JP7420123B2 - Threaded joints, steel pipes with threaded joints, structures, construction methods for structures, landslide prevention piles, construction methods for landslide prevention piles, design methods for threaded joints, manufacturing methods for threaded joints, manufacturing methods for steel pipes with threaded joints - Google Patents

Threaded joints, steel pipes with threaded joints, structures, construction methods for structures, landslide prevention piles, construction methods for landslide prevention piles, design methods for threaded joints, manufacturing methods for threaded joints, manufacturing methods for steel pipes with threaded joints Download PDF

Info

Publication number
JP7420123B2
JP7420123B2 JP2021133146A JP2021133146A JP7420123B2 JP 7420123 B2 JP7420123 B2 JP 7420123B2 JP 2021133146 A JP2021133146 A JP 2021133146A JP 2021133146 A JP2021133146 A JP 2021133146A JP 7420123 B2 JP7420123 B2 JP 7420123B2
Authority
JP
Japan
Prior art keywords
thread
steel pipe
threaded joint
male
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021133146A
Other languages
Japanese (ja)
Other versions
JP2022044001A (en
Inventor
雄登 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CN202180058126.2A priority Critical patent/CN116057231A/en
Priority to KR1020237003203A priority patent/KR20230028537A/en
Priority to PCT/JP2021/031009 priority patent/WO2022050133A1/en
Publication of JP2022044001A publication Critical patent/JP2022044001A/en
Priority to JP2023182999A priority patent/JP2023184587A/en
Application granted granted Critical
Publication of JP7420123B2 publication Critical patent/JP7420123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば地すべり地帯に設置される地すべり抑止用鋼管杭(略して「地すべり抑止杭」)に用いられるねじ継手、該ねじ継手付き鋼管、構造体、構造体の構築方法、地すべり抑止杭、ねじ継手の設計方法、ねじ継手の製造方法、ねじ継手付き鋼管の製造方法に関する。 The present invention relates to a threaded joint used for a landslide prevention steel pipe pile (abbreviated as "landslide prevention pile") installed in a landslide zone, for example, a steel pipe with the threaded joint, a structure, a construction method of the structure, a landslide prevention pile, The present invention relates to a method for designing a threaded joint, a method for manufacturing a threaded joint, and a method for manufacturing a steel pipe with a threaded joint.

地すべり抑止用鋼管杭(以下、省略して「地すべり抑止杭」とする)は、地すべり地帯に設置されるもので、その施工場所は重機等の搬入が困難な急傾斜地であることが多い。そのため、打撃により杭を打ち込むことができず、オーガーなどによりプレボーリングした孔に杭を建て込むことが行われている。ところで、地すべり抑止杭の全長は、現地の状況によって相違するが、一般に20~30mに達する場合が多い。しかし、輸送等の制限があるため、5~8m程度の鋼管杭を現場で継杭しながら施工するのが通常である。 Steel pipe piles for landslide prevention (hereinafter abbreviated as ``landslide prevention piles'') are installed in landslide areas, and their construction sites are often on steep slopes where it is difficult to bring in heavy machinery. For this reason, piles cannot be driven in by hammering, and piles are instead driven into holes pre-bored with an auger or the like. Incidentally, the total length of landslide prevention piles varies depending on the local situation, but generally reaches 20 to 30 meters in many cases. However, due to restrictions such as transportation, it is common practice to construct steel pipe piles of approximately 5 to 8 meters while connecting piles on site.

この継杭作業は不安定な環境下で行われるため、迅速かつ確実な作業が強く求められる。また、地すべり崩壊面は、どの地層面で起こるかを予測することが難しいため、地すべり抑止杭は、継杭のための継手部を含むほぼ全長にわたって、どの部分でも設計上必要な強度以上の断面諸性能を有していなければならないことが多い。 This pile-jointing work is carried out in an unstable environment, so there is a strong need for quick and reliable work. In addition, because it is difficult to predict on which stratum a landslide collapse will occur, landslide prevention piles must have a cross-section that exceeds the design strength at any point over almost the entire length, including the joints for joint piles. In many cases, it must have various performance characteristics.

このため、従来、地すべり抑止杭の継杭は、現場での溶接作業によって行われている。しかしながら、このような作業環境が悪い場所での現場溶接は、次のような問題がある。
(1)現在の慣用サイズの鋼管は肉厚が厚いため、1か所の溶接に時間がかかる。
(2)作業環境が悪いため溶接品質が落ち易く、継手強度の確保が容易でない。
(3)労働条件が悪いため、優れた溶接技能者を確保しにくい。
(4)現場溶接では溶接品質を確保することが困難なため、高張力鋼を使用しにくい。
For this reason, conventionally, connecting piles for landslide prevention piles have been performed by welding on site. However, on-site welding in such a place with a poor working environment has the following problems.
(1) Current conventional size steel pipes have thick walls, so it takes time to weld at one location.
(2) Welding quality tends to deteriorate due to the poor working environment, making it difficult to ensure joint strength.
(3) Due to poor working conditions, it is difficult to secure excellent welding technicians.
(4) Since it is difficult to ensure welding quality in on-site welding, it is difficult to use high-tensile steel.

このようなことから、現場継杭作業を前提とする地すべり抑止杭においては、次のような要件をすべて満すことが要求される。
(1)継杭作業が容易で、かつ作業時間が短いこと。
(2)鋼管杭どうしの継手部の品質が作業環境及び技量に影響されることなく、良好に確保されること。
(3)継手部の強度が鋼管杭本体(以下、杭本体という)と同等以上であること。
(4)継手部の外径が杭本体より大きくならないこと。
(5)杭本体が高張力鋼の場合でも適用できること。
For this reason, landslide prevention piles that are intended for on-site joint pile work are required to satisfy all of the following requirements.
(1) The joint pile work is easy and the work time is short.
(2) The quality of the joints between steel pipe piles should be ensured without being affected by the working environment or workmanship.
(3) The strength of the joint part shall be equal to or greater than that of the steel pipe pile body (hereinafter referred to as the pile body).
(4) The outer diameter of the joint should not be larger than the pile body.
(5) Applicable even when the pile body is made of high-tensile steel.

上記のような要件に対応する、地すべり抑止杭の継手として、端部に雌ねじ継手部を有する杭本体と、端部にこの雌ねじ継手部の外径と実質的に同じ外径の雄ねじ継手部を有する杭本体とを備え、雌ねじ継手部及び雄ねじ継手部は数回転でねじ込みが完了するように設定された傾斜及びねじ山高さとねじ山間隔を有するテーパ状のねじ継手からなり、雌ねじ継手部及び雄ねじ継手部のねじ終点部における断面係数と材料強度の積が杭本体の断面係数と材料強度の積より大きくなるように構成したものがある(例えば、特許文献1参照)。
また、雄ねじ及び雌ねじはテーパねじであり、ねじ山形状が台形状で、かつ2条~3条の多条ねじとした地すべり抑止鋼管杭継手が開示されている(例えば、特許文献2参照)。
As a joint for a landslide prevention pile that meets the above requirements, the pile body has a female threaded joint at the end, and a male threaded joint at the end has an outer diameter that is substantially the same as the outer diameter of the female threaded joint. The female threaded joint part and the male threaded joint part consist of a tapered threaded joint having an inclination, thread height, and thread spacing set so that screwing can be completed in a few turns. There is a structure in which the product of the section modulus and the material strength at the thread end point of the joint part is larger than the product of the section modulus and the material strength of the pile body (for example, see Patent Document 1).
Further, a landslide prevention steel pipe pile joint has been disclosed in which the male thread and the female thread are tapered threads, the thread shape is trapezoidal, and the thread is multi-threaded with two to three threads (for example, see Patent Document 2).

特開平7-82738号公報Japanese Patent Application Publication No. 7-82738 特開平10-252056号公報Japanese Patent Application Publication No. 10-252056

地すべり抑止杭のねじ継手には高い耐力が求められる一方で足場の悪い施工現場において人力での回転接合を行う必要がある。そして、ねじ継手はショルダー部がタッチするまでねじ込むことを基本としているが、上記のような施工現場での接合のため、完全にねじを締め切れずショルダー部がタッチせずに隙間が2mm程度生じてしまうことがある。 Screw joints for landslide prevention piles are required to have high resistance, but rotational joints must be performed manually at construction sites with poor footing. The basic rule for threaded joints is to screw them in until the shoulder parts touch, but because they are joined at the construction site as described above, the screws cannot be tightened completely and the shoulder parts do not touch, leaving a gap of about 2 mm. Sometimes I put it away.

この場合、牽引工具等を用いて完全接合状態とすることで隙間が生じないようにすることもできるが、非常に手間がかかる。そのため、牽引工具等を用いて完全接合状態にすることを前提とするなら一般的な現場溶接接合に対するねじ継手の優位性が減殺されてしまう。 In this case, it is possible to prevent gaps from forming by using a pulling tool or the like to completely join the parts, but this takes a lot of effort. Therefore, if it is assumed that a traction tool or the like is used to achieve a completely joined state, the superiority of threaded joints over general field welded joints will be diminished.

また、一般的にねじ継手は圧縮荷重に対してショルダー部とねじ部で抵抗し、引張荷重に対してねじ部で抵抗するよう設計される。このため、完全にねじを締め切っていない不完全接合状態で曲げ荷重による圧縮荷重がねじ継手に作用すると、ショルダー部が圧縮荷重を伝達せず、ねじ部のみで荷重に抵抗することとなる。この結果、継手鋼材の全塑性荷重を十分に活かせないまま、圧縮側のねじ部が外れてしまいねじ継手の破壊に至ることがある。 Additionally, threaded joints are generally designed so that the shoulder portion and the threaded portion resist compressive load, and the threaded portion resists tensile load. Therefore, if a compressive load due to a bending load acts on the threaded joint in an incompletely connected state in which the screw is not completely tightened, the shoulder portion will not transmit the compressive load and only the threaded portion will resist the load. As a result, the threaded portion on the compression side may come off without fully utilizing the full plastic load of the joint steel material, leading to destruction of the threaded joint.

本発明はかかる課題を解決するためになされたものであり、ショルダー部がタッチしない不完全接合状態であっても圧縮側のねじ部が外れることなく継手鋼材の全塑性荷重を十分に活かすことができるねじ継手を提供することを目的としている。
また、このようなねじ継手を前提としたねじ継手付き鋼管、構造体、構造体の構築方法、地すべり抑止杭、地すべり抑止杭の施工方法、ねじ継手の設計方法、ねじ継手の製造方法、ねじ継手付き鋼管の製造方法を提供することを目的としている。
The present invention has been made to solve this problem, and it is possible to fully utilize the total plastic load of the joint steel without causing the threaded part on the compression side to come off even in an incompletely joined state where the shoulder part does not touch. The purpose is to provide threaded joints that can be used.
In addition, steel pipes with threaded joints based on such threaded joints, structures, methods of constructing structures, landslide prevention piles, construction methods of landslide prevention piles, methods of designing threaded joints, methods of manufacturing threaded joints, threaded joints The purpose of the present invention is to provide a method for manufacturing steel pipes with attached steel pipes.

[1]本発明に係るねじ継手は、鋼管の端部にあって前記鋼管同士を接合するねじ継手であって、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを備え、前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度が0度~+8度の範囲内にあるものである。 [1] The threaded joint according to the present invention is a threaded joint that is located at the end of a steel pipe and joins the steel pipes together, and has a male side cylinder body having a male thread made of a tapered thread, and a female thread made of a tapered thread. and a female side cylindrical body, and the inclination angle of the stabbing surfaces of the threads of the male thread and the female thread with respect to the direction perpendicular to the steel pipe axis is within the range of 0 degrees to +8 degrees.

[2]また、上記[1]に記載のものにおいて、前記雄側筒体と前記雌側筒体における全てのねじ山及びこれに対応するねじ底のピッチが同じであるものである。 [2] Furthermore, in the product described in [1] above, all the threads on the male side cylinder and the female side cylinder and the pitches of the corresponding thread bottoms are the same.

[3]また、本発明に係るねじ継手付き鋼管は、上記[1]又は[2]に記載のねじ継手における雄側筒体と雌側筒体を、次の(1)から(3)のいずれか1つの態様で備えるものである。
(1)前記雄側筒体を、前記鋼管の少なくとも一端に設ける態様
(2)前記雌側筒体を、前記鋼管の少なくとも一端に設ける態様
(3)前記雄側筒体と前記雌側筒体を、前記鋼管の一端と他端に設ける態様
[3] Furthermore, in the steel pipe with a threaded joint according to the present invention, the male side cylinder and the female side cylinder in the threaded joint described in [1] or [2] above are replaced by the following (1) to (3). It is provided in any one of the aspects.
(1) A mode in which the male side cylinder is provided at at least one end of the steel pipe. (2) A mode in which the female side cylinder is provided at at least one end of the steel pipe. (3) A mode in which the male side cylinder and the female side cylinder are provided. are provided at one end and the other end of the steel pipe.

[4]また、本発明に係る構造体は、上記[1]又は[2]に記載のねじ継手と、該ねじ継手で連結された複数の鋼管とを備えたものである。 [4] Further, a structure according to the present invention includes the threaded joint according to [1] or [2] above, and a plurality of steel pipes connected by the threaded joint.

[5]また、本発明に係る構造体の構築方法は、上記[4]の構造体の構築方法であって、連結対象となるねじ継手付き鋼管の一方の回転を拘束した状態で、他方のねじ継手付き鋼管のねじ継手を、前記一方のねじ継手付き鋼管のねじ継手に位置合わせして回転嵌合するものである。 [5] Furthermore, the method for constructing a structure according to the present invention is the method for constructing a structure according to [4] above, in which one of the steel pipes with threaded joints to be connected is restrained from rotating, and the other is restrained from rotating. The threaded joint of the steel pipe with a threaded joint is aligned and rotationally fitted to the threaded joint of the one steel pipe with a threaded joint.

[6]また、本発明に係る地すべり抑止杭は、上記[1]又は[2]に記載のねじ継手と、該ねじ継手で連結された複数の鋼管とを備えたものである。 [6] Furthermore, a landslide prevention pile according to the present invention includes the threaded joint according to [1] or [2] above, and a plurality of steel pipes connected by the threaded joint.

[7]また、本発明に係る地すべり抑止杭の施工方法は、上記[1]又は[2]に記載のねじ継手を端部に取り付けた鋼管を用いた地すべり抑止杭の施工方法であって、次の(1)から(3)のいずれか1つの態様で施工するものである。
(1)地盤に杭を挿入する孔を必要な長さの全長に亘って掘削する孔掘削工程と、掘削した孔に前記鋼管の頭が突出するように吊下げて、前記ねじ継手により順次回転接合して自重挿入し、所定の本数の継杭が完了した後、前記鋼管の周面と地盤との隙間に充填材を充填して地盤に密着させる工程とを備えた態様
(2)地盤に杭を挿入する孔を必要な長さの全長に亘って掘削する孔掘削工程と、前記鋼管を前記ねじ継手により必要長さ接合する鋼管接合工程と、接合された鋼管を孔に挿入し、前記鋼管の周面と地盤との隙間に充填材を充填して地盤に密着させる工程とを備えた態様
(3)既に施工済みの杭あるいは反力部材によって反力を取りながら、前記鋼管を回転圧入により地中に貫入する工程と、地中に貫入した鋼管の頭部に前記鋼管を回転接合する工程と、回転接合した鋼管を回転圧入により地中に貫入する工程とを備えた態様
[7] Furthermore, the method for constructing a landslide prevention pile according to the present invention is a method for constructing a landslide prevention pile using a steel pipe with a threaded joint attached to the end according to [1] or [2] above, The construction shall be carried out in any one of the following manners (1) to (3).
(1) A hole drilling process in which a hole for inserting a pile into the ground is drilled over the entire required length, and the steel pipe is suspended in the drilled hole so that its head protrudes, and the steel pipe is sequentially rotated by the threaded joint. Embodiment (2) comprising the step of joining and inserting the steel pipe under its own weight, and after completing a predetermined number of joint piles, filling the gap between the circumferential surface of the steel pipe and the ground with a filler material to bring it into close contact with the ground. a hole drilling step in which a hole for inserting a pile is drilled over the entire required length; a steel pipe joining step in which the steel pipes are joined to the required length by the threaded joint; and a steel pipe joining step in which the joined steel pipes are inserted into the hole and the Embodiment comprising a step of filling the gap between the circumferential surface of the steel pipe and the ground with a filler material to bring it into close contact with the ground (3) Rotating and press-fitting the steel pipe while taking the reaction force with already installed piles or reaction members A mode comprising the steps of: penetrating into the ground with

[8]また、本発明に係るねじ継手の設計方法は、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の設計方法であって、
前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度を、0度~+8度の範囲内で設定するものである。
[8] In addition, the method for designing a threaded joint according to the present invention includes a male side cylinder body having a male thread made of a tapered thread, and a female side cylinder body having a female thread made of a tapered thread, A method for designing a threaded joint for joining the steel pipes together,
The angle of inclination of the stabbing surfaces of the threads of the male thread and the female thread with respect to the direction perpendicular to the steel pipe axis is set within the range of 0 degrees to +8 degrees.

[9]また、本発明に係るねじ継手の設計方法は、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の設計方法であって、
鋼材全塑性荷重に対する載荷荷重の比と、設定ねじ鉛直角度との関係を、摩擦係数ごとに予め求めておき、設計に際して設定した摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、前記雄側筒体と前記雌側筒体におけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度として設定するものである。
[9] Further, the design method of a threaded joint according to the present invention includes a male side cylinder body having a male thread made of a tapered thread, and a female side cylinder body having a female thread made of a tapered thread, A method for designing a threaded joint for joining the steel pipes together,
The relationship between the ratio of the applied load to the total plastic load of the steel material and the set screw vertical angle is determined in advance for each friction coefficient, and the set screw vertical angle at which the ratio is 1.0 or more at the friction coefficient set at the time of design is determined as described above. This is set as the inclination angle of the stabbing surfaces of the threads of the male side cylinder and the female side cylinder with respect to the direction perpendicular to the steel pipe axis.

[10]また、本発明に係るねじ継手の製造方法は、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の製造方法であって、
前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度を、0度~+8度の範囲内で形成するものである。
[10] Further, the method for manufacturing a threaded joint according to the present invention includes a male side cylinder body having a male thread made of a tapered thread, and a female side cylinder body having a female thread made of a tapered thread, and the threaded joint has a male side cylinder body having a female thread made of a tapered thread, A method for manufacturing a threaded joint for joining the steel pipes together, the method comprising:
The stabbing surfaces of the threads of the male thread and the female thread have an inclination angle in the range of 0 degrees to +8 degrees with respect to a direction perpendicular to the axis of the steel pipe.

[11]また、本発明に係るねじ継手の製造方法は、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の製造方法であって、
鋼材全塑性荷重に対する載荷荷重の比と、設定ねじ鉛直角度との関係を、摩擦係数ごとに予め求めておき、予め設定された摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、前記雄側筒体と前記雌側筒体におけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度として形成するものである。
[11] Further, the method for manufacturing a threaded joint according to the present invention includes a male side cylinder body having a male thread made of a tapered thread, and a female side cylinder body having a female thread made of a tapered thread, A method for manufacturing a threaded joint for joining the steel pipes together, the method comprising:
The relationship between the ratio of the applied load to the total plastic load of the steel material and the setting screw vertical angle is determined in advance for each friction coefficient, and the setting screw vertical angle at which the ratio is 1.0 or more at the preset friction coefficient is determined as described above. The stabbing surfaces of the threads of the male cylinder and the female cylinder are formed at an angle of inclination with respect to a direction perpendicular to the axis of the steel pipe.

[12]また、本発明に係るねじ継手付き鋼管の製造方法は、上記[1]又は[2]に記載のねじ継手における雄側筒体と雌側筒体を、次の(1)から(3)のいずれか1つの態様で取り付けるものである。
(1)前記雄側筒体を、前記鋼管の少なくとも一端に取り付ける態様
(2)前記雌側筒体を、前記鋼管の少なくとも一端に取り付ける態様
(3)前記雄側筒体と前記雌側筒体を、前記鋼管の一端と他端に取り付ける態様
[12] Furthermore, the method for manufacturing a steel pipe with a threaded joint according to the present invention includes manufacturing the male side cylinder and the female side cylinder in the threaded joint described in [1] or [2] above by the following (1) to ( 3).
(1) A mode in which the male side cylinder is attached to at least one end of the steel pipe. (2) A mode in which the female side cylinder is attached to at least one end of the steel pipe. (3) A mode in which the male side cylinder and the female side cylinder are attached. are attached to one end and the other end of the steel pipe.

本発明に係るねじ継手は、鋼管の端部にあって前記鋼管同士を接合するものであって、テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを備え、前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度が0度~+8度の範囲内にあることにより、曲げによる圧縮荷重がねじ継手に作用した場合に、ショルダー部の隙間が2mm程度あるような完全に締め切っていない不完全接合状態であっても、圧縮側のねじ部のみで十分な荷重伝達ができ、圧縮側のねじ部が外れることなくねじ継手鋼材の全塑性荷重を十分に活かすことができる。そのため足場の悪い施工現場において人力での回転接合を行う必要がある地すべり抑止杭に用いられるねじ継手において、労力のかかる牽引工具による締め切りや厳密な施工管理を省略することができる。 The threaded joint according to the present invention is located at an end of a steel pipe and joins the steel pipes together, and includes a male side cylinder body having a male thread made of a tapered thread, and a female side cylinder body having a female thread made of a tapered thread. and the inclination angle of the stabbing surfaces of the threads of the male thread and the female thread with respect to the direction perpendicular to the steel pipe axis is within the range of 0 degrees to +8 degrees, so that when a compressive load due to bending is applied to the threaded joint, Even in an incompletely joined state where the shoulder part has a gap of about 2 mm, which is not completely closed, sufficient load can be transmitted only through the threaded part on the compression side, and the threaded part on the compression side does not come off, making it possible to connect steel materials to threaded joints. The total plastic load can be fully utilized. Therefore, in the case of threaded joints used for landslide prevention piles that require manual rotational joining at construction sites with poor footing, labor-intensive closing using traction tools and strict construction management can be omitted.

本発明の一実施の形態に係るねじ継手の説明図である。FIG. 1 is an explanatory diagram of a threaded joint according to an embodiment of the present invention. 図1のねじ継手を用いた地すべり抑止杭に曲げ荷重が作用した際の、ねじ継手を含む全体の挙動を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the behavior of the entire landslide prevention pile including the threaded joint in FIG. 1 when a bending load is applied to the landslide prevention pile using the threaded joint. 図2の状態におけるねじ継手の挙動を説明する説明図である。3 is an explanatory diagram illustrating the behavior of the threaded joint in the state shown in FIG. 2. FIG. スタビング面もしくはロード面における鋼管軸直角方向に対する傾斜角度(設定ねじ鉛直角度)とスタビング面間もしくはロード面間の摩擦係数との関係を示す図である。FIG. 3 is a diagram showing the relationship between the inclination angle (setting screw vertical angle) of the stabbing surface or the loading surface with respect to the direction perpendicular to the steel pipe axis and the coefficient of friction between the stabbing surfaces or between the loading surfaces. 従来例におけるねじ継手の挙動を説明する説明図である。It is an explanatory view explaining behavior of a threaded joint in a conventional example. 傾斜角度の検討における鋼材全塑性荷重を説明する説明図である。It is an explanatory view explaining steel material total plastic load in examination of inclination angle. 傾斜角度の検討における解析結果を示す図である(その1)。FIG. 3 is a diagram showing the analysis results in the study of the inclination angle (Part 1). 傾斜角度の検討における解析結果を示す図である(その2)。It is a figure which shows the analysis result in the examination of an inclination angle (part 2). 傾斜角度の検討における解析結果を示す図である(その3)。It is a figure which shows the analysis result in the examination of an inclination angle (part 3).

本実施の形態に係るねじ継手1は、図1(a)に示すように、鋼管3の(軸方向)端部にあって鋼管3同士を接合するものであって、テーパねじ(taper thread)からなる雄ねじ5を有する雄側筒体7と、テーパねじ(taper thread)からなる雌ねじ9を有する雌側筒体11とを備えている。
以下、各構成を詳細に説明する。
As shown in FIG. 1(a), the threaded joint 1 according to the present embodiment connects the steel pipes 3 to each other at the ends (in the axial direction) of the steel pipes 3, and has a taper thread. A male cylinder body 7 has a male thread 5, and a female cylinder body 11 has a female thread 9, which is a taper thread.
Each configuration will be explained in detail below.

本実施の形態のねじ継手1は、複数の鋼管3を連結することで構成される構造体の一例として地すべり抑止用鋼管杭(以下、省略して「地すべり抑止杭」とする)を例示し、この鋼管3の接合手段として適用したものである。地すべり抑止杭の場合、杭本体となる鋼管3の直径φは216mm以上である。上限は特に規定はないが、近年の傾向を踏まえると、鋼管の直径φは2500mm以下である。
図1(a)に示す状態は、非締め切り状態、すなわち雌側筒体11の先端11aが雄側筒体7のショルダー部7aに接触していない(ショルダータッチしていないともいう)状態を示している。
The threaded joint 1 of the present embodiment exemplifies a landslide prevention steel pipe pile (hereinafter abbreviated as "landslide prevention pile") as an example of a structure constituted by connecting a plurality of steel pipes 3, This is applied as a means for joining the steel pipes 3. In the case of landslide prevention piles, the diameter φ of the steel pipe 3 serving as the pile body is 216 mm or more. There is no particular upper limit, but based on recent trends, the diameter φ of steel pipes is 2500 mm or less.
The state shown in FIG. 1(a) indicates a non-closing state, that is, a state in which the tip 11a of the female side cylinder 11 is not in contact with the shoulder portion 7a of the male side cylinder 7 (also referred to as not touching the shoulder). ing.

雄側筒体7と雌側筒体11は、図1(a)に示すように、下杭及び上杭となる鋼管3の外径と実質的に等しい外径を有するリング体にねじ加工したものであり、雄側筒体7が上杭の下端に雌側筒体11が下杭の上端にそれぞれ取り付けられている。本実施の形態の場合、鋼管端部への雄側筒体または雌側筒体の取り付けは、溶接により接合されることで行われている。 As shown in FIG. 1(a), the male side cylinder 7 and the female side cylinder 11 are screwed into ring bodies having an outer diameter substantially equal to the outer diameter of the steel pipe 3 that becomes the lower pile and the upper pile. The male cylinder 7 is attached to the lower end of the upper pile, and the female cylinder 11 is attached to the upper end of the lower pile. In the case of this embodiment, the male side cylinder or the female side cylinder is attached to the end of the steel pipe by joining by welding.

ここで、雄側筒体7と雌側筒体11は、鋼管3と同じ鋼種としても良い。ただし、同じ鋼種を用いて雄側筒体7と雌側筒体11の強度を高くしたい場合には厚さが必要となり、鋼管3に対する張り出し幅が大きくなる。その結果、施工性や荷重伝達性能を落とす場合がある。そこで、厚さをあまり厚くしたくない場合には、雄側筒体7と雌側筒体11の鋼種として、鋼管3の鋼種の降伏強度を上回る鋼種を選択することで張り出し幅を減らすことができる。
例えば、一般的な地すべり抑止杭においては、鋼管3の鋼種としては、SKK490材相当(規格降伏強度が315N/mm2)またはSM570材相当(規格降伏強度が板厚16mm以下で460 N/mm2、板厚16mm越え40mm以下で450N/mm2、板厚40mm越え75mm以下で430N/mm2)の鋼種が用いられる。そこで、雄側筒体7の鋼種及び/又は雌側筒体11の鋼種にHITEN780材相当(規格降伏強度が685N/mm2)の鋼種を用いれば、強度を高くしつつ雄側筒体7と雌側筒体11の厚さを減らすことができ、鋼管3に対する張り出し幅を抑えることができる。
Here, the male side cylinder 7 and the female side cylinder 11 may be made of the same steel type as the steel pipe 3. However, if it is desired to increase the strength of the male side cylinder 7 and the female side cylinder 11 by using the same steel type, the thickness will be required, and the overhang width with respect to the steel pipe 3 will become large. As a result, workability and load transmission performance may deteriorate. Therefore, if you do not want the thickness to be too thick, you can reduce the overhang width by selecting a steel type for the male side cylinder 7 and female side cylinder 11 that exceeds the yield strength of the steel type of the steel pipe 3. can.
For example, in general landslide prevention piles, the steel type of the steel pipe 3 is equivalent to SKK490 material (standard yield strength is 315 N/mm 2 ) or SM570 material (standard yield strength is 460 N/mm 2 when the plate thickness is 16 mm or less). , 450N/mm 2 for plate thicknesses exceeding 16 mm and 40 mm or less, and 430 N/mm 2 for plate thicknesses exceeding 40 mm and 75 mm or less) are used. Therefore, if a steel equivalent to HITEN780 material (standard yield strength is 685 N/mm 2 ) is used for the male side cylinder 7 and/or the female side cylinder 11, the male side cylinder 7 and the steel type can be improved while increasing the strength. The thickness of the female side cylindrical body 11 can be reduced, and the width of the overhang relative to the steel pipe 3 can be suppressed.

雄側筒体7に形成された雄ねじ5と雌側筒体11に形成された雌ねじ9は、どちらもテーパねじである。雄ねじ5と雌ねじ9は、雄側筒体7と雌側筒体11を近づける方向に回転することで接合する。図1(a)では雄側筒体7を上側とし、雌側筒体11を下側としているが、上下を反対にしても良い。前述のショルダー部7aは、雄側筒体7のテーパねじの終端に雌側筒体11の先端11aが接触できるよう、段状となっている。 The male thread 5 formed on the male side cylinder 7 and the female thread 9 formed on the female side cylinder 11 are both tapered threads. The male thread 5 and the female thread 9 are joined by rotating in a direction that brings the male cylinder 7 and the female cylinder 11 closer together. In FIG. 1A, the male cylinder 7 is on the upper side and the female cylinder 11 is on the lower side, but the upper and lower sides may be reversed. The shoulder portion 7a described above is stepped so that the tip 11a of the female cylinder 11 can come into contact with the terminal end of the tapered thread of the male cylinder 7.

図1(a)における点線の丸部分の拡大図を図1(b)に示す。図1(b)においては、雄ねじ5と雌ねじ9は台形ねじ(trapezoidal thread)、角ねじ(square thread)またはのこ歯ねじ(buttress thread)のいずれかであることが好ましい。また、雄ねじ5のねじ山は頂部51と、それに繋がる2つの側面5a(後述のスタビング面5a),5b(後述のロード面5b)とを備えている。さらに、雄ねじ5のねじ山の側面5aと一方の隣のねじ山の側面5bとはねじ底52でつながっている。雄ねじ5ねじ山の側面5bと他方の隣の側面5aとは、ねじ底52でつながっている。同様に、雌ねじ9は、ねじ山に頭頂91とそれに繋がる2つの側面9b(後述のロード面9b),9a(後述のスタビング面9a)とを備えている。さらに、雌ねじ9のねじ山の側面9aと一方の隣のねじ山の側面9bとはねじ底92でつながっている。雌ねじ9のねじ山の側面9bと他方の隣の側面9aとは、ねじ底92でつながっている。 FIG. 1(b) shows an enlarged view of the dotted circle portion in FIG. 1(a). In FIG. 1(b), the male thread 5 and female thread 9 are preferably either trapezoidal threads, square threads or buttress threads. Further, the thread of the male screw 5 includes a top portion 51 and two side surfaces 5a (stubbing surface 5a described later) and 5b (loading surface 5b described later) connected to the top portion 51. Further, the side surface 5a of the thread of the male screw 5 and the side surface 5b of the thread adjacent to one side are connected at a thread bottom 52. The side surface 5b of the male thread 5 thread and the other adjacent side surface 5a are connected at a thread bottom 52. Similarly, the female thread 9 has a thread crest 91 and two side surfaces 9b (loading surface 9b described later) and 9a (stubbing surface 9a described later) connected to the crown 91. Further, the side surface 9a of the thread of the female thread 9 and the side surface 9b of the thread adjacent to one side are connected at a thread bottom 92. The side surface 9b of the thread of the female thread 9 and the other adjacent side surface 9a are connected at a thread bottom 92.

また、図1(a)に示したPはねじ山のピッチを示している。このねじ山のピッチPとは、ある1条における雄ねじ5のねじ山頂部51の端から次の1条の雄ねじ5のねじ山頂部51の始まる位置までの鋼管軸方向の距離、あるいは、ある1条の雌ねじ9のねじ山頂部91の端から次の1条のねじ山頂部91の始まる位置までの鋼管軸方向の距離である。同様に、ねじ底のピッチとは、ある1条における雄ねじ5のねじ山頂部51に対応するねじ底92の端から、次の1条の雄ねじ5のねじ山頂部51に対応するねじ底92の始まる位置までの、鋼管軸方向の距離である。または、ある1条の雌ねじ9のねじ山頂部91に対応するねじ底52の端から、次の1条のねじ山頂部91に対応するねじ底52の始まる位置までの、鋼管軸方向の距離である。1条ねじの場合には、ピッチは、1回転したときにねじが進む距離を意味する。これに対して、多条ねじにおいては、ねじの条数によって1回転したときの進む距離が異なることから、一定の距離としてのピッチを定義できない。このため、本明細書では上記のように定義している。 Moreover, P shown in FIG. 1(a) indicates the pitch of the thread. The pitch P of this thread is the distance in the axial direction of the steel pipe from the end of the thread crest 51 of the male thread 5 in one thread to the starting position of the thread crest 51 of the next thread 5, or This is the distance in the axial direction of the steel pipe from the end of the thread crest 91 of the female thread 9 to the starting position of the next thread crest 91. Similarly, the pitch of the thread bottom is from the end of the thread bottom 92 corresponding to the thread crest 51 of the male thread 5 in one thread to the end of the thread bottom 92 corresponding to the thread crest 51 of the male thread 5 in the next thread. This is the distance in the axial direction of the steel pipe to the starting position. Or, the distance in the axial direction of the steel pipe from the end of the thread bottom 52 corresponding to the thread crest 91 of one female thread 9 to the starting position of the thread bottom 52 corresponding to the thread crest 91 of the next thread. be. In the case of a single thread thread, pitch means the distance the thread travels during one revolution. On the other hand, in a multi-thread thread, the distance traveled by one revolution varies depending on the number of threads of the thread, so the pitch cannot be defined as a fixed distance. Therefore, in this specification, it is defined as above.

また、図1(a)に示したhはねじ高さを示している。ここで、ねじ高さhとは、雄ねじ5のねじ山頂部51からねじ底52までの距離(テーパの勾配軸21に直交する勾配軸直交軸23方向の距離)、または、雌ねじ9のねじ山頂部91からねじ底92までの距離(テーパの勾配軸21に直交する勾配軸直交軸23方向の距離)である。 Moreover, h shown in FIG. 1(a) indicates the screw height. Here, the thread height h is the distance from the thread top 51 of the male thread 5 to the thread bottom 52 (distance in the direction of the gradient axis orthogonal axis 23 that is orthogonal to the tapered gradient axis 21), or the thread height of the female thread 9. This is the distance from the portion 91 to the thread bottom 92 (distance in the direction of the gradient axis orthogonal axis 23 that is orthogonal to the gradient axis 21 of the taper).

本実施の形態に係るねじ継手1においては、雄側筒体7に形成された雄ねじ5と雌側筒体11に形成された雌ねじ9におけるねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度αが0度~+8度に設定されている。
ここで、傾斜角度αについて説明する。
図1(b)に示すように、鋼管軸25に直交方向の軸を鋼管直交軸27とすれば、傾斜角度αは、ねじ継手1を鋼管軸方向の断面にした状態(図1の状態)において、雄ねじ5と雌ねじ9におけるねじ山のスタビング面5a、9aが、同断面上にある鋼管直交軸27と成す角度である。
ここで、図示はしていないが、ねじ山のロード面5b、9bの傾斜角度も同様に定義することができる。すなわち、鋼管軸25に直交方向の軸を鋼管直交軸27とすれば、ねじ山のロード面5b、9bの傾斜角度は、ねじ継手1を鋼管軸方向の断面にした状態(図1(a)の状態)において、雄ねじ5と雌ねじ9におけるねじ山のロード面5b、9bが、同断面上にある鋼管直交軸27と成す角度である。
In the threaded joint 1 according to the present embodiment, the stabbing surfaces 5a and 9a of the threads of the male thread 5 formed on the male side cylinder 7 and the female thread 9 formed on the female side cylinder 11 in the direction perpendicular to the steel pipe axis. The tilt angle α is set between 0 degrees and +8 degrees.
Here, the inclination angle α will be explained.
As shown in FIG. 1(b), if the axis perpendicular to the steel pipe axis 25 is the steel pipe orthogonal axis 27, the inclination angle α is the state in which the threaded joint 1 is in cross section in the direction of the steel pipe axis (the state in FIG. 1). In this figure, the stabbing surfaces 5a and 9a of the threads of the male thread 5 and the female thread 9 form an angle with the steel pipe orthogonal axis 27 on the same cross section.
Here, although not shown, the inclination angles of the loading surfaces 5b and 9b of the threads can also be defined in the same way. In other words, if the axis perpendicular to the steel pipe axis 25 is the steel pipe orthogonal axis 27, the inclination angle of the thread loading surfaces 5b and 9b is the same as that of the threaded joint 1 in the cross section in the steel pipe axial direction (Fig. 1(a) This is the angle that the load surfaces 5b and 9b of the threads of the male thread 5 and the female thread 9 form with the orthogonal axis 27 of the steel pipe on the same cross section.

以下、ねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度αをこのように設定している理由を、図2~図4に基づいて説明する。
なお、本明細書において、ねじ山のスタビング面5a、9a及びロード面5b、9bに設定された鋼管軸直角方向66に対する傾斜角度αを、設定ねじ鉛直角度という場合がある。
The reason why the inclination angle α of the thread stabbing surfaces 5a, 9a with respect to the direction perpendicular to the steel pipe axis is set in this manner will be explained below with reference to FIGS. 2 to 4.
In addition, in this specification, the inclination angle α with respect to the direction 66 perpendicular to the steel pipe axis set on the stabbing surfaces 5a, 9a and the loading surfaces 5b, 9b of the thread may be referred to as the setting screw vertical angle.

図2は、非締め切り状態の地すべり抑止杭に曲げ荷重が作用した際の、ねじ継手1を含む鋼管杭全体の挙動を示し、図3は図2の状態におけるねじ継手1の挙動を示している。
まず、ねじ山のロード面5b、9bとスタビング面5a、9aについて、雄ねじ山を例に挙げて説明する。
雄ねじ5のねじ山のロード面5bとは、雄ねじ5のねじ山における両側面(フランク)のうち、雄側筒体7の基端側(鋼管3が接合される側)にある面である。同様に、雌ねじ9のねじ山のロード面9bとは、雌ねじ9のねじ山における両側面(フランク)のうち、雌側筒体11の基端側(鋼管3が接合される側)にある面である。雄ねじ5と雌ねじ9とを回転嵌合して接続した後に、ねじ継手1が引張荷重を受けたとき、雄ねじ5のねじ山のロード面5bと雌ねじ9のねじ山のロード面9bとが接触する。
Figure 2 shows the behavior of the entire steel pipe pile, including threaded joint 1, when a bending load is applied to a landslide prevention pile in an unclosed state, and Figure 3 shows the behavior of threaded joint 1 in the state of Figure 2. .
First, the loading surfaces 5b, 9b and stabbing surfaces 5a, 9a of the threads will be explained using a male thread as an example.
The loading surface 5b of the thread of the male screw 5 is a surface located on the base end side of the male cylinder 7 (the side to which the steel pipe 3 is joined) among both side surfaces (flanks) of the thread of the male screw 5. Similarly, the load surface 9b of the thread of the female thread 9 is the surface on the proximal end side of the female cylinder 11 (the side to which the steel pipe 3 is joined) among both side surfaces (flanks) of the thread of the female thread 9. It is. When the threaded joint 1 receives a tensile load after the male thread 5 and the female thread 9 are rotationally fitted and connected, the load surface 5b of the thread of the male thread 5 and the load surface 9b of the thread of the female thread 9 come into contact. .

また、雄ねじ5のねじ山のスタビング面5aとは、雄ねじ5のねじ山における両側面(フランク)のうち、雄側筒体7の先端11a側にある面である。同様に、雌ねじ9のねじ山のスタビング面9aとは、雌ねじ9のねじ山における両側面(フランク)のうち、雌側筒体11の先端11a側にある面である。雄側筒体7を雌側筒体11に預けて回転嵌合する際には、雄ねじ5のねじ山のスタビング面5aは、雌ねじ9のスタビング面9aと接触する。つまり、端的に言うと、ねじ継手1はスタビング面5a、9aで圧縮力を伝達し、ロード面5b、9bで引張力を伝達するような構造となる。
なお、ねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度αに対し、ねじ山の頂部51、91に対して根元の幅が広がる方向の角度を+(プラス)の角度とし、狭まる方向の角度を-(マイナス)の角度と表記する。
Further, the stabbing surface 5a of the thread of the male screw 5 is a surface located on the tip 11a side of the male side cylinder body 7 among both side surfaces (flanks) of the thread of the male screw 5. Similarly, the stubbing surface 9a of the thread of the female thread 9 is a surface located on the tip 11a side of the female side cylinder body 11 among both side surfaces (flanks) of the thread of the female thread 9. When the male cylindrical body 7 is rested on the female cylindrical body 11 and rotationally fitted, the stabbing surface 5a of the thread of the male screw 5 comes into contact with the stabbing surface 9a of the female screw 9. That is, to put it simply, the threaded joint 1 has a structure in which compressive force is transmitted through the stabbing surfaces 5a and 9a, and tensile force is transmitted through the loading surfaces 5b and 9b.
In addition, with respect to the inclination angle α of the stabbing surfaces 5a and 9a of the threads in the direction perpendicular to the steel pipe axis, the angle in the direction in which the width of the root widens with respect to the tops 51 and 91 of the threads is defined as a + (plus) angle, and the width narrows. The angle in the direction is expressed as a - (minus) angle.

前述したように本実施の形態では、ねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度が0度~+8度に設定されている(図3の一部拡大図参照)。
ねじ山のスタビング面5a、9aの設定ねじ鉛直角度を上記のように設定することで、ねじ継手1において曲げ荷重が作用した際に圧縮力が働く側(図3において上側が圧縮、下側が引張)で、ねじ山の接触面が滑り出しにくくなる。これにより、図3に示すように、雄ねじ5のスタビング面5aが滑って外れることなく、十分な荷重伝達ができる状態になる。
As described above, in this embodiment, the inclination angle of the stabbing surfaces 5a, 9a of the threads with respect to the direction perpendicular to the steel pipe axis is set to 0 degrees to +8 degrees (see the partially enlarged view of FIG. 3).
By setting the screw vertical angles of the thread stabbing surfaces 5a and 9a as described above, when a bending load is applied to the threaded joint 1, the compressive force is applied to the side (in Fig. 3, the upper side is compression and the lower side is tension). ), the contact surface of the thread becomes difficult to slide out. As a result, as shown in FIG. 3, the stabbing surface 5a of the male screw 5 does not slip and come off, and a sufficient load can be transmitted.

ここで、スタビング面5a、9aの設定ねじ鉛直角度とねじの滑り難さとの関係について、図4に基づいて説明する。図4は、クーロンの摩擦法則(F=μN:Fは摩擦力、μは固体間の摩擦係数、Nは垂直力)と、スタビング面5a、9aもしくはロード面5b、9bの設定ねじ鉛直角度と摩擦係数との関係を示したものである。
縦軸は設定ねじ鉛直角度(°)を、横軸は、接触したスタビング面5aとスタビング面9aとの間(略して、「スタビング面間」と呼ぶこともある)、もしくは接触したロード面5bとロード面9bとの間(略して、「ロード面間」と呼ぶこともある)の摩擦係数(無次元量)を示している。
図4中の直線は、上記のクーロンの摩擦法則から導き出した式で、設定ねじ鉛直角度をαとし静止摩擦係数をμとした場合の関係を示しており、下記の式(1)となる。
α=tan-1(μ)・・・(1)
なお、αは接触したスタビング面5a、9aもしくは接触したロード面5b、9bの鋼管軸直角方向に対する角度で、正負は前述した定義の通りである。式(1)によれば、特定の設定ねじ鉛直角度αにおけるスタビング面間もしくはロード面間の摩擦係数が静止摩擦係数μよりも小さくなると、スタビング面同士もしくはロード面同士が滑り出す。つまり、設定ねじ鉛直角度αが式(1)以下となる領域の条件であれば滑り出さない。
言い換えると、スタビング面5a、9aまたはロード面5b、9bにおいて、図4中で設定ねじ鉛直角度αが式(1)以下となるハッチング領域はねじが「滑らない範囲」を示している。また、図中において設定ねじ鉛直角度αが式(1)より上となるハッチングされていない領域は、ねじが「滑る範囲」を示している。
Here, the relationship between the setting screw vertical angle of the stabbing surfaces 5a, 9a and the slippage difficulty of the screw will be explained based on FIG. 4. Figure 4 shows Coulomb's law of friction (F=μN: F is frictional force, μ is the coefficient of friction between solids, and N is normal force) and the vertical angle of the setting screw on the stabbing surfaces 5a, 9a or loading surfaces 5b, 9b. This shows the relationship with the friction coefficient.
The vertical axis represents the vertical angle (°) of the setting screw, and the horizontal axis represents the distance between the stubbing surfaces 5a and 9a that contacted each other (sometimes referred to as "between the stubbing surfaces" for short), or the load surface 5b that contacted each other. The coefficient of friction (dimensionless quantity) between the road surface 9b and the road surface 9b (sometimes referred to as "between the road surfaces" for short) is shown.
The straight line in FIG. 4 is an equation derived from the above-mentioned Coulomb's law of friction, and shows the relationship when the setting screw vertical angle is α and the static friction coefficient is μ, which is the following equation (1).
α=tan -1 (μ)...(1)
Note that α is the angle of the contacting stabbing surfaces 5a, 9a or the contacting loading surfaces 5b, 9b with respect to the direction perpendicular to the steel pipe axis, and the positive and negative values are as defined above. According to equation (1), when the friction coefficient between the stabbing surfaces or between the load surfaces at a specific setting screw vertical angle α becomes smaller than the static friction coefficient μ, the stabbing surfaces or the load surfaces begin to slide against each other. In other words, if the setting screw vertical angle α is in a range equal to or less than equation (1), it will not slip.
In other words, on the stabbing surfaces 5a, 9a or the loading surfaces 5b, 9b, the hatched area in FIG. 4 where the set screw vertical angle α is equal to or less than equation (1) indicates the "range in which the screw does not slip." In addition, in the figure, a non-hatched region where the setting screw vertical angle α is higher than the equation (1) indicates the "slip range" of the screw.

図4から分かる通り、スタビング面間もしくはロード面間の摩擦係数が同じであれば、設定ねじ鉛直角度αが小さいほど、すなわちスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度が小さいほど、スタビング面5a、9aが滑りにくくなることが分かる。
そして、後述の[傾斜角度の検討]で示す発明者の検討により、スタビング面5a、9aの鋼管軸直角方向に対する傾斜角度を0度~+8度に設定することで、鋼材の全塑性荷重に至るまで滑りが発生しないことが分かった。本発明はかかる知見に基づいて設定ねじ鉛直角度を0度~+8度に設定している。
As can be seen from FIG. 4, if the friction coefficient between the stabbing surfaces or between the load surfaces is the same, the smaller the setting screw vertical angle α, that is, the smaller the inclination angle of the stabbing surfaces 5a and 9a with respect to the direction perpendicular to the steel pipe axis, the more the stabbing It can be seen that the surfaces 5a and 9a become less slippery.
According to the inventor's study shown in [Study of inclination angle] below, by setting the inclination angle of the stabbing surfaces 5a and 9a with respect to the direction perpendicular to the steel pipe axis to 0 degrees to +8 degrees, the total plastic load of the steel material is achieved. It was found that no slippage occurred until Based on this knowledge, the present invention sets the vertical angle of the setting screw to 0 degrees to +8 degrees.

図5は、特許文献2に記載のねじ継手13におけるスタビング面15a、17a(特許文献2では、ねじ挿入面13、23が該当する。)の角度が鋼管軸直角方向に対する傾斜角度が+20度~+45度である従来のねじ継手13に、図2に示した曲げ荷重が作用したときの挙動を示している。
特許文献2のねじ継手13では、曲げ荷重が作用した際に圧縮力が働く図中上側のねじ部において、ねじ部の摩擦力を越える力が働くことで、図5に示すように、雄ねじ15のスタビング面15aに滑りが生じてねじが外れてしまう。
FIG. 5 shows that the angle of the stabbing surfaces 15a and 17a (corresponding to the screw insertion surfaces 13 and 23 in Patent Document 2) in the threaded joint 13 described in Patent Document 2 is an inclination angle of +20 degrees to the direction perpendicular to the steel pipe axis. It shows the behavior when the bending load shown in FIG. 2 is applied to the conventional threaded joint 13 at +45 degrees.
In the threaded joint 13 of Patent Document 2, when a bending load is applied, a force exceeding the frictional force of the threaded portion acts on the threaded portion on the upper side of the figure where compressive force is applied, and as shown in FIG. Slipping occurs on the stabbing surface 15a of the screw, causing the screw to come off.

以上のように、本実施の形態のねじ継手1においては、スタビング面5a、9aの鋼管軸直角方向に対する傾斜角度(設定ねじ鉛直角度)を0度~+8度に設定した。これにより、鋼管3の曲げによる圧縮荷重が継手に作用した場合に、ショルダー部7aの隙間が2mm程度あるような完全に締め切っていない不完全接合状態であるねじ継手1であっても、圧縮側のねじ部のみで十分な荷重伝達ができる。その結果、圧縮側のねじ部が外れることなく継手鋼材の全塑性荷重を十分に活かすことができる。
そのため、地すべり抑止杭に用いられるねじ継手1において、特に好適である。その理由は、地すべり抑止杭に用いられるねじ継手1では、足場の悪い施工現場において人力での回転接合を行う場合が多く、その場合、労力のかかる牽引工具による締め切りや厳密な施工管理を省略することができるからである。
As described above, in the threaded joint 1 of the present embodiment, the inclination angle of the stabbing surfaces 5a, 9a with respect to the direction perpendicular to the steel pipe axis (setting screw vertical angle) is set to 0 degrees to +8 degrees. As a result, when a compressive load due to bending of the steel pipe 3 is applied to the joint, even if the threaded joint 1 is in an incompletely joined state where the shoulder portion 7a has a gap of about 2 mm, the compression side Sufficient load transmission is possible with just the threaded part. As a result, the entire plastic load of the joint steel material can be fully utilized without the threaded portion on the compression side coming off.
Therefore, it is particularly suitable for the threaded joint 1 used in landslide prevention piles. The reason for this is that threaded joints 1 used for landslide prevention piles are often manually joined by rotation at construction sites with poor footing, and in that case, labor-intensive closing using traction tools and strict construction management are omitted. This is because it is possible.

本実施の形態のねじ継手1を地すべり抑止杭に適用した際の具体的な施工方法として、以下3つが考えられる。
(a)地盤に杭を挿入する孔を必要な長さの全長に亘って掘削する孔掘削工程と、掘削した孔に本発明のねじ継手1を取り付けた鋼管の頭が突出するように吊下げて、ねじ継手1により順次回転接合して自重挿入し、所定の本数の継杭が完了した後、鋼管周面と地盤との隙間に充填材(例えば、グラウト、モルタル等)を充填して地盤に密着させる。
(b)地盤に杭を挿入する孔を必要な長さの全長に亘って掘削する孔掘削工程と、本発明のねじ継手1を取り付けた鋼管をねじ継手1により必要長さ接合する鋼管接合工程と、接合された鋼管を孔にクレーン等で挿入し、鋼管周面と地盤との隙間に充填材(例えば、グラウト、モルタル等)を充填して地盤に密着させる。
(c)既に施工済みの杭あるいは反力部材によって反力を取りながら、本発明のねじ継手1を取り付けた鋼管を回転圧入により地中に貫入する工程と、地中に貫入した杭頭部に本発明のねじ継手1を取り付けた鋼管を回転接合する工程と、回転接合した鋼管を回転圧入により地中に貫入する工程とを備えたもの。
The following three methods can be considered as specific construction methods when the threaded joint 1 of this embodiment is applied to a landslide prevention pile.
(a) A hole drilling process in which a hole for inserting a pile into the ground is drilled over the entire required length, and a steel pipe to which the threaded joint 1 of the present invention is attached is hung in the drilled hole so that its head protrudes. After the specified number of joint piles are completed, filler material (e.g., grout, mortar, etc.) is filled into the gap between the steel pipe circumferential surface and the ground, and the ground is ground. Closely contact.
(b) A hole drilling process in which a hole for inserting a pile into the ground is excavated over the entire required length, and a steel pipe joining process in which the required length of steel pipes to which the threaded joint 1 of the present invention is attached is joined by the threaded joint 1. Then, the joined steel pipes are inserted into the holes using a crane or the like, and a filler (e.g., grout, mortar, etc.) is filled into the gap between the steel pipe circumferential surface and the ground, and the pipes are brought into close contact with the ground.
(c) The step of penetrating the steel pipe fitted with the threaded joint 1 of the present invention into the ground by rotational press-fitting while taking the reaction force with the already constructed pile or reaction member, and the step of inserting the steel pipe into the ground that has penetrated into the ground. A method comprising a step of rotatably joining steel pipes to which the threaded joint 1 of the present invention is attached, and a step of penetrating the rotatably joined steel pipes into the ground by rotary press-fitting.

もちろん、本発明は地すべり抑止杭以外の杭または鋼管に対しても利用できる。より具体的には、支持杭、摩擦杭、鋼管矢板、斜杭または構造物の一部である鋼管などにも利用できる。これらの用途に使用した場合でも、既に説明した効果、すなわち、鋼管3の曲げによる圧縮荷重が継手に作用した場合に、ショルダー部7aの隙間が2mm程度あるような完全に締め切っていない不完全接合状態であるねじ継手1であっても、圧縮側のねじ部のみで十分な荷重伝達ができるという効果を得ることができる。 Of course, the present invention can also be used for piles or steel pipes other than landslide prevention piles. More specifically, it can be used for support piles, friction piles, steel pipe sheet piles, diagonal piles, or steel pipes that are part of structures. Even when used in these applications, the effect already explained, that is, when compressive load due to bending of the steel pipe 3 acts on the joint, an incomplete joint that is not completely closed, such as a gap of about 2 mm in the shoulder portion 7a, may occur. Even with the threaded joint 1 in this state, it is possible to obtain the effect that sufficient load can be transmitted only by the threaded portion on the compression side.

ここで一般的にテーパねじ継手が用いられる油井管用のねじ継手について説明する。油井管の場合、最大径が240mmと小さいので、少ないトルクで回転し接合させることができる。また、管内の内容物を漏れなく輸送する目的のため、シール性への要求が高い。その結果、ねじを締めきった状態、すなわち雌側筒体11の先端11aが雄側筒体7のショルダー部7aに接触している(ショルダータッチしているともいう)状態で使用される。そのため、接続された油井管に曲げ荷重が作用した際には、圧縮力をショルダー部で伝達が可能である。さらに、外部から何らかの荷重がかかる構造部材でないことから、高い強度が求められるわけでもない。以上の事情と、シール性を高める観点から、小さなトルクで回転するようスタビング面の鋼管軸直角方向に対する傾斜角度は+30°~+60°とされる。一方で、構造部材として用いられるねじ継手では、想定される最大径は2500mm程度のため、回転させるのに非常の大きなトルクを必要とし、接合難易度が高い。また、構造部材であるため、ねじ山にも高い強度が求められ、スタビング面の鋼管軸直角方向に対する傾斜角度は大きい方が望ましい。そして、油井管程のシール性は求められていない。そこで、従来のテーパねじ継手(特に油井管の技術)をそのまま構造部材用途に適用した場合、雌側筒体11の先端11aが雄側筒体7のショルダー部7aに完全に接触していない非締め切り状態での使用が要求される。
言い換えれば、構造部材としてのねじ山の強度を確保しつつ、非締め切り状態でも圧縮側のねじ部が外れることのないねじ継手であることが、本発明にかかるねじ継手の非常に顕著な効果である。
Here, a threaded joint for oil country tubular goods, in which a tapered threaded joint is generally used, will be explained. Oil country tubular goods have a small maximum diameter of 240mm, so they can be rotated and joined with less torque. In addition, there is a high demand for sealing performance for the purpose of transporting the contents inside the pipe without leaking. As a result, it is used with the screw fully tightened, that is, with the tip 11a of the female cylinder 11 in contact with the shoulder portion 7a of the male cylinder 7 (also referred to as shoulder touching). Therefore, when a bending load is applied to the connected oil country tubular goods, compressive force can be transmitted through the shoulder portion. Furthermore, since it is not a structural member that is subjected to any external load, high strength is not required. Considering the above circumstances and from the viewpoint of improving sealing performance, the angle of inclination of the stabbing surface with respect to the direction perpendicular to the axis of the steel pipe is set to +30° to +60° so that the shaft rotates with a small torque. On the other hand, threaded joints used as structural members have a maximum diameter of approximately 2,500 mm, so they require a very large torque to rotate, making joining difficult. Furthermore, since it is a structural member, high strength is required of the thread, and it is desirable that the angle of inclination of the stabbing surface with respect to the direction perpendicular to the axis of the steel pipe be large. Furthermore, sealing properties as good as oil country tubular goods are not required. Therefore, when conventional taper threaded joints (particularly oil country tubing technology) are applied as they are to structural components, the tip 11a of the female side cylinder 11 does not completely contact the shoulder portion 7a of the male side cylinder 7. Requires use under closed conditions.
In other words, the very remarkable effect of the threaded joint according to the present invention is that it is a threaded joint that ensures the strength of the thread as a structural member and that the threaded part on the compression side does not come off even in the non-clamped state. be.

なお、特許文献2において、ねじ挿入面角度(設定ねじ鉛直角度)を+20度より小さくすると、ねじ切り加工時の切削抵抗が大きくなるため、1パスでの切削量を減少させなければならず、加工効率が低下すると記載されている。
しかしながら、本発明を適用することでねじ部の荷重伝達効率が上がり、ねじ山数やねじ山高さを減らすことが可能になり、1パスでの切削量の減少が大きな問題となることはない。
また、特許文献2には、継ぎ杭作業の際に上杭と下杭の芯合わせが容易でなくなり、ねじ締結性が低下するとも記載されているが、対象構造物は上杭と下杭の外径が同じである場合には、4方向で位置を確認することができるので芯合わせが大きな問題となることはない。
In addition, in Patent Document 2, if the screw insertion surface angle (setting screw vertical angle) is smaller than +20 degrees, the cutting resistance during thread cutting increases, so the amount of cutting in one pass must be reduced, and the machining It is stated that efficiency decreases.
However, by applying the present invention, the load transmission efficiency of the threaded portion increases, and the number and height of threads can be reduced, so the reduction in the amount of cutting in one pass does not become a major problem.
Additionally, Patent Document 2 states that during joint pile work, it becomes difficult to center the upper and lower piles, and the screw fastening performance decreases, but the target structure is If the outer diameters are the same, alignment will not be a major problem because the position can be confirmed in four directions.

本発明は、テーパねじを対象としているが、テーパねじならば1条ねじのみならず多条ねじの場合も同様に適用可能である。 Although the present invention is directed to tapered threads, it is applicable not only to single thread threads but also to multi thread threads.

なお、雄側筒体7と雌側筒体11における全てのねじ山及びこれに対応するねじ底のピッチを同じに設定することが好ましい。
このように設定することで、ねじ継手1に荷重が作用した際に、軸方向で全てのねじ山が均等に当接して荷重伝達できる。
In addition, it is preferable that all the threads in the male side cylinder 7 and the female side cylinder 11 and the pitches of the corresponding thread bottoms are set to be the same.
By setting in this way, when a load is applied to the threaded joint 1, all the screw threads are evenly abutted in the axial direction and the load can be transmitted.

なお、ねじ継手1を有する構造体として、例えば地すべり抑止杭を構築するには、連結対象となるねじ継手付き鋼管の一方の回転を拘束した状態で、他方のねじ継手鋼管のねじ継手1を、前記一方のねじ継手付き鋼管のねじ継手1に位置合わせして回転嵌合するようにすればよい。 In addition, in order to construct a landslide prevention pile as a structure having a threaded joint 1, for example, with the rotation of one of the threaded joint steel pipes to be connected being restrained, the threaded joint 1 of the other threaded joint steel pipe, What is necessary is just to align with the threaded joint 1 of said one steel pipe with a threaded joint, and to rotationally fit it.

また、ねじ継手1を設計するには、以下のような設計方法となる。
テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の設計方法であって、
前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度を、0度~+8度の範囲内で設定するねじ継手の設計方法。
Further, in order to design the threaded joint 1, the following design method is used.
1. A method for designing a threaded joint for joining steel pipes together at an end of a steel pipe, the threaded joint having a male cylinder having a male thread made of a tapered thread, and a female cylinder body having a female thread made of a tapered thread. ,
A method for designing a threaded joint, in which the inclination angle of the stabbing surfaces of the threads of the male thread and the female thread with respect to the direction perpendicular to the axis of the steel pipe is set within the range of 0 degrees to +8 degrees.

また、ねじ継手1を製造するには、以下のような製造方法となる。
テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の製造方法であって、
前記雄ねじと前記雌ねじにおけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度を、0度~+8度の範囲内で形成するねじ継手の製造方法。
Moreover, in order to manufacture the threaded joint 1, the following manufacturing method is used.
A method for manufacturing a threaded joint for joining steel pipes together at an end of a steel pipe, the threaded joint having a male cylinder having a male thread made of a tapered thread, and a female cylinder body having a female thread made of a tapered thread. ,
A method for manufacturing a threaded joint, wherein the stubbing surfaces of the threads of the male thread and the female thread are inclined at an angle of inclination to a direction perpendicular to the axis of the steel pipe within a range of 0 degrees to +8 degrees.

また、ねじ継手1における雄側筒体7と雌側筒体11を備えるねじ継手付き鋼管を製造するには、本発明に係るねじ継手における雄側筒体と雌側筒体を、鋼管の一端と他端に取り付けるようにすればよい。 In addition, in order to manufacture a steel pipe with a threaded joint including the male side cylinder body 7 and the female side cylinder body 11 in the threaded joint 1, the male side cylinder body and the female side cylinder body in the threaded joint according to the present invention are attached to one end of the steel pipe. and the other end.

[傾斜角度の検討]
本発明では、上述したように、ねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度の最適範囲として、0度~+8度としているが、これはFEM解析結果に基づくものであり、以下このFEM解析について説明する。
解析モデルは、鋼管外径508mmで板厚23mm、筒体外径508mm、載荷点間距離は1200mmとした3次元4点曲げ(図2参照)モデルで、鋼管3に取り付けられた雄側筒体7ともう一方の鋼管3に取り付けられた雌側筒体11が接合された状態で等曲げ区間となる中央部にねじ継手1を配置し、曲げ荷重による耐力を確認するモデルとなっている。
[Study of inclination angle]
In the present invention, as described above, the optimum range of the inclination angle of the thread stabbing surfaces 5a, 9a with respect to the direction perpendicular to the steel pipe axis is 0 degrees to +8 degrees, but this is based on the FEM analysis results. This FEM analysis will be explained below.
The analysis model is a three-dimensional four-point bending (see Figure 2) model with a steel pipe outer diameter of 508 mm, a plate thickness of 23 mm, a cylinder outer diameter of 508 mm, and a distance between loading points of 1200 mm. In this model, the threaded joint 1 is placed in the center of the uniform bending section when the female side cylinder 11 attached to the other steel pipe 3 is joined, and the strength against the bending load is confirmed.

また非締め切り状態を考慮するため、雄側筒体7と雌側筒体11の初期配置をショルダー部7aと雌側筒体11の先端11aとの隙間が2mmとなる状態とした。さらに接触状態を考慮するため、雄側筒体7と雌側筒体11には接触判定が可能となる接触条件を与え、接触部となるスタビング面5aと9a、ロード面5bと9bには下記で設定したスタビング面間およびロード面間の摩擦係数を用いた。鋼材の弾塑性挙動を考慮した接触解析弾塑性モデルとなっている。 Further, in order to consider the non-closing state, the initial arrangement of the male side cylinder 7 and the female side cylinder 11 was such that the gap between the shoulder portion 7a and the tip 11a of the female side cylinder 11 was 2 mm. Furthermore, in order to take the contact state into consideration, the male side cylinder 7 and the female side cylinder 11 are given contact conditions that enable contact determination, and the stubbing surfaces 5a and 9a and the loading surfaces 5b and 9b, which are the contact parts, are set as follows. The coefficients of friction between the stabbing surfaces and between the loading surfaces were used. It is a contact analysis elastic-plastic model that takes into account the elastic-plastic behavior of steel materials.

解析に用いたスタビング面間およびロード面間の摩擦係数は、滑る条件下(例えば潤滑油を塗布した条件下)における鋼材間の一般的な摩擦係数である0.1とした。 The coefficient of friction between the stabbing surfaces and between the loading surfaces used in the analysis was set to 0.1, which is the general coefficient of friction between steel materials under sliding conditions (for example, under conditions where lubricant is applied).

また、ロード面5b、9bの設定ねじ鉛直角度は0度とした。
一般的にロード面の設定ねじ鉛直角度は0度の場合が、荷重伝達力が高いと言われてい
る。設定ねじ鉛直角度がマイナスの場合には一般的にフックねじと呼ばれる形状で、ねじ部の滑りを抑制できるが、ねじ山の根元幅(ねじ山の側面5a,9aと側面5b,9bの
根根元の幅)が小さくなることからねじ部の剛性が下がり、変形しやすい。このため、高耐力が要求される構造部材(特に、地すべり抑止杭、地すべり抑止用壁、土留め壁、基礎用鋼管杭、鋼管矢板、および鋼管柱)には適用が難しい。一方でプラスの場合には一般的に台形ねじと呼ばれる形状で、ねじ部の剛性が高く変形しにくいが、ねじ部の滑りが生じやすくなる。
Further, the vertical angle of the setting screws of the load surfaces 5b and 9b was set to 0 degrees.
Generally, it is said that the load transmission force is high when the vertical angle of the setting screw on the load surface is 0 degrees. When the vertical angle of the setting screw is negative, it is generally called a hook screw shape, which can suppress the slippage of the thread part, but the width of the root of the screw thread (the width of the root of the screw thread sides 5a, 9a and the sides 5b, 9b) As the width (width) becomes smaller, the rigidity of the threaded part decreases, making it more likely to deform. Therefore, it is difficult to apply it to structural members that require high strength (especially landslide prevention piles, landslide prevention walls, earth retaining walls, foundation steel pipe piles, steel pipe sheet piles, and steel pipe columns). On the other hand, in the case of a positive thread, the shape is generally called a trapezoidal thread, and the threaded part has high rigidity and is difficult to deform, but the threaded part is likely to slip.

すなわち、ロード面5b、9bの設定ねじ鉛直角度を0度としたのは、ロード面5b、9bの設定ねじ鉛直角度が+10度等であれば引張側で外れやすい条件となるが、ロード面
5b、9bの設定ねじ鉛直角度を0度とすることで、構造体としてのねじ継手1において
最も引張荷重伝達力が高く、相対的に圧縮側で外れやすい条件となるからである。
In other words, the reason why the vertical angle of the setting screws on the load surfaces 5b and 9b was set to 0 degrees is that if the vertical angle of the setting screws on the load surfaces 5b and 9b were +10 degrees, it would be easy to come off on the tension side. This is because by setting the vertical angle of the setting screws 5b and 9b to 0 degrees, the tensile load transmission force is the highest in the threaded joint 1 as a structure, and the conditions are such that it is relatively easy to come off on the compression side.

このような条件下で圧縮側のねじ部の外れが生じず、鋼材全塑性荷重を発揮できるスタビング面5a、9aの設定ねじ鉛直角度を規定することで、ロード面5b、9bの設定ねじ鉛直角度に関係なく圧縮側のねじ外れを抑制できるスタビング面5a、9aの設定ねじ鉛直角度を規定することができる。
なお、鋼材全塑性荷重とは、図6に示すように、継手の弱点部となる雄ねじ5における最も根元側のねじ底中央部における断面(図6の破線の四角で囲んだ部分参照)を等価した仮想鋼管19を想定した場合の塑性断面係数と鋼材降伏応力を基に計算した値である。
By specifying the vertical angle of the setting screw on the stubbing surfaces 5a and 9a that can exert the full plastic load on the steel material without causing the threaded part on the compression side to come off under such conditions, the vertical angle of the setting screw on the loading surfaces 5b and 9b can be adjusted. It is possible to define a set screw vertical angle of the stabbing surfaces 5a, 9a that can suppress screw dislodgement on the compression side regardless of the compression side.
As shown in Figure 6, the steel total plastic load is equivalent to the cross section at the center of the bottom of the male thread 5, which is the weak point of the joint (see the area surrounded by the broken line square in Figure 6). This is a value calculated based on the plastic section modulus and steel yield stress assuming a virtual steel pipe 19.

本検討では、ロード面5b、9bの設定ねじ鉛直角度は鋼管軸直角方向66に対し0度とし、スタビング面5a、9aの設定ねじ鉛直角度を0度、+5度、+6度、+8度、+10度の5ケースとして実施した。
なお、ロード面の設定ねじ鉛直角度の場合と同様に、スタビング面の設定ねじ鉛直角度がマイナスの場合には一般的にフックねじと呼ばれる形状で、ねじ部の滑りを抑制できる。しかし、ねじ山の根元幅が小さくなることからねじ部の剛性が下がり、変形しやすいため、高耐力が要求される構造部材には適用が難しい。故に、検討からは除外した。
In this study, the vertical angle of the setting screws on the loading surfaces 5b and 9b is 0 degrees with respect to the direction 66 perpendicular to the steel pipe axis, and the vertical angles of the setting screws on the stabbing surfaces 5a and 9a are 0 degrees, +5 degrees, +6 degrees, +8 degrees. It was conducted in 5 cases at 10°C and +10°C.
Note that, similarly to the case of the vertical angle of the setting screw on the loading surface, when the vertical angle of the setting screw on the stabbing surface is negative, slippage of the threaded portion can be suppressed by a shape generally called a hook screw. However, since the width of the base of the screw thread becomes smaller, the rigidity of the threaded part decreases and it becomes easily deformed, making it difficult to apply it to structural members that require high yield strength. Therefore, it was excluded from consideration.

図7にロード面5b、9bの設定ねじ鉛直角度が0度で、スタビング面5a、9aの設定ねじ鉛直角度が0度の場合の解析結果を示す。
図7の縦軸は鋼材の全塑性荷重で解析により求められた荷重を割ることで無次元化した荷重比(載荷荷重/鋼材全塑性荷重)であり、横軸が支間中央部変位(mm)である。
FIG. 7 shows the analysis results when the vertical angle of the setting screws on the loading surfaces 5b, 9b is 0 degrees, and the vertical angle of the setting screws on the stabbing surfaces 5a, 9a is 0 degrees.
The vertical axis in Figure 7 is the load ratio (load load/total plastic load of the steel material), which is made dimensionless by dividing the load determined by analysis by the total plastic load of the steel material, and the horizontal axis is the displacement at the center of the span (mm). It is.

図7より、スタビング面5a、9aの設定ねじ鉛直角度が0度の場合には、荷重比が1.12を超えたところで、低下していることが読み取れる。すなわち、スタビング面5a、9
aの設定ねじ鉛直角度が0度の場合には、鋼材全塑性荷重ではねじ部が外れることがないことを示しており、鋼材全塑性荷重を発揮できることがわかる。ここで、荷重比が低下する直前の最大値(図7中の逆黒色三角印▼の箇所)を最大荷重比と呼んでおく。図7から、設定ねじ鉛直角度が0度の場合の最大荷重比は1.12となる。
From FIG. 7, it can be seen that when the vertical angle of the setting screw of the stabbing surfaces 5a, 9a is 0 degrees, the load ratio decreases when it exceeds 1.12. That is, the stabbing surfaces 5a, 9
When the vertical angle of the set screw in a is 0 degrees, it is shown that the threaded part does not come off under the full plastic load of the steel material, and it can be seen that the full plastic load of the steel material can be exerted. Here, the maximum value immediately before the load ratio decreases (inverted black triangle mark ▼ in FIG. 7) is referred to as the maximum load ratio. From Figure 7, the maximum load ratio is 1.12 when the vertical angle of the setting screw is 0 degrees.

同様の解析をスタビング面5a、9aの設定ねじ鉛直角度が+5度、+6度、+8度、+10度の場合についても実施し、図7と同様の解析結果を得て、設定ねじ鉛直角度毎の最大荷重比を求めた。スタビング面5a、9aの設定ねじ鉛直角度が0度の場合を含め、設定ねじ鉛直角度毎の最大荷重比の結果をまとめて図8のグラフに示す。
図8の縦軸は、図7の縦軸と同じ荷重比(載荷荷重/鋼材全塑性荷重)であり、横軸は設定ねじ鉛直角度(°)である。
A similar analysis was carried out for the cases where the setting screw vertical angles of the stabbing surfaces 5a and 9a were +5 degrees, +6 degrees, +8 degrees, and +10 degrees, and the same analysis results as in Fig. 7 were obtained. The maximum load ratio for each vertical angle was determined. The graph of FIG. 8 summarizes the results of the maximum load ratio for each set screw vertical angle, including the case where the set screw vertical angle of the stabbing surfaces 5a and 9a is 0 degrees.
The vertical axis in FIG. 8 is the same load ratio (load load/total plastic load of steel material) as the vertical axis in FIG. 7, and the horizontal axis is the setting screw vertical angle (°).

図8のグラフには、解析結果を回帰分析した結果である点線を付している。この回帰分析の結果から、設定ねじ鉛直角度が8度以下であれば荷重比(載荷荷重/鋼材全塑性荷重)が1以上、つまり圧縮側のねじ部が外れることなく、鋼材全塑性荷重を活かすことができることが読み取れる。一方で8度超の場合は、鋼荷重比が1未満となり、鋼材全塑性荷重に達する前に圧縮側のねじ部が外れ、鋼材全塑性荷重を活かすことができないことが読み取れる。 The graph of FIG. 8 is marked with a dotted line, which is the result of regression analysis of the analysis results. From the results of this regression analysis, if the vertical angle of the set screw is 8 degrees or less, the load ratio (load load/total plastic load of the steel material) is greater than 1, which means that the thread on the compression side will not come off and the full plastic load of the steel material will be utilized. I can read that it can be done. On the other hand, if it exceeds 8 degrees, the steel load ratio will be less than 1, and the threaded part on the compression side will come off before the steel's total plastic load is reached, indicating that the steel's total plastic load cannot be utilized.

以上の解析結果から、本発明において規定する設定ねじ鉛直角度として8度以下が妥当であることが実証されている。 From the above analysis results, it has been demonstrated that 8 degrees or less is appropriate as the setting screw vertical angle defined in the present invention.

上記の検討は、スタビング面間およびロード面間の摩擦係数を0.1とした場合である。これは、継手を形成する鋼材間の摩擦係数が約0.45であり、これに潤滑油を塗布して滑る条件下では0.1~0.2となることから、最も厳しい条件として0.1を用いたものである。
したがって、一般的なねじ継手においては、上記の結果が妥当する。
The above study assumes that the coefficient of friction between the stabbing surfaces and between the loading surfaces is 0.1. This is because the coefficient of friction between the steel materials that form the joint is approximately 0.45, and under conditions where the joint is coated with lubricating oil and slips, it becomes 0.1 to 0.2, so 0.1 is used as the most severe condition.
Therefore, the above results are valid for general threaded joints.

もっとも、図4に示されるように、スタビング面間もしくはロード面間の摩擦係数が小さくなるにしたがって、滑り出す設定ねじ鉛直角度は小さくなる。このため、発明者は念のためにスタビング面間およびロード面間の摩擦係数を0.06とした場合について、ロード面5b、9bの設定ねじ鉛直角度を0度、スタビング面5a、9aの設定ねじ鉛直角度を0度、+3度、+4度、+8度、+10度とした5ケースについて解析を実施した。
解析結果を図9に示す。図9には、上述したスタビング面間およびロード面間の摩擦係数を0.1とした場合も併せて記載している。
However, as shown in FIG. 4, as the coefficient of friction between the stabbing surfaces or between the loading surfaces becomes smaller, the vertical angle of the setting screw at which it begins to slide becomes smaller. For this reason, the inventor set the vertical angle of the setting screws on the loading surfaces 5b and 9b to 0 degrees and the vertical angle of the setting screws on the stabbing surfaces 5a and 9a when the friction coefficient between the stabbing surfaces and between the loading surfaces is set to 0.06. We analyzed five cases with angles of 0 degrees, +3 degrees, +4 degrees, +8 degrees, and +10 degrees.
The analysis results are shown in Figure 9. FIG. 9 also shows a case where the friction coefficient between the stabbing surfaces and between the load surfaces described above is set to 0.1.

図9のグラフから、スタビング面間およびロード面間の摩擦係数を0.06とした場合には、圧縮側のねじ部が外れることなく、鋼材全塑性荷重を活かすことができるためには、設定ねじ鉛直角度を3度以下に設定することになることが分かる。 From the graph in Figure 9, when the coefficient of friction between the stabbing surfaces and between the loading surfaces is set to 0.06, in order to take advantage of the full plastic load of the steel material without the threaded part on the compression side coming off, it is necessary to It can be seen that the angle should be set to 3 degrees or less.

このことから、スタビング面間の摩擦係数が特殊な場合においてねじ継手1を設計するには、スタビング面間の摩擦係数を考慮して設計することがより好ましく、この場合の設計方法としては、以下のような設計方法となる。
テーパねじからなる雄ねじ5を有する雄側筒体7と、テーパねじからなる雌ねじ9を有する雌側筒体11とを有し、鋼管3の端部にあって鋼管3同士を接合するねじ継手の設計方法であって、
鋼材全塑性荷重に対する載荷荷重の比と、設定ねじ鉛直角度との関係を、スタビング面間の摩擦係数ごとに予め求めておき、設計に際して設定したスタビング面間の摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、雄側筒体7と雌側筒体11におけるねじ山のスタビング面5a、9aの鋼管軸直角方向に対する傾斜角度として設定するねじ継手の設計方法。
Therefore, in order to design the threaded joint 1 when the friction coefficient between the stabbing surfaces is special, it is more preferable to design the threaded joint 1 by considering the friction coefficient between the stabbing surfaces.In this case, the design method is as follows. The design method is as follows.
A threaded joint that is located at the end of a steel pipe 3 and joins the steel pipes 3 together, and has a male side cylinder body 7 having a male thread 5 made of a tapered thread, and a female side cylinder body 11 having a female thread 9 made of a tapered thread. A design method,
The relationship between the ratio of the applied load to the total plastic load of the steel material and the set screw vertical angle is determined in advance for each friction coefficient between the stabbing surfaces, and the ratio is 1.0 or more for the friction coefficient between the stabbing surfaces set during design. A method for designing a threaded joint in which the vertical angle of the setting screw is set as the inclination angle of the stabbing surfaces 5a and 9a of the threads in the male cylinder 7 and the female cylinder 11 with respect to the direction perpendicular to the steel pipe axis.

また、スタビング面間の摩擦係数が特殊な場合において、ねじ継手1を製造するには、スタビング面間の摩擦係数を考慮してねじ継手を形成することがより好ましく、この場合の製造方法としては、以下のような製造方法となる。
テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の製造方法であって、
載荷荷重と鋼材全塑性荷重との比と、設定ねじ鉛直角度との関係を、スタビング面間の摩擦係数ごとに予め求めておき、予め設定されたスタビング面間の摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、前記雄側筒体と前記雌側筒体におけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度として形成するねじ継手の製造方法。
In addition, when the friction coefficient between the stabbing surfaces is special, in order to manufacture the threaded joint 1, it is more preferable to form the threaded joint by considering the friction coefficient between the stabbing surfaces, and in this case, the manufacturing method is as follows: , the manufacturing method is as follows.
A method for manufacturing a threaded joint for joining steel pipes together at an end of a steel pipe, the threaded joint having a male cylinder having a male thread made of a tapered thread, and a female cylinder body having a female thread made of a tapered thread. ,
The relationship between the ratio of the applied load to the total plastic load of the steel material and the set screw vertical angle is determined in advance for each friction coefficient between the stabbing surfaces, and the ratio is 1.0 or more for the preset friction coefficient between the stabbing surfaces. A method for manufacturing a threaded joint, in which the setting screw vertical angle is formed as an inclination angle of stabbing surfaces of threads in the male side cylinder and the female side cylinder with respect to a direction perpendicular to the steel pipe axis.

本発明によれば、ショルダー部がタッチしない不完全接合状態であっても圧縮側のねじ部が外れることなく継手鋼材の全塑性荷重を十分に活かすことができるねじ継手を提供することができる。また、本発明によれば、このようなねじ継手を前提としたねじ継手付き鋼管、構造体、構造体の構築方法、地すべり抑止杭、地すべり抑止杭の施工方法、ねじ継手の設計方法、ねじ継手の製造方法、ねじ継手付き鋼管の製造方法を提供することができる。 According to the present invention, it is possible to provide a threaded joint that can fully utilize the entire plastic load of the joint steel without causing the threaded portion on the compression side to come off even in an incompletely joined state in which the shoulder portion does not touch. Further, according to the present invention, a steel pipe with a threaded joint, a structure, a method of constructing a structure, a landslide prevention pile, a construction method of a landslide prevention pile, a design method of a threaded joint, a threaded joint and a method for manufacturing a steel pipe with a threaded joint.

1 ねじ継手
3 鋼管
5 雄ねじ
5a スタビング面
5b ロード面
51 頂部
52 ねじ底
7 雄側筒体
7a ショルダー部
9 雌ねじ
9a スタビング面
9b ロード面
91 頂部
92 ねじ底
11 雌側筒体
11a 先端
13 ねじ継手(特許文献2)
15 雄ねじ
15a スタビング面
15b ロード面
17 雌ねじ
17a スタビング面
17b ロード面
19 仮想鋼管
21 テーパの勾配軸
23 勾配軸直交軸
25 鋼管軸
27 鋼管直交軸
P ねじ山のピッチ
h ねじ高さ
α 傾斜角度、設定ねじ鉛直角度(スタビング面に対するまたはロード面に対する)
1 Threaded joint 3 Steel pipe 5 Male thread 5a Stubbing surface 5b Loading surface 51 Top 52 Threaded bottom 7 Male cylinder 7a Shoulder part 9 Female thread 9a Stubbing surface 9b Loading surface 91 Top 92 Threaded bottom 11 Female cylinder 11a Tip 13 Threaded joint ( Patent document 2)
15 Male thread 15a Stubbing surface 15b Load surface 17 Female thread 17a Stubbing surface 17b Load surface 19 Virtual steel pipe 21 Taper gradient axis 23 Gradient axis orthogonal axis 25 Steel pipe axis 27 Steel pipe orthogonal axis P Thread pitch h Thread height α Inclination angle, setting Thread vertical angle (relative to stabbing surface or relative to loading surface)

Claims (2)

テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の設計方法であって、
鋼材全塑性荷重に対する載荷荷重の比と、設定ねじ鉛直角度との関係を、摩擦係数ごとに予め求めておき、設計に際して設定した摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、前記雄側筒体と前記雌側筒体におけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度として設定するねじ継手の設計方法。
1. A method for designing a threaded joint for joining steel pipes together at an end of a steel pipe, the threaded joint having a male cylinder having a male thread made of a tapered thread, and a female cylinder body having a female thread made of a tapered thread. ,
The relationship between the ratio of the applied load to the total plastic load of the steel material and the set screw vertical angle is determined in advance for each friction coefficient, and the set screw vertical angle at which the ratio is 1.0 or more at the friction coefficient set at the time of design is determined as described above. A method for designing a threaded joint in which the stabbing surfaces of the threads of the male side cylinder and the female side cylinder are set as an inclination angle with respect to a direction perpendicular to the axis of the steel pipe.
テーパねじからなる雄ねじを有する雄側筒体と、テーパねじからなる雌ねじを有する雌側筒体とを有し、鋼管の端部にあって前記鋼管同士を接合するねじ継手の製造方法であって、
鋼材全塑性荷重に対する載荷荷重の比と、設定ねじ鉛直角度との関係を、摩擦係数ごとに予め求めておき、予め設定された摩擦係数において前記比が1.0以上になる設定ねじ鉛直角度を、前記雄側筒体と前記雌側筒体におけるねじ山のスタビング面の鋼管軸直角方向に対する傾斜角度として形成するねじ継手の製造方法。
A method for manufacturing a threaded joint for joining steel pipes together at an end of a steel pipe, the threaded joint having a male cylinder having a male thread made of a tapered thread, and a female cylinder body having a female thread made of a tapered thread. ,
The relationship between the ratio of the applied load to the total plastic load of the steel material and the setting screw vertical angle is determined in advance for each friction coefficient, and the setting screw vertical angle at which the ratio is 1.0 or more at the preset friction coefficient is determined as described above. A method for manufacturing a threaded joint, in which the stabbing surfaces of the threads of the male side cylinder and the female side cylinder are formed at an angle of inclination with respect to a direction perpendicular to the axis of the steel pipe.
JP2021133146A 2020-09-04 2021-08-18 Threaded joints, steel pipes with threaded joints, structures, construction methods for structures, landslide prevention piles, construction methods for landslide prevention piles, design methods for threaded joints, manufacturing methods for threaded joints, manufacturing methods for steel pipes with threaded joints Active JP7420123B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180058126.2A CN116057231A (en) 2020-09-04 2021-08-24 Threaded joint, steel pipe with threaded joint, structure, method for constructing structure, landslide-control pile, method for constructing landslide-control pile, method for designing threaded joint, method for producing threaded joint, and method for producing steel pipe with threaded joint
KR1020237003203A KR20230028537A (en) 2020-09-04 2021-08-24 Screw joint, steel pipe with screw joint, structure, construction method of structure, landslide prevention pile, landslide prevention pile construction method, screw joint design method, screw joint manufacturing method, screw joint steel pipe manufacturing method
PCT/JP2021/031009 WO2022050133A1 (en) 2020-09-04 2021-08-24 Screw joint, steel pipe with screw joint, structure, method for building structure, landslide prevention pile, method for constructing landslide prevention pile, method for designing screw joint, method for producing screw joint, and method for producing steel pipe with screw joint
JP2023182999A JP2023184587A (en) 2020-09-04 2023-10-25 Screw joint, steel pipe with screw joint, structure, method for constructing structure, landslide control steel pipe pile, method for constructing landslide control steel pipe pile, method for designing screw joint, method for manufacturing screw joint, and method for manufacturing steel pipe with screw joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148738 2020-09-04
JP2020148738 2020-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023182999A Division JP2023184587A (en) 2020-09-04 2023-10-25 Screw joint, steel pipe with screw joint, structure, method for constructing structure, landslide control steel pipe pile, method for constructing landslide control steel pipe pile, method for designing screw joint, method for manufacturing screw joint, and method for manufacturing steel pipe with screw joint

Publications (2)

Publication Number Publication Date
JP2022044001A JP2022044001A (en) 2022-03-16
JP7420123B2 true JP7420123B2 (en) 2024-01-23

Family

ID=80668790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133146A Active JP7420123B2 (en) 2020-09-04 2021-08-18 Threaded joints, steel pipes with threaded joints, structures, construction methods for structures, landslide prevention piles, construction methods for landslide prevention piles, design methods for threaded joints, manufacturing methods for threaded joints, manufacturing methods for steel pipes with threaded joints

Country Status (1)

Country Link
JP (1) JP7420123B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317047A (en) 2000-05-02 2001-11-16 Kubota Corp Columnar body and joint therefor
JP2002061175A (en) 2000-08-24 2002-02-28 Sumitomo Metal Ind Ltd Threaded joint for steel pipe pile
JP2003193463A (en) 2001-12-28 2003-07-09 Daiwa House Ind Co Ltd Screw type joint and rotary striking jig for steel pipe pile
JP2006283314A (en) 2005-03-31 2006-10-19 Jfe Steel Kk Joint structure of steel pipe pile for preventing landslide, and steel pipe pile for preventing landslide equipped with the same
JP2015071870A (en) 2013-10-02 2015-04-16 名工建設株式会社 Press-fitting pipe joint method and press-fitting pipe caulking device for use in the same
WO2015083382A1 (en) 2013-12-05 2015-06-11 新日鐵住金株式会社 Threaded joint for steel pipes
JP2017504767A (en) 2013-12-10 2017-02-09 ヴァルレック オイル アンド ガス フランス Assemblies forming threaded connections for drilling and operation of hydrocarbon wells and threaded connections
JP2017036840A (en) 2011-05-24 2017-02-16 ウルトラ プレミアム オイルフィールド サーヴィシズ リミテッド Tubular connection body and screw shape relevant thereto
JP2020084447A (en) 2018-11-19 2020-06-04 株式会社オーク Installation method of land slide prevention pile for high place work platform
JP2020523502A (en) 2017-06-07 2020-08-06 マルベニ−イトウチュウ チューブラーズ アメリカ インコーポレイテッドMarubeni−Itochu Tubulars America Inc. Compression resistance screw connection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827845B2 (en) * 1993-09-30 1998-11-25 日本鋼管株式会社 Steel pipe pile for landslide prevention
JP3206397B2 (en) * 1995-11-13 2001-09-10 日本鋼管株式会社 Screw joint structure such as steel pipe pile
JP3858351B2 (en) * 1997-06-16 2006-12-13 Jfeスチール株式会社 Steel pipe pile with threaded joint
WO1999008034A1 (en) * 1997-08-11 1999-02-18 Marubeni Tubulars, Inc. Tubular connection
JPH11107272A (en) * 1997-10-07 1999-04-20 Sumitomo Metal Ind Ltd Steel pipe pile screw joint
JPH11172687A (en) * 1997-12-15 1999-06-29 Kubota Corp Pile for inhibiting landslide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317047A (en) 2000-05-02 2001-11-16 Kubota Corp Columnar body and joint therefor
JP2002061175A (en) 2000-08-24 2002-02-28 Sumitomo Metal Ind Ltd Threaded joint for steel pipe pile
JP2003193463A (en) 2001-12-28 2003-07-09 Daiwa House Ind Co Ltd Screw type joint and rotary striking jig for steel pipe pile
JP2006283314A (en) 2005-03-31 2006-10-19 Jfe Steel Kk Joint structure of steel pipe pile for preventing landslide, and steel pipe pile for preventing landslide equipped with the same
JP2017036840A (en) 2011-05-24 2017-02-16 ウルトラ プレミアム オイルフィールド サーヴィシズ リミテッド Tubular connection body and screw shape relevant thereto
JP2015071870A (en) 2013-10-02 2015-04-16 名工建設株式会社 Press-fitting pipe joint method and press-fitting pipe caulking device for use in the same
WO2015083382A1 (en) 2013-12-05 2015-06-11 新日鐵住金株式会社 Threaded joint for steel pipes
JP2017504767A (en) 2013-12-10 2017-02-09 ヴァルレック オイル アンド ガス フランス Assemblies forming threaded connections for drilling and operation of hydrocarbon wells and threaded connections
JP2020523502A (en) 2017-06-07 2020-08-06 マルベニ−イトウチュウ チューブラーズ アメリカ インコーポレイテッドMarubeni−Itochu Tubulars America Inc. Compression resistance screw connection
JP2020084447A (en) 2018-11-19 2020-06-04 株式会社オーク Installation method of land slide prevention pile for high place work platform

Also Published As

Publication number Publication date
JP2022044001A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US7527304B2 (en) Floating wedge thread for tubular connection
US10145496B2 (en) Rotary shouldered connections and thread design
US7510350B2 (en) Helical anchor with hardened coupling sections
US8079781B2 (en) Push pier assembly with hardened coupling sections
US11389858B2 (en) Cold rolling devices and cold rolled rotary shouldered connection threads
US10590619B2 (en) Helical pier with thickened hexagonal coupling ends and method of manufacture
US20140145433A1 (en) Tubular connection with helically extending torque shoulder
US9677346B2 (en) Tubular connection with helically extending torque shoulder
KR20200102637A (en) File coupling structure with spiral plate
JP7420123B2 (en) Threaded joints, steel pipes with threaded joints, structures, construction methods for structures, landslide prevention piles, construction methods for landslide prevention piles, design methods for threaded joints, manufacturing methods for threaded joints, manufacturing methods for steel pipes with threaded joints
JP2023184587A (en) Screw joint, steel pipe with screw joint, structure, method for constructing structure, landslide control steel pipe pile, method for constructing landslide control steel pipe pile, method for designing screw joint, method for manufacturing screw joint, and method for manufacturing steel pipe with screw joint
JP5831874B2 (en) Method for connecting foundation piles for housing with an outer diameter of 115 to 320 mm
US5562312A (en) Discountinuous plane weld apparatus and method for enhancing fatigue and load properties of subterranean well drill pipe immediate the area of securement of pipe sections
JP6470699B2 (en) Pile connection structure
EP1010815B1 (en) Splice for a drilled pile
EP3356607B1 (en) Pile
JP2010168789A (en) Mechanical coupling for steel pipe pile
JP3858351B2 (en) Steel pipe pile with threaded joint
JP7111136B2 (en) steel pipe threaded joints
JP6007863B2 (en) Joint structure of steel pipes constituting rotating piles
US11668064B2 (en) Coupler for helical pile and tieback support systems
JPH07102555A (en) Steel pipe pile for suppressing occurrence of landslide
CN101333809B (en) Construction method of rotary type circular cross-section steel tube concrete pile
JPH0782738A (en) Land-slide preventing steel pipe pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7420123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150