WO2003056156A1 - Coaxial rotary engine - Google Patents

Coaxial rotary engine Download PDF

Info

Publication number
WO2003056156A1
WO2003056156A1 PCT/JP2001/011478 JP0111478W WO03056156A1 WO 2003056156 A1 WO2003056156 A1 WO 2003056156A1 JP 0111478 W JP0111478 W JP 0111478W WO 03056156 A1 WO03056156 A1 WO 03056156A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
rotor
rotors
pair
compressed gas
Prior art date
Application number
PCT/JP2001/011478
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kajino
Original Assignee
Yukio Kajino
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukio Kajino filed Critical Yukio Kajino
Priority to PCT/JP2001/011478 priority Critical patent/WO2003056156A1/en
Priority to AU2002225366A priority patent/AU2002225366A1/en
Publication of WO2003056156A1 publication Critical patent/WO2003056156A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines

Definitions

  • the present invention relates to a coaxial rotary engine that is lightweight and small, can obtain a relatively large output, and is easy to manufacture.
  • a rotating disk having a concave and convex curved surface and a non-rotating receiving disk are arranged coaxially in engine casing with the concave and convex curved surfaces facing each other, and fuel is supplied to a pair of variable volume chambers between the concave and convex curved surfaces generated by rotation of the rotating disk.
  • a rotating engine adapted to intake, compress, expand and exhaust has been developed by the present inventor and disclosed in Japanese Patent Application Laid-Open No. H10-2005-344.
  • US Pat. No. 5,836,286 and US Pat. No. 6,326,36 corresponding to the Japanese patent publication.
  • An object of the present invention is to provide a light-weight, small-sized, relatively large output, and
  • An object of the present invention is to provide a coaxial rotating engine that is easy to operate. Disclosure of the invention
  • a coaxial rotary engine of the present invention comprises: a casing in which a pair of chambers having a circular or elliptical inner peripheral wall of a predetermined width are coaxially arranged via a partition; A rotary output shaft supported in the direction of the casing axis by contributing to the eccentric position of the rotary shaft; and the chamber is also formed of a small-diameter disk.
  • a pair of rotors eccentrically arranged in each chamber so that the parts always rotate while being in airtight sliding contact with the inner peripheral wall of the chamber; and reciprocally slidingly fitted in radial grooves formed in the radial direction of the shaft of each rotor.
  • a shielding plate resiliently biased so that its tip always contacts the inner peripheral wall of the chamber; a fuel gas inlet port communicated with a space on one side behind the rotor sliding portion of the one chamber; Connected to the vacant space on the other side just before the sliding contact part A compressed gas discharge port; and an explosive gas injection port opened in a minute gap near the rear end of the other chamber's sliding contact portion; and combustion connected to a space in front of the sliding contact portion.
  • an ignition chamber provided on the downstream side, wherein the phase angle of the pair of rotors is changed, and when the shield plate of one rotor compresses the fuel gas to a desired compression ratio, the shield plate of the other rotor is provided. Is set near the front of the small gap of the explosive gas injection port.
  • each of the rotors may be provided at one location in the radial direction, whereby one rotation of the rotor may be used as a one-cycle engine.
  • a pair or a plurality of pairs of symmetrically arranged shielding plates are provided, whereby the engine performs a plurality of two-cycle operations with one rotation of the rotor.
  • FIG. 1 is a side view showing a schematic configuration of a coaxial rotary engine according to an embodiment of the present invention.
  • FIG. 2 is a diametrical longitudinal sectional view of each chamber when the shielding plate is rotated to the sliding contact portion.
  • FIG. 3 is a cross-sectional development view of each chamber in FIG.
  • the fourth country is a diagram corresponding to the second country of another embodiment.
  • FIG. 5 is a diagram corresponding to FIG. 3 of another embodiment.
  • a casing 2 of a coaxial rotary engine 1 includes a pair of chambers 4 and 5 partitioned by a partition wall 3 and having a circular or elliptical inner peripheral wall having a predetermined width. (Hereinafter, referred to as a first chamber 4 and a second chamber 5).
  • a rotary output shaft 6 is rotatably arranged in the axial direction of the casing 2 so as to pass through an eccentric position.
  • rotors 7 and 8 made of disks smaller in diameter than the chambers 4 and 5 are installed so as to be coaxially and integrally rotatable with the center fixed to the rotary output shaft 6. .
  • first and second ⁇ -motors 7 and 8 rotate partly in a circular manner in contact with the inner peripheral wall surface of each of the chambers 4 and 5 while rotating a part of the circular outer peripheral surface.
  • the space 9 is provided so as to form a space 9 between the inner peripheral wall surfaces of the chamber.
  • the first and second rotors 7, 8 are formed with a radial groove 10 extending from the outside toward the center along the axial direction, and are urged outward by a spring 11 in the groove 10.
  • the shielding plate 12 is slidably fitted.
  • each shielding plate 12 is urged toward the inner peripheral wall of the chamber by the spring 11, and the tip thereof is integrated with each of the rotors 7 and 8 while sliding in airtight contact with the inner peripheral walls of the corresponding chambers 4 and 5. The inside of the chambers 4 and 5 is rotated.
  • the first chamber 4 has a fuel gas inlet 14 communicating with one side of the chamber space 9 near the rear of the sliding contact portion 13 with the rotor 7.
  • a compressed gas discharge port 15 communicating with the other side of the chamber 9 is formed near this side.
  • the rotors 7 and 8 are set clockwise.
  • a suction port 14 communicating with the cavity 9 of the chamber is provided near the right side of the sliding contact portion 13, and the sliding contact portion 13 is provided.
  • a compressed gas discharge port 15 communicating with the cavity 9 of the chamber is provided near the left side of the chamber.
  • the tip of the shielding plate 12 is brought into airtight contact with the inner peripheral wall of the first chamber 4 by the rotation of the first rotor 7, and the fuel gas is turned off.
  • the suction step and the compression step proceed simultaneously.
  • the second chamber 5 has an explosion gas injection port 16 opened in a minute gap at the rear end of the sliding contact portion 13 with the rotor 8, and the chamber vacant near the sliding contact portion 13.
  • a combustion gas exhaust port 17 communicating with the place 9 is formed. That is, in the drawing, the explosive gas injection port 16 is opened in a minute gap on the right side of the sliding contact portion 13 with the second rotor 8, and communicates with the chamber 9 in the vicinity of the left side of the sliding contact portion 13. Combustion gas exhaust port 17 is provided.
  • the rotation of the second rotor 8 causes the tip of the shielding plate 12 to come into contact with the inner peripheral wall of the second chamber 5 in an airtight manner and to rotate, so that the fuel gas Expansion stroke (explosion) and exhaust stroke progress simultaneously.
  • the compressed gas discharge port of the first chamber 4 and the explosive gas injection port 16 of the second chamber 5 are air-tightly communicated with each other through a compressed gas reservoir passage 18.
  • a check valve 19 is provided in the vicinity of the explosive gas injection port 16 of the compressed gas reservoir passage 18, and a plug 21 faces the ignition chamber 20 downstream of the check valve 19.
  • the plug 21 is ignited at the moment when the shielding plate 12 of the second rotor 8 passes through the minute gap at the rear end of the sliding portion 13.
  • the phase angle between the first rotor 7 and the second rotor 8 is determined when the shielding plate 12 of the first rotor 7 is at a position where the fuel gas is compressed to a desired compression ratio.
  • the shielding plate 12 of the second rotor 8 when located near the fuel gas inlet 14, the shielding plate 12 of the second rotor 8 is located slightly forward of the minute gap of the explosive gas injection port 16, The explosion (expansion) of the fuel gas compressed to a desired compression ratio causes the shielding plate of the second rotor 8 to expand. Set 1 2 to receive maximum explosion pressure.
  • the explosive gas injection port 16 of the second chamber 5 opposes the small gap at the rear end of the sliding contact portion 13 with the second rotor 8, and the passage is restricted, so that the rotor 7 of the first chamber 4 is shielded.
  • the fuel gas compressed by the plate 12 is pushed into the compressed gas reservoir passage 18 and compressed.
  • the shield plate 12 of the second rotor 8 is located in front of the small gap of the explosion gas injection port 16 and when the plug 21 is ignited, the explosion of the compressed fuel gas causes The second rotor 8 rotates integrally with the first rotor 7 and the output shaft 6.
  • the coaxial rotary engine 1 of the present invention includes a first rotor 7 for simultaneously performing an intake stroke and a compression stroke, a second rotor 8 for simultaneously performing an explosion (expansion) stroke and an exhaust stroke, and a suction stroke.
  • the first rotor 7 for simultaneously proceeding the compression stroke is fixed to the common rotation shaft 6 and rotates coaxially, and the compressed gas discharge port 15 and the explosive gas injection port 16 of the first chamber 4 store compressed gas. Since each of the rotors 7 and 8 is provided with one shielding plate 12 because of the communication through the passage 18, one rotation of the mouth 7 and 8 is performed in the embodiment of FIGS. 1 to 3. The four processes of suction, compression, explosion and exhaust are completed simultaneously.
  • FIG. 4 and FIG. 5 show another embodiment of the present invention.
  • two grooves 10a and 10b are formed symmetrically in two radial directions of each rotor 7 and 8 opposite to each other, and a spring 11 is formed in each groove 10a and 10b.
  • the energized shielding plates 12a and 12b are fitted so that they can slide back and forth.
  • the plug 21 is ignited each time the pair of shield plates 12 a and 12 b of the rotor 8 of the second chamber 5 passes through the explosive gas injection port 16. . Therefore, in this embodiment, two explosions (expansion) occur each time the rotors 7 and 8 and the rotary output shaft 6 make one revolution, and two cycles of engine operation work every one revolution. become. In addition, since the pair of shield plates 12a and 12b are provided symmetrically on each of the rotors 7 and 8, the balance during operation is good.
  • FIGS. 4 to 5 illustrates a case where a pair of shield plates 12 a and 12 b are fitted in two opposite radial directions of the respective rotors 7 and 8.
  • the embodiment shown in the figure illustrates a case where the coaxial rotary engine of the present invention is used as a gasoline engine, and the plug 21 is used in the ignition chamber 20 of the compressed gas reservoir passage 18.
  • the coaxial rotating engine can be used as a diesel engine, in which case the plug can be omitted.
  • the embodiment of the figure illustrates a case where one set of the engines is mounted on a rotating shaft
  • the present invention provides a composite rotating engine in which the coaxial rotating engine is mounted on a common rotating shaft. It is also possible to increase the engine output.
  • the engine cycle of suction, compression, explosion, and exhaust is completed simultaneously with one rotation of the rotor in a compact engine casing, so that a relatively large rotating force can be stabilized with a small and lightweight engine. Output, and the fuel ratio is greatly improved.
  • the coaxial rotary engine of the present invention can be widely used as an efficient internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

A rotary output shaft is born at an eccentric position of a casing arranged with a pair of chambers coaxially. A pair of rotors are fixed, at the center thereof, to the output shaft and arranged eccentrically in respective chambers such that the rotors rotate while sliding, at a part of the circumferential surface thereof, on the inner circumferential surface of the chamber. A shield plate is fitted slidably in the radial direction of the shaft of each rotor and urged resiliently such that the forward end thereof abuts against the inner circumferential wall of the chamber. One chamber has a fuel suction port communicating with a void on one side in the rear of the rotor sliding part, and a compressed gas delivery port communicating with a void on the other side in front of the rotor sliding part. The other chamber has an explosion gas jet port opened to a microgap in the vicinity of the rear end at the rotor sliding part, and a combustion gas exhaust port communicating with a void in front of the rotor sliding part. The compressed gas delivery port and the explosion gas jet port are allowed to communicate through a compressed gas accumulation passage provided with an ignition chamber. Phase angle of the pair of rotors is set such that the shield plate of the other rotor is located in front of the microgap of the explosion gas jet port when the shield plate of one rotor compresses fuel gas at a desired compression ratio.

Description

明 細 書 同軸回転エンジン  Description Coaxial rotating engine
技術分野 Technical field
本発明は軽量小形で相対的に大きな出力を得ることができ、 しかも、 製作が容 易な同軸回転エンジンに関する。  The present invention relates to a coaxial rotary engine that is lightweight and small, can obtain a relatively large output, and is easy to manufacture.
背景技術 Background art
従来のレシプロエンジンは所定ストロ一クのシリンダを使用するため、 相対的 に大形となる。 また、 シリンダの 2往復でエンジンが 1サイクルとなるため、 出 力効率の点で問題があり、 燃料コストも相対的に髙くつく。  Conventional reciprocating engines are relatively large because they use cylinders of a predetermined stroke. Also, since the engine makes one cycle with two reciprocations of the cylinder, there is a problem in output efficiency, and the fuel cost is relatively high.
エンジンケ一シングに凹凸曲面を有する回転円盤と非回転の受け盤を、 その凹 凸曲面を対向させて同軸に配置し、 回転円盤の回転によって生ずる凹凸曲面間の 一対の容積可変チャンバで燃料を吸気、 圧縮、 膨張、 排気させるようにした回転 エンジンが本願発明者によって開発され、 特開平 1 0— 2 0 5 3 4 4として開示 されている。 また、 この日本特許公開に対応する米国特許第 5 8 3 6 2 8 6号及 び米国特許第 6 0 3 2 6 3 6号がある。  A rotating disk having a concave and convex curved surface and a non-rotating receiving disk are arranged coaxially in engine casing with the concave and convex curved surfaces facing each other, and fuel is supplied to a pair of variable volume chambers between the concave and convex curved surfaces generated by rotation of the rotating disk. A rotating engine adapted to intake, compress, expand and exhaust has been developed by the present inventor and disclosed in Japanese Patent Application Laid-Open No. H10-2005-344. There are also US Pat. No. 5,836,286 and US Pat. No. 6,326,36 corresponding to the Japanese patent publication.
上記の公知回転エンジンは回転円盤の回転に伴って、 一対のチヤンバで庄縮と 排気を同時に行い、 また、 膨張と吸気を同時に行うものであるが、 容積可変のチ ヤンバが回転方向に一段しか形成されていない構造であるため、 膨張 (爆発) の エネルギーを次の庄縮の力に持続させる際に力が不足し、 回転が不安定になるお それがあった。  In the above-described known rotary engine, contraction and exhaust are simultaneously performed by a pair of chambers and expansion and intake are performed simultaneously with the rotation of the rotating disk, but the variable volume chamber is only one stage in the rotation direction. Because the structure was not formed, the power was insufficient when sustaining the energy of expansion (explosion) to the force of the next contraction, and rotation could become unstable.
また、 上記の回転エンジンは回転円盤と固定円盤の対向面を気密を保持して円 滑に摺接する凹凸曲面に形成する必要があるが、 このような凹凸曲面の加工 ·組 付けには高度の技術を要するため、 製品の歩留まり、 コスト髙などの問題もあつ た。  Also, in the above-mentioned rotary engine, it is necessary to form the confronting surface of the rotating disk and the fixed disk into an uneven curved surface that slides smoothly while maintaining airtightness. Because of the need for technology, there were also issues such as product yield and cost.
従って、 本発明の目的は、 軽量 ' 小形で相対的に大きな出力が得られ、 且つ製 作が容易な同軸回転エンジンを提供することにある。 発明の開示 Therefore, it is an object of the present invention to provide a light-weight, small-sized, relatively large output, and An object of the present invention is to provide a coaxial rotating engine that is easy to operate. Disclosure of the invention
上記目的を達成するために、 本発明の同軸回転エンジンは、 所定巾の円形又は 楕円形の内周壁を有する対のチャンバを隔壁を介して同軸に配設したケ一シング と ; 前記対のチヤンバの偏心位置を貢通させて、 ケ一シング軸方向に軸支した回 転出力軸と ; 前記チヤンバょりも小径の円盤からなリ、 中心を前記出力軸に固定 し、 円周面の一部が常にチヤンバ内周壁に気密に摺接しながら回転するように各 チヤンバ内に偏心配置させた対のロータと ;各ロータの軸体半径方向に形成した 放射状溝に往復スライ ド可能に嵌装され、 先端が常にチヤンバ内周壁に当接する ように弾力的に付勢させた遮蔽板と ;前記一方のチャンバのロータ摺接部後方の 一側空所に連通させた燃料ガス吸入口と ; この口一タ摺接部手前の他側空所に連 通させた圧縮ガス吐出口と ; 前記他方のチヤンバの口一タ摺接部後端付近の微小 隙間に開口させた爆発ガス噴射口と ; この口一タ摺接部手前の空所に連通させた 燃焼ガス排気口と ; 前記一方のチヤンバの圧縮ガス吐出口から逆止弁を介して他 方のチャンバの爆発ガス噴射口に連通させた圧縮ガス溜め通路と ; この圧縮ガス 溜め通路の前記逆止弁下流側に設けた点火室と ; を具備し、 前記対のロータの位 相角を、 一方のロータの遮蔽板が燃料ガスを所望の圧縮比に圧縮したときに、 他 方のロータの遮蔽板が爆発ガス噴射口の前記微小隙間の前方近傍に位置するよう に設定したことを特徴とする。  In order to achieve the above object, a coaxial rotary engine of the present invention comprises: a casing in which a pair of chambers having a circular or elliptical inner peripheral wall of a predetermined width are coaxially arranged via a partition; A rotary output shaft supported in the direction of the casing axis by contributing to the eccentric position of the rotary shaft; and the chamber is also formed of a small-diameter disk. A pair of rotors eccentrically arranged in each chamber so that the parts always rotate while being in airtight sliding contact with the inner peripheral wall of the chamber; and reciprocally slidingly fitted in radial grooves formed in the radial direction of the shaft of each rotor. A shielding plate resiliently biased so that its tip always contacts the inner peripheral wall of the chamber; a fuel gas inlet port communicated with a space on one side behind the rotor sliding portion of the one chamber; Connected to the vacant space on the other side just before the sliding contact part A compressed gas discharge port; and an explosive gas injection port opened in a minute gap near the rear end of the other chamber's sliding contact portion; and combustion connected to a space in front of the sliding contact portion. A gas exhaust port; a compressed gas reservoir passage communicating from the compressed gas discharge port of the one chamber via a check valve to an explosive gas injection port of the other chamber; and the check valve of the compressed gas reservoir passage. And an ignition chamber provided on the downstream side, wherein the phase angle of the pair of rotors is changed, and when the shield plate of one rotor compresses the fuel gas to a desired compression ratio, the shield plate of the other rotor is provided. Is set near the front of the small gap of the explosive gas injection port.
前記各ロータの遮蔽板は、 半径方向の 1ケ所に設け、 これによりロータの一回 転で 1サイクルのエンジンにしてもよいが、 好ましくは、 各ロータの相対する半 径方向に対をなして対称形に配設した一対又は複数対の遮蔽板を設け、 これによ リ、 ロータの 1回転で複数 2サイクルの作用を行うエンジンに構成する。 図面の簡単な説明  The shield plate of each of the rotors may be provided at one location in the radial direction, whereby one rotation of the rotor may be used as a one-cycle engine. A pair or a plurality of pairs of symmetrically arranged shielding plates are provided, whereby the engine performs a plurality of two-cycle operations with one rotation of the rotor. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施例による同軸回転エンジンの概略構成を示す側面図であ る。 第 2図は、 遮蔽板が口一タ摺接部に回動したときの各々のチヤンバの直径方向縦 断面図である。 FIG. 1 is a side view showing a schematic configuration of a coaxial rotary engine according to an embodiment of the present invention. FIG. 2 is a diametrical longitudinal sectional view of each chamber when the shielding plate is rotated to the sliding contact portion.
第 3図は、 第 1図における各々のチヤンバの横断面展開図である。 FIG. 3 is a cross-sectional development view of each chamber in FIG.
第 4國は、 他の実施例の第 2國相当図である。 The fourth country is a diagram corresponding to the second country of another embodiment.
第 5図は、 他の実施例の第 3図相当図である。 発明を実施するための最良の形態 FIG. 5 is a diagram corresponding to FIG. 3 of another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施例を添付の図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図〜第 3図に示すように、 本発明による同軸回転エンジン 1のケーシング 2は、 仕切リ壁 3に区画されて所定巾の円形又は楕円形の内周壁を有する一対の チャンバ 4、 5 (以下、 第 1チャンバ 4、 第 2チャンバ 5という) を備えている ケ一シング 2の軸方向に回転出力軸 6が偏心位置を貧通して回転自在に配設さ れている。  As shown in FIGS. 1 to 3, a casing 2 of a coaxial rotary engine 1 according to the present invention includes a pair of chambers 4 and 5 partitioned by a partition wall 3 and having a circular or elliptical inner peripheral wall having a predetermined width. (Hereinafter, referred to as a first chamber 4 and a second chamber 5). A rotary output shaft 6 is rotatably arranged in the axial direction of the casing 2 so as to pass through an eccentric position.
第 1及び第 2チャンバ 4、 5には、 該チャンバ 4、 5よりも小径の円盤からな るロータ 7、 8が回転出力軸 6に中心を固定して同軸に一体回転可能に設置され ている。  In the first and second chambers 4 and 5, rotors 7 and 8 made of disks smaller in diameter than the chambers 4 and 5 are installed so as to be coaxially and integrally rotatable with the center fixed to the rotary output shaft 6. .
また、 第 1及び第 2 α—タ 7、 8は円形外周面の一部が各チャンバ 4、 5の内 周壁面に気密に摺接して回転し、 摺接部 1 3以外の円形外周面とチャンバ内周壁 面の間に空所 9が形成されるようにして配設されている。  In addition, the first and second α-motors 7 and 8 rotate partly in a circular manner in contact with the inner peripheral wall surface of each of the chambers 4 and 5 while rotating a part of the circular outer peripheral surface. The space 9 is provided so as to form a space 9 between the inner peripheral wall surfaces of the chamber.
第 1及び第 2ロータ 7、 8は外側から中心に向けて延びる半径方向の溝 1 0を 軸方向に沿って形成してあり、 この溝 1 0内にばね 1 1によって外側へ付勢され た遮蔽板 1 2が摺動自在に嵌装されている。  The first and second rotors 7, 8 are formed with a radial groove 10 extending from the outside toward the center along the axial direction, and are urged outward by a spring 11 in the groove 10. The shielding plate 12 is slidably fitted.
この構成により各々の遮蔽板 1 2はばね 1 1によりチヤンバ内周壁に向けて付 勢され、 その先端を対応のチャンバ 4、 5の内周壁に気密に摺接しながら各々の ロータ 7、 8と一体にチャンバ 4、 5内を回動するようになっている。  With this configuration, each shielding plate 12 is urged toward the inner peripheral wall of the chamber by the spring 11, and the tip thereof is integrated with each of the rotors 7 and 8 while sliding in airtight contact with the inner peripheral walls of the corresponding chambers 4 and 5. The inside of the chambers 4 and 5 is rotated.
第 1チャンバ 4は、 ロータ 7との摺接部 1 3の後方近傍に、 前記チャンバ空所 9の一側に連通する燃料ガス吸入口 1 4を形成してあるとともに、 摺接部 1 3の 手前近傍に前記チヤンバ空所 9の他側に連通する圧縮ガス吐出口 1 5を形成して ある。 The first chamber 4 has a fuel gas inlet 14 communicating with one side of the chamber space 9 near the rear of the sliding contact portion 13 with the rotor 7. A compressed gas discharge port 15 communicating with the other side of the chamber 9 is formed near this side.
図の実施例ではロータ 7、 8は時計回りに設定されており、 図面上、 摺接部 1 3の右側近傍にチヤンバの空所 9に連通する吸入口 1 4を設け、 摺接部 1 3の左 側近傍にチャンバの空所 9に連通する圧縮ガス吐出口 1 5を設けてある。  In the embodiment shown in the figure, the rotors 7 and 8 are set clockwise. In the drawing, a suction port 14 communicating with the cavity 9 of the chamber is provided near the right side of the sliding contact portion 13, and the sliding contact portion 13 is provided. A compressed gas discharge port 15 communicating with the cavity 9 of the chamber is provided near the left side of the chamber.
このため、 ケ一シング 2の第 1チャンバ 4では、 第 1ロータ 7の回転により遮 蔽板 1 2の先端が第 1チャンバ 4の内周壁に気密に当接して回動することにより 、 燃料ガスの吸入工程と圧縮工程が同時に進行する。  Therefore, in the first chamber 4 of the casing 2, the tip of the shielding plate 12 is brought into airtight contact with the inner peripheral wall of the first chamber 4 by the rotation of the first rotor 7, and the fuel gas is turned off. The suction step and the compression step proceed simultaneously.
他方、 第 2チャンバ 5は、 ロータ 8との摺接部 1 3の後端の微小隙間に爆発ガ ス噴射口 1 6を開口させてあるとともに、 摺接部 1 3の手前近傍に前記チヤンバ 空所 9に連通する燃焼ガス排気口 1 7を形成してある。 すなわち、 図面上では、 第 2ロータ 8との摺接部 1 3の右側の微小隙間に爆発ガス噴射口 1 6を開口させ 、 摺接部 1 3の左側近傍にチヤンバの空所 9に連通する燃焼ガス排気口 1 7を設 けてある。  On the other hand, the second chamber 5 has an explosion gas injection port 16 opened in a minute gap at the rear end of the sliding contact portion 13 with the rotor 8, and the chamber vacant near the sliding contact portion 13. A combustion gas exhaust port 17 communicating with the place 9 is formed. That is, in the drawing, the explosive gas injection port 16 is opened in a minute gap on the right side of the sliding contact portion 13 with the second rotor 8, and communicates with the chamber 9 in the vicinity of the left side of the sliding contact portion 13. Combustion gas exhaust port 17 is provided.
このため、 ケ一シング 2の第 2チャンバ 5では、 第 2ロータ 8の回転により遮 蔽板 1 2の先端が第 2チャンバ 5の内周壁に気密に当接して回動することにより 、 燃料ガスの膨張行程 (爆発) と排気行程が同時に進行する。  For this reason, in the second chamber 5 of the casing 2, the rotation of the second rotor 8 causes the tip of the shielding plate 12 to come into contact with the inner peripheral wall of the second chamber 5 in an airtight manner and to rotate, so that the fuel gas Expansion stroke (explosion) and exhaust stroke progress simultaneously.
前記第 1チヤンバ 4の圧縮ガス吐出口と第 2チャンバ 5の爆発ガス噴射口 1 6 は、 圧縮ガス溜め通路 1 8で気密に連通している。  The compressed gas discharge port of the first chamber 4 and the explosive gas injection port 16 of the second chamber 5 are air-tightly communicated with each other through a compressed gas reservoir passage 18.
この圧縮ガス溜め通路 1 8の爆発ガス噴射口 1 6近傍に逆止弁 1 9 を設け、 逆 止弁 1 9の下流側の点火室 2 0にプラグ 2 1を臨ませてある。 このプラグ 2 1は 、 第 2ロータ 8の遮蔽板 1 2が摺接部 1 3の後端の微小隙間を通る瞬間に点火さ れるようになっている。  A check valve 19 is provided in the vicinity of the explosive gas injection port 16 of the compressed gas reservoir passage 18, and a plug 21 faces the ignition chamber 20 downstream of the check valve 19. The plug 21 is ignited at the moment when the shielding plate 12 of the second rotor 8 passes through the minute gap at the rear end of the sliding portion 13.
第 1ロータ 7と第 2ロータ 8の位相角は、 第 3図にしめすように、 第 1ロータ 7の遮蔽板 1 2が燃料ガスを所望の圧縮比に圧縮した位置にあるとき、 すなわち, 図の実施例では燃料ガス吸入口 1 4の近傍に位置するときに、 第 2ロータ 8の遮 蔽板 1 2が爆発ガス噴射口 1 6の前記微小隙間のわずか前方に位置し、 これによ リ、 所望の圧縮比に圧縮した燃料ガスの爆発 (膨張) で、 第 2 ロータ 8の遮蔽板 1 2が最大の爆発圧力を受けるように設定する。 As shown in FIG. 3, the phase angle between the first rotor 7 and the second rotor 8 is determined when the shielding plate 12 of the first rotor 7 is at a position where the fuel gas is compressed to a desired compression ratio. In this embodiment, when located near the fuel gas inlet 14, the shielding plate 12 of the second rotor 8 is located slightly forward of the minute gap of the explosive gas injection port 16, The explosion (expansion) of the fuel gas compressed to a desired compression ratio causes the shielding plate of the second rotor 8 to expand. Set 1 2 to receive maximum explosion pressure.
第 2チャンバ 5の爆発ガス噴射口 1 6は、 第 2ロータ 8との摺接部 1 3後端の 微小隙間に対向し、 通路が絞られているので、 第 1チャンバ 4のロータ 7の遮蔽 板 1 2によって圧縮された燃料ガスは圧縮ガス溜め通路 1 8に押し込められて圧 縮されている。 このように、 燃料ガスが圧縮された状態で第 2ロータ 8の遮蔽板 1 2が爆発ガス噴射口 1 6の微小隙間前方にあって、 プラグ 2 1が点火されると 圧縮燃料ガスの爆発により、 第 2ロータ 8が第 1ロータ 7及び出力軸 6と一体に 回転する。  The explosive gas injection port 16 of the second chamber 5 opposes the small gap at the rear end of the sliding contact portion 13 with the second rotor 8, and the passage is restricted, so that the rotor 7 of the first chamber 4 is shielded. The fuel gas compressed by the plate 12 is pushed into the compressed gas reservoir passage 18 and compressed. In this way, when the fuel gas is compressed, the shield plate 12 of the second rotor 8 is located in front of the small gap of the explosion gas injection port 16 and when the plug 21 is ignited, the explosion of the compressed fuel gas causes The second rotor 8 rotates integrally with the first rotor 7 and the output shaft 6.
かく して、 本発明の同軸回転エンジン 1は、 吸入行程と圧縮行程を同時進行さ せる第 1 ロータ 7と、 爆発 (膨張) 行程と排気行程を同時進行させる第 2ロータ 8と、 吸入行程と圧縮行程を同時進行させる第 1 ロータ 7が共通の回転軸 6に固 定されて同軸に回転し、 且つ、 第 1チャンバ 4の圧縮ガス吐出口 1 5と爆発ガス 噴射口 1 6が圧縮ガス溜め通路 1 8を介して連通しているので、 各ロータ 7、 8 に各 1個の遮蔽板 1 2を設けた第 1図〜第 3図の実施例では、 口一タ 7、 8の一 回転で吸入、 圧縮、 爆発及び排気の 4行程が同時に完遂される。 しかも、 第 1チ ヤンバ 4における燃料ガスの圧縮は第 2チャンバ 5の爆発力を利用して行われる ので、 圧縮抵抗でエンジンが停止することなく安定した出力が発生する。 この場 合、 燃料ガスの圧縮に爆発エネルギーの一部が消費されるが、 単位当りの圧縮ガ スの爆発エネルギーは、 圧縮に必要なエネルギーのおよそ 2 0 0倍であるから、 爆発力になんらま障はない。  Thus, the coaxial rotary engine 1 of the present invention includes a first rotor 7 for simultaneously performing an intake stroke and a compression stroke, a second rotor 8 for simultaneously performing an explosion (expansion) stroke and an exhaust stroke, and a suction stroke. The first rotor 7 for simultaneously proceeding the compression stroke is fixed to the common rotation shaft 6 and rotates coaxially, and the compressed gas discharge port 15 and the explosive gas injection port 16 of the first chamber 4 store compressed gas. Since each of the rotors 7 and 8 is provided with one shielding plate 12 because of the communication through the passage 18, one rotation of the mouth 7 and 8 is performed in the embodiment of FIGS. 1 to 3. The four processes of suction, compression, explosion and exhaust are completed simultaneously. Moreover, since the compression of the fuel gas in the first chamber 4 is performed using the explosive power of the second chamber 5, a stable output is generated without stopping the engine due to the compression resistance. In this case, a part of the explosion energy is consumed for the compression of the fuel gas, but the explosion energy of the compression gas per unit is approximately 200 times the energy required for the compression. There is no obstacle.
第 4図及び第 5図は本発明の別の実施例を示すものである。  FIG. 4 and FIG. 5 show another embodiment of the present invention.
この実施例は、 各々のロータ 7、 8の相対する 2ケ所の半径方向に溝 1 0 a、 1 0 bを対称形に形成し、 各々の溝 1 0 a、 1 0 bにばね 1 1に付勢された遮蔽 板 1 2 a、 1 2 bを往復スライ ド可能に嵌装させたものである。  In this embodiment, two grooves 10a and 10b are formed symmetrically in two radial directions of each rotor 7 and 8 opposite to each other, and a spring 11 is formed in each groove 10a and 10b. The energized shielding plates 12a and 12b are fitted so that they can slide back and forth.
この実施例では、 第 2チャンバ 5のロータ 8の対の遮蔽板 1 2 a、 1 2 bが, 爆発ガス噴射口 1 6を通過する瞬間毎にプラグ 2 1が点火されるようになってい る。 従って、 この実施例では、 ロータ 7、 8及び回転出力軸 6が 1回転する毎に 2度の爆発 (膨張) がおこり、 一回転毎に 2サイクルのエンジン作用が働くこと になる。 また、 各々のロータ 7、 8に対の遮蔽版 1 2 a、 1 2 bが対称形に設け られているので、 作動中のバランスがよい。 In this embodiment, the plug 21 is ignited each time the pair of shield plates 12 a and 12 b of the rotor 8 of the second chamber 5 passes through the explosive gas injection port 16. . Therefore, in this embodiment, two explosions (expansion) occur each time the rotors 7 and 8 and the rotary output shaft 6 make one revolution, and two cycles of engine operation work every one revolution. become. In addition, since the pair of shield plates 12a and 12b are provided symmetrically on each of the rotors 7 and 8, the balance during operation is good.
第 4図〜第 5図の実施例は、 各々のロータ 7、 8の相対する 2ケ所の半径方向 に一対の遮蔽板 1 2 a、 1 2 b を嵌装する場合を例示したが、 各ロータ 7、 8の 相対する半径方向に複数対又は複数個の遮蔽板を設けることにより、 1回転の間 のエンジンサイクルを比例的に増加させることができる。  The embodiment of FIGS. 4 to 5 illustrates a case where a pair of shield plates 12 a and 12 b are fitted in two opposite radial directions of the respective rotors 7 and 8. By providing a plurality of pairs or a plurality of shielding plates in the radial directions opposite to each other, the number of engine cycles during one rotation can be proportionally increased.
尚、 図の実施例は、 本発明の同軸回転エンジンをガソリンエンジンとして使用 する場合を例示し、 圧縮ガス溜め通路 1 8の点火室 2 0にプラグ 2 1を使用して いるが、 本発明の同軸回転エンジンはヂ一ゼルエンジンとして使用することも可 能であり、 その場合はプラグを省唣することができる。  The embodiment shown in the figure illustrates a case where the coaxial rotary engine of the present invention is used as a gasoline engine, and the plug 21 is used in the ignition chamber 20 of the compressed gas reservoir passage 18. The coaxial rotating engine can be used as a diesel engine, in which case the plug can be omitted.
また、 図の実施例は、 回転軸に 1組の前記エンジンを取り付けた場合を例示し ているが、 本発明は前記の同軸回転エンジンを共通の回転軸に取付けた複合回転 エンジンに構成することも可能であり、 これによりエンジン出力を増強させるこ とができる。 産業上の利用可能性  Further, although the embodiment of the figure illustrates a case where one set of the engines is mounted on a rotating shaft, the present invention provides a composite rotating engine in which the coaxial rotating engine is mounted on a common rotating shaft. It is also possible to increase the engine output. Industrial applicability
本発明はコンパク トなエンジンケ一シング内で、 ロータの 1回転で吸入、 圧縮 、 爆発、 排気のエンジンサイクルが同時に完遂されるので、 小形 ·軽量のェンジ ンで相対的に大きな回転力を安定して出力することができるとともに、 燃比も大 巾に改善される。  In the present invention, the engine cycle of suction, compression, explosion, and exhaust is completed simultaneously with one rotation of the rotor in a compact engine casing, so that a relatively large rotating force can be stabilized with a small and lightweight engine. Output, and the fuel ratio is greatly improved.
また、 ロータに複数の遮蔽板を対称的に配置した場合は、 大きな出力が得られ 、 且つ、 バランスのよい安定した作動が達成される。  When a plurality of shield plates are symmetrically arranged on the rotor, a large output is obtained, and a well-balanced and stable operation is achieved.
以上のように、 本発明の同軸回転エンジンは効率のよい内燃機関として広く利 用できるものである。  As described above, the coaxial rotary engine of the present invention can be widely used as an efficient internal combustion engine.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定巾の円形又は楕円形の内周壁を有する対のチヤンバを隔壁を介して同軸 に配設したケーシングと ;  1. A casing in which a pair of chambers having a circular or elliptical inner peripheral wall of a predetermined width are coaxially arranged via a partition wall;
前記対のチヤンバの偏心位置を貫通させてケ一シング軸方向に軸支した回転出力 軸と ; A rotation output shaft that is supported in the casing axis direction by penetrating the eccentric position of the pair of chambers;
チャンバよりも小径の円盤からなり、 中心を前記出力軸に固定し、 円周面の一部 が常にチヤンバ内周壁に気密に摺接しながら回転するように各チヤンバ内に偏心 配置させた対のロータと ; A pair of rotors, each of which has a disk smaller in diameter than the chamber, has its center fixed to the output shaft, and is eccentrically arranged in each chamber so that a part of the circumferential surface always rotates while hermetically sliding against the inner wall of the chamber. When ;
各ロータの軸体半径方向に形成した放射状溝に往復スライ ド可能に嵌装され、 先 端側が常にチャンバ内周壁に当接するように弾力的に付勢させた遮蔽板と ; 前記一方のチヤンバのロータ摺接部後方の一側空所に連通させた燃料ガス吸入口 と 5 A shielding plate fitted in a radial groove formed in the radial direction of the shaft of each rotor so as to be reciprocally slidable, and elastically biased so that the front end side is always in contact with the inner peripheral wall of the chamber; The fuel gas inlet and the 5
このロータ摺接部手前の他側空所に連通させた圧縮ガス吐出口と ; A compressed gas discharge port that communicates with the other space in front of the rotor sliding portion;
前記他方のチヤンバの口一タ摺接部後端付近の微小隙間に開口させた爆発ガス噴 射口と ; An explosive gas outlet opening in a minute gap near the rear end of the other chamber's sliding contact portion;
このロータ摺接部手前の空所に連通させた排気口と ; An exhaust port communicating with a space in front of the rotor sliding portion;
前記一方のチヤンバの圧縮ガス吐出口から逆止弁を介して他方のチヤンバの爆発 ガス噴射口に連通させた圧縮ガス溜め通路と ; A compressed gas reservoir passage communicating from the compressed gas discharge port of the one chamber to the explosive gas injection port of the other chamber via a check valve;
この圧縮ガス溜め通路の前記逆止弁下流側に設けた点火室と ; を具備し、 前記対のロータの位相角を、 一方のロータの遮蔽板が燃料ガスを所望の圧縮比に 圧縮したときに、 他方のロータの遮蔽板が爆発ガス噴射口の前記微小隙間の前方 近傍に位置するように設定したことを特徴とする同軸回転エンジン And an ignition chamber provided on the downstream side of the check valve in the compressed gas reservoir passage, when the phase angle of the pair of rotors is compressed by a shield plate of one of the rotors to a desired compression ratio. A coaxial rotary engine, wherein the shield plate of the other rotor is set near the front of the minute gap of the explosive gas injection port.
2 . 前記ロータの遮蔽板が、 各ロータの相対する半径方向に対をなして対称形に 配設されていることを特徴とする特許請求範囲 1又は 2記載の同軸回転エンジン 2. The coaxial rotary engine according to claim 1, wherein the shield plates of the rotors are arranged symmetrically in pairs in the radial direction of each rotor.
3 . 前記同軸回転エンジンの複数組が共通の回転軸に取り付けられていることを 特徴とする特許請求の範囲 1又は 2記載の同軸回転エンジン 3. The coaxial rotary engine according to claim 1, wherein a plurality of sets of the coaxial rotary engines are mounted on a common rotary shaft.
PCT/JP2001/011478 2001-12-26 2001-12-26 Coaxial rotary engine WO2003056156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/011478 WO2003056156A1 (en) 2001-12-26 2001-12-26 Coaxial rotary engine
AU2002225366A AU2002225366A1 (en) 2001-12-26 2001-12-26 Coaxial rotary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/011478 WO2003056156A1 (en) 2001-12-26 2001-12-26 Coaxial rotary engine

Publications (1)

Publication Number Publication Date
WO2003056156A1 true WO2003056156A1 (en) 2003-07-10

Family

ID=11738076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011478 WO2003056156A1 (en) 2001-12-26 2001-12-26 Coaxial rotary engine

Country Status (2)

Country Link
AU (1) AU2002225366A1 (en)
WO (1) WO2003056156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058891A1 (en) 2008-04-03 2009-12-17 Eduard Demmelmaier Rotary piston engine for compressible work fluids such as compressed air, steams, gases, hot gases, has two work areas axially arranged one behind other with one or multipart core housings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982106U (en) * 1972-11-06 1974-07-16
JPS51141910A (en) * 1975-06-02 1976-12-07 Kensho Okubo Rotary engine
JPS5276512A (en) * 1975-12-23 1977-06-28 Eiichi Kunieda Rotary engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982106U (en) * 1972-11-06 1974-07-16
JPS51141910A (en) * 1975-06-02 1976-12-07 Kensho Okubo Rotary engine
JPS5276512A (en) * 1975-12-23 1977-06-28 Eiichi Kunieda Rotary engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058891A1 (en) 2008-04-03 2009-12-17 Eduard Demmelmaier Rotary piston engine for compressible work fluids such as compressed air, steams, gases, hot gases, has two work areas axially arranged one behind other with one or multipart core housings
DE102008058891B4 (en) * 2008-04-03 2010-06-24 Eduard Demmelmaier Rotary piston machine with several axially successively arranged work areas

Also Published As

Publication number Publication date
AU2002225366A1 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
US7845332B2 (en) Rotary engine with vanes rotatable by compressed gas injected thereon
US9353679B2 (en) Internal combustion engine
US6070565A (en) Rotary internal combustion engine
JPH08334002A (en) Lateral pressure type rotary engine
WO2003056156A1 (en) Coaxial rotary engine
US3165093A (en) Rotary internal combustion engine
US20080264379A1 (en) Rotary Engine
TWI324218B (en)
JPS61241420A (en) Opposed operation partition member type rotary engine
JPH0742841B2 (en) Rotary internal combustion engine
US20040255898A1 (en) Tri-vane rotary engine
WO2005021947A2 (en) Rotary internal combustion engine
JP7424674B1 (en) Expansion/rotary engine
JPH03151523A (en) Rotary machine
JPH09264152A (en) Rotary piston type internal combustion engine
CN219953497U (en) Gemini engine
JP2004245093A (en) Rotary engine
US11066986B2 (en) Internal combustion engine
JPH0552119A (en) Rotary piston engine
JP2007506894A (en) Rotary internal combustion engine
CN117780493A (en) Gemini engine
JPS5849692B2 (en) ninenkikan
KR101886867B1 (en) Twin Rotary Engine
JPH07503775A (en) rotary engine
JPH0633787A (en) Rotary piston engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP