JP7415927B2 - 通信制御装置、通信制御方法、及び通信装置 - Google Patents

通信制御装置、通信制御方法、及び通信装置 Download PDF

Info

Publication number
JP7415927B2
JP7415927B2 JP2020539379A JP2020539379A JP7415927B2 JP 7415927 B2 JP7415927 B2 JP 7415927B2 JP 2020539379 A JP2020539379 A JP 2020539379A JP 2020539379 A JP2020539379 A JP 2020539379A JP 7415927 B2 JP7415927 B2 JP 7415927B2
Authority
JP
Japan
Prior art keywords
wireless
communication
wireless system
amount
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020539379A
Other languages
English (en)
Other versions
JPWO2020045203A1 (ja
Inventor
匠 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2020045203A1 publication Critical patent/JPWO2020045203A1/ja
Application granted granted Critical
Publication of JP7415927B2 publication Critical patent/JP7415927B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本開示は、通信制御装置、通信制御方法、及び通信装置に関する。
無線システム(無線装置)に割り当て可能な電波資源(無線リソース)が枯渇するという問題が表面化している。どの電波帯域もすでに既存の無線システム(無線装置)が利用しているため、新規に無線システムに電波資源を割り当てることは困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。コグニティブ無線技術では、既存の無線システムの時間的・空間的な空き電波(White Space)を利用することにより電波資源を捻出する。
しかしながら、単に空き電波を利用しただけでは電波資源の有効利用が実現できるとは限らない。例えば、電波資源の有効利用を実現するためには、複数の無線システム(無線装置)に効率的に空き電波を配分する必要があるが、多様な無線システムが存在する中で、効率的に空き電波を配分するのは容易ではない。
そこで、本開示では、電波資源の効率的な利用を実現可能な通信制御装置、通信制御方法、及び通信装置を提案する。
上記の課題を解決するために、本開示に係る一形態の通信制御装置は、第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部と、を備える。
セカンダリシステムを構成する各通信装置への干渉マージンの配分例を示す説明図である。 SASの運用例を示すシーケンス図である。 CBRSでの階層構造を示す説明図である。 CBRSの帯域を示す説明図である。 本開示の実施形態に係る通信システムの構成例を示す図である。 本開示の実施形態に係る通信装置の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 本開示の実施形態に係る通信制御装置の構成例を示す図である。 本実施形態で想定する干渉モデルの一例を示す説明図である。 本実施形態で想定する干渉モデルの他の例を示す説明図である。 干渉マージン一斉配分型のプライマシステム保護方法を説明するための説明図である。 干渉マージンを事前にリザーブした様子を示す図である。 低干渉ノード優先許容型のプライマシステム保護方法を説明するための説明図である。 本開示の実施形態に係る通信制御処理の一例を示すシーケンス図である。 低干渉ノード優先許容型のプライマシステム保護方法における剰余干渉マージンを説明するための説明図である。 周波数範囲の定義を示す図である。 FR1における最大伝送帯域幅ゴンフィグNRBを示す図である。 FR2における最大伝送帯域幅ゴンフィグNRBを示す図である。 本開示の実施形態に係る許可判定処理の一例を示すフローチャートである。 本開示の実施形態に係る許可判定処理の他の例を示すフローチャートである。 本開示の実施形態に係る許可判定処理の他の例を示すフローチャートである。 本開示の実施形態に係る停止処理の一例を示すフローチャートである。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて通信制御装置40、及び40のように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、通信制御装置40、及び40を特に区別する必要が無い場合には、単に通信制御装置40と称する。
また、以下に示す項目順序に従って本開示を説明する。
1.はじめに
2.通信システムの構成
2-1.通信システムの全体構成
2-2.通信装置の構成
2-3.端末装置の構成
2-4.通信制御装置の構成
3.干渉モデル
4.プライマリシステム保護方法
4-1.干渉マージン一斉配分型
4-2.低干渉ノード優先許容型
4-3.剰余干渉マージンの発生
5.通信システムの動作
5-1.通信制御処理
5-2.リソースブロック
5-3.許可判定処理(第1の例)
5-4.許可判定処理(第2の例)
5-5.許可判定処理(第3の例)
6.変形例
6-1.停止処理
6-2.実施形態の適用について
6-3.システム構成に関する変形例
6-4.その他の変形例
7.むすび
<<1.はじめに>>
近年、無線システムに割り当て可能な電波資源(例えば、周波数)が枯渇するという問題が表面化している。しかしながら、どの電波帯域もすでに既存の無線システムが利用しているため、新規の電波資源割り当てが困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。
コグニティブ無線技術では、既存の無線システムの時間的・空間的な空き電波(White Space)を利活用(例えば、動的周波数共用(DSA:Dynamic Spectrum Access))することにより、電波資源を捻出する。例えば、米国では、世界的には3GPP band 42、43とされている周波数帯とオーバーラップするFederal use band(3.55-3.70GHz)の一般国民への開放を目指し、周波数共用技術を活用するCBRS(Citizens Broadband Radio Service)の法制化・標準化が加速している。
なお、コグニティブ無線技術は、動的周波数共用のみならず、無線システムによる周波数利用効率の向上にも寄与する。例えば、ETSI EN 303 387やIEEE 802.19.1-2014では、空き電波を利用する無線システム間の共存技術が規定されている。
周波数共用を実現するためには、プライマリシステムに対して致命的な干渉を与えないように、通信制御装置(例えば、周波数管理データベース)が、セカンダリシステムの通信を制御することが重要である。通信制御装置は、通信装置の通信等を管理する装置である。例えば、通信制御装置は、GLDB(Geo-location Database)、SAS(Spectrum Access System)等の電波資源(例えば、周波数)の管理のための装置(システム)である。本実施形態の場合、通信制御装置は、後述の通信制御装置40(例えば、図4に示す通信制御装置40、40)に相当する。通信制御装置40については、後に詳述する。
ここで、プライマリシステムとは、例えば、所定の周波数帯の電波をセカンダリシステム等の他のシステムに優先して使用するシステム(例えば、既存のシステム)である。また、セカンダリシステムとは、例えば、プライマリシステムが使用する周波数帯の電波を二次利用(例えば、動的周波数共用)するシステムである。プライマリシステム及びセカンダリシステムは、それぞれ、複数の通信装置で構成されていてもよいし、1つの通信装置で構成されていてもよい。通信制御装置は、セカンダリシステムを構成する1又は複数の通信装置のプライマリシステムへの干渉の累積(Interference Aggregation)が、プライマリシステムの干渉許容量(干渉マージンともいう。)を越えないように、1又は複数の通信装置に干渉許容量を配分する。このとき、干渉許容量は、プライマリシステムの運営者や電波を管理する公的機関等が予め定めた干渉量であってもよい。以下の説明では、干渉マージンといった場合は、干渉許容量のことを指す。また、干渉の累積のことを、累積与干渉電力と呼ぶことがある。
図1は、セカンダリシステムを構成する各通信装置への干渉マージンの配分例を示す説明図である。図1の例では、通信システム1がプライマリシステムであり、通信システム2がセカンダリシステムである。通信システム1は通信装置10等を備える。また、通信システム2は通信装置20、20、20等を備える。なお、図1の例では、通信システム1は通信装置10を1つしか備えていないが、通信システム1が備える通信装置10は複数であってもよい。また、図1の例では、通信システム2は通信装置20を3つ備えているが、通信システム2が備える通信装置20は3つより少なくてもよいし、多くてもよい。なお、図1の例では、プライマリシステム(図1の例では通信システム1)及びセカンダリシステム(図1の例では通信システム2)がそれぞれ1つしか示されていないが、プライマリシステム及びセカンダリシステムはそれぞれ複数あってもよい。
通信装置10、及び通信装置20、20、20は、それぞれ、電波を送受信可能である。通信装置10が許容する干渉量はIacceptである。また、通信装置20、20、20が通信システム1(プライマリシステム)の所定の保護点に与える干渉量は、それぞれ、与干渉量I、I、Iである。ここで、保護点は、通信システム1の保護のための干渉算出基準点である。
通信制御装置は、通信システム1の所定の保護点への干渉の累積(図1に示す受信干渉量I+I+I)が干渉マージンIacceptを超えないように、複数の通信装置20に干渉マージンIacceptを配分する。例えば、通信制御装置は、与干渉量I、I、IがそれぞれIaccept/3となるように各通信装置20に干渉マージンIacceptを配分する。或いは、通信制御装置は、与干渉量I、I、IがそれぞれIaccept/3より小さくなるように、各通信装置20に干渉マージンIacceptを配分する。勿論、干渉マージンの配分方法はこの例に限定されない。
通信制御装置は、配分された干渉量(以下、配分干渉量という。)に基づいて、各通信装置20に許容される最大送信電力(以下、最大許容送信電力という。)を算出する。例えば、通信制御装置は、伝搬損失、アンテナゲイン等に基づいて、配分干渉量から逆算することによって、各通信装置20の最大許容送信電力を算出する。そして、通信制御装置は、算出した最大許容送信電力の情報を各各通信装置20に通知する。
なお、WinnFourum(Wireless Innovation Forum)ではSASについて、複数SAS間の情報交換に関する規格を策定している。SASは、例えば、SAS-SAS Protocol(非特許文献1参照)というCBRSにおける周波数監理データベースである。その中に、Full Activity Dump Messageというものがあり、データベースが記録している干渉制御に最低限必要な情報をDumpして同期する手段が提供されている。以下は、干渉制御に必要な情報の例である。
(1)CBSD Data Record
・基地局設置位置情報
・動作パラメータ(周波数、送信電力)
(2)Zone Data Record
・PPA(PAL Protection Area、優先度の高い二次利用システムの保護領域)
(3)ESC Sensor Record
・艦載レーダ信号を検知するためのセンサの設置位置情報
なお、個々の情報を適宜交換してリアルタイムマネジメントを行うことも考えられる。しかし、多大な負荷がかかることから、同Messageを周期的に交換(例えば1日1回交換)することで、データベースの運用負荷を減らすことが想定される。例えば1日1回交換するのであれば、通信制御装置はプライマリシステム保護計算を1日1回実施する。このような場合、その周期が訪れるときに、負荷のかかる全計算を集中させることができるため、例えば、周期の合間に通信装置から新規に運用許可リクエストが来た場合に問答無用で運用許可を保留しておいて、同期後の計算後に、運用許可を出すという実装が想定される。
しかしながら、このような実装をした場合、多少の干渉を受けてもよいからすぐに運用を開始したいという通信装置のユーザにとっては、運用許可が下りるまでしばらく待つ必要がある(例えば、1日1回保護計算を実施するのであれば、ユーザは1日待つ必要がある)ため、このようなデータベース運用は不都合である。また、多数の通信装置20に対して保留をかけていると、その分同期後の干渉制御計算が複雑になりかねない。そのため、特定の通信装置に対しては、保留せずに運用許可を出すということがあり得る。一方、干渉制御においては、複数の通信装置からの干渉の累積がプライマリシステムの許容値を越えないようにすることが重要である。
図2は、SASの運用例を示すシーケンス図である。日中にセカンダリシステムが新規に運用を開始したいとリクエストした場合に、データベースは、そのセカンダリシステムに対して保留をかけるべきか、運用許可をただちに出してもよいかどうかを判断する必要があると想定される。しかしながら、そのような判断基準についてはこれまで開示されていない。
なお、セカンダリシステムによっては、割り当て周波数の保有量が異なることが想定される。公平性の観点から、できる限り、すべてのセカンダリシステムが同等の水準で保有量を確保されることが望ましい。一部のセカンダリシステムに偏って無線資源が割り当てられてしまうと、他のセカンダリシステムが無線資源を利用できない事態が想定される。これでは、無線資源の効率的利用が実現できない。そのため、通信制御装置は、運用許可の判断にあたり、セカンダリシステムが同等の水準で保有量を確保できるようにすることが望ましい。
本実施形態では、通信制御装置は、プライマリシステムが使用する周波数帯の電波を利用して無線通信するセカンダリシステムの無線リソースの保有に関する情報を取得する。そして、通信制御装置は、無線リソースの保有に関する情報に基づいて、セカンダリシステムへの干渉マージンの割り当てに関する決定を行う。
これにより、干渉マージンの割り当てに関するセカンダリシステム間の公平性を保つことができる。この結果、特定のセカンダリシステムに無線資源の割り当てが偏ることが少なくなる。結果として、無線資源を全く使えないセカンダリシステムが出現することが少なくなり、無線資源の効率的な利用が可能になる。
なお、本実施形態では、プライマリシステム(通信システム1)及びセカンダリシステム(通信システム2)は、周波数共用環境下にあるものとする。米国のFCC(Federal Communications Commission)が法整備したCBRSを例にとり説明する。図3は、CBRSでの階層構造を示す説明図である。CBRSでは、既存層(Incumbent Tier)、優先アクセス層(Priority Access Tier)、及び一般認可アクセス層(General Authorized Access Tier)から構成される階層構造が定義されている。この階層構造では、一般認可アクセス層(General Authorized Access Tier)の上位に優先アクセス層(Priority Access Tier)が位置し、優先アクセス層の上位に既存層(Incumbent Tier)が位置している。CBRSを例にとると、既存層に位置するシステム(既存システム)がプライマリシステムとなり、一般認可アクセス層及び優先アクセス層に位置するシステムがセカンダリシステムとなる。
図4は、CBRSの帯域を示す説明図である。上述のCBRSを例にとると、プライマリシステムは、軍事レーダーシステム(Military Radar System)、既存無線システム(Grandfathered Wireless System)、或いは固定衛星業務(宇宙から地球)(Fixed Satellite Service (space-to-earth))となる。ここで、軍事レーダーシステムは、艦載レーダである。また、セカンダリシステムはCBSD(Citizens Broadband Radio Service Device)と呼ばれる無線システムとなる。セカンダリシステムにはさらに優先度が存在し、共用帯域を免許利用可能な優先アクセス免許(PAL:Priority Access License)と、免許不要と同等の一般認可アクセス(GAA:General Authorized Access)と、が定められている。図4に示す層1(Tier 1)は、図3に示す既存層に相当する。また、図4に示す層2(Tier 2)は、図3に示す優先アクセス層に相当する。また、図4に示す層3(Tier 3)は、図3に示す一般認可アクセス層に相当する。
なお、本実施形態のプライマリシステム(通信システム1)は、図4に示した例に限られない。他の種類の無線システムをプライマリシステム(通信システム1)としてもよい。例えば、プライマリシステムはDVB-T(Digital Video Broadcasting-Terrestrial)システム等のテレビジョン放送システムであってもよい。また、プライマリシステムは、LTE(Long Term Evolution)、NR(New Radio)等のセルラー通信システムであってもよい。また、プライマリシステムは、ARNS(Aeronautical Radio Navigation Service)等の航空無線システムであってもよい。勿論、プライマリシステムは、上記の無線システムに限定されず、他の種類の無線システムであってもよい。
また、通信システム2が利用する空き電波(White Space)は、Federal use band(3.55-3.70GHz)の電波に限られない。通信システム2は、Federal use band(3.55-3.70GHz)とは異なる周波数帯の電波を空き電波として利用してもよい。例えば、プライマリシステム(通信システム1)がテレビジョン放送システムなのであれば、通信システム2はTVホワイトスペースを空き電波として利用するシステムであってもよい。ここで、TVホワイトスペースとは、テレビジョン放送システム(プライマリシステム)に割当てられている周波数チャネルのうち、当該テレビジョン放送システムにより利用されていない周波数帯のことをいう。このとき、TVホワイトスペースは、地域に応じて使用されていないチャネルであってもよい。
また、通信システム1及び通信システム2の関係は、通信システム1をプライマリシステム、通信システム2をセカンダリシステムとした周波数共用関係に限られない。通信システム1及び通信システム2の関係は、同一周波数を利用する同一または異なる無線システム間のネットワーク共存(Network Coexistence)関係であってもよい。
なお、以下の説明で登場する「周波数」という用語は、別の用語によって置き換えられてもよい。例えば、「周波数」という用語は、「リソース」、「リソースブロック」、「リソースエレメント」、「チャネル」、「コンポーネントキャリア」、「キャリア」、「サブキャリア」といった用語やこれらと類似の意味を有する用語によって置き換えられてよい。
<<2.通信システムの構成>>
以下、本開示の実施形態に係る通信システム2を説明する。通信システム2は、通信システム1(第1無線システム)が使用する電波を二次利用して無線通信する無線通信システムである。例えば、通信システム2は、通信システム1の空き電波を動的周波数共用する無線通信システムである。通信システム2は、所定の無線アクセス技術(Radio Access Technology)を使って、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。
ここで、通信システム2は、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)、LTE、NR等のセルラー通信システムであってもよい。以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、「NR」には、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。なお、通信システム2は、セルラー通信システムに限られない。例えば、通信システム2は、無線LAN(Local Area Network)システム、テレビジョン放送システム、航空無線システム、宇宙無線通信システム等の他の無線通信システムであってもよい。
本実施形態では、通信システム1はプライマリシステムであり、通信システム2はセカンダリシステムである。上述したように、通信システム1及び通信システム2は、それぞれ、複数あってもよい。なお、図1の例では、通信システム1は1つの通信装置(図1に示す通信装置10)で構成されていたが、複数の通信装置10で構成されていてもよい。通信装置10の構成は、後述する通信装置20又は端末装置30の構成と同じであってもよい。
<2-1.通信システムの全体構成>
図5は、本開示の実施形態に係る通信システム2の構成例を示す図である。通信システム2は、通信装置20と、端末装置30と、通信制御装置40と、を備える。通信システム2は、通信システム2を構成する各無線通信装置が連携して動作することで、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。無線通信装置は、無線通信の機能を有する装置のことであり、図5の例では、通信装置20と端末装置30とが該当する。なお、通信制御装置40は、無線通信機能を有していてもよい。この場合には、通信制御装置40も無線通信装置とみなすことができる。以下の説明では、無線通信装置のことを単に通信装置ということがある。
通信システム2は、通信装置20と、端末装置30と、及び通信制御装置40をそれぞれ複数備えていてもよい。図5の例では、通信システム1は、通信装置20として通信装置20、20、20、20、20等を備えている。また、通信システム2は、端末装置30として端末装置30、30、30、30等を備えている。また、通信システム1は、通信制御装置40として通信制御装置40、40等を備えている。
なお、以下の説明では、通信装置(無線通信装置)のことを無線システムと呼ぶことがある。例えば、通信装置10及び通信装置20~20は、それぞれ、1つの無線システムである。また、端末装置30~30は、それぞれ、1つの無線システムである。なお、無線システムは、複数の無線通信装置で構成される1つのシステムであってもよい。例えば、1又は複数の通信装置20と、その配下にある1又は複数の端末装置30と、で構成されるシステムを1つの無線システムとみなしてもよい。また、通信システム1又は通信システム2を、それぞれ、1つの無線システムとみなすことも可能である。以下の説明では、複数の無線通信装置で構成される通信システムのことを、無線通信システム、或いは、単に通信システムと呼ぶことがある。
通信装置20(第2無線システム)は、端末装置30或いは他の通信装置20と無線通信する無線通信装置である。例えば、通信装置20は、無線通信システムの基地局(基地局装置ともいう。)である。通信装置20が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、通信装置20が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。
通信装置20のカバレッジの大きさも、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、通信装置20のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、通信装置20がビームフォーミングの能力を有する場合、ビームごとにセルやサービスエリアが形成されてもよい。
通信装置20は1事業者が設置・運用を行うものであってもよいし、1個人が設置・運用を行うものであってもよい。勿論、通信装置20の設置・運用主体はこれらに限定されない。例えば、通信装置20は、複数の事業者または複数の個人が共同で設置・運用を行うものであってもよい。また、通信装置20は、複数の事業者または複数の個人が利用する共用設備であってもよい。この場合、設備の設置・運用は利用者とは異なる第三者によって実施されてもよい。
なお、基地局という概念には、アクセスポイントや無線リレー局(中継装置ともいう。)が含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。構造物は、例えば、オフィスビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物(Building)である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building Structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、地上(陸上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。
また、基地局は、移動可能に構成された基地局(移動局)であってもよい。このとき、基地局(移動局)は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。また、移動体は、地上(陸上)を移動する移動体(例えば、自動車、バス、トラック、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。勿論、移動体は、スマートフォンなどのモバイル端末であってもよい。また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよいし、大気圏外を移動する宇宙移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。
端末装置30は、通信機能を備えた通信機器である。端末装置30は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、ウェアラブル端末、PDA(Personal Digital Assistant)、パーソナルコンピュータ等のユーザ端末である。また、端末装置30は、工場の機械、建物に設置されるセンサー等、ユーザ端末以外の装置であってもよい。例えば、端末装置30は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置30は、D2D(Device to Device)に代表されるように、リレー通信機能を具備した装置であってもよい。また、端末装置30は、無線バックホール等で利用されるCPE(Client Premises Equipment)と呼ばれる機器であってもよい。また、端末装置30は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。
通信制御装置40は、通信装置20の無線通信を制御する装置である。例えば、通信制御装置40は、通信装置20が使用する動作パラメータを決定し、通信装置20に指示を行う装置である。このとき、通信制御装置40は、ネットワーク内の無線装置を統合制御するネットワークマネージャであってもよい。ETSI EN 303 387やIEEE 802.19.1-2014を例にとると、通信制御装置40は、無線機器間の電波干渉制御を行うSpectrum Manager/Coexistence Managerといった制御装置であってもよい。また、周波数共用環境下では、GLDB(Geolocation Database)やSAS(Spectrum Access System)といったデータベース(データベースサーバ、装置、システム)も通信制御装置40となりうる。
なお、通信制御装置40は、1つの通信システム2に複数存在していてもよい。この場合、通信制御装置40は互いに管理する通信装置20の情報を交換し、必要な周波数の割り当てや干渉制御の計算を行う。基本的には、通信制御装置40の制御対象は通信装置20となるが、通信制御装置40はその配下の端末装置30を制御してもよい。
以下、通信システム2を構成する各装置の構成を具体的に説明する。
<2-2.通信装置の構成>
最初に、通信装置20の構成を説明する。図6は、本開示の実施形態に係る通信装置20の構成例を示す図である。通信装置20は、通信制御装置40の制御に従って端末装置30と無線通信する無線通信装置(無線システム)である。例えば、通信装置20は、地上に位置する基地局装置(地上局装置)である。このとき、通信装置20は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、通信装置20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、通信装置20は、構造物や移動体そのものであってもよい。「地上」は、地上(陸上)のみならず、地中、水上、水中も含む広義の地上である。
なお、通信装置20は、地上局装置に限られない。例えば、通信装置20は、空中又は宇宙を移動或いは浮遊する基地局装置(非地上局装置)であってもよい。このとき、通信装置20は、航空機局装置や衛星局装置であってもよい。
航空機局装置は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局装置(又は、航空機局装置が搭載される航空機)は、有人航空機であってもよいし、ドローン等の無人航空機であってもよい。
衛星局装置は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局装置となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止軌道(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局装置は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
また、通信装置20は中継局装置であってもよい。中継局装置は、例えば、航空局や地球局である。中継局装置は上述の中継装置の一種とみなすことができる。航空局は、航空機局装置と通信を行うために、地上又は地上を移動する移動体に設置された無線局である。また、地球局は、衛星局装置と通信するために、地球(空中を含む。)に位置する無線局である。地球局は、大型地球局であってもよいし、VSAT(Very Small Aperture Terminal)等の小型地球局であってもよい。なお、地球局は、VSAT制御地球局(親局、HUB局ともいう。)であってもよいし、VSAT地球局(子局ともいう。)であってもよい。また、地球局は、地上を移動する移動体に設置される無線局であってもよい。例えば、船舶に搭載される地球局として、船上地球局(ESV:Earth Stations on board Vessels)が挙げられる。また、地球局には、航空機(ヘリコプターを含む。)に設置され、衛星局と通信する航空機地球局が含まれていてもよい。また、地球局には、地上を移動する移動体に設置され、衛星局を介して航空機地球局と通信する航空地球局が含まれていてもよい。なお、中継局装置は、衛星局や航空機局と通信する携帯移動可能な無線局であってもよい。
通信装置20は、無線通信部21と、記憶部22と、ネットワーク通信部23と、制御部24と、を備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、通信装置20の機能は、複数の物理的に分離された装置に分散して実装されてもよい。
無線通信部21は、他の通信装置(例えば、端末装置30、通信制御装置40、及び他の通信装置20)と無線通信する無線通信インタフェースである。無線通信部21は、制御部24の制御に従って動作する。無線通信部21は複数の無線アクセス方式に対応してもよい。例えば、無線通信部21は、NR及びLTEの双方に対応してもよい。無線通信部21は、W-CDMAやcdma2000等の他のセルラー通信方式に対応してもよい。また、無線通信部21は、セルラー通信方式に加えて、無線LAN通信方式に対応してもよい。勿論、無線通信部21は、1つの無線アクセス方式に対応するだけであってもよい。
無線通信部21は、受信処理部211と、送信処理部212と、アンテナ213と、を備える。無線通信部21は、受信処理部211、送信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、通信装置20がNRとLTEとに対応しているのであれば、受信処理部211及び送信処理部212は、NRとLTEとで個別に構成されてもよい。
受信処理部211は、アンテナ213を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dと、を備える。
無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。例えば、通信装置20の無線アクセス方式が、LTE等のセルラー通信方式であるとする。このとき、多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部24へ出力される。
送信処理部212は、下りリンク制御情報及び下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dと、を備える。
符号化部212aは、制御部24から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ213から送信される。
記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、通信装置20の記憶手段として機能する。記憶部22は、所望送信電力情報、動作パラメータ、保有リソース情報等を記憶する。
所望送信電力情報は、通信装置20が、電波の送信に必要な送信電力の情報として、通信制御装置40に要求する送信電力の情報である。
動作パラメータは、通信装置20の電波送信動作に関する情報(例えば、設定情報)である。例えば、通動作パラメータは、通信装置20に許容された送信電力の最大値(最大許容送信電力)の情報である。勿論、動作パラメータは、最大許容送信電力の情報に限定されない。
また、保有リソース情報は、通信装置20の無線リソースの保有に関する情報である。例えば、保有リソース情報は、通信装置20が現在使用可能な無線リソースの情報である。例えば、有リソース情報は、通信装置20が通信制御装置40から割り当てられた干渉マージンの保有量の情報である。保有量の情報は、後述のリソースブロック単位の情報であってもよい。すなわち、保有リソース情報は、通信装置20が保有するリソースブロックに関する情報(例えば、リソースブロック保有量)であってもよい。
ネットワーク通信部23は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部23は、(Network Interface Card)等のLAN(Local Area Network)インタフェースである。ネットワーク通信部23は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部23は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部23は、通信装置20のネットワーク通信手段として機能する。ネットワーク通信部23は、制御部24の制御に従って、他の装置と通信する。
制御部24は、通信装置20の各部を制御するコントローラ(Controller)である。制御部24は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部24は、通信装置20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
制御部24は、図6に示すように、受信部241と、送信部242と、を備える。制御部24を構成する各ブロック(受信部241~送信部242)はそれぞれ制御部24の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部24は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部24を構成する各ブロック(受信部241~送信部242)の動作は、後述の通信制御処理等の説明で詳述する。
<2-3.端末装置の構成>
次に、端末装置30の構成を説明する。図7は、本開示の実施形態に係る端末装置30の構成例を示す図である。端末装置30は、通信装置20及び通信制御装置40と無線通信する通信装置である。なお、本実施形態において、通信装置(無線通信装置)という概念には、基地局装置のみならず、端末装置も含まれる。通信装置は、無線システムと言い換えることができる。
端末装置30は、無線通信部31と、記憶部32と、入出力部33と、制御部34と、を備える。なお、図7に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
無線通信部31は、他の通信装置(例えば、通信装置20及び他の端末装置30)と無線通信する無線通信インタフェースである。無線通信部31は、制御部34の制御に従って動作する。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。
無線通信部31は、受信処理部311と、送信処理部312と、アンテナ313と、を備える。無線通信部31は、受信処理部311、送信処理部312、及びアンテナ313をそれぞれ複数備えていてもよい。なお、無線通信部31が複数の無線アクセス方式に対応する場合、無線通信部31の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部311及び送信処理部312は、LTEとNRとで個別に構成されてもよい。受信処理部311、及び送信処理部312の構成は、通信装置20の受信処理部211、及び送信処理部212と同様である。
記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、端末装置30の記憶手段として機能する。
入出力部33は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部33は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部33は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部33は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部33は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部33は、端末装置30の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
制御部34は、端末装置30の各部を制御するコントローラである。制御部34は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部34は、端末装置30内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部34は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-4.通信制御装置の構成>
通信制御装置40は、通信装置20の無線通信を制御する装置である。通信制御装置40は、通信装置20を介して、或いは直接、端末装置30の無線通信を制御してもよい。通信制御装置40は、例えば、ネットワーク内の無線装置を統合制御するネットワークマネージャである。例えば、通信制御装置40は、Spectrum Manager/Coexistence Managerである。また、通信制御装置40は、GLDB(Geolocation Database)やSAS(Spectrum Access System)といったデータベースサーバであってもよい。
なお、通信システム2がセルラー通信システムなのであれば、通信制御装置40は、コアネットワークを構成する装置であってもよい。コアネットワークCNは、例えば、EPC(Evolved Packet Core)や5GC(5G Core Network)である。コアネットワークがEPCなのであれば、通信制御装置40は、例えば、MME(Mobility Management Entity)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置40は、例えば、AMF(Access and Mobility Management Function)としての機能を有する装置であってもよい。なお、通信システム2がセルラー通信システムの場合であっても、通信制御装置40は必ずしもコアネットワークを構成する装置である必要はない。例えば、通信制御装置40はRNC(Radio Network Controller)としての機能を有する装置であってもよい。
なお、通信制御装置40はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、通信制御装置40は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置40は、UPF(User Plane Function)としての機能を有する装置であってもよい。なお、通信制御装置40は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMAやcdma2000のコアネットワークであるとする。このとき、通信制御装置40はRNC(Radio Network Controller)として機能する装置であってもよい。
また、通信制御装置40は、複数のセカンダリシステムを制御するシステムであってもよい。この場合、通信システム2は、複数のセカンダリシステムを備えるシステムとみなすことが可能である。
図8は、本開示の実施形態に係る通信制御装置40の構成例を示す図である。通信制御装置40は、無線通信部41と、記憶部42と、ネットワーク通信部43、制御部44と、を備える。なお、図8に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、通信制御装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、通信制御装置40は、複数のサーバ装置により構成されていてもよい。
無線通信部41は、他の通信装置(例えば、通信装置20、端末装置30、及び他の通信制御装置40)と無線通信する無線通信インタフェースである。無線通信部41は、制御部44の制御に従って動作する。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。無線通信部41の構成は、通信装置20の無線通信部21と同様である。
記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、通信装置20の記憶手段として機能する。記憶部22は、通信システム2を構成する複数の通信装置20それぞれの動作パラメータを記憶する。なお、記憶部22は、通信システム2を構成する複数の通信装置20それぞれの保有リソース情報を記憶していてもよい。上述したように、保有リソース情報は、通信装置20の無線リソースの保有に関する情報である。
ネットワーク通信部43は、他の装置と通信するための通信インタフェースである。ネットワーク通信部43は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、ネットワーク通信部43は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよい。また、ネットワーク通信部43は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部43は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部43は、通信制御装置40の通信手段として機能する。ネットワーク通信部43は、制御部44の制御に従って通信装置20及び端末装置30と通信する。
制御部44は、通信制御装置40の各部を制御するコントローラである。制御部44は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部44は、通信制御装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部44は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
制御部44は、図8に示すように、取得部441と、第1の決定部442と、登録部443と、第2の決定部444と、通知部445と、検知部446と、算出部447と、を備える。制御部44を構成する各ブロック(取得部441~算出部447)はそれぞれ制御部44の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部44は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部44を構成する各ブロック(取得部441~算出部447)の動作は、後述の通信制御処理等の説明で詳述する。
<<3.干渉モデル>>
次に、本実施形態で想定する干渉モデルを説明する。図9は、本実施形態で想定する干渉モデルの一例を示す説明図である。図9に示す干渉モデルは、例えば、プライマリシステムがサービスエリアを持つ場合に適用される。図9の例では、通信システム1(プライマリシステム)はサービスエリアを有する無線通信システムとなっている。このサービスエリアが、例えば、通信システム1の保護エリアとなる。保護エリアには、干渉計算基準点(以下、保護点という。)は複数設定される。保護点は、例えば、通信システム1の運営者や電波を管理する公的機関等(以下、管理者という。)により設定される。例えば、管理者は、保護エリアを格子状に区切り、所定の格子の中心を保護点としてもよい。保護点の決定方法は任意である。各保護点の干渉マージンは管理者等により設定される。図9には、通信システム2(セカンダリシステム)を構成する複数の通信装置20が、保護点に与える干渉が示されている。通信システム2の通信制御装置40は、各保護点における累積干渉が、設定された干渉マージンを超えないように、複数の通信装置20の送信電力を制御する。
図10は、本実施形態で想定する干渉モデルの他の例を示す説明図である。図10に示す干渉モデルは、例えば、プライマリシステムが受信のみ行う場合に適用される。図10の例では、通信システム1(プライマリシステム)は、通信装置10として受信アンテナを有している。通信装置10は、例えば、衛星地上局の受信アンテナである。通信システム2の通信制御装置40は、受信アンテナの位置を保護点とし、その地点における累積干渉が干渉マージンを超えないように、複数の通信装置20の送信電力を制御する。
<<4.プライマリシステム保護方法>>
次に、プライマシステム保護方法について説明する。既知のプライマリシステム保護方法のうち、与干渉計算処理を伴う手法については、大別して、以下の2種類に分類可能である。
(1)干渉マージン(許容干渉量)一斉配分型
(2)低干渉ノード優先許容型
なお、干渉マージン(許容干渉量)一斉配分型のプライマシステム保護方法の例としては、例えば、非特許文献3にて開示されている最大許容EIRPの計算手法や、非特許文献2にて開示されているIAP(Iterative Allocation Process)等が挙げられる。
また、低干渉ノード優先許容型のプライマシステム保護方法の例としては、例えば、非特許文献2にて開示されているDPA(Dynamic Protection Area)保護のためのMove List計算方法が挙げられる。
以下、「低干渉ノード優先許容型」のプライマシステム保護方法(第1の方法)と「干渉マージン一斉配分型」のプライマシステム保護方法(第2の方法)について説明する。
<4-1.干渉マージン一斉配分型>
最初に、干渉マージン一斉配分型のプライマシステム保護方法(第2の方法)について説明する。図11は、干渉マージン一斉配分型のプライマシステム保護方法を説明するための説明図である。図11の例では、プライマリシステムの許容可能干渉閾値がIacceptとなっている。この閾値は、実際の閾値でもよいし、計算誤差や干渉変動を考慮して実際の閾値からある程度のマージン(例えば保護比率(Protection Ratio))を見込んで設定された値であってもよい。
干渉マージン一斉配分型のプライマシステム保護方法において、干渉制御とは、許容可能干渉閾値を越えないように、無線装置の送信電力(EIRP、Conducted Power+Antenna gain等)を決定することを意味する。このとき、通信装置20が多数存在し、それぞれが許容可能干渉閾値を越えないようにすると、通信システム1(プライマリシステム)において受信される干渉電力が許容可能干渉閾値を越えてしまう恐れがある。そこで、通信制御装置40に登録されている通信装置20の数に基づき、干渉マージン(許容可能干渉量)を「配分」する。
例えば、図11の例では、通信装置20の総数は5である。そのため、個々には、Iaccept/5の許容干渉量が配分される。通信装置20は自身でこの配分量を認識することはできないので、通信制御装置を通じて認識する、またはこの配分量に基づいて決定された送信電力を取得する。通信制御装置は、他の通信制御装置が管理する無線装置の数を認識できないので、相互に情報をやりとりすることによって、総数を認識することができ、許容干渉量を配分することができるようになる。例えば、通信制御装置40内では3Iaccept/5の許容干渉量が割り当てられる。
なお、この手法では、計算時点で動作中または新規に動作する通信装置20に対して干渉マージンを配分する。したがって、計算を周期的に実施する場合には、その合間に干渉マージンの余り(剰余)は計算上存在してない。そこで、事前に干渉マージンをリザーブしておくことで、計算時間外の新規セカンダリシステムに干渉マージンを配分することができるようになる。
図12は、干渉マージンを事前にリザーブした様子を示す図である。図12には、2つの通信制御装置40(通信制御装置40、40)のそれぞれに設定された総干渉量が示されている。また、図12には、2つの通信制御装置40の管理下にある複数の通信装置20(通信装置20~20)が通信システム1の所定の保護点に与える干渉量(与干渉量)が示されている。2つの通信制御装置40それぞれの総干渉量から通信装置20による干渉量を引いた干渉量が、リザーブされた干渉マージンである。以下の説明では、リザーブされた或いは余った干渉量のことを剰余干渉マージンという。剰余干渉マージンは剰余干渉量と言い換えることが可能である。
<4-2.低干渉ノード優先許容型>
最初に、低干渉ノード優先許容型のプライマシステム保護方法(第1の方法)について説明する。図13は、低干渉ノード優先許容型のプライマシステム保護方法を説明するための説明図である。低干渉ノード優先許容型は、プライマリシステムの電波利用が短期的かつ非周期的である場合に適用されることが想定される手法である。例えば、DPA(Dynamic Protection Area)と呼ばれる海上に設定される艦載レーダの航行エリアの保護に適用される。いずれも、プライマリシステムの電波利用の検知手段が示されている。DPA、すなわち艦載レーダの場合にはESC(Environmental Sensing Capability)と呼ばれる電波センシングシステムによるレーダ電波の検知が開示されている。
この手法においては、前述の方法のように干渉マージンの一斉配分処理は実施しない。通信制御装置40は、セカンダリシステムの動作パラメータまたは新規に動作するセカンダリシステムの所望動作パラメータに基づいて、個々のセカンダリシステムがプライマリシステムに与えうる干渉量を推定する。そして、通信制御装置40は、干渉量が小さいセカンダリシステムから優先的に電波利用を許可する。干渉量が大きいセカンダリシステムについても電波利用は許可されるものの、前述の電波利用検知手段によってプライマリシステムの電波利用が検知されたときには、電波利用の停止処理が実行される。このように電波利用検知時に電波停止措置がとられるセカンダリシステムの集合を、非特許文献2では、DPA Move Listとして規定している。
<4-3.剰余干渉マージンの発生>
いずれの手法においても、干渉マージンが必ずしも0になるとは限らず、剰余が生じうる。または、通信制御装置40が事前に所定の干渉マージン分をリザーブしておき、干渉マージン配分計算を実施することで、必ず剰余干渉マージンが発生するように仕向けておくことも想定される。このようにして発生した剰余干渉マージンは、周期的に干渉マージン配分計算を行う場合に、その周期間に現れる新規セカンダリシステムへの周波数割り当てに活用しえる。
ここで、すでに他の周波数の割り当てを受けているセカンダリシステムが、この剰余干渉マージンを用いて追加で周波数割り当てを受けたとする。この場合、一切周波数割り当てを受けていない完全に新規のセカンダリシステムの周波数割り当てが出来なくなってしまう恐れがある。そうすると、そのようなセカンダリシステムは次の干渉マージン配分の計算タイミングまで待つ必要が生じてしまう。
そこで、本発明においては、このような不公平性を解消するような無線リソース(干渉マージン、周波数等)の割り当て手法を提供する。
<<5.通信システムの動作>>
次に、通信システム2(セカンダリシステム)の動作を説明する。
<5-1.通信制御処理>
最初に、通信システム2で実行される通信制御処理について説明する。通信制御処理は、1又は複数の通信システム1(プライマリシステム)が使用する周波数帯の電波を利用して無線通信する1又は複数の通信装置20(セカンダリシステム)の電波送信に関する処理である。
図14は、本開示の実施形態に係る通信制御処理の一例を示すシーケンス図である。なお、図14には、通信制御装置40が2つしか示されていないが、通信制御装置40は2つより多くてもよい。勿論、通信制御装置40は1つのみであってもよい。複数の通信制御装置40はそれぞれ同じ処理を行ってもよい。例えば、複数の通信制御装置40は、それぞれ、通信システム2が備える複数の通信装置20すべての動作パラメータを決定してもよい。この場合、複数の通信制御装置40は、所定の通信装置20につき、それぞれ同じ動作パラメータを決定することになる。
以下の説明では、理解を容易にするため、個々の通信制御装置40を特定して説明する必要がある場合、通信制御装置40が処理の主体であるものとする。勿論、他の通信制御装置40(例えば、通信制御装置40)が処理の主体となってもよい。また、複数の通信制御装置40が同時に同じ処理(例えば、以下に示す処理)を行ってもよい。なお、通信制御装置40は、通信装置20を介して、或いは直接、端末装置30の無線通信を制御してもよい。この場合、以下に示す通信装置20の記載は、端末装置30に置き換えることが可能である。上述したように、端末装置30も通信装置の一種である。
以下の処理の説明は、次の前提の下で行う。
(前提1)通信制御装置40は、周期的に他の通信制御装置40と情報同期をし、プライマリシステム保護計算を実施する。
(前提2)情報同期開始時点で電波利用許可を受けているセカンダリシステムを「既存セカンダリシステム」或いは「既存の通信装置20」という。
(前提3)プライマリシステム保護計算後、次回周期処理実施までに新たに電波利用を開始しようとする(新規電波利用リクエストを行う)セカンダリシステムを「新規セカンダリシステム」或いは「新規の通信装置20」という。
なお、既存セカンダリシステム(既存の通信装置20)も、新規電波利用リクエスト時点では「新規セカンダリシステム(新規の通信装置20)」ではあるものの、理解を容易にするため、電波利用許可手続きを正常完了したものとする。
以下、本開示の実施形態に係る通信制御処理を説明する。以下に示す通信制御処理は、例えば、装置への電源投入により開始される。
まず、通信制御装置40の取得部441は、既存の通信装置20から、新規電波利用リクエストを取得する(ステップS1)。新規電波利用リクエストは、例えば、通信装置20の送信部242が送信する。新規電波利用リクエストには、通信装置20の保有リソース情報が含まれていてもよい。なお、取得部441は、記憶部42から該当の通信装置20の保有リソース情報を取得してもよい。そして、通信制御装置40の通知部445は、既存の通信装置20に対して電波の利用許可を通知する(ステップS2)。
続いて、複数の通信制御装置40は、それぞれ、周期的に実施する処理(以下、周期的処理という。)を実行する(ステップS3-1)。まず、複数の通信制御装置40は、それぞれ、他の通信制御装置40と情報の同期をとる(ステップS3a)。そして、複数の通信制御装置40は、それぞれ、プライマリシステム保護計算を行う(ステップS3b、ステップS3c)。例えば、通信制御装置40の第1の決定部442は、「干渉マージン(許容干渉量)一斉配分型」を適用する通信システム(プライマリシステム)に対しては既知の手法に基づいて保護計算を実施する。通信制御装置40の第1の決定部442は、「低干渉ノード優先許容型」を適用する通信システム(プライマリシステム)に対しては、プライマリシステム保護計算として、以下(1)~(3)の情報を決定し、記録する。
(1)個々の通信ノードがプライマリシステムに対して個別に与えうる干渉量の推定値
(2)Move List
(3)剰余干渉マージン
ここで、通信ノードは、例えば、通信装置20のことである。また、剰余干渉マージンは、余った干渉マージンのことである。剰余干渉マージンには、事前にリザーブしておく干渉マージンも含まれていてもよい。また、Move Listは普段は電波利用が認められるものの、プライマリシステムの電波利用が検知されたときに限り電波利用停止が要求される通信ノード(強制停止用の通信ノード)のグループのことである。以下、Move Listのことを「強制停止リスト」と呼ぶことがある。なお、以下の説明では、プライマリシステムの電波利用が検知されたときに限り電波利用停止が要求される通信ノード(通信装置20)のことを「強制停止用のシステム」と呼ぶことがある。
第1の決定部442は、強制停止リスト(Move List)の計算を、例えば、次の手順で行う。まず、第1の決定部442は、個々のセカンダリシステム(例えば、通信装置20)の干渉量を推定し、干渉量が小さい順にセカンダリシステムをソートする。その後、第1の決定部442は、その順番に、逐次的に累積干渉量を許容干渉量と比較する。図15の例では、第1の決定部442は、まず干渉量Aを評価する。干渉量Aは許容干渉量を下回っているので、次に干渉量Cとの和(すなわち、A+C)を許容干渉量と比較する。これも許容干渉量を下回っているので、さらに干渉量Dとの和(すなわち、A+C+D)を許容干渉量と比較する。これは許容干渉量を越えてしまう。よって、通信装置20とそれより大きい干渉を与えるセカンダリシステム(ここでは通信装置20)がMove Listに格納される。
これらの情報は、プライマリシステム保護計算における干渉計算基準点(保護点(Protection Point)、参照点(Reference Point)ともいう。)ごとに記録されることが望ましい。さらには、周波数ごとに記録されることが望ましい。なお、図15の例では、Iacceptと干渉量A+Cとの差が剰余干渉マージンとなる。
通信制御装置40の取得部441は、次回の周期的処理(図14に示すステップS3-2)までに、新規の通信装置20から登録リクエストを受信する(ステップS4)。登録リクエストは、例えば、通信装置20の送信部242が送信する。そして、通信制御装置40の登録部443は、新規の通信装置20の登録手続き(Registration Procedure)を実行する(ステップS5)。登録手続きでは、例えば、以下の情報が登録される。
(1)セカンダリシステム固有の情報(製造番号、製品モデル情報、等)
(2)基地局の種類を示す情報
(3)設置位置情報(緯度、経度、高度、位置情報取得時の精度情報、等)
(4)アンテナ情報(位置、高さ、向き、ビームパターン、等)
(5)無線インタフェース情報(無線規格を示す識別子、バージョン情報、デュプレクスモード情報、等)
(6)公的認証情報(公的認証番号・ID、最大EIRP、対応周波数帯、等)
(7)設置者情報(設置者ID、ディジタル署名、連絡先、等)
基地局の種類を示す情は、例えば、高出力型/低出力型を示す識別子であってもよい。また、基地局の種類を示す情報は、マクロセル/スモールセルを示す識別子であってもよい。なお、3GPP TS 38.104 V15.0.0で定義される4種類の基地局タイプ(BS type 1-C、BS type 1-H、BS type 1-O、BS type 2-O)が開示されている。基地局の種類を示す情報は、これら基地局のタイプを示す情報であってもよい。
なお、新規の通信装置20は、デバイスパラメータを用いて登録リクエストを生成し、通信制御装置40に通知する。このとき、デバイスパラメータに設置者情報が含まれる場合、新規の通信装置20は、この情報を用いて、登録リクエストに改ざん防止の加工等を実施してもよい。また、登録リクエストに含まれる情報の一部又は全部に暗号化処理が施されてもよい。また、設置位置情報に関しては、例えば、設置者が、直接、通信制御装置40に書き込んでもよい。
そして、登録部443が新規の通信装置20の登録処理を実施した後、通信制御装置40の通知部445は、登録処理の結果に応じて登録完了通知を送信する(ステップS6)。なお、登録手続きは省略されてもよいが、その場合、上述のパラメータのうち少なくとも位置情報およびセカンダリシステムを特定可能な固有情報については、電波利用リクエストに同封される。
続いて、通信制御装置40の取得部441は、新規の通信装置20から新規電波利用リクエストを受信する(ステップS7)。新規電波利用リクエストは、例えば、通信装置20の送信部242が送信する。新規電波利用リクエストには、通信装置20の保有リソース情報が含まれていてもよい。なお、取得部441は、記憶部42から該当の通信装置20の保有リソース情報を取得してもよい。なお、無線リソースの保有に関する情報は、登録リクエストに格納されて送信されてもよい。また、電波利用リクエストは、登録リクエストと一体的に通知されてもよい。
そして、通信制御装置40の第2の決定部444は、許可判定処理を実行する(ステップS8)。許可判定処理については後述する。そして、通信制御装置40の通知部445は、新規の通信装置20に対して許可判定結果(許可或いは不許可)を通知する(ステップS9)。電波利用が許可された場合には、新規の通信装置20は、必要に応じて、電波の送信を実施する。
通信制御装置40の第1の決定部442は、前回の周期的処理(図14に示すステップS3-1)から一定時間経過したら(例えば、一日経過したら)、再度、周期的処理を実行する(ステップS3-2)。周期的処理では、通信装置20の動作パラメータが決定される。なお、以下の説明では、周期的処理の周期のことを、動作パラメータの決定周期ということがある。
<5-2.リソースブロック>
ステップS8の許可判定処理を説明する前にリソースブロックについて説明する。本実施形態においては、割り当て周波数の単位ブロックを定義し、その周波数ブロック(以下、リソースブロック)の保有量に応じて、剰余干渉マージンに基づく周波数割り当てを実施する。なお、本実施形態における「リソースブロック」は、LTE/5G NRにおける「リソースブロック」とイコールとは限らない。
リソースブロックを構成する要素として、少なくとも、チャネル帯域幅が含まれる。単位帯域幅としては、帯域ごとに設定される最小帯域幅が適用されることが望ましい。例えば、CBRS bandにおいては、10MHzが単位帯域幅として用いられることが望ましい。また、例えば、TV帯域であれば、6MHz(米国)、8MHz(欧州)といった値が設定され得る。
また、3GPP TS 38.104 V15.0.0によれば、5G NRでは、周波数範囲が図16に示すように定義されるとともに、基地局の最大送信帯域幅が図17~図18に示すように規定される。したがって、FR1に含まれる共用帯域においては5MHz、FR2に含まれる共用帯域においては50MHzを単位帯域幅として用いることが望ましい。
リソースブロックを構成する要素として、送信電力に依存するパラメータが用いられてもよい。例えば、割り当てを受けている周波数チャネルにおいて許容される最大送信EIRPが用いられてもよい。この場合、単位EIRPとして1dBm、1mWといった数値が用いられてもよい。または、例えば、最大送信EIRPによって算出されるカバレッジの大きさ(面積等)が用いられてもよい。この場合、単位面積として、単位EIRPで算出されるカバレッジの面積が採用されてもよい。
例えば、1MHz帯域幅、1mW送信電力を単位ブロックとする。この場合、単位リソースブロックサイズは1(=1×1)となる。このときに、例えば、3MHz帯域幅、3mW送信電力の割り当てを通信装置が受けると仮定すると、通信装置のリソースブロック保有量は、9(=(3×3)/(1×1))となる。
リソースブロック保有量の定義は、これらに限られない。例えば、時間帯(例えば、午前、午後等の出力を許容される時間帯)や適用される通信装置が位置するエリアによって保有量の定義を使い分けてもよい。または、単位ブロックサイズを変更してもよい。
また、例えば、通信装置の出力クラスによって単位ブロックサイズを変更してもよい。具体的には、例えば、送信電力軸を、出力クラスで規定される最大送信電力との比としてもよい。例えば出力クラスで規定される最大送信電力が30dBm(低出力)と40dBm(高出力)の2種類ある場合に、低出力クラスの通信装置にとっては、30dBmという送信電力は最大値であるが、高出力クラスの通信装置にとっては、最大から10dBも低い送信電力である。そこで、低出力クラスに対しては1/1000、高出力クラスに対しては、1/10000を係数としてリソースブロック保有量に掛けてもよい。
このように定義されるリソースブロックの保有量を、通信制御装置は適宜、通信装置単位で記録しておくことが望ましい。
<5-3.許可判定処理(第1の例)>
次に、許可判定処理(第1の例)を説明する。図19は、本開示の実施形態に係る許可判定処理の一例を示すフローチャートである。許可判定処理は、新規の通信装置20(新規セカンダリシステム)に対して電波利用を許可するか否かを判定するための処理である。許可判定処理は、動作パラメータの決定周期間(周期的処理と周期的処理の間)に実行される。例えば、許可判定処理は、上述の通信制御処理のステップS8で実行される。
なお、本実施形態において、「新規セカンダリシステム」とは、所定の周波数において、割り当てを受けていないセカンダリシステムのことを指す。すなわち、一切の割り当て周波数を保有しないセカンダリシステムのみならず、所定とは異なる他の周波数での割り当てを受けているセカンダリシステムも含まれうる。
まず、通信制御装置40の第2の決定部444は、新規の通信装置20(新規セカンダリシステム)から電波利用リクエストを受信したか判別する(ステップS8a1)。電波利用リクエストを受信していない場合(ステップS8a1:No)、第2の決定部444は、電波利用リクエストを受信するまでステップS8a1を繰り返す。
電波利用リクエストを受信した場合(ステップS8a1:Yes)、第2の決定部444は、新規の通信装置20の保有リソース情報に基づいて、新規の通信装置20がリソースブロックを保有しているかどうかを確認する(ステップS8a2)。上述したように、保有リソース情報は、取得部441が取得する。取得部441は、保有リソース情報を通信装置20から取得してもよいし、記憶部42から取得してもよい。
新規の通信装置20がリソースブロックを保有していない場合(ステップS8a2:No)、第2の決定部444はリクエストを許可する(ステップS8a3)。新規の通信装置20がリソースブロックを保有している場合(ステップS8a2:Yes)、第2の決定部444はリクエストを拒絶する(ステップS8a4)。
なお、「リクエストを許可」は、プライマリシステム保護が達成されている場合には、周波数を割り当て、そうでない場合には、割り当てないということを意味する。すなわち、第2の決定部444は、「リクエストを許可」する場合、プライマリシステム保護が達成されている場合には、新規の通信装置20に周波数を割り当て、そうでない場合には、新規の通信装置20に周波数を割り当てない。
電波利用の許可判定が完了したら、第2の決定部444は、許可判定処理を終了する。
これにより、すでにリソースブロックを保有しているセカンダリシステムに無線資源が割り当てられないので、セカンダリシステム間の公平性を保つことができる。結果として、効率的な電波利用が可能になる。
<5-4.許可判定処理(第2の例)>
次に、許可判定処理(第2の例)を説明する。上述の許可判定処理(第1の例)では、リソースブロックを保有する通信装置20に対しては一方的に電波利用を不許可(追加割り当てを拒絶する)とする動作例を示した。しかし、必ずしも、この動作が最適とは限らない。そこで、許可判定処理(第2の例)では、リソースブロック保有量について、他の通信装置20との相対的な比較を基に判定を行う。
この例では、周期的に行うプライマリシステム保護計算を実施した後に、当該プライマリシステム保護計算対象となる通信装置20のリソースブロック保有量の最大値を特定しておく。第2の決定部444は、この数値を基準値として、比較を行う。
図20は、本開示の実施形態に係る許可判定処理の他の例を示すフローチャートである。
まず、通信制御装置40の第2の決定部444は、新規の通信装置20(新規セカンダリシステム)から電波利用リクエストを受信したか判別する(ステップS8b1)。電波利用リクエストを受信していない場合(ステップS8b1:No)、第2の決定部444は、電波利用リクエストを受信するまでステップS8b1を繰り返す。
電波利用リクエストを受信した場合(ステップS8b1:Yes)、第2の決定部444は、保有リソース情報に基づいて新規の通信装置20がリソースブロックを保有しているかどうかを確認する(ステップS8b2)。上述したように、保有リソース情報は、取得部441が取得する。取得部441は、保有リソース情報を通信装置20から取得してもよいし、記憶部42から取得してもよい。
新規の通信装置20がリソースブロックを保有していない場合(ステップS8b2:No)、第2の決定部444は新規の通信装置20の電波利用を許可する(ステップS8b3)。
新規の通信装置20がリソースブロックを保有している場合(ステップS8b2:Yes)、第2の決定部444は、その保有量が基準値を下回るかどうか判定する(ステップS8b4)。なお、リソースブロックの保有量は、新規の通信装置20に関する情報に基づいて算出部447が算出してもよい。このとき、新規の通信装置20に関する情報は、新規の通信装置20に割り当てられている周波数の情報であってもよい。算出部447は、例えば、周波数をリソースブロックに換算することにより、リソースブロックの保有量を算出する。取得部441は、算出部447が算出した保有量の情報を取得する。保有量が基準値を下回る場合(ステップS8b4:Yes)、第2の決定部444は、新規の通信装置20の電波利用を許可する(ステップS8b3)。すなわち、第2の決定部444は、新規の通信装置20への追加の周波数割り当てを認める。
基準値以上の場合(ステップS8b4:No)、第2の決定部444は新規の通信装置20の電波利用を不許可とする(ステップS8b5)。
電波利用の許可判定が完了したら、第2の決定部444は、許可判定処理を終了する。
このように判定を行うことで、セカンダリシステムの周波数割り当て総量(リソースブロック保有量)を一定の水準に保つことができ、不公平性を解消することが可能となる。なお、全セカンダリシステム間でリソースブロック保有量が一定になった場合には、通信制御装置40は、基準値を引き上げてもよい。
なお、このフローチャートにおいて、電波利用が不許可とされる場合に、通信制御装置40は、保有量が基準値を下回る範囲のリソースブロック割り当てが可能と想定される周波数チャネル及び/又は最大送信EIRPを、推奨通信パラメータ(推奨動作パラメータ)として通信装置20に通知してもよい。通信装置20は、この通信パラメータ(動作パラメータ)を用いて、再度、通信制御装置40に電波利用リクエストを送信してもよい。
これにより、すでにリソースブロックを保有量が基準値以上のセカンダリシステムに無線資源が割り当てられないので、セカンダリシステム間の公平性を保つことができる。結果として、効率的な電波利用が可能になる。
<5-5.許可判定処理(第3の例)>
次に、許可判定処理(第3の例)を説明する。上述の許可判定処理(第2の例)では、すべての通信装置間でリソースブロック保有量が一定の水準を満たすことができるようにする手法を示した。しかしながら、通信装置20の利用者(例えば、通信事業者)と通信制御装置40の管理・運用者との間の商取引合意(Business Agreement)や通信制御装置40の管理・運用者の提供するサービスの形態によっては、契約内容によってリソースブロック保有量の上限を設定することが可能である場合がある。
一例として、所定のエリアあたりのリソースブロック保有量が段階的に設定される場合が想定される。より具体的に説明すると、例えば、所定のエリア内で割り当てられうるチャネル数を10と仮定するとき、優先度によって1~10までの保有量が設定されうる。
そこで、第3の例では、リソースブロック保有量について、優先度を設定し、その優先度を基に判定を行う例を示す。
なお、第3の例では、とりわけ、通信制御装置40と通信装置20が異なる事業者によって運用されている場合には、通信装置20の登録時に通信装置20の事業者を示す識別子(例えば、User IDやCall Sign等)が提供されることが望ましい。また、それらの識別子に対応する優先度が設定されていることが望ましい。
図21は、本開示の実施形態に係る許可判定処理の他の例を示すフローチャートである。
まず、通信制御装置40の第2の決定部444は、新規の通信装置20(新規セカンダリシステム)から電波利用リクエストを受信したか判別する(ステップS8c1)。電波利用リクエストを受信していない場合(ステップS8c1:No)、第2の決定部444は、電波利用リクエストを受信するまでステップS8c1を繰り返す。
電波利用リクエストを受信した場合(ステップS8c1:Yes)、第2の決定部444は、新規の通信装置20がリソースブロックを保有しているかどうかを確認する(ステップS8c2)。上述したように、保有リソース情報は、取得部441が取得する。取得部441は、保有リソース情報を通信装置20から取得してもよいし、記憶部42から取得してもよい。新規の通信装置20がリソースブロックを保有していない場合(ステップS8c2:No)、第2の決定部444は新規の通信装置20の電波利用を許可する(ステップS8c3)。
新規の通信装置20がリソースブロックを保有している場合(ステップS8c2:Yes)、第2の決定部444は、その保有量が優先度に対応する基準値を下回るかどうか判定する(ステップS8c4)。例えば、第2の決定部444は、新規の通信装置20の事業者を示す識別子に基づき、新規の通信装置20に対応する優先度を判別する。そして、第2の決定部444は、判別した優先度に対応する基準値(例えば、当該優先度に許容されるチャネルの保有量)を判別するとともに、新規の通信装置20のリソースブロックの保有量が、判別した基準値を下回るかどうか判定する。基準値を下回る場合(ステップS8c4:Yes)、第2の決定部444は、新規の通信装置20の電波利用を許可する(ステップS8c3)。すなわち、第2の決定部444は、新規の通信装置20への追加の周波数割り当てを認める。
基準値以上の場合(ステップS8c4:No)、第2の決定部444は新規の通信装置20の電波利用を不許可とする(ステップS8c5)。
電波利用の許可判定が完了したら、第2の決定部444は、許可判定処理を終了する。
これにより、すでにリソースブロックを保有量が基準値以上のセカンダリシステムに無線資源が割り当てられないので、セカンダリシステム間の公平性を保つことができる。結果として、効率的な電波利用が可能になる。しかも、基準値は新規の通信装置20の優先度に対応したものであるので、優先度に合わせたより効率的な電波利用が可能になる。
<<6.変形例>>
上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
<6-1.停止処理>
本実施形態の応用例として、リソースブロック保有量に基づいて、通信装置20の電波停止命令を実施することが考え得る。
例えば、レーダのように非周期的に活動を行うプライマリシステムを想定する。このようなプライマリシステムの電波を二次利用する場合、プライマリシステムの電波が検知されたときに、通信装置20が電波を停止する必要がある。このような場合に、通信制御装置40は、リソースブロック保有量の多い通信装置20を優先的に電波停止させる。このとき、通信制御装置40は、リソースブロック単位で、対応する周波数の割り当てを取り消してもよい。または、通信制御装置40は、リソースブロック単位で、一定期間の電波送信を禁止してもよい。
例えば、前述のDPA Move Listにおいては、干渉量の大きい通信装置20が優先的にListに格納されるような計算方法になっているが、本実施形態の適用においては、通信制御装置40は、リソースブロック保有量の多い通信装置20を優先的にリストに格納してもよい。また、例えば、通信制御装置40は、各リソースブロックにおける干渉寄与量の合計が大きい通信装置20から優先的に電波停止してもよい。
図22は、変形例に係る停止処理の一例を示すフローチャートである。
まず、通信制御装置40の検知部446は、プライマリシステムの電波を検知したか判別する(ステップS11)。プライマリシステムの電波を検知していない場合(ステップS11:No)、検知部446は、プライマリシステムの電波を検知するまで、ステップS11を繰り返す。
プライマリシステムの電波を検知した場合(ステップS11:Yes)、通信制御装置401の通知部445は、通信装置20(セカンダリシステム)に電波の停止を通知する(ステップS12)。このとき、通知部445は、リソースブロック保有量の多い通信装置20から順に、プライマリシステムの保護基準を満たすまで、順次通信装置20に電波停止を通知する。
通知が完了したら、通信制御装置40の制御部44は、停止処理を終了する。
これにより、リソースブロック保有量の多い順に電波が停止されるので、通信装置20間の公平性が保たれる。一部のセカンダリシステムのみ大きなリソースブロックを確保するという事態があまり発生しないので、効率的な電波利用が可能になる。
<6-2.実施形態の適用について>
上述の実施形態では、通信制御装置40は、周期的処理の間(動作パラメータの決定周期間)に新たな通信装置20から電波利用リクエストを受信した場合に、許可判定処理を実行した。しかし、許可判定処理は周期的処理にも適用可能である。この場合、通信装置20に分配する無線リソースは剰余干渉マージンでなく、単なる干渉マージンであってもよい。また、許可判定処理で登場する新規の通信装置20(新規セカンダリシステム)は、単に、通信装置20(セカンダリシステム)であってもよい。
<6-3.システム構成に関する変形例>
本実施形態の通信制御装置40は、上述の実施形態で説明した装置に限定されない。例えば、通信制御装置40は、周波数共用が行われる周波数帯域を二次利用する通信装置20を制御する以外の機能を有する装置であってもよい。例えば、本実施形態の通信制御装置40の機能をネットワークマネージャが具備してもよい。このとき、ネットワークマネージャは、例えば、C-RAN(Centralized Radio Access Network)と呼ばれるネットワーク構成のC-BBU(Centralized Base Band Unit)またはこれを備える装置であってもよい。また、ネットワークマネージャの機能を基地局(アクセスポイントを含む。)が具備してもよい。これらの装置(ネットワークマネージャ等)も通信制御装置とみなすことが可能である。
なお、上述の実施形態では、通信システム1を第1無線システム、通信装置20を第2無線システムとした。しかし、第1無線システム及び第2無線システムはこの例に限定されない。例えば、第1無線システムは通信装置(例えば、通信装置10)であってもよいし、第2無線システムは通信システム(通信システム2)であってもよい。なお、本実施形態で登場する無線システムは、複数の装置から構成されるシステムに限定されず、適宜、「装置」、「端末」等に置き換え可能である。
また、上述の実施形態では、通信制御装置40は、通信システム2に属する装置であるものとしたが、必ずしも通信システム2に属する装置でなくてもよい。通信制御装置40は、通信システム2の外部の装置であてもよい。通信制御装置40は、通信装置20を直接制御せず、通信システム2を構成する装置を介して間接的に通信装置20を制御してもよい。また、セカンダリシステム(通信システム2)は複数存在していてもよい。このとき、通信制御装置40は、複数のセカンダリシステムを管理してもよい。この場合、セカンダリシステムそれぞれを第2無線システムとみなすことができる。
なお、一般に周波数共用において、対象帯域を利用する既存システムをプライマリシステム、二次利用者をセカンダリシステムと呼ぶが、プライマリシステム及びセカンダリシステムは、別の用語に置き換えてもよい。HetNET(Heterogeneous Network)におけるマクロセルをプライマリシステム、スモールセルやリレー局をセカンダリシステムとしてもよい。また、基地局をプライマリシステム、そのカバレッジ内に存在するD2DやV2X(Vehicle-to-Everything)を実現するRelay UEやVehicle UEをセカンダリシステムとしてもよい。基地局は固定型に限らず、可搬型/移動型であってもよい。
さらに、各エンティティ間のインタフェースは、有線・無線問わない。例えば、本実施形態で登場した各エンティティ(通信制御装置、通信装置、又は端末装置)間のインタフェースは、周波数共用に依存しない無線インタフェースであってもよい。周波数共用に依存しない無線インタフェースとしては、例えば、移動体通信事業者によってLicensed bandを介して提供される無線インタフェースや、既存の免許不要帯域を利用する無線LAN通信、等が挙げられる。
<6-4.その他の変形例>
本実施形態の通信装置10、通信装置20、端末装置30、又は通信制御装置40を制御する制御装置は、専用のコンピュータシステムで実現してもよいし、汎用のコンピュータシステムで実現してもよい。
例えば、上述の動作(例えば、通信制御処理、調整処理、又は配分処理等)を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、通信装置10、通信装置20、端末装置30、又は通信制御装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、通信装置10、通信装置20、端末装置30、又は通信制御装置40の内部の装置(例えば、制御部24、制御部34、又は制御部44)であってもよい。
また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
また、上記してきた実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、本実施形態のシーケンス図或いはフローチャートに示された各ステップは、適宜順序を変更することが可能である。
<<7.むすび>>
以上説明したように、本開示の一実施形態によれば、通信制御装置40は、プライマリシステムが使用する周波数帯の電波を利用して無線通信するセカンダリシステムの無線リソースの保有に関する情報を取得する。そして、通信制御装置40は、無線リソースの保有に関する情報に基づいて、セカンダリシステムへの干渉マージンの割り当てに関する決定を行う。これにより、干渉マージンの割り当てに関するセカンダリシステム間の公平性を保つことができる。この結果、特定のセカンダリシステムに無線資源の割り当てが偏ることが少なくなる。結果として、無線資源を全く使えないセカンダリシステムが少なくなるので、無線資源の効率的な利用が可能になる。
以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、
前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部と、
を備える通信制御装置。
(2)
前記取得部は、前記第2無線システムの無線リソースの保有に関する情報として、前記第2無線システムが保有するリソースブロックに関する情報を取得する、
前記(1)に記載の通信制御装置。
(3)
前記決定部は、前記第2無線システムがリソースブロックを保有してない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムがリソースブロックを保有している場合に、前記第2無線システムへ干渉マージンを割り当てない、
前記(2)に記載の通信制御装置。
(4)
前記決定部は、前記第2無線システムのリソースブロックの保有量が所定量より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムのリソースブロックの保有量が所定量より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
前記(2)に記載の通信制御装置。
(5)
前記決定部は、前記第2無線システムのリソースブロックの保有量が優先度に対する基準値より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムのリソースブロックの保有量が優先度に対する基準値より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
前記(2)に記載の通信制御装置。
(6)
前記決定部は、複数の前記第2無線システムそれぞれのリソースブロックの保有量の情報に基づいて、複数の前記第2無線システムの中から、前記第1無線システムの電波利用時に電波利用を強制停止する前記第2無線システムを決定する、
前記(2)から(5)のいずれか1つに記載の通信制御装置。
(7)
リソースブロックを構成する要素には、少なくともチャネル帯域幅が含まれる、
前記(2)から(6)のいずれか1つに記載の通信制御装置。
(8)
リソースブロックを構成する要素には、少なくとも許容される出力電力の大きさが含まれる、
前記(2)から(7)のいずれか1つに記載の通信制御装置。
(9)
リソースブロックを構成する要素には、少なくともカバレッジの大きさが含まれる、
前記(2)から(8)のいずれか1つに記載の通信制御装置。
(10)
リソースブロックを構成する要素には、出力を許容される時間帯が含まれる、
前記(2)から(9)のいずれか1つに記載の通信制御装置。
(11)
前記第2無線システムのリソースブロックの保有量を算出する算出部、を備え、
前算出部は、前記第2無線システムに関する情報に基づいてリソースブロックの1単位あたりのリソース量を決定し、決定したリソース量に基づいて前記第2無線システムのリソースブロックの保有量を算出し、
前記取得部は、前記算出部が算出したリソースブロックの保有量を前記第2無線システムのリソースブロックの保有量として取得する、
前記(2)から(10)のいずれか1つに記載の通信制御装置。
(12)
前記複数の第2無線システムそれぞれのリソースブロックの保有量を記憶する記憶部、を備える、
前記(2)から(11)のいずれか1つに記載の通信制御装置。
(13)
前記決定部は、
1又は複数の前記第1無線システムが使用する周波数帯の電波を利用して無線通信する1又は複数の前記第2無線システムそれぞれの電波送信に関する動作パラメータを周期的に決定し、
前記動作パラメータの決定周期間に新規の第2無線システムから電波利用リクエストを受信した場合に、前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの剰余干渉マージンの割り当てに関する決定を行う、
前記(1)から(12)のいずれか1つに記載の通信制御装置。
(14)
第1無線システムが使用する周波数帯の電波を利用して無線通信する複数の第2無線システムの無線リソースの保有に関する情報を取得し、
前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う、
通信制御方法。
(15)
第1無線システムが使用する周波数帯の電波を利用して無線通信する通信装置の無線リソースの保有に関する情報を取得する取得部と、前記無線リソースの保有に関する情報に基づいて、前記通信装置への干渉マージンの割り当てに関する決定を行う決定部と、を備える通信制御装置に、自身が保有する無線リソースの保有に関する情報を送信する送信部、を備える、
通信装置。
(16)
通信制御装置が有するコンピュータを、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部、
前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部、
として機能させるための通信制御プログラム。
(17)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムと、前記第2無線システムを制御する通信制御装置と、を備える通信システムであって、
前記通信制御装置は、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、
前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部と、を備える、
通信システム。
(18)
第2無線システムは、
前記通信制御装置に、自身が保有する無線リソースの保有に関する情報を送信する送信部、を備え、
前記取得部は、前記送信部が送信した前記無線リソースの保有に関する情報を取得する、
前記(17)に記載の通信システム。
1、2 通信システム
10、20 通信装置
30 端末装置
40 通信制御装置
21、31、41 無線通信部
22、32、42 記憶部
23、43 ネットワーク通信部
24、34、44 制御部
211、311 受信処理部
212、312 送信処理部
241 受信部
242 送信部
441 取得部
442 第1の決定部
443 登録部
444 第2の決定部
445 通知部
446 検知部
447 算出部

Claims (15)

  1. 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、
    前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部と、を備え、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報であり、
    前記決定部は、前記第2無線システムの無線リソースの保有量が所定量より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムの無線リソースの保有量が所定量より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    通信制御装置。
  2. 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、
    前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定部と、を備え、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報であり、
    前記決定部は、前記第2無線システムの無線リソースの保有量が優先度に対する基準値より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムの無線リソースの保有量が優先度に対する基準値より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    通信制御装置。
  3. 前記取得部は、前記第2無線システムの無線リソースの保有に関する情報として、無線を使った通信を行うために前記第2無線システムが保有するリソースブロックの保有量に関する情報を取得し、
    前記決定部は、前記第2無線システムのリソースブロックの保有量が所定量より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムのリソースブロックの保有量が所定量より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    請求項に記載の通信制御装置。
  4. 前記取得部は、前記第2無線システムの無線リソースの保有に関する情報として、無線を使った通信を行うために前記第2無線システムが保有するリソースブロックの保有量に関する情報を取得し、
    前記決定部は、前記第2無線システムのリソースブロックの保有量が前記第2無線システムの優先度に対する基準値より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムのリソースブロックの保有量が前記第2無線システムの優先度に対する基準値より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    請求項に記載の通信制御装置。
  5. 前記決定部は、複数の前記第2無線システムそれぞれのリソースブロックの保有量の情報に基づいて、複数の前記第2無線システムの中から、前記第1無線システムの電波利用時に電波利用を強制停止する前記第2無線システムを決定する、
    請求項3又は4に記載の通信制御装置。
  6. リソースブロックを構成する要素には、少なくともチャネル帯域幅が含まれる、
    請求項3~5のいずれか1項に記載の通信制御装置。
  7. リソースブロックを構成する要素には、少なくともカバレッジの大きさが含まれる、
    請求項3から6のいずれか1項に記載の通信制御装置。
  8. リソースブロックを構成する要素には、出力を許容される時間帯が含まれる、
    請求項3から7のいずれか1項に記載の通信制御装置。
  9. 前記第2無線システムのリソースブロックの保有量を算出する算出部、を備え、
    前算出部は、前記第2無線システムに関する情報に基づいてリソースブロックの1単位あたりのリソース量を決定し、決定したリソース量に基づいて前記第2無線システムのリソースブロックの保有量を算出し、
    前記取得部は、前記算出部が算出したリソースブロックの保有量を前記第2無線システムのリソースブロックの保有量として取得する、
    請求項3~8のいずれか1項に記載の通信制御装置。
  10. 数の前記第2無線システムそれぞれのリソースブロックの保有量を記憶する記憶部、を備える、
    請求項3から9のいずれか1項に記載の通信制御装置。
  11. 前記決定部は、
    1又は複数の前記第1無線システムが使用する周波数帯の電波を利用して無線通信する1又は複数の前記第2無線システムそれぞれの電波送信に関する動作パラメータを周期的に決定し、
    前記動作パラメータの決定周期間に新規の第2無線システムから電波利用リクエストを受信した場合に、前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの剰余干渉マージンの割り当てに関する決定を行う、
    請求項1から10のいずれか1項に記載の通信制御装置。
  12. 第1無線システムが使用する周波数帯の電波を利用して無線通信する複数の第2無線システムの無線リソースの保有に関する情報を取得する取得ステップと
    前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定ステップとを有し、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報であり、
    前記決定ステップでは、前記第2無線システムの無線リソースの保有量が所定量より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムの無線リソースの保有量が所定量より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    通信制御方法。
  13. 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得ステップと、
    前記無線リソースの保有に関する情報に基づいて、前記第2無線システムへの干渉マージンの割り当てに関する決定を行う決定ステップと、を有し、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報であり、
    前記決定ステップでは、前記第2無線システムの無線リソースの保有量が優先度に対する基準値より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムの無線リソースの保有量が優先度に対する基準値より多い場合に、前記第2無線システムへ干渉マージンを割り当てない、
    通信制御方法。
  14. 第1無線システムが使用する周波数帯の電波を利用して無線通信する通信装置であって、
    前記第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、前記第2無線システムの無線リソースの保有量が所定量より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムの無線リソースの保有量が所定量より多い場合に、前記第2無線システムへ干渉マージンを割り当てない決定部と、を備える通信制御装置に、前記第2無線システムの無線リソースの保有に関する情報として、自身が保有する無線リソースの保有に関する情報を送信する送信部、を備え、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報である、
    通信装置。
  15. 第1無線システムが使用する周波数帯の電波を利用して無線通信する通信装置であって、
    前記第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムの無線リソースの保有に関する情報を取得する取得部と、前記第2無線システムのリソースブロックの保有量が優先度に対する基準値より少ない場合に、前記第2無線システムへ干渉マージンを割り当て、前記第2無線システムのリソースブロックの保有量が優先度に対する基準値より多い場合に、前記第2無線システムへ干渉マージンを割り当てない決定部と、を備える通信制御装置に、前記第2無線システムの無線リソースの保有に関する情報として、自身が保有する無線リソースの保有量に関する情報を送信する送信部、を備え、
    前記干渉マージンは、前記第1無線システムが使用する周波数帯の電波を利用した無線の通信が行われる際に、前記第1無線システムが受ける干渉の許容量であり、
    前記第2無線システムの無線リソースの保有に関する情報は、無線を使った通信を行うために前記第2無線システムが保有する無線リソースの保有量に関する情報である、
    通信装置。
JP2020539379A 2018-08-28 2019-08-21 通信制御装置、通信制御方法、及び通信装置 Active JP7415927B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018159679 2018-08-28
JP2018159679 2018-08-28
PCT/JP2019/032721 WO2020045203A1 (ja) 2018-08-28 2019-08-21 通信制御装置、通信制御方法、及び通信装置

Publications (2)

Publication Number Publication Date
JPWO2020045203A1 JPWO2020045203A1 (ja) 2021-08-12
JP7415927B2 true JP7415927B2 (ja) 2024-01-17

Family

ID=69645246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539379A Active JP7415927B2 (ja) 2018-08-28 2019-08-21 通信制御装置、通信制御方法、及び通信装置

Country Status (6)

Country Link
US (1) US20210314960A1 (ja)
EP (1) EP3846523A4 (ja)
JP (1) JP7415927B2 (ja)
CA (1) CA3110140A1 (ja)
MX (1) MX2021002075A (ja)
WO (1) WO2020045203A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078096A (ja) 2011-09-16 2013-04-25 Sony Corp 通信制御装置、通信制御方法及び通信制御システム
WO2014006802A1 (ja) 2012-07-05 2014-01-09 日本電気株式会社 第1のスペクトル制御装置、スペクトル制御システム、スペクトル制御方法及び非一時的なコンピュータ可読媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227698B (zh) * 2008-02-03 2010-06-23 普天信息技术研究院有限公司 一种资源调整的方法
US20090323619A1 (en) * 2008-06-26 2009-12-31 Nec Laboratories America, Inc. Distributed beamforming and rate allocation in multi-antenna cognitive radio networks
CN102118752B (zh) * 2009-12-31 2013-04-03 中国移动通信集团设计院有限公司 干扰控制与协调方法及装置
EP2679055B1 (en) * 2011-02-24 2017-04-12 Aalto-Korkeakoulusäätiö A method and a system for controlling the aggregate interference in cognitive radio networks
US8811213B1 (en) * 2012-02-24 2014-08-19 Sprint Communications Company, L.P. Avoiding satellite interference to long term evolution systems
DK2932777T3 (en) * 2012-12-13 2019-04-15 Ericsson Telefon Ab L M DESIGN OF PHYSICAL CHANNEL FOR NETWORK SUPPORTED D2D
US10555316B2 (en) * 2016-09-26 2020-02-04 Motorola Solutions, Inc. System and method for assigning frequency resource allocation to communication devices
CN112586019B (zh) * 2018-08-28 2024-04-09 索尼公司 通信控制装置和通信控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078096A (ja) 2011-09-16 2013-04-25 Sony Corp 通信制御装置、通信制御方法及び通信制御システム
WO2014006802A1 (ja) 2012-07-05 2014-01-09 日本電気株式会社 第1のスペクトル制御装置、スペクトル制御システム、スペクトル制御方法及び非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
EP3846523A1 (en) 2021-07-07
US20210314960A1 (en) 2021-10-07
MX2021002075A (es) 2021-04-28
WO2020045203A1 (ja) 2020-03-05
EP3846523A4 (en) 2021-10-20
JPWO2020045203A1 (ja) 2021-08-12
CA3110140A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP7415941B2 (ja) 通信制御装置、通信装置、通信制御方法、及び通信方法
JP7367682B2 (ja) 通信制御装置、通信制御方法、及び通信システム
JP7400736B2 (ja) 情報処理装置、情報処理方法、及び情報処理端末装置
US11533631B2 (en) Communication control apparatus and communication control method for partial spectrum use by different systems
JP7452531B2 (ja) 通信制御装置、通信装置、及び通信制御方法
JP7435597B2 (ja) 通信制御装置、および通信制御方法
JP7268680B2 (ja) 通信制御装置、及び通信制御方法
US20220360997A1 (en) Communication control device, communication device, and communication control method
WO2020189022A1 (ja) 情報処理装置、情報処理方法、及び通信装置
WO2021049353A1 (ja) 通信制御装置、通信装置、及び通信制御方法
JP7415927B2 (ja) 通信制御装置、通信制御方法、及び通信装置
EP4084521A1 (en) Communication control device and communication control method
JP7494736B2 (ja) 通信制御装置、通信装置、プロキシ装置、及び通信制御方法
WO2021085132A1 (ja) 情報処理装置、情報処理方法、及び通信装置
CN114303422A (zh) 通信控制设备、通信设备、通信控制方法和通信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R151 Written notification of patent or utility model registration

Ref document number: 7415927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151