JP7422652B2 - 検体搬送装置 - Google Patents
検体搬送装置 Download PDFInfo
- Publication number
- JP7422652B2 JP7422652B2 JP2020214474A JP2020214474A JP7422652B2 JP 7422652 B2 JP7422652 B2 JP 7422652B2 JP 2020214474 A JP2020214474 A JP 2020214474A JP 2020214474 A JP2020214474 A JP 2020214474A JP 7422652 B2 JP7422652 B2 JP 7422652B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- coil
- specimen
- sample
- transport device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 claims description 58
- 239000000696 magnetic material Substances 0.000 claims description 6
- 239000000523 sample Substances 0.000 description 81
- 238000010586 diagram Methods 0.000 description 23
- 230000005284 excitation Effects 0.000 description 22
- 238000004804 winding Methods 0.000 description 21
- 230000004907 flux Effects 0.000 description 15
- 238000001514 detection method Methods 0.000 description 8
- 239000011295 pitch Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000006101 laboratory sample Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G54/00—Non-mechanical conveyors not otherwise provided for
- B65G54/02—Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0406—Individual bottles or tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0474—Details of actuating means for conveyors or pipettes
- G01N2035/0477—Magnetic
Landscapes
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Non-Mechanical Conveyors (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Control Of Linear Motors (AREA)
- Sampling And Sample Adjustment (AREA)
Description
本発明は、例えば血液や尿などの生体試料(以下検体と記載)の分析を行う検体分析システムや分析に必要な前処理を行う検体前処理装置に好適な検体搬送装置に関する。
臨床検査のための検体処理装置では、血液,血漿,血清,尿、その他の体液等の検体(サンプル)に対し、指示された分析項目を検査する。これらの検体処理装置は、各機能を有する複数の装置をつなげ、自動的に各工程を処理することができる。つまり、検査室の業務合理化のために、生化学や免疫など複数の分析分野の分析部を搬送ラインで接続し、1つの装置として運用している。従来の搬送ラインは主にベルト駆動方式がメインであり、搬送途中でなんらかの異常により搬送が停止してしまうと、それより下流側の装置に検体を供給できなくなる。また、医療の高度化及び高齢化社会の進展により、検体処理内容の多様化と検体数の増加が予想され、多様な検体をより速く運搬することが必要になる。そこで、検体処理装置の処理能力の向上のため、検体の高速搬送や大量同時搬送および複数方向への搬送を実現するべく、電磁搬送方式の検討が行われている。
電磁搬送方式の例としては、例えば、特開2017-227635号公報(特許文献1)に記載されたラボラトリ試料分配システムがある。このラボラトリ試料分配システムは、多数の試料容器搬送体を備え、試料容器搬送体は永久磁石の形態をした磁気活性素子備える。これにより特許文献1のラボラトリ試料分配システムでは、電磁アクチュエータによって生成される磁界が試料容器搬送体を移送平面に亘って駆動する。また特許文献1のラボラトリ試料分配システムでは、永久磁石によって生成される磁界が位置センサによって検出され、試料容器搬送体の位置に関するフィードバックを受けることができる(段落0063-0065参照)。
特許文献1のラボラトリ試料分配システムでは、位置センサにより検体位置を検知して試料容器搬送体を搬送する技術を開示しているが、試料容器搬送体の動きや停止方法については記述がない。
電磁アクチュエータでは、コイルに電流を印加して、コイルに発生した実効推力を利用して検体搬送を行う。この場合、コイルに印加する電流量及び電流を印加するコイルの切替位置を適切に制御しないと、切替直後に発生する検体の搬送速度の変動が大きくなり、大きな液揺れが発生する。更にコイルは、直上付近でディテント力(進行方向と逆側に働く力)を有しているため、ディテント力を考慮したコイル電流に制御しないと、試料容器搬送体を目標の停止位置に停止させることができない。
本発明の目的は、検体搬送時の液揺れを抑制しつつ検体停止位置を精度よく制御することができる検体搬送装置を提供することにある。
上記目的を達成するために、本発明の検体搬送装置は、磁石または磁性体と検体を保持する保持部とを備えた搬送容器と、前記搬送容器を搬送する複数のコイルと、前記複数のコイルに電圧を印加するコイル駆動部と、前記コイル駆動部を制御する制御部と、を備えた検体搬送装置において、
前記制御部は、検体の速度変動から検体の液揺れを判定する液揺れ判定部を有し、
前記制御部は、検体の停止位置に最も近接する停止コイルの近傍において、前記停止コイルから離れた側に第一区間を、前記停止コイルに対して前記第一区間よりも近接する側に第二区間を設定すると共に、前記第一区間に検体がある場合に前記停止コイルに通電する電流として第一電流を、前記第二区間に検体がある場合に前記停止コイルに通電する電流として第二電流を設定し、
前記第一電流は、前記液揺れ判定部の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、
前記第二電流は、前記第一電流よりも大きな電流値に設定される。
前記制御部は、検体の速度変動から検体の液揺れを判定する液揺れ判定部を有し、
前記制御部は、検体の停止位置に最も近接する停止コイルの近傍において、前記停止コイルから離れた側に第一区間を、前記停止コイルに対して前記第一区間よりも近接する側に第二区間を設定すると共に、前記第一区間に検体がある場合に前記停止コイルに通電する電流として第一電流を、前記第二区間に検体がある場合に前記停止コイルに通電する電流として第二電流を設定し、
前記第一電流は、前記液揺れ判定部の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、
前記第二電流は、前記第一電流よりも大きな電流値に設定される。
本発明によれば、搬送時の液揺れを抑制でき、検体停止位置を高精度に制御することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
検体搬送装置では、分析結果に影響を与えないようにするため、搬送中の液揺れを抑制する必要がある。また、複数の検体を搬送するため、他検体との衝突を防止するために、検体(搬送容器)の停止位置を高精度に制御する必要がある。電磁搬送装置では、搬送したい方向に検体を搬送できるようにコイルに電流を印加して、コイルに発生した実効推力を利用して検体搬送を行う。ここで、目標位置まで検体を移動させるためには、検体位置に応じて複数のコイルに電流を印加する必要があるが、検体に発生する実効推力は、コイル電流量及び、コイルと検体との位置関係によって決まる電磁力(進行方向/垂直方向)及び検体質量と搬送面の摩擦係数から求まる摩擦力(μN)で決まる。すなわち、コイルに印加する電流量及び電流を印加するコイルの切替位置を制御しないと、切替直後に発生する検体の搬送速度の変動が大きくなり、液揺れが発生してしまう。更にコイルは、直上付近でディテント力(進行方向と逆側に働く力)を有しているため、ディテント力を考慮したコイル電流に制御しないと、検体を目標の停止位置に停止させることができない。
本実施例は、上記の課題を解決するためになされたものであり、コイル巻線に流れる電流情報から検体位置を推定することで、検体位置検出用のセンサを用いることなく検体位置を推定する。更に、検体位置によって変化するコイルのインダクタンス変化に伴う電流変化量を検知することで、検体の正確な位置情報を把握して検体の位置検出精度を向上させる。更に、液揺れ判定器を有し、電流を印加しているコイルの速度情報から速度変動を予測し、液揺れを抑制するための電流量及び電流を印加するコイルの切替位置を制御する。更に、停止位置を精度よく制御するために、コイルのディテント力に打ち勝つための実効推力を演算し、演算結果に基づいて電流量及び電流を印加するコイルの切替位置を制御する。
本実施例によれば、搬送効率を保ちつつ、搬送時の液揺れを抑制できると共に、検体停止位置を高精度に制御することができる。
以下、本発明の検体搬送装置の実施例を、図面を用いて説明する。
最初に本実施例の搬送装置の概略構成について図1を用いて説明する。図1は、本発明の一実施例に係る検体搬送装置1の概略構成図である。図1では、2つのコイル25と永久磁石10が相対的に動作する検体搬送装置1の概略を模式的に示している。
図1において、検体搬送装置1は、永久磁石10、円柱状のコア22とコア22の外周側にまかれた巻線21とで構成されるコイル(コイル装置)25、駆動回路50、電流検出部30、演算部40、および電源55を備えている。
永久磁石10は磁性体とすることもでき、駆動回路50はコイル駆動部を構成する。コイル駆動部は電流検出部30を含んで構成されてもよい。演算部40は検体搬送装置1の制御部を構成し、コイル駆動部を制御して検体を保持する搬送容器(検体ホルダ)20を移送する。
図2は、検体搬送装置1の断面構成例の一部を示す模式図である。搬送容器20は、検体(容器)の保持部20aと永久磁石10とが一体となるように構成される。搬送容器20は、搬送平面Pを介して、コイル25(25a,25b)と対向して配置される。
通常、検体搬送装置1は、コイル25a,25bのコイル21a,21bに電流を流すことにより、コア22に電磁力を発生させる。この電磁力により、搬送容器20に配置される永久磁石10が、複数のコイル25a,25b間(コイル25とコイル25との間)の上方で、かつ搬送平面P上を滑るようにして、コイル25a,25bに対して相対的に移動するように制御され、搬送容器20は所望の位置まで搬送される。
検体搬送装置1では、永久磁石10とコイル25a,25bとの相対的な位置情報が必要となる。この位置情報は、コイル25a,25bの巻線21a,21bに電流を流すことによりコア22a,22bに発生させた電磁力を効率よく永久磁石10に作用させるために利用され、また、永久磁石10を目的の方向に移動させるために利用される。
例えば、永久磁石10が、2つのコイル25の一方の上方(直上)にある場合を想定する。永久磁石10の直下にあるコイル25a(巻線21a)に電圧を印加しても、永久磁石10には、搬送方向への力(推力)が発生しない。一方、永久磁石10が上方(直上)にない(永久磁石10の直下にない)コイル25b(巻線21b)に電圧を印加すると、永久磁石10をそのコイル25bに引き寄せる力が発生し、搬送方向への力(推力)が発生する。つまり、所望のコイル25a,25b(巻線21a,21b)に電圧を印加することによって、永久磁石10に効率よく搬送方向への力を発生させることができる。そして、電圧を印加するコイル25a,25b(巻線21a,21b)を選択することによって、搬送方向への力の向き(方向)を制御することができる。
続いて位置センサを用いることなく検体位置を推定する方法について説明する。図1の手前側のコイル25の上に永久磁石10があった場合、永久磁石10が作る磁束がコイル25に作用する。ここで、永久磁石10が近い側のコイル25と、遠い側のコイル25とでは、作用する磁束の大きさが異なる。つまり、永久磁石10とコイル25との相対位置によって、コイル25に作用する磁束の大きさが変わることになる。
コア22は磁性体で構成されており、コア22を通る磁束は、磁束が大きくなると通りにくくなる、という性質がある。ここで、巻線21に電圧を印加して電流を流すと、その電流によって生じた磁束がコア22に発生する。したがって、コア22には、永久磁石10による磁束と、巻線21に流した電流によって生じる磁束と、が発生する。
一般的に、巻線21に電流を流すと、その周りに磁場が発生し、生じる磁束は流した電流値に比例する。この比例定数はインダクタンスとよばれる。しかし、コア22などの磁性体を有する回路では、コア22の飽和特性により、インダクタンスが変化する。
コア22の飽和が発生すると、コア22に生じる磁束の大きさによってインダクタンスが変わる。つまり、永久磁石10の磁束の大きさによって巻線21のインダクタンスが変化する。これは、永久磁石10の位置によって巻線21のインダクタンスが変化することを意味する。
巻線21に生じる電圧Vは、式(1)で表される。
V=-dφ/dt (1)
ここで、φは磁束、tは時間である。式(1)に示すように、電圧Vは単位時間当たりの磁束の変化量で表される。
V=-dφ/dt (1)
ここで、φは磁束、tは時間である。式(1)に示すように、電圧Vは単位時間当たりの磁束の変化量で表される。
また、電流I、インダクタンスLとすると、式(2)の関係が成立する。
dI/dt=(1/L)×(dφ/dt) (2)
これら式(1)および式(2)から、式(3)の関係が成立する。
dI/dt=-V/L (3)
つまり、一定の電圧を巻線21に印加した場合、式(3)に示すように、インダクタンスLの大きさによって、供給される電流Iの時間微分が変化する。これは、電圧を印加した場合に供給される電流の立ち上がり方が異なること意味する。
dI/dt=(1/L)×(dφ/dt) (2)
これら式(1)および式(2)から、式(3)の関係が成立する。
dI/dt=-V/L (3)
つまり、一定の電圧を巻線21に印加した場合、式(3)に示すように、インダクタンスLの大きさによって、供給される電流Iの時間微分が変化する。これは、電圧を印加した場合に供給される電流の立ち上がり方が異なること意味する。
従って、巻線21に電圧を印加した場合、巻線21に流れる電流とその流れ方を検出することで、インダクタンスLを演算で求めることができる。つまり、永久磁石10の位置によって変化する巻線21のインダクタンスLを検出すれば、そのインダクタンスLに影響を与える永久磁石10の位置が求められることになる。
そのために、コイル25の巻線21に駆動回路50を接続するとともに、巻線21に流れる電流値を検出する電流検出部30を設ける。本実施例では、駆動回路50により巻線21に電圧を印加し、その電圧によって生じる電流値を電流検出部30で検出する。
電流検出部30は、直列抵抗や、カレントトランスによるもの、またはホール電流センサを用いたものなどが考えられるが、これらに限定されるものではない。
駆動回路50は電源55に接続されており、電流を受け取り、コイル25の巻線21に電流を供給する。
更に演算部40は、搬送容器20を搬送するために必要な推力を得るために、駆動回路50に印加する電圧指令を演算するとともに、電流検出部30によって検出された電流値を基に、コイル25のインダクタンスL(すなわち、電流変化量dI/dt)を計測し、コイル25と永久磁石10との相対位置関係を演算して、搬送装置1内における永久磁石10の位置を推定する。演算部40は、この演算した永久磁石10の位置情報を用いて、永久磁石10(検体)の搬送に必要な電流をコイル25に供給するタイミングを決定し、駆動回路50から適切なコイル25に電流を供給させる。
このときの検体位置検出制御の一例を図3のブロック線図に表す。図3は、検体搬送装置1の演算部40の構成を示す機能ブロック図である。
図3に示すように、演算部40は通電コイル決定部63で決定した順番及び、液揺れ判定部65で演算した搬送速度の目標値で決まる推力(電流)指令及び液揺れ判定器65が出力した目標切替位置指令及び検体位置推定部62が出力した位置情報を入力し、デューティ設定部60で電圧パルスを演算し、駆動回路50に出力する。
デューティ設定部60は、液揺れ判定部65で演算した推力(電流)指令に基づいて、電圧パルスのON時間及びOFF時間を演算し、電圧パルスのデューティ比を決定する。
コイル25に電圧パルスを出力した時の電流値を電流検出部30で検出し、電流変化量演算部61でコイル25の電流変化量(dI/dt)を演算し、その値に応じて検体位置推定演算部62で検体位置を推定する。さらに検体の搬送目標位置と前述の検体位置推定結果とに基づいて実際に通電を行うコイル25を通電コイル決定部63で決定し、この決定位置と前述した液揺れ判定部が出力する目標切替位置指令とに従い、コイル切替え位置演算部64において、所望のコイル25への通電が可能となるように回路を切り替える。なお、ここで述べた制御ブロックはマイクロコンピュータ等の演算装置で実現することができる。
ここで、図4を参照して、検体位置推定部62について説明する。図4は、検体搬送装置1に用いられるコイル25の位置に対するインダクタンス特性を示す図である。このインダクタンス特性は、検体搬送装置1において、インダクタンスの特性テーブルとして備えられる。
検体位置推定部62では、前述のように電流変化量(dI/dt、すなわち、コイル25のインダクタンスLに相当)を入力して搬送容器20(すなわち検体)の位置推定値を出力する。検体位置推定部62には、例えば、図4に示すような検体位置に対するインダクタンスの特性テーブルが設定される。
図4において、P3は永久磁石10があるコイル25の直上にあることを意味しており、P1は、永久磁石10が当該コイル25から遠ざかり、隣接配置される他のコイル25上にあることを意味している。さらに、図4の縦軸Lはコイル25のインダクタンスを示している。この特性をみると、永久磁石10がP3からP1に変化するにつれて、インダクタンスLが増加していることがわかる。この特性は上述したように、コイル25に通電して発生する磁束の作用と、永久磁石10が発生する磁束の作用とによって生じるインダクタンスの変化である。
図5を参照して、実際の制御ロジックで使用されるインダクタンス特性の代替特性について説明する。図5は、コイル25の位置に対する電流変化量特性を示す図である。
本実施例では、このインダクタンスLの位置特性を利用して搬送容器20の位置を推定することを原理としているが、実際の制御ロジックでは、コイル25の電流変化量を入力とするため、検知位置推定部62内には、図5に示すような電流変化量(dI/dt)の位置特性データテーブルとして設定することができる。インダクタンスLと電流変化量(dI/dt)の間の関係は式(3)に示す通りである。
図6を参照して、検体搬送装置1における、搬送容器20の位置を検出するためにコイル25に印加する電圧波形と対応する電流波形について説明する。図6は、検体搬送装置1の電圧パルスと電流の時系列波形を示す図である。
図6は電圧パルスに対する電流値を表しており、電圧パルスのONが終わるタイミングの電流値(最大値)と電圧パルスのOFFが終わるタイミングの電流値(最小値)との差分から電流変化量(dI/dt)を演算している。検体位置推定部62では、この電流変化量(dI/dt)を逐次演算することで、検体位置(搬送容器20の位置)を随時推定している。
続いて、図3に示す液揺れ判定部65について説明する。液揺れ判定部65は検体の速度変動から検体の液揺れを判定する。液揺れ判定部65では、液揺れを判定して液揺れが十分に抑えられる推力(電流)指令をデューティ設定部60に出力し、その時の電流印加コイルの切替位置、すなわち検体がどの位置にある時に電流印加コイルを切替えるかを決める目標切替位置を、コイル切替位置演算部64に出力する。ここで、検体の停止位置を高精度に制御するために、指令電流および目標切替位置をそれぞれ2段階に設定する。
検体位置に対する実効推力の特性について、図7を参照して説明する。図7は、検体搬送装置1の電流毎の位置対実効推力を示す図である。
実効推力Feffは、式(4)で表される。
Feff = Fx - μ(mg+Fz) (4)
ここで、Fxはコイル25に発生する搬送面Pに対して水平方向に働く力、Fzはコイル25に発生する搬送面Pに対して垂直方向に働く力、mは検体質量、μは摩擦係数である。
Feff = Fx - μ(mg+Fz) (4)
ここで、Fxはコイル25に発生する搬送面Pに対して水平方向に働く力、Fzはコイル25に発生する搬送面Pに対して垂直方向に働く力、mは検体質量、μは摩擦係数である。
図7の特性はコイル3に電流を印加(励磁)した時の特性を示している。図7のdはコイル間距離である。コイル1、すなわち2ピッチ分(2d)離れた所に検体がある場合は、Fxはほとんど作用せず、自重成分の摩擦力とFzとにより検体を減速させる方向に力が働く。コイル2、すなわち1ピッチ分(d)離れた所に検体がある場合は、Fxの増加により検体を加速させる方向に力が働く。その後、検体がコイル3に近づくにつれて加速力が徐々に増加していき、コイルの特性にもよるが、コイル2とコイル3の中間地点近傍に検体が来た時の実効推力が最大となり、その後は更に検体が近づくにつれて実効推力は減少する。更に検体が近づいてコイル3直上付近まで達すると、コイル3のディテント力が作用してFzが増大するために、検体を減速させる方向に力が働く。尚、式(4)に示したFx及びFzは電流量によって大きくなるため、実効推力も電流量が大きいほど大きくなる。
ここで、第一電流は、主にコイル2からコイル3に励磁コイルが切り替わった直後から停止位置(図7のコイル3)に対して所定の位置まで到達するまでの間に印加する電流とし、第二電流は、検体が停止位置に対して所定の位置まで近づいてから検体が停止するまでに印加する電流とする。第一電流は、液揺れを抑制しつつ検体を精度よく停止位置に停止させるために印加する電流のため、図7の点線で示す小電流相当をコイル3に印加する。一方で、第二電流はディテント力により減速力に打ち勝って検体を停止目標に停止させるための電流のため、図7の実線で示す大電流相当をコイル3に印加する。
上述した様に本実施例では、演算部(制御部)40は、検体の停止位置に最も近接する停止コイルの近傍において、停止コイルから離れた側に第一区間を、停止コイルに対して第一区間よりも近接する側に第二区間を設定すると共に、第一区間に検体がある場合に停止コイルに通電する電流として第一電流を、第二区間に検体がある場合に停止コイルに通電する電流として第二電流を設定する。本実施例の場合、検体の停止位置に最も近接する停止コイルはコイル3であり、第二区間は停止位置を含み、第一区間に連続して設定される。
また、第一電流は液揺れ判定部65の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、第二電流は第一電流よりも大きな電流値に設定される。
第一電流及び第二電流は、デューティ設定部60で設定される電圧パルスのデューティ比により、生成される。
次に、図8を参照して、励磁コイルの切替位置について説明する。図8は、検体搬送装置1の励磁コイルの切替位置による検体搬送速度への影響を説明する図である。
図8では、横軸に電流を印加するコイルの切替位置、縦軸に励磁コイルが切り替わってから同じ切替位置まで検体が到達した時の速度を示す。ここでいう切替位置とは、電流を印加するコイルを切替える直前の、検体と励磁コイルとの距離を表している。
切替位置が大きい、すなわち励磁コイルと検体との距離が離れている時に励磁コイルの切替を行った場合、実効推力が大きく加速する領域(図7のコイル2とコイル3との中間近傍)で励磁コイルが切り替わる。励磁コイルが切り替わると検体と励磁コイルとの距離が更に1ピッチ増えるため検体を減速させる方向に働く。
一方、切替位置が小さい、すなわち励磁コイルと検体との距離が近い時に励磁コイルの切替を行った場合、実効推力が大きく加速する領域で十分加速して励磁コイルが切り替わる。励磁コイルの切替により、励磁コイルとの距離が1ピッチ増えるのは共通だが、検体が近づいた状態で励磁コイルの切替を行っているため、励磁コイルとの距離は相対的に近くなり、その分減速させる方向に働く力が小さくなる。
ここで、本発明の目的である停止位置を高精度に制御するためには、搬送容器20を十分に減速させることが必要になるため、切替位置を大きくする必要がある。
続いて、電流を印加するコイルを切り替えた時の速度変動波形を図9に示す。停止目標は図7に示したコイル3となるため、減速させるためにコイル2よりも小さい電流をコイル3に印加する。電流を印加するコイルをコイル2からコイル3に切替えると、切替えた瞬間の検体とコイル3との距離は1ピッチ分離れるため実効推力が減少し、検体の搬送加速度も減少する。検体搬送を速度で管理するために、電流印加コイルの切替前後の速度勾配を、速度変動1、速度変動2とした。速度変動1及び速度変動2の最大値と搬送時の液揺れ量とには相関があるという知見が得られており、これらを液揺れ判定部65の液揺れ判定に用いる。尚、最大値に限定するものでは無く、例えば速度変動1(正値)と速度変動2(負値)との差分を用いても良い。
続いて、横軸に切替位置、縦軸に速度変動を示したものを図10に示す。図10に示す切替位置と速度変動との相関は、図8に示した切替位置と速度との相関と逆の特性が見られる。これは切替後の速度が大きいということは実効推力の変動が少なく、液揺れが発生しづらくなることを示している。すなわち切替位置の遠近と液揺れとはトレードオフにあるため、液揺れを抑制しつつ検体速度を十分に減速できるように切替位置を制御するために、液揺れ判定部65は液揺れの合否判定を行う。ここで、液揺れの合否判定値は、例えば、実際に切替位置を変えた時の液揺れ量をカメラ等でデータ取得したものを用いても良い。液揺れの合否判定をクリアしつつ、できるだけ検体速度を減速できる切替位置に制御する。上述した様に、液揺れ判定部65はコイル25の実効推力特性を用いて液揺れを判定する。
次に、図11を用いて、第一電流から第二電流に切替える際の制御方法について説明する。図11は、検体搬送装置1の第二電流の印加タイミングの搬送速度の説明図である。図11では、位置対実効推力の特性とコイル及び検体(搬送容器20)との位置関係を示している。
第二電流に切替える直前の検体速度をv2、その時のコイル3と検体との距離をx1とすると、コイル3直上で検体を停止、すなわち速度を0にするためには、運動エネルギーと仕事との関係式から、以下の関係が成立する。
0 - (1/2)mv2
2 = Feff・x1 (5)
式(5)を用いて、検体の速度情報と実効推力から切替位置を決定する。尚、切替位置に関しては、第一電流の印加時と同様に液揺れ合否判定に基づいて決定する。また、検体速度は例えば、検体位置推定部62から入力される位置情報を微分して求めることができる。基本的には第一電流を印加する区間で十分に減速されていることが前提となるが、例えば搬送面Pの劣化等で摩擦係数が想定よりも小さくなったことで摩擦力が低減し実効推力が増大した場合、検体の搬送速度が想定よりも高速になることが考えられる。したがって、検体の位置及び速度情報から目標推力を逐次演算し、搬送速度が想定よりも高速になる時には電流値を下げる処理を行うことで停止位置精度を確保する。
式(5)を用いて、検体の速度情報と実効推力から切替位置を決定する。尚、切替位置に関しては、第一電流の印加時と同様に液揺れ合否判定に基づいて決定する。また、検体速度は例えば、検体位置推定部62から入力される位置情報を微分して求めることができる。基本的には第一電流を印加する区間で十分に減速されていることが前提となるが、例えば搬送面Pの劣化等で摩擦係数が想定よりも小さくなったことで摩擦力が低減し実効推力が増大した場合、検体の搬送速度が想定よりも高速になることが考えられる。したがって、検体の位置及び速度情報から目標推力を逐次演算し、搬送速度が想定よりも高速になる時には電流値を下げる処理を行うことで停止位置精度を確保する。
図12は、第一電流/第二電流を印加した時の検体搬送装置1の実効推力および検体動作の説明図である。
第一電流の区間において、液揺れが発生しないで減速力を得られる切替位置で励磁コイルを切替える。更に十分に停止位置(コイル3)に検体が近づいた時には、運動エネルギーと仕事との相関に基づき、第一電流から第二電流へ切り替える位置を決定する。なお、第一電流は第二電流に対して小電流であり、第二電流は第一電流に対して大電流である。
上述した様に本実施例では、磁石10または磁性体と検体を保持する保持部20aとを備えた搬送容器20と、搬送容器20を搬送する複数のコイル25と、複数のコイル25に電圧を印加するコイル駆動部50と、コイル駆動部50を制御する制御部40と、を備えた検体搬送装置1において、
制御部40は、検体の速度変動から検体の液揺れを判定する液揺れ判定部65を有し、
制御部40は、検体の停止位置に最も近接する停止コイル3の近傍において、停止コイル3から離れた側に第一区間S1を、停止コイル3に対して第一区間S1よりも近接する側に第二区間S2を設定すると共に、第一区間S1に検体がある場合に停止コイル3に通電する電流として第一電流を、第二区間S2に検体がある場合に停止コイル3に通電する電流として第二電流を設定し、
第一電流は、液揺れ判定部65の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、
第二電流は、第一電流よりも大きな電流値に設定される。
制御部40は、検体の速度変動から検体の液揺れを判定する液揺れ判定部65を有し、
制御部40は、検体の停止位置に最も近接する停止コイル3の近傍において、停止コイル3から離れた側に第一区間S1を、停止コイル3に対して第一区間S1よりも近接する側に第二区間S2を設定すると共に、第一区間S1に検体がある場合に停止コイル3に通電する電流として第一電流を、第二区間S2に検体がある場合に停止コイル3に通電する電流として第二電流を設定し、
第一電流は、液揺れ判定部65の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、
第二電流は、第一電流よりも大きな電流値に設定される。
この場合、第一電流は、液揺れ判定部65の判定情報に基づいて、検体の液揺れが図10の液揺れ合否判定に用いられる所定の液揺れに抑制される大きさに設定されることが好ましい。
上述した様に本実施例では、第一電流は、液揺れが発生せず、かつ搬送速度の減少が見込まれるタイミングで、検体の停止位置に最も近接する停止コイルに通電される。また第二電流は、検体の運動エネルギーと仕事とが釣り合うタイミングで、検体の停止位置に最も近接する停止コイルに通電される。言い換えれば、演算部(制御部)40は、液揺れが発生せず、かつ搬送速度の減少が見込まれるタイミングで、検体の停止位置に最も近接する停止コイルに、第一電流を通電する。また演算部(制御部)40は、検体の運動エネルギーと仕事とが釣り合うタイミングで、検体の停止位置に最も近接する停止コイルに、第二電流を通電する。
以上のような構成とすることで、検体搬送時の液揺れを抑制しつつ検体停止位置を精度よく制御することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…検体搬送装置、3…停止コイル、10…永久磁石、20…搬送容器、20a…保持部、25…コイル、40…演算部(制御部)、50…駆動回路(コイル駆動部)、65…液揺れ判定部、S1…第一区間、S2…第二区間。
Claims (4)
- 磁石または磁性体と検体を保持する保持部とを備えた搬送容器と、前記搬送容器を搬送する複数のコイルと、前記複数のコイルに電圧を印加するコイル駆動部と、前記コイル駆動部を制御する制御部と、を備えた検体搬送装置において、
前記制御部は、検体の速度変動から検体の液揺れを判定する液揺れ判定部を有し、
前記制御部は、検体の停止位置に最も近接する停止コイルの近傍において、前記停止コイルから離れた側に第一区間を、前記停止コイルに対して前記第一区間よりも近接する側に第二区間を設定すると共に、前記第一区間に検体がある場合に前記停止コイルに通電する電流として第一電流を、前記第二区間に検体がある場合に前記停止コイルに通電する電流として第二電流を設定し、
前記第一電流は、前記液揺れ判定部の判定情報に基づいて検体の液揺れが抑制される大きさに設定され、
前記第二電流は、前記第一電流よりも大きな電流値に設定されることを特徴とする検体搬送装置。 - 請求項1に記載の検体搬送装置において、
前記液揺れ判定部は、前記コイルの実効推力特性を用いて液揺れを判定することを特徴とする検体搬送装置。 - 請求項1に記載の検体搬送装置において、
前記第一電流は、液揺れが発生せず、かつ搬送速度の減少が見込まれるタイミングで前記停止コイルに通電されることを特徴とする検体搬送装置。 - 請求項1に記載の検体搬送装置において、
前記第二電流は、検体の運動エネルギーと仕事とが釣り合うタイミングで前記停止コイルに通電されることを特徴とする検体搬送装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020214474A JP7422652B2 (ja) | 2020-12-24 | 2020-12-24 | 検体搬送装置 |
EP21910012.0A EP4269296A1 (en) | 2020-12-24 | 2021-11-10 | Specimen transportation device |
US18/266,662 US20240094234A1 (en) | 2020-12-24 | 2021-11-10 | Specimen Transportation Device |
PCT/JP2021/041311 WO2022137858A1 (ja) | 2020-12-24 | 2021-11-10 | 検体搬送装置 |
CN202180081818.9A CN116568617A (zh) | 2020-12-24 | 2021-11-10 | 检体传送装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020214474A JP7422652B2 (ja) | 2020-12-24 | 2020-12-24 | 検体搬送装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022100478A JP2022100478A (ja) | 2022-07-06 |
JP7422652B2 true JP7422652B2 (ja) | 2024-01-26 |
Family
ID=82157605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020214474A Active JP7422652B2 (ja) | 2020-12-24 | 2020-12-24 | 検体搬送装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240094234A1 (ja) |
EP (1) | EP4269296A1 (ja) |
JP (1) | JP7422652B2 (ja) |
CN (1) | CN116568617A (ja) |
WO (1) | WO2022137858A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000275251A (ja) | 1999-03-26 | 2000-10-06 | Olympus Optical Co Ltd | 自動分析装置および試薬容器 |
JP3120179U (ja) | 2006-01-11 | 2006-03-23 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP2014532870A (ja) | 2011-11-04 | 2014-12-08 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 研究室試料配送システムおよび対応する動作方法 |
US20160077120A1 (en) | 2014-09-12 | 2016-03-17 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
JP2017522564A (ja) | 2014-07-24 | 2017-08-10 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ラボラトリ試料分配システムおよびラボラトリ自動化システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61217434A (ja) * | 1985-03-20 | 1986-09-27 | Mitsubishi Chem Ind Ltd | 搬送用装置 |
EP3139175B1 (en) * | 2015-09-01 | 2021-12-15 | Roche Diagnostics GmbH | Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system |
EP3260867A1 (en) | 2016-06-21 | 2017-12-27 | Roche Diagnostics GmbH | Method of setting a handover position and laboratory automation system |
-
2020
- 2020-12-24 JP JP2020214474A patent/JP7422652B2/ja active Active
-
2021
- 2021-11-10 CN CN202180081818.9A patent/CN116568617A/zh active Pending
- 2021-11-10 EP EP21910012.0A patent/EP4269296A1/en active Pending
- 2021-11-10 US US18/266,662 patent/US20240094234A1/en active Pending
- 2021-11-10 WO PCT/JP2021/041311 patent/WO2022137858A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000275251A (ja) | 1999-03-26 | 2000-10-06 | Olympus Optical Co Ltd | 自動分析装置および試薬容器 |
JP3120179U (ja) | 2006-01-11 | 2006-03-23 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP2014532870A (ja) | 2011-11-04 | 2014-12-08 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 研究室試料配送システムおよび対応する動作方法 |
JP2017522564A (ja) | 2014-07-24 | 2017-08-10 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ラボラトリ試料分配システムおよびラボラトリ自動化システム |
US20160077120A1 (en) | 2014-09-12 | 2016-03-17 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
Also Published As
Publication number | Publication date |
---|---|
EP4269296A1 (en) | 2023-11-01 |
WO2022137858A1 (ja) | 2022-06-30 |
CN116568617A (zh) | 2023-08-08 |
US20240094234A1 (en) | 2024-03-21 |
JP2022100478A (ja) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3905515B1 (en) | Conveying device, sample analysis system and sample preprocessing device comprising same, and method for conveying sample to be conveyed | |
JP7325184B2 (ja) | 搬送装置、およびそれを備えた検体分析システム、検体前処理装置 | |
CN113939997B (zh) | 输送装置 | |
WO2021250938A1 (ja) | 搬送装置、および分析システム | |
JP7422652B2 (ja) | 検体搬送装置 | |
WO2021250978A1 (ja) | 検体搬送装置 | |
WO2023062926A1 (ja) | 搬送装置 | |
WO2023084901A1 (ja) | 搬送装置 | |
WO2023162340A1 (ja) | 搬送装置、および搬送方法 | |
WO2023145174A1 (ja) | 搬送装置、および搬送方法 | |
WO2023228583A1 (ja) | 搬送装置 | |
JP7480363B2 (ja) | 検体搬送システム、および検体の搬送方法 | |
WO2023026622A1 (ja) | 検体搬送装置および検体搬送方法 | |
EP4101794A1 (en) | Specimen transport system and specimen transport method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7422652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |