas moves in the direction F from the inside of the cylindrical body 3 into the child cylindrical body 4, and the expansion energy of the combustion gas is released in the direction of C at the discharge port 46 schematically indicated by the dotted line without communication. FIG. 2 is a schematic external view of the rotary engine 1 as viewed from a side parallel to the rotation axis A.

1ロータリーエンジン
2母筒状体
3子筒状体
4子筒状体
5羽根
8点火素子
21母筒状体ローター
23羽根溝
24母筒状体ハウジング
26排気口
27導入口
31子筒状体ローター
32子筒状体ハウジング
33子筒状体羽根溝
36排出口
37導入口
41子筒状体ローター
46排出口
47導入口
51先端部
53先端部
71点線
221爆発排気スペース
223吸入圧縮スペース
324爆発延長スペース
423爆発延長スペース
2211爆発室
A回転軸
B方向
C方向
D方向
E方向
F方向

1 Rotary engine 2 Mother cylindrical body Triple cylindrical body Quadruple cylindrical body 5 blades 8 Ignition elements 21 Mother cylindrical body rotor
23 Blade groove 24 Mother cylindrical body housing 26 Exhaust port 27 Inlet port 31 Child cylindrical body rotor 32 Child cylindrical body housing 33 Child cylindrical body vane groove 36 Discharge port 37 Inlet port 41 Child cylindrical body rotor 46 Discharge port 47 Inlet port 51 tip 53 tip
71 Dotted line 221 Explosion exhaust space 223 Suction compression space 324 Explosion extension space 423 Explosion extension space 2211 Explosion chamber
A rotation axis B direction
C direction D direction
E direction
F direction

Claims (1)

円筒形の内周壁を有する母筒状体2の内半径の一部を大きくし、爆発排気スペース221を形成した母筒状体ハウジング24を設け、別設した母筒状体ローター21の回転軸からの放射状方向に穿設した数本の羽根溝に母筒状体ハウジング24の内周壁に向かって前進後退して母筒状体ハウジング24内を区分けする羽根5を装着した母筒状体ローター21をその母筒状体ハウジング24内に挿嵌して、
母筒状体ローター21の回転方向のその爆発排気スペース221の始端部に点火素子8を設け、
前進した羽根5の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が爆発して、該羽根の先端を押して母筒状体ローター21を回転させ、
その爆発排気スペース221の終端部に排気口26を設定し、該母筒状体ハウジング24の両側を側壁により閉鎖した筒状体とし、
円筒形の内周壁を有する他の子筒状体3の内半径の一か所を大きくした爆発延長スペース324の、始端部に爆発排気スペース221からの爆発気体の導入口37と、終端部に爆発気体の排出口36を設けた子筒状体ハウジング32を設け、
前記と同様の回転軸からの放射状方向に穿設した数本の羽根溝に子筒状体ハウジング32の内周壁に向かって前進後退して子筒状体ハウジング32内を区分けする羽根5を装着した子筒状体ローター31を、その子筒状体ハウジング32内に挿嵌して、該子筒状体ハウジング32の両側を側壁により閉鎖した一つ以上の筒状体を設け、
それら母筒状体ローター21の回転軸と、前記一つ以上の子筒状体ローター31の回転軸とを一直線状に連結し、
母筒状体ハウジング24の中心軸と、子筒状体ハウジング32の中心軸とを一直線状に連結して、筒状体を重ねて一体化し、
母筒状体ハウジング24への燃燃焼用気体の導入口27から、子筒状体ハウジング32からの一つ以上の子筒状体の排出口までを、連通されるようにしたロータリーエンジン1。
A part of the inner radius of the base cylinder body 2 having a cylindrical inner circumferential wall is enlarged to provide a base cylinder body housing 24 in which an explosion exhaust space 221 is formed, and a rotating shaft of a separately provided base cylinder body rotor 21 is provided. A base cylindrical body rotor equipped with vanes 5 which move forward and backward toward the inner circumferential wall of the base cylindrical body housing 24 to partition the inside of the base cylindrical body housing 24 in several vane grooves bored in the radial direction from the base cylindrical body rotor. 21 into its base cylindrical body housing 24,
An ignition element 8 is provided at the starting end of the explosion exhaust space 221 in the rotational direction of the base cylindrical body rotor 21,
Explosive pressurized gas continuously supplied into the explosion chamber divided by the tips of the advanced blades 5 explodes, pushing the tips of the blades and rotating the base cylindrical rotor 21,
An exhaust port 26 is set at the end of the explosion exhaust space 221, and the base cylindrical body housing 24 is formed into a cylindrical body with both sides closed by side walls.
The explosion extension space 324, which has a cylindrical inner peripheral wall and has a larger inner radius at one point, has an inlet 37 for introducing explosive gas from the explosion exhaust space 221 at the starting end, and an inlet 37 for the explosive gas from the explosion exhaust space 221 at the terminal end. A child cylindrical body housing 32 is provided with an explosive gas outlet 36,
The vanes 5 which move forward and backward toward the inner circumferential wall of the secondary cylindrical body housing 32 to partition the inside of the secondary cylindrical body housing 32 are attached to several blade grooves bored in the radial direction from the rotating shaft as described above. The child cylindrical body rotor 31 is inserted into the child cylindrical body housing 32, and one or more cylindrical bodies are provided in which both sides of the child cylindrical body housing 32 are closed by side walls,
The rotation axis of the mother cylindrical body rotor 21 and the rotation axis of the one or more child cylindrical body rotors 31 are connected in a straight line,
The central axis of the mother cylindrical body housing 24 and the central axis of the child cylindrical body housing 32 are connected in a straight line, and the cylindrical bodies are stacked and integrated,
A rotary engine 1 in which an inlet 27 for introducing combustion gas into a mother cylindrical body housing 24 and an outlet for one or more child cylindrical bodies from a child cylindrical body housing 32 are communicated with each other.
JP2022167210A 2022-09-26 2022-09-26 Expansion/rotary engine Active JP7424674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022167210A JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022167210A JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Publications (2)

Publication Number Publication Date
JP7424674B1 true JP7424674B1 (en) 2024-01-30
JP2024047509A JP2024047509A (en) 2024-04-05

Family

ID=89704303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022167210A Active JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Country Status (1)

Country Link
JP (1) JP7424674B1 (en)

Also Published As

Publication number Publication date
JP2024047509A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2010128776A3 (en) Separate-type rotary engine
US4033299A (en) Rotary engine
US6536403B1 (en) Direct drive rotary engine
KR102329615B1 (en) Rotary engine
US3951109A (en) Rotary internal combustion engine
US20140202419A1 (en) Rotary piston engine
JP7424674B1 (en) Expansion/rotary engine
CN108590864B (en) Powder starting method and device of turbojet engine for small-sized bomb
MXPA03011047A (en) Operating method for a rotary engine and a rotary internal combustion engine.
US11371550B2 (en) Rotary engine
RU186706U1 (en) INTERNAL COMBUSTION ENGINE
WO2019150336A1 (en) Rotary engine
KR101972907B1 (en) Rotary engine having enhanced sealing structure
US3951110A (en) Rotary engine arrangement
RU2282725C2 (en) Hydropneumatic turbomachine (versions)
CN219953497U (en) Gemini engine
JPH07293264A (en) Rotary engine
WO2003056156A1 (en) Coaxial rotary engine
JPH0742868B2 (en) Rotary internal combustion engine
KR101919712B1 (en) Rotary engine having crank shaft
RU2406836C2 (en) Rotary jet engine by aroutyunov
US3782341A (en) Rotary internal combustion engine
RU2212550C2 (en) Internal combustion engine
JP2004245093A (en) Rotary engine
JPS6133975B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7424674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150