JP2024047509A - Extension rotary engine - Google Patents

Extension rotary engine Download PDF

Info

Publication number
JP2024047509A
JP2024047509A JP2022167210A JP2022167210A JP2024047509A JP 2024047509 A JP2024047509 A JP 2024047509A JP 2022167210 A JP2022167210 A JP 2022167210A JP 2022167210 A JP2022167210 A JP 2022167210A JP 2024047509 A JP2024047509 A JP 2024047509A
Authority
JP
Japan
Prior art keywords
explosion
rotor
cylindrical body
space
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022167210A
Other languages
Japanese (ja)
Other versions
JP7424674B1 (en
Inventor
馨 林谷
Kaoru Hayashidani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022167210A priority Critical patent/JP7424674B1/en
Application granted granted Critical
Publication of JP7424674B1 publication Critical patent/JP7424674B1/en
Publication of JP2024047509A publication Critical patent/JP2024047509A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

To provide an internal combustion engine that is further improved in efficiency for converting kinetic energy generated in an explosion stroke into rotational energy and reduced in detonating sound.SOLUTION: An extension rotary engine efficiently collects kinetic energy by adding a plurality of rotation functions to improve fuel consumption while continuously operating four strokes simultaneously in one rotation of a rotor that rotates about a shaft core, thereby reducing noise of detonating sound.SELECTED DRAWING: Figure 4

Description

母筒状体内のローターの回転軸と子筒状体のローターの回転軸を一直線状にして筒状体を重ねて一体化し、燃焼ガスの排気口または排出口と導入口を連通させて燃焼エネルギーの効率化により燃費の向上を図るロータリーエンジンに関する。
また、燃焼用気体を加圧して筒状体内に送り込む場合は、吸入を注入と呼び変える場合もある。
燃焼用気体の爆発は、燃焼であり膨張でもある
This relates to a rotary engine in which the rotation axis of the rotor inside the main cylinder and the rotation axis of the rotor of the secondary cylinder are aligned in a straight line, the cylinders are stacked and integrated, and the exhaust or discharge port of the combustion gas is connected to the inlet, thereby improving fuel efficiency by making the combustion energy more efficient.
Also, when the combustion gas is pressurized and sent into the cylindrical body, suction may be called injection.
The explosion of combustion gases is both a combustion and an expansion.

ロータリーエンジンの、特公平7-30706や、特願2022-8978は燃焼行程で発生した運動エネルギーの未利用部分はそのまま爆音と共に排出されていたIn the rotary engine patent applications JP 7-30706 and 2022-8978, the unused portion of the kinetic energy generated in the combustion process was simply discharged with a loud noise.

それは、前記内燃機関の燃焼行程で発生した運動エネルギーの未利用部分と爆音が構造的仕組みにより、そのまま排出せざるを得なかったためである。This is because the unused kinetic energy generated during the combustion process of the internal combustion engine and the loud noise it produces had to be expelled as is due to the engine's structural design.

先願のロータリーエンジンの、特公平7-30706はローターの回転時に該羽根の先端とロータリー内燃機関の内周壁曲面が乖離するのを防ぐために設けた羽根底のばねや燃焼圧取入孔に燃焼圧を導入して羽根の基端から羽根を押し上げる構成であり、特願2022-8978の羽根は、該羽根の先端部から内周曲面方向への縦方向、あるいは両側の側壁方向への横方向の突出部がロータリーエンジン内に周回掘削したガイド溝と周回自在に密接嵌合させることにより、ロータリーエンジン内は内周曲面と該羽根先端が常に密接周回するものであったThe earlier application for the rotary engine, JP-B-7-30706, has a structure in which combustion pressure is introduced into a spring or combustion pressure intake hole at the base of the blade to prevent the tip of the blade from separating from the curved inner wall of the rotary internal combustion engine when the rotor rotates, and the blade is pushed up from the base end. The blade of JP-B-2022-8978 has a protrusion that protrudes vertically from the tip of the blade toward the curved inner wall, or horizontally toward the side walls on both sides, and fits tightly and freely into guide grooves drilled around the rotary engine, so that the tip of the blade always revolves in close contact with the curved inner wall inside the rotary engine.

発明が解決しようとする課題Problem to be solved by the invention

いずれも単一の筒状体形状の燃焼行程で発生したエネルギーを燃焼爆発時に回転エネルギーに一部変換する以外、未利用の運動エネルギーはそのまま外部に廃棄され、またエンジン内で爆音が軽減されることはなかったが、内燃機関の爆発行程で発生した運動エネルギーのさらなる回転エネルギーへの変換効率化を図ることにより、爆音も軽減されるべきであったIn both cases, the energy generated during the combustion process in a single cylindrical body was partially converted into rotational energy during combustion and explosion, and the unused kinetic energy was simply discarded to the outside. In addition, the explosion noise inside the engine was not reduced, but the explosion noise should have been reduced by improving the efficiency of converting the kinetic energy generated during the explosion process of the internal combustion engine into rotational energy.

円筒形の内周壁を有する筒状体の内半径の一部を大きくしたスペースのハウジングを設け、別設したローターの回転軸からの放射状方向に穿設した数本の羽根溝にハウジングの内周壁に向かって前進後退してハウジング内を区分けする羽根を装着したローターをそのハウジング内に挿嵌して、ローターの回転方向のそのスペースの始端部に点火素子を設けて前進した羽根の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が、点火素子の点火により爆発して該羽根の先端を押してローターを回転させ、そのスペースの終端部に排気口を設定して爆発排気スペースとして、該筒状体の両側を側壁により閉鎖した筒状体を母筒状体と称し、
円筒形の内周壁を有する他の筒状体の内半径の一部を一か所大きくしたスペースを、その始端部に導入口と終端部に排出口のある爆発延長スペースとしたハウジングを設け、前記様の羽根溝のローターをそのハウジング内に挿嵌して、該筒状体の両側を側壁により閉鎖した一つ以上の筒状体を子筒状体と称し、それらローターの回転軸を一直線状に連結して筒状体を重ねて一体化し、排気口または排出口と導入口が連通したロータリーエンジンとする。
A housing is provided with a space in which the inner radius of a cylinder having a cylindrical inner wall is enlarged in part, a rotor is fitted into the housing, and vanes are attached to several vane grooves drilled in a radial direction from the rotation axis of the rotor, which vanes move forward and backward toward the inner wall of the housing to divide the inside of the housing. An ignition element is provided at the start of the space in the rotation direction of the rotor, and pressurized gas for explosion is continuously supplied into an explosion chamber divided by the tip of the advancing vane, which explodes when ignited by the ignition element, pushing the tip of the vane and rotating the rotor. An exhaust port is provided at the end of the space to form an explosion exhaust space, and the cylinder closed on both sides by side walls is called a mother cylinder.
A housing is provided in which a space formed by increasing the inner radius of another cylinder having a cylindrical inner wall in one place is used as an explosion extension space with an inlet at its starting end and an exhaust outlet at its end, and a rotor with the above-mentioned vane grooves is inserted into the housing. One or more cylinders each having a side wall closing both sides of the cylinder are called child cylinders, and the rotational axes of these rotors are connected in a straight line to stack and integrate the cylinders, thereby forming a rotary engine in which the exhaust port or exhaust port is connected to the inlet.

前記爆発室内に連続して補給される爆発用の加圧気体とは、特公平7-30706や、特願2022-8978にもいう筒状体内において、ハウジング内の注入、圧縮、爆発、排気、の各工程のうち、注入工程で注入口から爆発用の気体として注入され、圧縮行程で加圧圧縮されて爆発室に移送されて連続して補給されて爆発用となる加圧気体を言い、
あるいはその筒状体内においての注入口を無くして注入、圧縮の行程を省略し、筒状体外部の爆発用の加圧気体の収容装置と爆発室を連通させ、その爆発室側の連通口に設置した噴出弁がその加圧気体を爆発室内にローターの回転と同期して一定量噴出させては停止し、その一定量噴出分を点火素子が点火爆発させる、などして連続補給される爆発用の加圧気体をいうのである。
The pressurized gas for explosion continuously supplied to the explosion chamber refers to a pressurized gas for explosion that is injected as a gas for explosion from an injection port in the injection process among the processes of injection, compression, explosion, and exhaust in a housing in a cylindrical body as described in JP-B-7-30706 and JP-A-2022-8978, compressed by pressure in the compression process, transported to the explosion chamber, and continuously supplied to become a gas for explosion.
Alternatively, the injection port within the cylindrical body is eliminated, omitting the steps of injection and compression, and the explosion chamber is connected to a storage device for pressurized gas for explosion outside the cylindrical body. A jet valve installed at the communication port on the explosion chamber side jets a fixed amount of pressurized gas into the explosion chamber in synchronization with the rotation of the rotor and then stops, and an ignition element ignites and explodes that fixed amount of jetted gas, in this way continuously supplying pressurized gas for explosion.

そうして、
爆発行程での爆発エネルギーをローターの羽根の前記先端部分が受けて回転する母筒状体のローターの回転軸と、子筒状体のローターの回転軸を一直線状に連結して筒状体を重ねて一体化するにおいて、母筒状体内でローターを回転させるエネルギーとなり得なかった残余の爆発エネルギーは排気口に連通する子筒状体の導入口から子筒状体内の爆発延長スペースに導入されてそのスペースのローターの羽根の前進した先端部分が受けて子筒状体のローターを回転させるもので、母筒状体に連通する子筒状体と、さらに追加の子筒状体を同様に排出口と導入口を連結増設すれば、さらなる回転エネルギー採取の効率化が図られ、また、
消音マフラーの如く爆発延長スペースの延長増加による消音効果で、それら問題解決に寄与するのである。
And so,
The rotor shaft of the main cylinder, which rotates when the tip of the rotor blade receives the explosion energy during the explosion process, is connected in a straight line to the rotor shaft of the child cylinder, and the cylinders are stacked and integrated. The remaining explosion energy that cannot be used to rotate the rotor inside the main cylinder is introduced into the explosion extension space inside the child cylinder through an inlet of the child cylinder, which communicates with the exhaust port, and is received by the advanced tip of the rotor blade in that space, causing the rotor of the child cylinder to rotate. If the child cylinder, which communicates with the main cylinder, and any additional child cylinders are similarly connected to exhaust ports and inlets, the efficiency of harvesting rotational energy can be further improved.
The sound-absorbing effect achieved by increasing the extension space for explosions, like a sound-absorbing muffler, contributes to solving these problems.

本発明は、爆発延長スペースのある子筒状体を付加することにより爆発行程を延長する効果を生み、爆発行程で発生した運動エネルギーを、排気口や排出口と導入口が連通して隣接の爆発延長スペースにおいても爆発膨張ガス、すなわち運動エネルギーを導入してローターを回転させるので、母筒状体の爆発排気スペース部分の回転範囲に限られることなく、爆発行程で発生した運動エネルギーの利用採取範囲を拡大させて燃費の向上を図り、前記増設付加態様次第では母筒状体のローターの1回転以上の利用採取範囲も可能となり、例えば後記図面の3枚羽の母筒状体に、子筒状体を三個付加した場合、ハウジング円周の凡そ3分の4、1回転以上の利用採取範囲となり、
また、2枚羽の母筒状体の場合には筒状体外部の加圧気体の収容装置と爆発室を連通させて爆発室内に爆発用の加圧気体を連続して補給して爆発させ、慣性によりローターを回転させ、以上、爆発行程で発生した運動エネルギーの有効的存在が消滅するか、取り付け外形の収納容量の許す限り、増設付加を検討できる。
The present invention produces the effect of extending the explosion stroke by adding a sub-tubular body with an explosion extension space, and the kinetic energy generated during the explosion stroke is introduced into the adjacent explosion extension space through an inlet that is connected to the exhaust port and exhaust port, as explosive expansion gas, i.e., kinetic energy, to rotate the rotor. Therefore, the rotation range is not limited to the explosion exhaust space of the main tube body, but the utilization range of the kinetic energy generated during the explosion stroke is expanded, thereby improving fuel efficiency. Depending on the mode of addition, it is possible to utilize the kinetic energy for more than one rotation of the rotor of the main tube body. For example, when three sub-tubular bodies are added to the three-blade main tube body shown in the drawings below, the utilization range is approximately 3/4 of the housing circumference, or more than one rotation.
In the case of a two-blade main cylindrical body, the pressurized gas storage device outside the cylindrical body is connected to the explosion chamber, and the pressurized gas for explosion is continuously supplied to the explosion chamber for explosion, causing the rotor to rotate by inertia. As described above, until the effective existence of the kinetic energy generated during the explosion process disappears or as long as the storage capacity of the installed external configuration allows, additional installation can be considered.

加えて、燃焼室で発生する爆発膨張音は排気口や排出口と導入口が連通して延長する各燃焼室工程が消音の効果をもたらし、各筒状体内で爆発膨張音を閉じ込めることにより、回転エネルギーとなって爆発膨張の音を弱化させ、一方、自動車の消音マフラーや銃のサイレンサー装置においては運動エネルギー効率に寄与することはないのである。In addition, the explosive expansion noise generated in the combustion chamber is silenced by each combustion chamber process that is extended by connecting the exhaust port, exhaust port and inlet port, and by confining the explosive expansion noise within each cylindrical body, it becomes rotational energy and weakens the explosive expansion noise. On the other hand, in the silencer devices of automobiles and guns, it does not contribute to kinetic energy efficiency.

先願の、燃焼室における燃料の爆発による膨張圧を単体のローターの羽根の前進先端部分のみが受け、ローターを回転させて回転エネルギーとしていたが、単体ゆえに排気口から多くの未利用エネルギーが廃棄されていた。この事象はレシプロエンジン等、従来の内燃機関にも惹起しており、その解決のため、数多の提案がなされていた。
また、騒音となる燃焼による爆発音を軽減すべく従来既存の消音マフラーが付随される場合、運動エネルギーに対する抵抗要素としてその効率を低下させていた
In the previous application, the expansion pressure caused by the explosion of fuel in the combustion chamber was received only by the forward tip of the blade of a single rotor, which rotated the rotor and generated rotational energy, but because it was a single unit, a lot of unused energy was wasted from the exhaust port. This problem also occurred in conventional internal combustion engines such as reciprocating engines, and many proposals had been made to solve the problem.
In addition, when a conventional muffler is attached to reduce the noise of explosions caused by combustion, it acts as a resistance to kinetic energy, reducing its efficiency.

従来のピストン運動型のレシプロエンジンは注入、圧縮、爆発、排気の4工程を1サイクルとして同一のシリンダーを共用し、クランクロッドの進退運動により該工程が順次稼働するため、各4分の1が稼働工程となり、残り4分の3の工程は稼働待機態勢としての非効率性があるため、シリンダー数を増加して駆動力を強化する場合があり、また同一のシリンダーで燃料の注入工程と爆発工程を行えば、噴霧状燃料や水素等の燃焼用気体状の引火性の強い素材に対し安全上の脆弱性が常に危惧されるに対し、本発明のロータリーエンジンは前記各工程室を独立遮断して安全性を高めてその4工程は同時に稼働するため、3枚羽を装着したローターの場合、ローターの3分の1回転が1サイクルとなり、4枚羽を装着したローターの場合よりも膨張行程の円周距離は長く、1回転ではその羽根の数と同数の各サイクルが実現し、いずれの枚数でも待機態勢のない効率的な駆動力により、エンジンの小型化と軽量化が実現する。In conventional piston-type reciprocating engines, the four processes of injection, compression, explosion, and exhaust are one cycle, and the same cylinder is shared. These processes are operated sequentially by the back and forth movement of the crank rod, so one-quarter of each process is in operation, and the remaining three-quarters of the processes are in standby mode, which is inefficient. Therefore, the number of cylinders may be increased to strengthen the driving force. Furthermore, if the fuel injection process and explosion process are performed in the same cylinder, there is always a concern about safety vulnerabilities due to sprayed fuel, hydrogen, and other highly flammable combustion gas materials. However, in the rotary engine of the present invention, each process chamber is isolated independently to increase safety, and the four processes are operated simultaneously. Therefore, in the case of a rotor with three blades, one third of the rotor rotation is one cycle, and the circumferential distance of the expansion stroke is longer than in the case of a rotor with four blades, and in one rotation, the same number of cycles as the number of blades are realized. Regardless of the number of blades, the efficient driving force without standby mode can be achieved, which allows the engine to be made smaller and lighter.

従来、バンケル型ロータリーエンジンと呼称する内部の三角状ローターの偏心運動により駆動力を発生させる内燃機関はその偏心駆動態様により、クランクレスレシプロエンジンと称されるべきであり、一方、本発明のロータリーエンジンは偏心ロスのない有効性を実現するのである。Conventionally, internal combustion engines that generate driving force through the eccentric motion of an internal triangular rotor, known as Wankel type rotary engines, should be called crankless reciprocating engines due to their eccentric drive mode, while the rotary engine of the present invention achieves efficiency without eccentric loss.

本発明の実施の一例の形態を図1、図2、図3、図4に基づいて説明する。なお、図面において、連通形状の一方が長径となるのは、筒状体のローターの回転軸方向に長く平行の開口部とすることにより、排気口や排出口や導入口、等開口部を筒状体の形状に合わせて大きくして工程気体の速やかな通過を可能とするためである。
また、本実施例においては母筒状体と子筒状体のローターや外周を同径サイズとしているが、異径サイズとすることによりローターの回転軸方向の筒状体の母筒状体と子筒状体の輪切り形状の幅を調整し本発明のロータリーエンジンの設置環境に合わせた荷姿とする場合もある。
An embodiment of the present invention will be described with reference to Figures 1, 2, 3, and 4. In the drawings, the reason why one of the communication shapes has a long diameter is that by making the opening long and parallel to the rotation axis direction of the rotor of the cylindrical body, the openings such as the exhaust port, exhaust port, and inlet port can be made large according to the shape of the cylindrical body, thereby enabling the process gas to pass through quickly.
In addition, in this embodiment, the rotors and outer peripheries of the main cylinder and the secondary cylinder are the same diameter size, but by making them different diameter sizes, the width of the cross-sections of the main cylinder and secondary cylinder in the direction of the rotor's rotational axis can be adjusted to create a package shape suited to the installation environment of the rotary engine of the present invention.

ロータリーエンジン1の母筒状体2の内半径の一部を二か所で大きくして爆発排気スペース221と吸入圧縮スペース223として、母筒状体ハウジング24内に挿嵌された母筒状体ローター21の回転軸Aに届かない深さで穿設された各羽根溝23に装着された母筒状体ハウジング24の内周壁に向かい3枚の前進後退する各羽根5の場合、母筒状体ハウジング24内は三つに区分けされ、その内周の3分の一に区分けされた爆発排気スペース221内の羽根5の先端部51が分割した点火素子8のある爆発室2211において、圧縮された燃焼用気体をその点火素子8が点火し爆発膨張させて先端部51を回転方向後面側から押してそのスペースの終端部の排気口26までBの方向に母筒状体ローター21を回転させる爆発工程と、先端部51の回転方向前面側にある燃焼気体が回転により押されて終端部の排気口26からCの方向に排気される排気工程があり吸入圧縮スペース223内では、母筒状体ローター21の回転により先端部51が吸入口27を過ぎて燃焼用気体を始端部の吸入口27からDの方向に吸入して、ローター回転方向後位の先端部51が吸入口27を通過して吸入圧縮スペース223内に燃焼用気体を封鎖状態とする吸入行程と、前記先端部51の回転方向前面側がその封鎖状態の燃焼用気体を回転方向に押しやって母筒状体ローター21と母筒状体ハウジング24内周の狭い間隙を通過させて燃焼用気体の体積を加圧して圧縮縮小し、点火素子8に移送する圧縮行程があるとした状況の母筒状体2の断面概略図。In the case where a part of the inner radius of the main cylindrical body 2 of the rotary engine 1 is enlarged at two places to form an explosion exhaust space 221 and an intake compression space 223, and three vanes 5 moving forward and backward toward the inner peripheral wall of the main cylindrical body housing 24 are attached to each vane groove 23 drilled at a depth not reaching the rotation axis A of the main cylindrical body rotor 21 inserted into the main cylindrical body housing 24, the inside of the main cylindrical body housing 24 is divided into three, and in the explosion exhaust space 221 divided into one third of the inner circumference, the tip end 51 of the vane 5 in the explosion chamber 2211 with the divided ignition element 8, the ignition element 8 ignites the compressed combustion gas and explodes and expands, pushing the tip end 51 from the rear side in the rotation direction, rotating the main cylindrical body rotor 21 in the direction B to the exhaust port 26 at the end of the space, This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion.In the intake compression space 223, as the mother cylindrical body rotor 21 rotates, the tip portion 51 passes the intake port 27 and draws in the combustion gas from the intake port 27 at the starting end in the direction D, and the tip portion 51 at the rear in the rotor rotation direction passes through the intake port 27 to seal the combustion gas in the intake compression space 223.This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. ロータリーエンジン1の子筒状体3の内半径の一部を大きくした部分を、始端部に導入口37と終端部に排出口36のある爆発延長スペース324として、子筒状体ハウジング32内に挿嵌された子筒状体ローター31の回転軸Aに届かない深さで穿設された各子筒状体羽根溝33に装着された各羽根5により、子筒状体ハウジング32内は区分けされ、先端部53で区分けされた爆発延長スペース324の始端部の導入口37は当図では視認不可の前記排気口26と連通してCの方向からの燃焼気体を先端部53が受け、Bの方向に子筒状体ローター31を回転させ、終端部の排出口36に膨張エネルギーをCの方向に排出している状況の子筒状体3の断面概略図。A schematic cross-sectional view of a sub-tube body 3 in a rotary engine 1, in which a portion of the inner radius of the sub-tube body 3 is enlarged to form an explosion extension space 324 with an inlet 37 at its starting end and an exhaust outlet 36 at its end, and the inside of the sub-tube body housing 32 is divided by each vane 5 attached to each sub-tube body vane groove 33 that is drilled to a depth that does not reach the rotation axis A of the sub-tube body rotor 31 inserted into the sub-tube body housing 32. The inlet 37 at the starting end of the explosion extension space 324 divided by the tip portion 53 is connected to the exhaust port 26, which is not visible in this figure, so that the tip portion 53 receives combustion gas from the direction C, rotates the sub-tube body rotor 31 in the direction B, and exhausts expansion energy in the direction C to the exhaust outlet 36 at the end portion. ロータリーエンジン1の、同径サイズで重ねられた状態により視別認識不能の筒状体の母筒状体2と子筒状体3と子筒状体4の各筒状体ローター21,31,41が回転軸Aを一直線状として連結されて、母筒状体2の母筒状体ローター21の爆発排気スペース221と、子筒状体3の子筒状体ローター31の爆発延長スペース324、と子筒状体4の子筒状体ローター41の爆発延長スペース423、が各ハウジング内周を透視的な点線71の位置で各3分割してその合計でそれらハウジング内周の一周に及ぶとして、排気口26と導入口37、排出口36と導入口47が各連通し、点火素子8と、表見同位置の、後図で判別される排出口46の位置から排気ガスがCの方向に排出した状態のロータリーエンジン1の前記断面概略図側からの概略外観図である。This is a schematic external view of the rotary engine 1 from the side of the cross-sectional schematic view in a state in which the main cylindrical body 2, the child cylindrical body 3, and the child cylindrical body 4 are cylindrical bodies that cannot be visually identified due to being stacked with the same diameter size, and the cylindrical body rotors 21, 31, and 41 are connected in a straight line along the rotation axis A, and the explosion exhaust space 221 of the main cylindrical body rotor 21 of the main cylindrical body 2, the explosion extension space 324 of the child cylindrical body rotor 31 of the child cylindrical body 3, and the explosion extension space 423 of the child cylindrical body rotor 41 of the child cylindrical body 4 divide the inner circumference of each housing into thirds at the position of the transparent dotted line 71, and together these spaces extend around one circumference of the inner circumference of the housing. The exhaust port 26 and the inlet port 37, and the exhaust port 36 and the inlet port 47 are each connected, and exhaust gas is discharged in the direction C from the exhaust port 46, which is in the same position as the ignition element 8 and which will be identified in the later figure. ロータリーエンジン1の、母筒状体2の点線で概略図示の吸入口27にCの方向から燃焼用気体が吸入され点火素子8のある母筒状体2の回転軸Aと子筒状体3と子筒状体4の点線で示した各回転軸Aが1直線状に連結されてそれら筒状体が重ねられて一体化し、母筒状体2での燃焼気体は、連通した排気口26と導入口37をEの方向に通過して子筒状体3内に移動し、さらに、対側位置にあり視認不可の、点線で概略図示の排出口36と導入口47が連通して子筒状体3内から子筒状体4内へFの方向に燃焼気体が移動し、点線で概略図示の排出口46ではCの方向に燃焼気体たる膨張エネルギーを連通することなく放出している様子のロータリーエンジン1の回転軸Aと平行側からの外観概略図。1 is a schematic external view of a rotary engine 1 from the side parallel to the rotation axis A, in which combustion gas is taken into the intake port 27 of the main cylinder 2, shown generally by a dotted line, from the direction C, and the rotation axis A of the main cylinder 2, which contains the ignition element 8, and the rotation axes A of the secondary cylinders 3 and 4, shown generally by dotted lines, are connected in a straight line, and these cylinders are stacked and integrated, and the combustion gas in the main cylinder 2 passes through the connected exhaust port 26 and inlet port 37 in the direction E and moves into the secondary cylinder 3, and further, the exhaust port 36 and inlet port 47, shown generally by a dotted line but located on the opposite side and not visible, are connected, and the combustion gas moves from inside the secondary cylinder 3 to inside the secondary cylinder 4 in the direction F, and the expansion energy of the combustion gas is released in the direction C from the exhaust port 46, shown generally by a dotted line, without being communicated.

1ロータリーエンジン
2母筒状体
3子筒状体
4子筒状体
5羽根
8点火素子
21母筒状体ローター
23羽根溝
24母筒状体ハウジング
26排気口
27吸入口
31子筒状体ローター
32子筒状体ハウジング
33子筒状体羽根溝
36排出口
37導入口
41子筒状体ローター
46排出口
47導入口
51先端部
53先端部
71点線
221爆発排気スペース
223吸入圧縮スペース
324爆発延長スペース
423爆発延長スペース
2211爆発室
A回転軸
B方向
C方向
D方向
E方向
F方向
1 rotary engine 2 main cylinder 3 secondary cylinder 4 secondary cylinder 5 blade 8 ignition element 21 main cylinder rotor 23 blade groove 24 main cylinder housing 26 exhaust port 27 intake port 31 secondary cylinder rotor 32 secondary cylinder housing 33 secondary cylinder blade groove 36 exhaust port 37 intake port 41 secondary cylinder rotor 46 exhaust port 47 intake port 51 tip 53 tip 71 dotted line 221 explosion exhaust space 223 intake compression space 324 explosion extension space 423 explosion extension space 2211 explosion chamber A rotation axis B direction C direction D direction E direction F direction

円筒形の内周壁を有する筒状体の内半径の一部を大きくしたスペースのハウジングを設け、別設したローターの回転軸からの放射状方向に穿設した数本の羽根溝にハウジングの内周壁に向かって前進後退してハウジング内を区分けする羽根を装着したローターをそのハウジング内に挿嵌して、
ローターの回転方向のそのスペースの始端部に点火素子を設けて前進した羽根の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が、点火素子の点火により爆発して該羽根の先端を押してローターを回転させ、そのスペースの終端部に排気口を設定して爆発排気スペースとして、該筒状体の両側を側壁により閉鎖した筒状体を母筒状体と称し、
円筒形の内周壁を有する他の筒状体の内半径の一部を一か所大きくしたスペースを、その始端部に導入口と終端部に排出口のある爆発延長スペースとしたハウジングを設け、前記様の羽根溝のローターをそのハウジング内に挿嵌して、該筒状体の両側を側壁により閉鎖した一つ以上の筒状体を子筒状体と称し、
それらローターの回転軸を一直線状に連決して隣り合うローターの連結部分以外、側壁により閉鎖された各筒状体を重ねて一体化し、
排気口または排出口と導入口が連通したロータリーエンジンとする。
A housing is provided with a space in which the inner radius of a tubular body having a cylindrical inner peripheral wall is increased in part, and a rotor is inserted into the housing, the rotor having blades that move forward and backward toward the inner peripheral wall of the housing and divide the inside of the housing into several blade grooves drilled in the radial direction from the rotation axis of the rotor.
An ignition element is provided at the beginning of the space in the direction of rotation of the rotor, and the pressurized gas for explosion is continuously supplied to the explosion chamber divided by the tip of the advancing blade. When the ignition element is ignited, the gas explodes, pushing the tip of the blade and rotating the rotor. An exhaust port is provided at the end of the space to form an explosion exhaust space. The cylindrical body with both sides of the cylindrical body closed by side walls is called a mother cylindrical body.
A housing is provided in which a space is created by increasing the inner radius of another cylinder having a cylindrical inner peripheral wall in one place, and the space is made into an explosion extension space having an inlet at its start end and an outlet at its end. The rotor having the above-mentioned blade groove is inserted into the housing, and one or more cylinders each having both sides of the cylinder closed by side walls are called child cylinders.
The rotors are connected in a straight line with their rotation axes aligned, and the cylindrical bodies are closed by side walls and integrated together except for the connecting portions of the adjacent rotors.
The rotary engine has an exhaust port or an exhaust port and an inlet connected to each other.

本発明は、爆発延長スペースのある子筒状体を付加することにより爆発行程を延長する効果を生み、爆発行程で発生した運動エネルギーを、排気口や排出口と導入口が連通して隣接の爆発延長スペースにおいても爆発膨張ガス、すなわち運動エネルギーを導入してローターを回転させるので、母筒状体の爆発排気スペース部分の回転範囲に限られることなく、爆発行程で発生した運動エネルギーの利用採取範囲を拡大させて燃費の向上を図り、前記増設付加態様次第では母筒状体のローターの1回転以上の利用採取範囲も可能となり、例えば後記図面の3枚羽の母筒状体に、子筒状体を三個付加した場合、ハウジング円周の凡そ3分の4、1回転以上の利用採取範囲となり、
また、2枚羽の母筒状体の場合には筒状体外部の加圧気体の収容装置と爆発室を連通させて爆発室内に爆発用の加圧気体を連続して補給して爆発させ、慣性によりローターを回転させ、以上、爆発行程で発生した運動エネルギーの有効的存在が消滅するか、取り付け外形の収納容量の許す限り、子筒状体の増設付加を検討できる。
The present invention produces the effect of extending the explosion stroke by adding a sub-tubular body with an explosion extension space, and the kinetic energy generated during the explosion stroke is introduced into the adjacent explosion extension space through an inlet that is connected to the exhaust port and exhaust port, as explosive expansion gas, i.e., kinetic energy, to rotate the rotor. Therefore, the rotation range is not limited to the explosion exhaust space of the main tube body, but the utilization range of the kinetic energy generated during the explosion stroke is expanded, thereby improving fuel efficiency. Depending on the mode of addition, it is possible to utilize the kinetic energy for more than one rotation of the rotor of the main tube body. For example, when three sub-tubular bodies are added to the three-blade main tube body shown in the drawings below, the utilization range is approximately 3/4 of the housing circumference, or more than one rotation.
In the case of a two-blade main cylindrical body, the pressurized gas storage device outside the cylindrical body is connected to the explosion chamber, and the pressurized gas for explosion is continuously supplied to the explosion chamber to cause an explosion, and the rotor rotates due to inertia.As described above, the effective existence of the kinetic energy generated during the explosion process disappears, or as long as the storage capacity of the attached external dimensions allows, the addition of additional sub-cylindrical bodies can be considered.

従来のピストン運動型のレシプロエンジンは注入、圧縮、爆発、排気の4工程を1サイクルとして同一のシリンダーを共用し、クランクロッドの進退運動により該工程が順次稼働するため、各4分の1が稼働工程となり、残り4分の3の工程は稼働待機態勢としての非効率性があるため、シリンダー数を増加して駆動力を強化する場合があり、また同一のシリンダーで燃料の注入工程と爆発工程を行えば、噴霧状燃料や水素等の燃焼用気体状の引火性の強い素材に対し安全上の脆弱性が常に危惧されるに対し、本発明のロータリーエンジンは該当行程において、各工程室を独立遮断して安全性を高めてその工程は同時に稼働するため、3枚羽を装着したローターの場合、ローターの3分の1回転が1サイクルとなり、4枚羽を装着したローターの場合よりも膨張行程の円周距離は長く、1回転ではその羽根の数と同数の各サイクルが実現し、いずれの枚数でも待機態勢のない効率的な駆動力により、エンジンの小型化と軽量化が実現する。 In conventional piston-type reciprocating engines, the four processes of injection, compression, explosion, and exhaust are one cycle, and the same cylinder is shared. These processes are operated sequentially by the back and forth movement of the crank rod, so one-quarter of each process is in operation, and the remaining three-quarters of the process is in a standby state, which is inefficient. Therefore, the number of cylinders may be increased to strengthen the driving force. Also, if the fuel injection process and explosion process are performed in the same cylinder, there is always a concern about safety vulnerabilities due to highly flammable materials in the form of sprayed fuel and gas for combustion, such as hydrogen. In contrast, in the rotary engine of the present invention, each process chamber is isolated independently during the corresponding process, increasing safety, and the processes are operated simultaneously. In the case of a rotor with three blades, one third of the rotor rotation is one cycle, and the circumferential distance of the expansion stroke is longer than in the case of a rotor with four blades, and in one rotation, the same number of cycles as the number of blades are realized. Regardless of the number of blades, the efficient driving force without standby state is realized, which allows the engine to be made smaller and lighter.

本発明の実施の一例の形態を図1、図2、図3、図4、図5、図6、に基づいて説明する。
なお、図面において、連通口形状の一方が長径となるのは、筒状体のローターの回転軸方向に長く平行の開口部とすることにより、排気口や排出口や導入口、等開口部を筒状体の形状に合わせて大きくして工程気体の速やかな通過を可能とするためである。
また、本実施例においては母筒状体と子筒状体のローターや外周を同径サイズとしているが、異径サイズとすることによりローターの回転軸方向の筒状体の母筒状体と子筒状体の輪切り形状の幅を調整し本発明のロータリーエンジンの設置環境に合わせた荷姿とする場合もある。
An embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, 4, 5, and 6. FIG.
In the drawings, one of the communication port shapes has a long diameter because the opening is long and parallel to the rotational axis direction of the rotor of the cylindrical body, thereby making the openings such as exhaust ports, exhaust ports, and inlet ports larger to match the shape of the cylindrical body, allowing the process gas to pass through quickly.
In addition, in this embodiment, the rotors and outer peripheries of the main cylinder and the secondary cylinder are the same diameter size, but by making them different diameter sizes, the width of the cross-sections of the main cylinder and secondary cylinder in the direction of the rotor's rotational axis can be adjusted to create a package shape suited to the installation environment of the rotary engine of the present invention.

ロータリーエンジン1の母筒状体2の内半径の一部を二か所で大きくして爆発排気スペース221と吸入圧縮スペース223として、母筒状体ハウジング24内に挿嵌された母筒状体ローター21の回転軸Aに届かない深さで穿設された各羽根溝23に装着された母筒状体ハウジング24の内周壁に向かい3枚の前進後退する各羽根5の場合、母筒状体ハウジング24内は三つに区分けされ、その内周の3分の一に区分けされた爆発排気スペース221内の羽根5の先端部51が分割した点火素子8のある爆発室2211において、圧縮された燃焼用気体をその点火素子8が点火し爆発膨張させて先端部51を回転方向後面側から押してそのスペースの終端部の排気口26までBの方向に母筒状体ローター21を回転させる爆発工程と、先端部51の回転方向前面側にある燃焼気体が回転により押されて終端部の排気口26からCの方向に排気される排気工程があり吸入圧縮スペース223内では、母筒状体ローター21の回転により先端部51が吸入口27を過ぎて燃焼用気体を始端部の吸入口27からDの方向に吸入して、ローター回転方向後位の先端部51が吸入口27を通過して吸入圧縮スペース223内に燃焼用気体を封鎖状態とする吸入行程と、前記先端部51の回転方向前面側がその封鎖状態の燃焼用気体を回転方向に押しやって母筒状体ローター21と母筒状体ハウジング24内周の狭い間隙を通過させて燃焼用気体の体積を加圧して圧縮縮小し、点火素子8に移送する圧縮行程があるとした状況の母筒状体2の断面概略図。In the case where a part of the inner radius of the main cylindrical body 2 of the rotary engine 1 is enlarged at two places to form an explosion exhaust space 221 and an intake compression space 223, and three vanes 5 moving forward and backward toward the inner peripheral wall of the main cylindrical body housing 24 are attached to each vane groove 23 drilled at a depth not reaching the rotation axis A of the main cylindrical body rotor 21 inserted into the main cylindrical body housing 24, the inside of the main cylindrical body housing 24 is divided into three, and in the explosion exhaust space 221 divided into one third of the inner circumference, the tip end 51 of the vane 5 in the explosion chamber 2211 with the divided ignition element 8, the ignition element 8 ignites the compressed combustion gas and explodes and expands, pushing the tip end 51 from the rear side in the rotation direction, rotating the main cylindrical body rotor 21 in the direction B to the exhaust port 26 at the end of the space, This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. Within the intake compression space 223, the rotation of the mother cylindrical body rotor 21 causes the tip portion 51 to pass the intake port 27 and intake the combustion gas from the intake port 27 at the starting end in the direction D, and the tip portion 51 at the rear in the rotor rotation direction passes through the intake port 27 to seal the combustion gas in the intake compression space 223. This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. ロータリーエンジン1の子筒状体3の内半径の一部を大きくした部分を、始端部に導入口37と終端部に排出口36のある爆発延長スペース324として、子筒状体ハウジング32内に挿嵌された子筒状体ローター31の回転軸Aに届かない深さで穿設された各子筒状体羽根溝33に装着された各羽根5により、子筒状体ハウジング32内は区分けされ、先端部53で区分けされた爆発延長スペース324の始端部の導入口37は当図では視認不可の前記排気口26と連通してCの方向からの燃焼気体を先端部53が受け、Bの方向に子筒状体ローター31を回転させ、終端部の排出口36に膨張エネルギーをCの方向に排出している状況の子筒状体3の断面概略図。A schematic cross-sectional view of a sub-tube body 3 in a rotary engine 1, in which a portion of the inner radius of the sub-tube body 3 is enlarged to form an explosion extension space 324 with an inlet 37 at its starting end and an exhaust outlet 36 at its end, and the inside of the sub-tube body housing 32 is divided by each vane 5 attached to each sub-tube body vane groove 33 drilled to a depth that does not reach the rotation axis A of the sub-tube body rotor 31 inserted into the sub-tube body housing 32. The inlet 37 at the starting end of the explosion extension space 324 divided by the tip portion 53 is connected to the exhaust port 26, which is not visible in this figure, so that the tip portion 53 receives combustion gas from the direction C, rotates the sub-tube body rotor 31 in the direction B, and exhausts expansion energy in the direction C to the exhaust outlet 36 at the end portion. ロータリーエンジン1の、同径サイズで重ねられた状態により視別認識不能の筒状体の母筒状体2と子筒状体3と子筒状体4の各筒状体ローター21,31,41が回転軸Aを一直線状として連結されて、母筒状体2の母筒状体ローター21の爆発排気スペース221と、子筒状体3の子筒状体ローター31の爆発延長スペース324、と子筒状体4の子筒状体ローター41の爆発延長スペース423、が各ハウジング内周を透視的な点線71の位置で各3分割してその合計でそれらハウジング内周の一周に及ぶとして、排気口26と導入口37、排出口36と導入口47が各連通し、点火素子8と、表見同位置の、後図で判別される排出口46の位置から燃焼気体がCの方向に排出した状態のロータリーエンジン1の前記断面概略図側からの概略外観図である。This is a schematic external view of the rotary engine 1 from the side of the cross-sectional schematic view in a state in which the main cylindrical body 2, the child cylindrical body 3, and the child cylindrical body 4 are cylindrical bodies that cannot be visually identified due to being stacked with the same diameter size, and the cylindrical body rotors 21, 31, and 41 are connected in a straight line along the rotation axis A, and the explosion exhaust space 221 of the main cylindrical body rotor 21 of the main cylindrical body 2, the explosion extension space 324 of the child cylindrical body rotor 31 of the child cylindrical body 3, and the explosion extension space 423 of the child cylindrical body rotor 41 of the child cylindrical body 4 divide the inner circumference of each housing into thirds at the position of the transparent dotted line 71, and together these spaces extend around one circumference of the inner circumference of the housing. The exhaust port 26 and the inlet port 37, and the exhaust port 36 and the inlet port 47 are each connected, and combustion gas is discharged in the direction C from the exhaust port 46, which is in the same position as the ignition element 8 and which will be identified in the later figure. ロータリーエンジン1の、母筒状体2の点線で概略図示の吸入口27にCの方向から燃焼用気体が吸入され点火素子8のある母筒状体2の回転軸Aと子筒状体3と子筒状体4の点線で示した各回転軸Aが1直線状に連結されてそれら筒状体が重ねられて一体化し、母筒状体2での燃焼気体は、連通した排気口26と導入口37をEの方向に通過して子筒状体3内に移動し、さらに、対側位置にあり視認不可の、点線で概略図示の排出口36と導入口47が連通して子筒状体3内から子筒状体4内へFの方向に燃焼気体が移動し、点線で概略図示の排出口46ではCの方向に燃焼気体たる膨張エネルギーを連通することなく放出している様子のロータリーエンジン1の回転軸Aと平行側からの外観概略図。1 is a schematic external view of a rotary engine 1 from the side parallel to the rotation axis A, in which combustion gas is taken into the intake port 27, shown diagrammatically by a dotted line, of the main cylinder 2, and the rotation axis A, shown diagrammatically by dotted lines, of the main cylinder 2, which contains the ignition element 8, is connected in a straight line to the rotation axes A, shown diagrammatically by dotted lines, of the sub-cylinders 3 and 4, and the cylinders are stacked and integrated. The combustion gas in the main cylinder 2 passes through the connected exhaust port 26 and inlet port 37 in the direction E and moves into the sub-cylinder 3. Furthermore, the exhaust port 36 and inlet port 47, shown diagrammatically by dotted lines but located on the opposite side and not visible, are connected to each other, and the combustion gas moves in the direction F from the sub-cylinder 3 to the sub-cylinder 4. The expansion energy of the combustion gas is released in the direction C from the exhaust port 46, shown diagrammatically by dotted line, without being communicated. ロータリーエンジン1の母筒状体25に装着する羽根5を2枚とした場合、母筒状体ハウジング255内は二つに区分けされ、爆発用の加圧気体は筒状体外部のその収容装置6から連通部9を通過して点火素子8のある爆発室22115に連続して補給されるべく、連通部9の爆発室22115側で母状体ローター215の外周面212と軸方向に長径に摺接する噴出弁7が、外周面212の面位からなだらかに離隔する離隔面715と母筒状体ハウジング255との間隙にローターの回転と同期して一定量の加圧気体を注入して、点火素子8が点火爆発させ、その爆発燃焼気体が排気口265から排気されている状況の母筒状体25の断面概略図。When two blades 5 are attached to the main cylinder body 25 of the rotary engine 1, the main cylinder body housing 255 is divided into two sections, and the pressurized gas for explosion is continuously supplied from the storage device 6 outside the cylinder through the connecting part 9 to the explosion chamber 22115 in which the ignition element 8 is located.The ejection valve 7, which is in sliding contact with the outer peripheral surface 212 of the main body rotor 215 on the explosion chamber 22115 side of the connecting part 9 along its long diameter in the axial direction, injects a certain amount of pressurized gas into the gap between the main cylinder body housing 255 and the separation surface 715, which is gradually separated from the surface of the outer peripheral surface 212, in synchronization with the rotation of the rotor, and the ignition element 8 ignites and explodes the gas, and the exploded combustion gas is exhausted from the exhaust port 265.This is a schematic cross-sectional view of the main cylinder body 25 in a state in which the pressurized gas for explosion is continuously supplied from the storage device 6 outside the cylinder through the connecting part 9. 羽根5を2枚装着した場合の回転同状となる母筒状体ローター215の外周面212の面位からなだらかに離隔する離隔面715の概略説明図。FIG. 13 is a schematic explanatory diagram of a separation surface 715 that is gently separated from the surface of the outer circumferential surface 212 of the main cylindrical body rotor 215 that rotates in the same manner when two blades 5 are attached.

1ロータリーエンジン
2母筒状体
3子筒状体
4子筒状体
5羽根
6収容装置
7噴出弁
8点火素子
9連通部
21母筒状体ローター
23羽根溝
24母筒状体ハウジング
25母筒状体
26排気口
27吸入口
31子筒状体ローター
32子筒状体ハウジング
33子筒状体羽根溝
36排出口
37導入口
41子筒状体ローター
46排出口
47導入口
51先端部
53先端部
71点線
212外周面
215母筒状体ローター
221爆発排気スペース
223吸入圧縮スペース
255母筒状体ハウジング
265排気口
324爆発延長スペース
423爆発延長スペース
715離隔面
2211爆発室
22115爆発室
A回転軸
B方向
C方向
D方向
E方向
F方向
1 Rotary engine 2 Main cylinder body 3 Sub-cylinder body 4 Sub-cylinder body 5 Blade 6 Storage device 7 Jet valve 8 Ignition element 9 Communication part 21 Main cylinder body rotor
23 blade groove 24 main cylinder housing 25 main cylinder 26 exhaust port 27 intake port 31 secondary cylinder rotor 32 secondary cylinder housing 33 secondary cylinder blade groove 36 exhaust port 37 inlet port 41 secondary cylinder rotor 46 exhaust port 47 inlet port 51 tip portion 53 tip portion
71 dotted line 212 outer circumferential surface 215 main cylinder rotor
221 Explosion exhaust space 223 Suction compression space 255 Main cylinder housing 265 Exhaust port 324 Explosion extension space 423 Explosion extension space 715 Partition surface 2211 Explosion chamber 22115 Explosion chamber
A rotation axis B direction
C direction D direction
E direction
F direction

ロータリーエンジン1の母筒状体2の内半径の一部を二か所で大きくして爆発排気スペース221と吸入圧縮スペース223として、母筒状体ハウジング24内に挿嵌された母筒状体ローター21の回転軸Aに届かない深さで穿設された各羽根溝23に装着された母筒状体ハウジング24の内周壁に向かい3枚の前進後退する各羽根5の場合、母筒状体ハウジング24内は三つに区分けされ、その内周の3分の一に区分けされた爆発排気スペース221内の羽根5の先端部51が分割した点火素子8のある爆発室2211において、圧縮された燃焼用気体をその点火素子8が点火し爆発膨張させて先端部51を回転方向後面側から押してそのスペースの終端部の排気口26までBの方向に母筒状体ローター21を回転させる爆発工程と、先端部51の回転方向前面側にある燃焼気体が回転により押されて終端部の排気口26からCの方向に排気される排気工程があり吸入圧縮スペース223内では、母筒状体ローター21の回転により先端部51が吸入口27を過ぎて燃焼用気体を始端部の吸入口27からDの方向に吸入して、ローター回転方向後位の先端部51が吸入口27を通過して吸入圧縮スペース223内に燃焼用気体を封鎖状態とする吸入行程と、前記先端部51の回転方向前面側がその封鎖状態の燃焼用気体を回転方向に押しやって母筒状体ローター21と母筒状体ハウジング24内周の狭い間隙を通過させて燃焼用気体の体積を加圧して圧縮縮小し、点火素子8に移送する圧縮行程があるとした状況の母筒状体2の断面概略図。In the case where a part of the inner radius of the main cylindrical body 2 of the rotary engine 1 is enlarged at two places to form an explosion exhaust space 221 and an intake compression space 223, and three vanes 5 moving forward and backward toward the inner peripheral wall of the main cylindrical body housing 24 are attached to each vane groove 23 drilled at a depth not reaching the rotation axis A of the main cylindrical body rotor 21 inserted into the main cylindrical body housing 24, the inside of the main cylindrical body housing 24 is divided into three, and in the explosion exhaust space 221 divided into one third of the inner circumference, the tip end 51 of the vane 5 in the explosion chamber 2211 with the divided ignition element 8, the ignition element 8 ignites the compressed combustion gas and explodes and expands, pushing the tip end 51 from the rear side in the rotation direction, rotating the main cylindrical body rotor 21 in the direction B to the exhaust port 26 at the end of the space, This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. Within the intake compression space 223, the rotation of the mother cylindrical body rotor 21 causes the tip portion 51 to pass the intake port 27 and intake the combustion gas from the intake port 27 at the starting end in the direction D, and the tip portion 51 at the rear in the rotor rotation direction passes through the intake port 27 to seal the combustion gas in the intake compression space 223. This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are an explosion process in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. ロータリーエンジン1の子筒状体3の内半径の一部を大きくした部分を、始端部に導入口37と終端部に排出口36のある爆発延長スペース324として、子筒状体ハウジング32内に挿嵌された子筒状体ローター31の回転軸Aに届かない深さで穿設された各子筒状体羽根溝33に装着された各羽根5により、子筒状体ハウジング32内は区分けされ、先端部53で区分けされた爆発延長スペース324の始端部の導入口37は当図では視認不可の前記排気口26と連通してCの方向からの燃焼気体を先端部53が受け、Bの方向に子筒状体ローター31を回転させ、終端部の排出口36に膨張エネルギーをCの方向に排出している状況の子筒状体3の断面概略図。A schematic cross-sectional view of a sub-tube body 3 in a rotary engine 1, in which a portion of the inner radius of the sub-tube body 3 is enlarged to form an explosion extension space 324 with an inlet 37 at its starting end and an exhaust outlet 36 at its end, and the inside of the sub-tube body housing 32 is divided by each vane 5 attached to each sub-tube body vane groove 33 drilled to a depth that does not reach the rotation axis A of the sub-tube body rotor 31 inserted into the sub-tube body housing 32. The inlet 37 at the starting end of the explosion extension space 324 divided by the tip portion 53 is connected to the exhaust port 26, which is not visible in this figure, so that the tip portion 53 receives combustion gas from the direction C, rotates the sub-tube body rotor 31 in the direction B, and exhausts expansion energy in the direction C to the exhaust outlet 36 at the end portion. ロータリーエンジン1の、同径サイズで重ねられた状態により視別認識不能の筒状体の母筒状体2と子筒状体3と子筒状体4の各筒状体ローター21,31,41が回転軸Aを一直線状として連結されて、母筒状体2の母筒状体ローター21の爆発排気スペース221と、子筒状体3の子筒状体ローター31の爆発延長スペース324、と子筒状体4の子筒状体ローター41の爆発延長スペース423、が各ハウジング内周を透視的な点線71の位置で各3分割してその合計でそれらハウジング内周の一周に及ぶとして、排気口26と導入口37、排出口36と導入口47が各連通し、点火素子8と、表見同位置の、後図で判別される排出口46の位置から燃焼気体がCの方向に排出した状態のロータリーエンジン1の前記断面概略図側からの概略外観図である。This is a schematic external view of the rotary engine 1 from the side of the cross-sectional schematic view in a state in which the main cylindrical body 2, the child cylindrical body 3, and the child cylindrical body 4 are cylindrical bodies that cannot be visually identified due to being stacked with the same diameter size, and the cylindrical body rotors 21, 31, and 41 are connected in a straight line along the rotation axis A, and the explosion exhaust space 221 of the main cylindrical body rotor 21 of the main cylindrical body 2, the explosion extension space 324 of the child cylindrical body rotor 31 of the child cylindrical body 3, and the explosion extension space 423 of the child cylindrical body rotor 41 of the child cylindrical body 4 divide the inner circumference of each housing into thirds at the position of the transparent dotted line 71, and together these spaces extend around one circumference of the inner circumference of the housing. The exhaust port 26 and the inlet port 37, and the exhaust port 36 and the inlet port 47 are each connected, and combustion gas is discharged in the direction C from the exhaust port 46, which is in the same position as the ignition element 8 and which will be identified in the later figure. ロータリーエンジン1の、母筒状体2の点線で概略図示の吸入口27にCの方向から燃焼用気体が吸入され点火素子8のある母筒状体2の回転軸Aと子筒状体3と子筒状体4の点線で示した各回転軸Aが1直線状に連結されてそれら筒状体が重ねられて一体化し、母筒状体2での燃焼気体は、連通した排気口26と導入口37をEの方向に通過して子筒状体3内に移動し、さらに、対側位置にあり視認不可の、点線で概略図示の排出口36と導入口47が連通して子筒状体3内から子筒状体4内へFの方向に燃焼気体が移動し、点線で概略図示の排出口46ではCの方向に燃焼気体たる膨張エネルギーを連通することなく放出している様子のロータリーエンジン1の回転軸Aと平行側からの外観概略図。1 is a schematic external view of a rotary engine 1 from the side parallel to the rotation axis A, in which combustion gas is taken into the intake port 27, shown diagrammatically by a dotted line, of the main cylinder 2, and the rotation axis A, shown diagrammatically by dotted lines, of the main cylinder 2, which contains the ignition element 8, is connected in a straight line to the rotation axes A, shown diagrammatically by dotted lines, of the sub-cylinders 3 and 4, and the cylinders are stacked and integrated. The combustion gas in the main cylinder 2 passes through the connected exhaust port 26 and inlet port 37 in the direction E and moves into the sub-cylinder 3. Furthermore, the exhaust port 36 and inlet port 47, shown diagrammatically by dotted lines but located on the opposite side and not visible, are connected to each other, and the combustion gas moves in the direction F from the sub-cylinder 3 to the sub-cylinder 4. The expansion energy of the combustion gas is released in the direction C from the exhaust port 46, shown diagrammatically by dotted line, without being communicated. 本件出願文中、行程は工程の場合でもある。ロータリーエンジン1の母筒状体25に装着する羽根5を2枚とした場合、母筒状体ハウジング255内は二つに区分けされ、爆発用の加圧気体は筒状体外部のその収容装置6から連通部9を通過して点火素子8のある爆発室22115に連続して補給されるべく、連通部9の爆発室22115側で母筒状体ローター215の外周面212と摺接する軸方向に長径状の噴出弁7が外周面212の面位からなだらかに離隔して爆発室22115の一部として離隔面715が形成する容積にローターの回転と同期して一定量の加圧気体を注入し、ローターの回転により前記一部と合致して最大容積となった爆発室22115で点火素子8により点火爆発し、その爆発燃焼気体が排気口265から排気される状況での母筒状体ローター215は、吸入、圧縮工程のある3枚羽根や4枚羽根の場合、その工程は爆発行程の前工程であり、次々と回転力を生み出す前段であり、吸入圧縮爆発排気の4工程は連携するが、2枚羽根の場合、その工程が存在しないので、点火素子8の点火爆発寸前までは慣性により回転するとした断面概略図。In the present application, the term "stroke" also refers to a process. When the number of vanes 5 attached to the main cylinder 25 of the rotary engine 1 is two, the inside of the main cylinder housing 255 is divided into two, and the pressurized gas for explosion is continuously supplied from the storage device 6 outside the cylinder through the communication part 9 to the explosion chamber 22115 in which the ignition element 8 is located. The axially long jet valve 7 that slides against the outer circumferential surface 212 of the main cylinder rotor 215 on the explosion chamber 22115 side of the communication part 9 is gradually separated from the surface of the outer circumferential surface 212 and moves in synchronism with the rotation of the rotor to the volume formed by the separation surface 715 as part of the explosion chamber 22115. A fixed amount of pressurized gas is injected, and as the rotor rotates, it merges with the above-mentioned portion of the explosion chamber 22115, which becomes the maximum volume, and is ignited and exploded by the ignition element 8. The exploded and combusted gas is exhausted from the exhaust port 265. In the case of a three- or four-blade main cylindrical rotor 215 with intake and compression processes, this process is the process preceding the explosion stroke, and is the preliminary stage which generates rotational force one after the other, and the four processes of intake, compression, explosion and exhaust are linked, but in the case of a two-blade rotor, this process does not exist, so the rotor rotates by inertia until just before the ignition element 8 ignites and explodes. This is a schematic cross-sectional view. 羽根5を2枚装着した場合の回転同状となる母筒状体ローター215の外周面212の面位からなだらかに離隔する離隔面715の概略説明図。FIG. 13 is a schematic explanatory diagram of a separation surface 715 that is gently separated from the surface of the outer circumferential surface 212 of the main cylindrical body rotor 215 that rotates in the same manner when two blades 5 are attached.

母筒状体内のローターの回転軸と子筒状体のローターの回転軸を一直線状にして筒状体を重ねて一体化し、燃焼ガスの排気口または排出口と導入口を連通させて燃焼エネルギーの効率化により燃費の向上を図るロータリーエンジンに関する。
また、燃焼用気体を加圧して筒状体内に送り込む場合は、吸入を注入と呼び変える場合もある。
燃焼用気体の爆発は、燃焼であり膨張でもあり、文中、燃焼用気体とは空気と燃料の混合気をいい、加圧気体とはその燃焼用気体の加圧状態をいう。
This relates to a rotary engine in which the rotation axis of the rotor inside the main cylinder and the rotation axis of the rotor of the secondary cylinder are aligned in a straight line, the cylinders are stacked and integrated, and the exhaust or discharge port of the combustion gas is connected to the inlet, thereby improving fuel efficiency by making the combustion energy more efficient.
Also, when the combustion gas is pressurized and sent into the cylindrical body, suction may be called injection.
The explosion of combustion gas is both combustion and expansion. In this text, combustion gas refers to a mixture of air and fuel, and pressurized gas refers to the pressurized state of the combustion gas.

前記爆発室内に連続して補給される爆発用の加圧気体とは、特公平7-30706や、特願2022-8978にもいう筒状体内において、ハウジング内の注入、圧縮、爆発、排気、の各工程のうち、注入工程で注入口から爆発用の気体として注入され、圧縮行程で加圧圧縮されて爆発室に移送されて連続して補給されて爆発用となる加圧気体をいい、
同時に筒状体外部の爆発用の加圧気体の収容装置と爆発室を連通させれば、その爆発室側の連通口に設置した噴出弁が収容装置の加圧気体を爆発室内にローターの回転と同期して一定量噴出させる爆発用の加圧気体もいい、
或いはその筒状体内においての注入口を無くして注入、圧縮の行程を省略し、筒状体外部の爆発用の加圧気体の収容装置と爆発室を連通させ、その爆発室側の連通口に設置した噴出弁がその加圧気体を爆発室内にローターの回転と同期して一定量噴出させては停止し、その一定量噴出分を点火素子が点火爆発させる、などして前記連続補給される爆発用の加圧気体をいうのである。




The pressurized gas for explosion continuously supplied to the explosion chamber refers to a pressurized gas for explosion that is injected from an injection port in the injection process of the cylindrical body described in JP-B-7-30706 and JP-A-2022-8978, among the processes of injection, compression, explosion, and exhaust in the housing, is compressed in the compression process, and is transported to the explosion chamber and continuously supplied to become the gas for explosion.
At the same time, if the device for storing pressurized gas for explosion outside the cylindrical body is connected to the explosion chamber, a jet valve installed at the communication port on the explosion chamber side will jet a constant amount of pressurized gas from the storage device into the explosion chamber in synchronization with the rotation of the rotor.
Alternatively, the injection port within the cylindrical body is eliminated, omitting the steps of injection and compression, and the explosion chamber is connected to a storage device for pressurized gas for explosion outside the cylindrical body. A jet valve installed at the communication port on the explosion chamber side jets a fixed amount of the pressurized gas into the explosion chamber in synchronization with the rotation of the rotor and then stops, and an ignition element ignites and explodes that fixed amount of jetted gas, and so on. This refers to the pressurized gas for explosion that is continuously replenished as described above.




本発明は、爆発延長スペースのある子筒状体を付加することにより爆発行程を延長する効果を生み、爆発行程で発生した運動エネルギーを、排気口や排出口と導入口が連通して隣接の爆発延長スペースにおいても爆発膨張ガス、すなわち運動エネルギーを導入してローターを回転させるので、母筒状体の爆発排気スペース部分の回転範囲に限られることなく、爆発行程で発生した運動エネルギーの利用採取範囲を拡大させて燃費の向上を図り、前記増設付加態様次第では母筒状体のローターの1回転以上の利用採取範囲も可能となり、例えば後記図面の3枚羽の母筒状体に、子筒状体を三個付加した場合、ハウジング円周の凡そ3分の4、1回転以上の利用採取範囲となり、
また、2枚羽の母筒状体の場合には筒状体外部の加圧気体の収容装置と爆発室を連通させて爆発室内に爆発用の加圧気体を連続して補給して爆発させ、慣性によりローターを回転させ、以上、爆発行程で発生した運動エネルギーの有効的存在が消滅するか、取り付け外形の収納容量の許す限り、子筒状体の増設付加を検討できる。
The present invention produces the effect of extending the explosion stroke by adding a sub-tubular body with an explosion extension space, and the kinetic energy generated during the explosion stroke is introduced into the adjacent explosion extension space through an inlet that is connected to the exhaust port and exhaust port, as explosive expansion gas, i.e., kinetic energy, to rotate the rotor. Therefore, the rotation range is not limited to the explosion exhaust space of the main tube body, but the utilization range of the kinetic energy generated during the explosion stroke is expanded, thereby improving fuel efficiency. Depending on the mode of addition, it is possible to utilize the kinetic energy for more than one rotation of the rotor of the main tube body. For example, when three sub-tubular bodies are added to the three-blade main tube body shown in the drawings below, the utilization range is approximately 3/4 of the housing circumference, or more than one rotation.
In the case of a two-blade main cylindrical body, the pressurized gas storage device outside the cylindrical body is connected to the explosion chamber, and the pressurized gas for explosion is continuously supplied to the explosion chamber to cause an explosion, and the rotor rotates due to inertia.As described above, the effective existence of the kinetic energy generated during the explosion process disappears, or as long as the storage capacity of the attached external dimensions allows, the addition of additional sub-cylindrical bodies can be considered.

そうして、
爆発行程での爆発エネルギーをローターの羽根の前記先端部分が受けて回転する母筒状体のローターの回転軸と、子筒状体のローターの回転軸を一直線状に連結して筒状体を重ねて一体化するにおいて、母筒状体内でローターを回転させるエネルギーとなり得なかった残余の爆発エネルギーは排気口に連通する子筒状体の導入口から子筒状体内の爆発延長スペースに導入されてそのスペースのローターの羽根の前進した先端部分が受けて子筒状体のローターを回転させるもので、母筒状体に連通する子筒状体と、さらに追加の子筒状体を同様に排出口と導入口を連結増設すれば、さらなる回転エネルギー採取の効率化が図られ、この態様は例えば床に置いた静止状態の重い荷物を移動する場合、最初は比較強大な力を必要としても、一旦動き始めた荷物は比較弱小の力でも移動継続できるように、母筒状体内の爆発エネルギーはローターを回転させ始める力として働き、子筒状体内の爆発延長スペースに導入された残余の爆発エネルギーは比較弱小のエネルギーであっても回転し始めたローターを回転推進する力として働くために回転エネルギー採取の効率化が図られるのであり、また、消音マフラーの如く爆発延長スペースの延長増加による消音効果で、それら問題解決に寄与するのである。
And so,
The rotor shaft of the main cylinder, which receives the explosion energy during the explosion process and rotates at the tip of the rotor blade, is connected in a straight line to the rotor shaft of the child cylinder, and the cylinders are stacked and integrated. The remaining explosion energy that cannot be used to rotate the rotor in the main cylinder is introduced from the inlet of the child cylinder, which communicates with the exhaust port, into the explosion extension space in the child cylinder, where it is received by the forward-moving tip of the rotor blade in that space, causing the rotor of the child cylinder to rotate. If the child cylinder, which communicates with the main cylinder, and additional child cylinders are similarly connected to the exhaust port and inlet, further rotational energy can be generated. This configuration improves the efficiency of energy collection, and for example, when moving a heavy load that is placed on the floor and in a stationary state, a relatively great force is required initially, but once the load starts moving, a relatively small force can be used to continue moving. The explosion energy inside the main cylindrical body acts as a force to start the rotor rotating, and the remaining explosion energy introduced into the explosion extension space inside the child cylindrical body, even though it is a relatively small energy, acts as a force to rotate and propel the rotor that has started to rotate, thereby improving the efficiency of rotational energy collection.In addition, the sound-absorbing effect achieved by increasing the extension of the explosion extension space, like a sound-absorbing muffler, contributes to solving these problems.

母筒状体内のローターの回転軸と子筒状体のローターの回転軸を一直線状にして筒状体を重ねて一体化し、燃焼ガスの排気口または排出口と導入口を連通させて燃焼エネルギーの効率化により燃費の向上を図るロータリーエンジンに関する。
また、燃焼用気体を加圧して筒状体内に送り込む場合は、吸入を注入と呼び変える場合もある。
燃焼用気体の爆発は、燃焼であり膨張でもある
This relates to a rotary engine in which the rotation axis of the rotor inside the main cylinder and the rotation axis of the rotor of the secondary cylinder are aligned in a straight line, the cylinders are stacked and integrated, and the exhaust or discharge port of the combustion gas is connected to the inlet, thereby improving fuel efficiency by making the combustion energy more efficient.
Also, when the combustion gas is pressurized and sent into the cylindrical body, suction may be called injection.
The explosion of combustion gases is both a combustion and an expansion.

ロータリーエンジンの、特公平7-30706や、特願2022-8978は燃焼行程で発生した運動エネルギーの未利用部分はそのまま爆音と共に排出されていた In the rotary engine patent application JP7-30706 and patent application 2022-8978, the unused kinetic energy generated during the combustion process was simply discharged with a loud noise.

それは、前記内燃機関の燃焼行程で発生した運動エネルギーの未利用部分と爆音が構造的仕組みにより、そのまま排出せざるを得なかったためである。 This is because the unused kinetic energy generated during the combustion process of the internal combustion engine and the loud noise had to be discharged as is due to the structural design.

先願のロータリーエンジンの、特公平7-30706はローターの回転時に該羽根の先端とロータリー内燃機関の内周壁曲面が乖離するのを防ぐために設けた羽根底のばねや燃焼圧取入孔に燃焼圧を導入して羽根の基端から羽根を押し上げる構成であり、特願2022-8978の羽根は、該羽根の先端部から内周曲面方向への縦方向、あるいは両側の側壁方向への横方向の突出部がロータリーエンジン内に周回掘削したガイド溝と周回自在に密接嵌合させることにより、ロータリーエンジン内は内周曲面と該羽根先端が常に密接周回するものであった The earlier rotary engine application, JP Patent Publication No. 7-30706, has a structure in which combustion pressure is introduced into a spring or combustion pressure intake hole at the base of the blade to prevent the tip of the blade from separating from the curved inner wall of the rotary internal combustion engine when the rotor rotates, and the blade of JP Patent Application No. 2022-8978 has a structure in which the protrusions from the tip of the blade in the vertical direction toward the curved inner wall or the horizontal direction toward the side walls on both sides are tightly fitted into guide grooves drilled around the rotary engine so that the inner curved surface and the tip of the blade always rotate in close contact with each other inside the rotary engine.

いずれも単一の筒状体形状の燃焼行程で発生したエネルギーを燃焼爆発時に回転エネルギーに一部変換する以外、未利用の運動エネルギーはそのまま外部に廃棄され、またエンジン内で爆音が軽減されることはなかったが、内燃機関の爆発行程で発生した運動エネルギーのさらなる回転エネルギーへの変換効率化を
図ることにより、爆音も軽減されるべきであった
In both cases, the energy generated in the combustion process of a single cylindrical body is partially converted into rotational energy during combustion and explosion, and the unused kinetic energy is simply discarded to the outside. In addition, the explosion noise inside the engine was not reduced, but the efficiency of converting the kinetic energy generated in the explosion process of an internal combustion engine into rotational energy was improved.
By doing so, the explosion noise should have been reduced.

円筒形の内周壁を有する筒状体の内半径の一部を大きくしたスペースのハウジングを設け、別設したローターの回転軸からの放射状方向に穿設した数本の羽根溝にハウジングの内周壁に向かって前進後退してハウジング内を区分けする羽根を装着したローターをそのハウジング内に挿嵌して、ローターの回転方向のそのスペースの始端部に点火素子を設けて前進した羽根の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が、点火素子の点火により爆発して該羽根の先端を押してローターを回転させ、そのスペースの終端部に排気口を設定して爆発排気スペースとして、該筒状体の両側を側壁により閉鎖した筒状体を母筒状体と称し、
円筒形の内周壁を有する他の筒状体の内半径の一部を一か所大きくしたスペースを、その始端部に導入口と終端部に排出口のある爆発延長スペースとしたハウジングを設け、前記様の羽根溝のローターをそのハウジング内に挿嵌して、該筒状体の両側を側壁により閉鎖した一つ以上の筒状体を子筒状体と称し、
それらローターの回転軸を一直線状に連結して筒状体を重ねて一体化し、排気口または排出口と導入口が連通したロータリーエンジンとする。
A housing is provided with a space in which the inner radius of a cylinder having a cylindrical inner wall is enlarged in part, a rotor is fitted into the housing, and vanes are attached to several vane grooves drilled in a radial direction from the rotation axis of the rotor, which vanes move forward and backward toward the inner wall of the housing to divide the inside of the housing. An ignition element is provided at the start of the space in the rotation direction of the rotor, and pressurized gas for explosion is continuously supplied into an explosion chamber divided by the tip of the advancing vane, which explodes when ignited by the ignition element, pushing the tip of the vane and rotating the rotor. An exhaust port is provided at the end of the space to form an explosion exhaust space, and the cylinder closed on both sides by side walls is called a mother cylinder.
A housing is provided in which a space is created by increasing the inner radius of another cylinder having a cylindrical inner peripheral wall in one place, and the space is made into an explosion extension space having an inlet at its start end and an outlet at its end. The rotor having the above-mentioned blade groove is inserted into the housing, and one or more cylinders each having both sides of the cylinder closed by side walls are called child cylinders.
The rotating shafts of these rotors are connected in a straight line and the cylindrical bodies are stacked and integrated to form a rotary engine in which the exhaust port or exhaust port communicates with the inlet port.

前記爆発室内に連続して補給される爆発用の加圧気体とは、特公平7-30706や、特願2022-8978にもいう筒状体内において、ハウジング内の注入、圧縮、爆発、排気、の各工程のうち、注入工程で注入口から爆発用の気体として注入され、圧縮行程で加圧圧縮されて爆発室に移送されて連続して補給されて爆発用となる加圧気体を言い、
あるいはその筒状体内においての注入口を無くして注入、圧縮の行程を省略し、筒状体外部の爆発用の加圧気体の収容装置と爆発室を連通させ、その爆発室側の連通口に設置した噴出弁がその加圧気体を爆発室内にローターの回転と同期して一定量噴出させては停止し、その一定量噴出分を点火素子が点火爆発させる、などして連続補給される爆発用の加圧気体をいうのである。
The pressurized gas for explosion continuously supplied to the explosion chamber refers to a pressurized gas for explosion that is injected as a gas for explosion from an injection port in the injection process among the processes of injection, compression, explosion, and exhaust in a housing in a cylindrical body as described in JP-B-7-30706 and JP-A-2022-8978, compressed by pressure in the compression process, transported to the explosion chamber, and continuously supplied to become a gas for explosion.
Alternatively, the injection port within the cylindrical body is eliminated, omitting the steps of injection and compression, and the explosion chamber is connected to a storage device for pressurized gas for explosion outside the cylindrical body. A jet valve installed at the communication port on the explosion chamber side jets a fixed amount of pressurized gas into the explosion chamber in synchronization with the rotation of the rotor and then stops, and an ignition element ignites and explodes that fixed amount of jetted gas, in this way continuously supplying pressurized gas for explosion.

そうして、
爆発行程での爆発エネルギーをローターの羽根の前記先端部分が受けて回転する母筒状体のローターの回転軸と、子筒状体のローターの回転軸を一直線状
に連結して筒状体を重ねて一体化するにおいて、母筒状体内でローターを回転させるエネルギーとなり得なかった残余の爆発エネルギーは排気口に連通する子筒状体の導入口から子筒状体内の爆発延長スペースに導入されてそのスペースのローターの羽根の前進した先端部分が受けて子筒状体のローターを回転させるもので、母筒状体に連通する子筒状体と、さらに追加の子筒状体を同様に排出口と導入口を連結増設すれば、さらなる回転エネルギー採取の効率化が図られ、また、
消音マフラーの如く爆発延長スペースの延長増加による消音効果で、それら問題解決に寄与するのである。
And so,
The rotor shaft of the main cylinder, which rotates when the tip of the rotor blade receives the explosion energy during the explosion process, is connected in a straight line to the rotor shaft of the child cylinder, and the cylinders are stacked and integrated. The remaining explosion energy that cannot be used to rotate the rotor inside the main cylinder is introduced into the explosion extension space inside the child cylinder through an inlet of the child cylinder, which communicates with the exhaust port, and is received by the advanced tip of the rotor blade in that space, causing the rotor of the child cylinder to rotate. If the child cylinder, which communicates with the main cylinder, and any additional child cylinders are similarly connected to exhaust ports and inlets, the efficiency of harvesting rotational energy can be further improved.
The sound-absorbing effect achieved by increasing the extension space for explosions, like a sound-absorbing muffler, contributes to solving these problems.

本発明は、爆発延長スペースのある子筒状体を付加することにより爆発行程を延長する効果を生み、爆発行程で発生した運動エネルギーを、排気口や排出口と導入口が連通して隣接の爆発延長スペースにおいても爆発膨張ガス、すなわち運動エネルギーを導入してローターを回転させるので、母筒状体の爆発排気スペース部分の回転範囲に限られることなく、爆発行程で発生した運動エネルギーの利用採取範囲を拡大させて燃費の向上を図り、前記増設付加態様次第では母筒状体のローターの1回転以上の利用採取範囲も可能となり、例えば後記図面の3枚羽の母筒状体に、子筒状体を三個付加した場合、ハウジング円周の凡そ3分の4、1回転以上の利用採取範囲となり、
また、2枚羽の母筒状体の場合には筒状体外部の加圧気体の収容装置と爆発室を連通させて爆発室内に爆発用の加圧気体を連続して補給して爆発させ、慣性によりローターを回転させ、以上、爆発行程で発生した運動エネルギーの有効的存在が消滅するか、取り付け外形の収納容量の許す限り、増設付加を検討できる。
The present invention produces the effect of extending the explosion stroke by adding a sub-tubular body with an explosion extension space, and the kinetic energy generated during the explosion stroke is introduced into the adjacent explosion extension space through an inlet that is connected to the exhaust port and exhaust port, as explosive expansion gas, i.e., kinetic energy, to rotate the rotor. Therefore, the rotation range is not limited to the explosion exhaust space of the main tube body, but the utilization range of the kinetic energy generated during the explosion stroke is expanded, thereby improving fuel efficiency. Depending on the mode of addition, it is possible to utilize the kinetic energy for more than one rotation of the rotor of the main tube body. For example, when three sub-tubular bodies are added to the three-blade main tube body shown in the drawings below, the utilization range is approximately 3/4 of the housing circumference, or more than one rotation.
In the case of a two-blade main cylindrical body, the pressurized gas storage device outside the cylindrical body is connected to the explosion chamber, and the pressurized gas for explosion is continuously supplied to the explosion chamber for explosion, causing the rotor to rotate by inertia. As described above, until the effective existence of the kinetic energy generated during the explosion process disappears or as long as the storage capacity of the installed external configuration allows, additional installation can be considered.

加えて、燃焼室で発生する爆発膨張音は排気口や排出口と導入口が連通して延長する各燃焼室工程が消音の効果をもたらし、各筒状体内で爆発膨張音を閉じ込めることにより、回転エネルギーとなって爆発膨張の音を弱化させ、一方、自動車の消音マフラーや銃のサイレンサー装置においては運動エネルギー効率に寄与することはないのである。 In addition, the explosive expansion noise generated in the combustion chamber is silenced by the combustion chamber processes that extend from the exhaust and exhaust ports to the inlet port, and by confining the explosive expansion noise within each cylindrical body, it becomes rotational energy and weakens the explosive expansion noise. On the other hand, in automobile mufflers and gun silencer devices, it does not contribute to kinetic energy efficiency.

先願の、燃焼室における燃料の爆発による膨張圧を単体のローターの羽根
の前進先端部分のみが受け、ローターを回転させて回転エネルギーとしていたが、単体ゆえに排気口から多くの未利用エネルギーが廃棄されていた。この
事象はレシプロエンジン等、従来の内燃機関にも惹起しており、その解決のため、数多の提案がなされていた。
また、騒音となる燃焼による爆発音を軽減すべく従来既存の消音マフラーが付
随される場合、運動エネルギーに対する抵抗要素としてその効率を低下させていた
In the previous application, the expansion pressure caused by the explosion of fuel in the combustion chamber was received only by the forward tip of the blade of a single rotor, which rotated the rotor and generated rotational energy, but because it was a single unit, a lot of unused energy was wasted from the exhaust port.
This phenomenon also occurs in conventional internal combustion engines such as reciprocating engines, and numerous proposals have been made to resolve the problem.
In addition, when a conventional muffler is attached to reduce the noise of explosions caused by combustion, it acts as a resistance to kinetic energy, reducing its efficiency.

従来のピストン運動型のレシプロエンジンは注入、圧縮、爆発、排気の4工程を1サイクルとして同一のシリンダーを共用し、クランクロッドの進退運動により該工程が順次稼働するため、各4分の1が稼働工程となり、残り4分の3の工程は稼働待機態勢としての非効率性があるため、シリンダー数を増加して駆動力を強化する場合があり、また同一のシリンダーで燃料の注入工程と爆発工程を行えば、噴霧状燃料や水素等の燃焼用気体状の引火性の強い素材に対し安全上の脆弱性が常に危惧されるに対し、本発明のロータリーエンジンは前記各工程室を独立遮断して安全性を高めてその4工程は同時に稼働するため、3枚羽を装着したローターの場合、ローターの3分の1回転が1サイクルとなり、4枚羽を装着したローターの場合よりも膨張行程の円周距離は長く、1 回転ではその羽根の数と同数の各サイクルが実現し、いずれの枚数でも待機態勢のない効率的な駆動力により、エンジンの小型化と軽量化が実現する。 In conventional piston-type reciprocating engines, the four processes of injection, compression, explosion, and exhaust are one cycle, and the same cylinder is shared. These processes are operated sequentially by the back and forth movement of the crank rod, so one-quarter of each process is in operation, and the remaining three-quarters of the process is in a standby state, which is inefficient. Therefore, the number of cylinders may be increased to strengthen the driving force. Also, if the fuel injection process and explosion process are performed in the same cylinder, there is always a concern about safety vulnerabilities due to highly flammable materials such as sprayed fuel and gaseous combustion materials such as hydrogen. In contrast, in the rotary engine of the present invention, each process chamber is isolated independently to increase safety, and the four processes are operated simultaneously. In the case of a rotor with three blades, one third of the rotor rotation is one cycle, and the circumferential distance of the expansion stroke is longer than in the case of a rotor with four blades, and in one rotation, the same number of cycles as the number of blades are realized. Regardless of the number of blades, the efficient driving force without standby state is realized, which allows the engine to be made smaller and lighter.

従来、バンケル型ロータリーエンジンと呼称する内部の三角状ローターの偏心運動により駆動力を発生させる内燃機関はその偏心駆動態様により、クランクレスレシプロエンジンと称されるべきであり、一方、本発明のロータリーエンジンは偏心ロスのない有効性を実現するのである。 Conventionally, internal combustion engines that generate driving force through the eccentric motion of an internal triangular rotor, known as Wankel rotary engines, should be called crankless reciprocating engines due to their eccentric drive mode, while the rotary engine of the present invention achieves efficiency without eccentric loss.

本発明の実施の一例の形態を図1、図2、図3、図4に基づいて説明する。
なお、図面において、排気口や排出口や導入口の連通形状の一方が長径となるのは、筒状体のローターの回転軸方向に長く平行の開口部とすることにより、排気口や排出口や導入口、等開口部を筒状体の形状に合わせて大きくして工程気体の速やかな通過を可能とするためである。
また、本実施例においては母筒状体と子筒状体のローターや外周を同径サイズとしているが、異径サイズとすることによりローターの回転軸方向の筒状体の母筒状体と子筒状体の輪切り形状の幅を調整し本発明のロータリーエンジンの設置環境に合わせた荷姿とする場合もある。
An embodiment of the present invention will be described with reference to FIGS. 1, 2, 3 and 4. FIG.
In the drawings, one of the communication shapes of the exhaust port, exhaust port, and inlet port has a longer diameter because the openings are long and parallel to the rotational axis direction of the rotor of the cylindrical body, and the exhaust port, exhaust port, inlet port, etc. can be made large to match the shape of the cylindrical body, allowing the process gas to pass through quickly.
In addition, in this embodiment, the rotors and outer peripheries of the main cylinder and the secondary cylinder are the same diameter size, but by making them different diameter sizes, the width of the cross-sections of the main cylinder and secondary cylinder in the direction of the rotor's rotational axis can be adjusted to create a package shape suited to the installation environment of the rotary engine of the present invention.

ロータリーエンジン1の母筒状体2の内半径の一部を二か所で大きくして爆発排気スペース221と吸入圧縮スペース223として、母筒状体ハウジング24内に挿嵌された母筒状体ローター21の回転軸Aに届かない深さで穿設された各羽根溝23に装着された母筒状体ハウジング24の内周壁に向かい3枚の前進後退する各羽根5の場合、母筒状体ハウジング24内は三つに区分けされ、その内周の3分の一に区分けされた爆発排気スペース221内の羽根5の先端部51が分割した点火素子8のある爆発室2211において、圧縮された燃焼用気体をその点火素子8が点火し爆発膨張させて先端部51を回転方向後面側から押してそのスペースの終端部の排気口26までBの方向に母筒状体ローター21を回転させる爆発工程と、先端部51の回転方向前面側にある燃焼気体が回転により押されて終端部の排気口26からCの方向に排気される排気工程があり吸入圧縮スペース223内では、母筒状体ローター21の回転により先端部51が導入口27を過ぎて燃焼用気体を始端部の導入口27からDの方向に吸入して、ローター回転方向後位の先端部51が導入口27を通過して吸入圧縮スペース223内に燃焼用気体を封鎖状態とする吸入行程と、前記先端部51の回転方向前面側がその封鎖状態の燃焼用気体を回転方向に押しやって母筒状体ローター21と母筒状体ハウジング24内周の狭い間隙を通過させて燃焼用気体の体積を加圧して圧縮縮小し、点火素子8に移送する圧縮行程があるとした状況の母筒状体2の断面概略図。In the case where a part of the inner radius of the main cylindrical body 2 of the rotary engine 1 is enlarged at two places to form an explosion exhaust space 221 and an intake compression space 223, and three vanes 5 moving forward and backward toward the inner peripheral wall of the main cylindrical body housing 24 are attached to each vane groove 23 drilled at a depth not reaching the rotation axis A of the main cylindrical body rotor 21 inserted into the main cylindrical body housing 24, the inside of the main cylindrical body housing 24 is divided into three, and in the explosion exhaust space 221 divided into one third of the inner circumference, the tip end 51 of the vane 5 in the explosion chamber 2211 with the divided ignition element 8, the ignition element 8 ignites the compressed combustion gas and explodes and expands, pushing the tip end 51 from the rear side in the rotation direction, rotating the main cylindrical body rotor 21 in the direction B to the exhaust port 26 at the end of the space, This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are three steps: an explosion step in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion; and within the intake compression space 223, the rotation of the mother cylindrical body rotor 21 causes the tip portion 51 to pass the inlet 27 and suck in the combustion gas from the inlet 27 at the starting end in the direction D, and the tip portion 51 at the rear in the rotor rotation direction passes through the inlet 27 to seal the combustion gas in the intake compression space 223.This is a schematic cross-sectional view of the mother cylindrical body 2 in a situation where there are three steps: an explosion step in which the combustion gas on the front side of the tip portion 51 in the direction of rotation is pushed by the rotation and exhausted in the direction C from the exhaust port 26 at the end portion. ロータリーエンジン1の子筒状体3の内半径の一部を大きくした部分を、始端部に導入口37と終端部に排出口36のある爆発延長スペース324として、子筒状体ハウジング32内に挿嵌された子筒状体ローター31の回転軸Aに届かない深さで穿設された各子筒状体羽根溝33に装着された各羽根5により、子筒状体ハウジング32内は区分けされ、先端部53で区分けされた爆発延長スペース324の始端部の導入口37は当図では視認不可の前記排気口26と連通してCの方向からの燃焼気体を先端部53が受け、Bの方向に子筒状体ローター31を回転させ、終端部の排出口36に膨張エネルギーをCの方向に排出している状況の子筒状体3の断面概略図。A schematic cross-sectional view of a sub-tube body 3 in a rotary engine 1, in which a portion of the inner radius of the sub-tube body 3 is enlarged to form an explosion extension space 324 with an inlet 37 at its starting end and an exhaust outlet 36 at its end, and the inside of the sub-tube body housing 32 is divided by each vane 5 attached to each sub-tube body vane groove 33 drilled to a depth that does not reach the rotation axis A of the sub-tube body rotor 31 inserted into the sub-tube body housing 32. The inlet 37 at the starting end of the explosion extension space 324 divided by the tip portion 53 is connected to the exhaust port 26, which is not visible in this figure, so that the tip portion 53 receives combustion gas from the direction C, rotates the sub-tube body rotor 31 in the direction B, and exhausts expansion energy in the direction C to the exhaust outlet 36 at the end portion. ロータリーエンジン1の、同径サイズで重ねられた状態により視別認識不能の筒状体の母筒状体2と子筒状体3と子筒状体4の各筒状体ローター21,31,41が回転軸Aを一直線状として連結されて、母筒状体2の母筒状体ローター21の爆発排気スペース221と、子筒状体3の子筒状体ローター31の爆発延長スペース324、と子筒状体4の子筒状体ローター41の爆発延長スペース423、が各ハウジング内周を透視的な点線71の位置で各3分割してその合計でそれらハウジング内周の一周に及ぶとして、排気口26と導入口37、排出口36と導入口47が各連通し、点火素子8と、表見同位置の、後図で判別される排出口46の位置から排気ガスがCの方向に排出した状態のロータリーエンジン1の前記断面概略図側からの概略外観図である。This is a schematic external view of the rotary engine 1 from the side of the cross-sectional schematic view in a state in which the main cylindrical body 2, the child cylindrical body 3, and the child cylindrical body 4 are cylindrical bodies that cannot be visually identified due to being stacked with the same diameter size, and the cylindrical body rotors 21, 31, and 41 are connected in a straight line along the rotation axis A, and the explosion exhaust space 221 of the main cylindrical body rotor 21 of the main cylindrical body 2, the explosion extension space 324 of the child cylindrical body rotor 31 of the child cylindrical body 3, and the explosion extension space 423 of the child cylindrical body rotor 41 of the child cylindrical body 4 divide the inner circumference of each housing into thirds at the position of the transparent dotted line 71, and together these spaces extend around one circumference of the inner circumference of the housing. The exhaust port 26 and the inlet port 37, and the exhaust port 36 and the inlet port 47 are each connected, and exhaust gas is discharged in the direction C from the exhaust port 46, which is in the same position as the ignition element 8 and which will be identified in the later figure. ロータリーエンジン1の、母筒状体2の点線で概略図示の導入口27にCの方向から燃焼用気体が吸入され点火素子8のある母筒状体2の回転軸Aと子筒状体3と子筒状体4の点線で示した各回転軸Aが1直線状に連結されてそれら筒状体が重ねられて一体化し、母筒状体2での燃焼気体は、連通した排気口26と導入口37をEの方向に通過して子筒状体3内に移動し、さらに、対側位置にあり視認不可の、点線で概略図示の排出口36と導入口47が連通して子筒状体3内から子筒状体4内へFの方向に燃焼気体が移動し、点線で概略図示の排出口46ではCの方向に燃焼気体たる膨張エネルギーを連通することなく放出している様子のロータリーエンジン1の回転軸Aと平行側からの外観概略図。1 is a schematic external view of a rotary engine 1 from the side parallel to the rotation axis A, in which combustion gas is taken in from the direction C into the inlet 27 of the main cylinder 2, which is shown generally by a dotted line, and the rotation axis A of the main cylinder 2, which contains the ignition element 8, and the rotation axes A of the secondary cylinders 3 and 4, shown generally by dotted lines, are connected in a straight line, and these cylinders are stacked and integrated, and the combustion gas in the main cylinder 2 passes through the connected exhaust port 26 and inlet 37 in the direction E and moves into the secondary cylinder 3, and further, the exhaust port 36 and inlet 47, shown generally by dotted lines but located on the opposite side and not visible, are connected, and the combustion gas moves from the secondary cylinder 3 to the secondary cylinder 4 in the direction F, and the expansion energy of the combustion gas is released in the direction C from the exhaust port 46, shown generally by dotted line, without being communicated.

1ロータリーエンジン
2母筒状体
3子筒状体
4子筒状体
5羽根
8点火素子
21母筒状体ローター
23羽根溝
24母筒状体ハウジング
26排気口
27導入口
31子筒状体ローター
32子筒状体ハウジング
33子筒状体羽根溝
36排出口
37導入口
41子筒状体ローター
46排出口
47導入口
51先端部
53先端部
71点線
221爆発排気スペース
223吸入圧縮スペース
324爆発延長スペース
423爆発延長スペース
2211爆発室
A回転軸
B方向
C方向
D方向
E方向
F方向

1 Rotary engine 2 Main cylinder 3 Secondary cylinder 4 Secondary cylinder 5 Blade 8 Ignition element 21 Main cylinder rotor
23 blade groove 24 main cylinder housing 26 exhaust port 27 inlet 31 secondary cylinder rotor 32 secondary cylinder housing 33 secondary cylinder blade groove 36 exhaust port 37 inlet 41 secondary cylinder rotor 46 exhaust port 47 inlet 51 tip 53 tip
71 dotted line 221 explosion exhaust space 223 intake compression space 324 explosion extension space 423 explosion extension space 2211 explosion chamber
A rotation axis B direction
C direction D direction
E direction
F direction

Claims (1)

円筒形の内周壁を有する筒状体の内半径の一部を大きくしたスペースのハウジングを設け、別設したローターの回転軸からの放射状方向に穿設した数本の羽根溝にハウジングの内周壁に向かって前進後退してハウジング内を区分けする羽根を装着したローターをそのハウジング内に挿嵌して、ローターの回転方向のそのスペースの始端部に点火素子を設け、前進した羽根の先端で区分けされた爆発室内に連続して補給される爆発用の加圧気体が、点火素子の点火により爆発して該羽根の先端を押してローターを回転させ、そのスペースの終端部に排気口を設定し、該筒状体の両側を側壁により閉鎖した筒状体と、
円筒形の内周壁を有する他の筒状体の内半径の一か所を大きくしたスペースの始端部に導入口と終端部に排出口のある爆発延長スペースとしたハウジングを設け、前記様の羽根溝のローターをそのハウジング内に挿嵌して、該筒状体の両側を側壁により閉鎖した一つ以上の筒状体において、
それらローターの回転軸を一直線状に連結して筒状体を重ねて一体化し、排気口または排出口と導入口が連通したロータリーエンジン。
a housing having a space with an enlarged inner radius of a cylindrical body having an inner peripheral wall, a rotor having vanes that move forward and backward toward the inner peripheral wall of the housing and divide the inside of the housing in several vane grooves drilled in a radial direction from the rotation axis of the rotor separately provided, is inserted into the housing, an ignition element is provided at the start of the space in the rotation direction of the rotor, an explosion chamber divided by the tip of the advancing vane is continuously supplied with pressurized gas for explosion by ignition of the ignition element, pushing the tip of the vane to rotate the rotor, an exhaust port is provided at the end of the space, and both sides of the cylindrical body are closed by side walls;
In one or more cylinders, a housing is provided in which the inner radius of another cylinder having a cylindrical inner peripheral wall is increased at one point, and the housing has an inlet at the start end of the space and an outlet at the end end of the space, forming an explosion extension space, and the rotor having the vane grooves as described above is inserted into the housing, and both sides of the cylinder are closed by side walls.
A rotary engine is a system in which the rotating shafts of the rotors are connected in a straight line, the cylindrical bodies are stacked together to form an integrated unit, and the exhaust or exhaust port is connected to the inlet.
JP2022167210A 2022-09-26 2022-09-26 Expansion/rotary engine Active JP7424674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022167210A JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022167210A JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Publications (2)

Publication Number Publication Date
JP7424674B1 JP7424674B1 (en) 2024-01-30
JP2024047509A true JP2024047509A (en) 2024-04-05

Family

ID=89704303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022167210A Active JP7424674B1 (en) 2022-09-26 2022-09-26 Expansion/rotary engine

Country Status (1)

Country Link
JP (1) JP7424674B1 (en)

Also Published As

Publication number Publication date
JP7424674B1 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US7591129B2 (en) Rotary piston engine
US10830047B2 (en) Rotary energy converter with retractable barrier
US20140338348A1 (en) Rotary pulse detonation engine
JP3136698U (en) Rotary internal combustion engine
US8061327B2 (en) Tangential combustion turbine
JP2022544188A (en) Rotary engine, parts thereof, and method
US6536403B1 (en) Direct drive rotary engine
JP2024047509A (en) Extension rotary engine
CN108590864B (en) Powder starting method and device of turbojet engine for small-sized bomb
ITPR20070071A1 (en) DEVICE TO CONVERT ENERGY.
CN113236417A (en) Internal combustion engine
WO2019150336A1 (en) Rotary engine
WO2023216762A1 (en) Deflagration engine
JP7391915B2 (en) rotary blade engine
JP2017002897A (en) Even number roller rotary engine
RU2406836C2 (en) Rotary jet engine by aroutyunov
JPH0742868B2 (en) Rotary internal combustion engine
RU2212550C2 (en) Internal combustion engine
WO2006004459A2 (en) Gas-hydraulic engine
US3782341A (en) Rotary internal combustion engine
JPS6133975B2 (en)
RU80508U1 (en) ROTARY-REACTIVE ENGINE ARUTYUNOV
JP6224699B2 (en) Internal combustion engine and method of operating internal combustion engine
JPH09256801A (en) Fundamental structure of truly circular rotary engine and truly circular rotary pump
JPH06272566A (en) Rotary engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7424674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150