JP7411925B2 - Manufacturing method of sealed battery with terminal and sealed battery with terminal - Google Patents

Manufacturing method of sealed battery with terminal and sealed battery with terminal Download PDF

Info

Publication number
JP7411925B2
JP7411925B2 JP2019180364A JP2019180364A JP7411925B2 JP 7411925 B2 JP7411925 B2 JP 7411925B2 JP 2019180364 A JP2019180364 A JP 2019180364A JP 2019180364 A JP2019180364 A JP 2019180364A JP 7411925 B2 JP7411925 B2 JP 7411925B2
Authority
JP
Japan
Prior art keywords
diameter
terminal
rivet
shaft
terminal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180364A
Other languages
Japanese (ja)
Other versions
JP2021057234A (en
Inventor
正雄 大塚
忠義 高橋
賢治 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019180364A priority Critical patent/JP7411925B2/en
Publication of JP2021057234A publication Critical patent/JP2021057234A/en
Application granted granted Critical
Publication of JP7411925B2 publication Critical patent/JP7411925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、端子付き密閉型電池の製造方法および端子付き密閉型電池に関する。 The present invention relates to a method for manufacturing a sealed battery with a terminal and a sealed battery with a terminal.

民生用のアルカリ乾電池や産業用のリチウム一次電池等の密閉型電池では、機器との電気的接触を図るため、端子部材(外部端子またはリード端子)が溶接法により取り付けられている場合が多い。例えば、アルカリ乾電池の内部集電体には、外部端子(外装キャップ)が取り付けられている。また、リチウム一次電池等には、機器の基板とハンダ付けにより接続するためのリード端子が取り付けられている。特許文献1では、端子付き電池の廃棄処理時の作業性の向上を目的として、リード端子に易破断部を設けることが提案されている。 In sealed batteries such as consumer alkaline batteries and industrial lithium primary batteries, terminal members (external terminals or lead terminals) are often attached by welding in order to make electrical contact with equipment. For example, an external terminal (exterior cap) is attached to the internal current collector of an alkaline dry battery. In addition, a lead terminal is attached to a lithium primary battery or the like for connection to a device board by soldering. Patent Document 1 proposes providing a lead terminal with an easily breakable portion for the purpose of improving workability during disposal of a battery with a terminal.

一方、今後の社会動向から、電池について、期待寿命の長期化(例えば10年から20年へ)および高容量化が要望されている。上記の要望に対しては、封口部においてリベット・ワッシャ構造を採用し、ガスケットの占有体積を小さくした電池(例えば特許文献2)が有利である。 On the other hand, due to future social trends, there are demands for batteries to have longer expected lifespans (for example, from 10 years to 20 years) and higher capacities. In order to meet the above requirements, a battery (for example, Patent Document 2) that employs a rivet/washer structure in the sealing part and reduces the volume occupied by the gasket is advantageous.

特開2003-115292号公報Japanese Patent Application Publication No. 2003-115292 特開2016-105374号公報Japanese Patent Application Publication No. 2016-105374

電池の高容量化に対しては、電池の高エネルギー密度化または大サイズ化(高さアップや大径化)が検討され、この場合、電池の信頼性確保の観点から、端子の溶接強度が重要となる。溶接強度を上げるために、溶接条件を厳しくすると、溶接時の熱の影響によりガスケットが変形し、電池の封止性が低下してしまう。 In order to increase the capacity of batteries, increasing the energy density or increasing the size of the battery (increasing the height or increasing the diameter) is being considered, and in this case, from the perspective of ensuring battery reliability, the welding strength of the terminals must be increased. becomes important. If the welding conditions are made stricter in order to increase the welding strength, the gasket will be deformed due to the effects of heat during welding, and the sealing performance of the battery will deteriorate.

本発明の一側面は、第1端部側に中空の筒状部を有する軸部と、前記軸部の前記第1端部とは反対側の第2端部に連設された前記軸部よりも径が大きい係止部と、を有するリベットを準備する第1工程と、前記リベットが装着される貫通孔を有し、かつ前記リベットとの絶縁を確保するガスケットを備えた封口板を準備する第2工程と、前記封口板の前記貫通孔に前記軸部を挿入し、前記リベットを前記軸部の軸方向に圧縮して変形させることにより、前記筒状部の中空の一部に由来するくぼみ部を有するリング状の拡径変形部を形成する第3工程と、前記くぼみ部を覆うように前記拡径変形部に端子部材を配置し、前記端子部材と前記拡径変形部とを、前記くぼみ部の周囲の接合面において溶接法により接合する第4工程と、を含む端子付き密閉型電池の製造方法に関する。 One aspect of the present invention includes a shaft portion having a hollow cylindrical portion on a first end side, and the shaft portion continuous to a second end portion on the opposite side of the first end portion of the shaft portion. A first step of preparing a rivet having a locking portion having a larger diameter than that of the first step, and preparing a sealing plate having a through hole into which the rivet is installed and a gasket for ensuring insulation from the rivet. a second step of inserting the shaft into the through hole of the sealing plate and compressing and deforming the rivet in the axial direction of the shaft, thereby removing the rivet from the hollow part of the cylindrical portion; a third step of forming a ring-shaped diameter-expanding deformation portion having a recessed portion; arranging a terminal member in the diameter-expanding deformation portion so as to cover the recess; and connecting the terminal member and the diameter-expanding deformation portion; The present invention relates to a method for manufacturing a sealed battery with a terminal, including a fourth step of joining the joint surfaces around the recessed portion by a welding method.

本発明の別の一側面は、発電要素と、前記発電要素を収容するケースと、前記ケースの開口を封口するとともに貫通孔を有する封口板と、前記貫通孔に挿入された状態で前記封口板にガスケットを介して装着されたリベット端子と、前記リベット端子に接続された端子部材と、を具備し、前記リベット端子は、軸部と、前記軸部の第1端部に連設された拡径変形部と、前記軸部の前記第1端部とは反対側の第2端部に連設された前記軸部よりも径が大きい係止部と、を有し、前記拡径変形部は、中央にくぼみ部を有するリング状であり、前記端子部材は、前記くぼみ部を覆うように前記拡径変形部に配置され、前記端子部材と前記拡径変形部とが、前記くぼみ部の周囲の接合面において接合されている、端子付き密閉型電池に関する。 Another aspect of the present invention includes a power generation element, a case that accommodates the power generation element, a sealing plate that seals an opening of the case and has a through hole, and a power generation element that is inserted into the through hole. The rivet terminal includes a rivet terminal attached through a gasket and a terminal member connected to the rivet terminal. a diameter deforming portion; and a locking portion having a diameter larger than the shaft portion and connected to a second end portion of the shaft portion opposite to the first end portion, the diameter expanding deformation portion is ring-shaped with a recessed portion in the center, the terminal member is disposed in the diameter-expanding deformation portion so as to cover the recessed portion, and the terminal member and the diameter-expanding deformation portion are connected to each other in the recessed portion. This invention relates to a sealed battery with a terminal that is joined at the surrounding joint surfaces.

本発明によれば、端子部材と密閉型電池との溶接において、必要な溶接強度を確保しつつ、溶接時の熱によるガスケットの劣化に伴う電池の封止性の低下を抑制することができる。 According to the present invention, in welding a terminal member and a sealed battery, it is possible to ensure necessary welding strength while suppressing deterioration in sealing performance of the battery due to deterioration of the gasket due to heat during welding.

本発明の端子付き密閉型電池の製造方法の第4工程における、リベットの拡径変形部と、端子部材との溶接時の状態を模式的に示す図である。It is a figure which shows typically the state at the time of welding the diameter expansion deformation part of a rivet and a terminal member in the 4th process of the manufacturing method of the sealed battery with a terminal of this invention. 本発明の一実施形態に係る端子付き密閉型電池の製造方法の第3工程において、封口板の貫通孔にリベットの軸部が挿入された状態の一例を示す要部断面図である。FIG. 7 is a cross-sectional view of a main part showing an example of a state in which a rivet shaft is inserted into a through hole of a sealing plate in a third step of a method for manufacturing a sealed battery with a terminal according to an embodiment of the present invention. 本発明の一実施形態に係る端子付き密閉型電池の製造方法の第4工程において、リベットの拡径変形部と、端子部材とが接合された状態の一例を示す要部断面図である。FIG. 7 is a cross-sectional view of a main part showing an example of a state in which a diameter-expanding deformation portion of a rivet and a terminal member are joined in a fourth step of the method for manufacturing a sealed battery with a terminal according to an embodiment of the present invention. 本発明の一実施形態に係る端子付き密閉型電池の一部を概略的な縦断面で示した正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic vertical cross-sectional front view of a portion of a sealed battery with terminals according to an embodiment of the present invention. 従来の端子付き密閉型電池の製造方法における、リベットの拡径変形部と、端子部材との溶接時の状態を模式的に示す図である。FIG. 3 is a diagram schematically showing a state in which a diameter-expanding deformation portion of a rivet and a terminal member are welded together in a conventional method for manufacturing a sealed battery with a terminal.

[端子付き密閉型電池の製造方法]
本発明の実施形態に係る端子付き密閉型電池の製造方法は、リベットを準備する第1工程と、リベットが装着される貫通孔を有し、かつリベットとの絶縁を確保するガスケットを備える封口板を準備する第2工程と、を含む。リベットは、第1端部側に中空の筒状部を有する軸部と、軸部の第1端部とは反対側の第2端部に連設された軸部よりも径が大きい係止部と、を有する。
[Method for manufacturing sealed battery with terminal]
A method for manufacturing a sealed battery with a terminal according to an embodiment of the present invention includes a first step of preparing a rivet, and a sealing plate having a through hole into which the rivet is installed and a gasket for ensuring insulation from the rivet. a second step of preparing. The rivet includes a shaft portion having a hollow cylindrical portion on the first end side, and a lock having a diameter larger than the shaft portion connected to the second end portion on the opposite side of the first end portion of the shaft portion. It has a section and a.

また、上記の製造方法は、リベットを封口板に加締める第3工程と、加締め後のリベットと端子部材とを溶接する第4工程と、を含む。第3工程では、封口板の貫通孔に軸部を挿入し、リベットを軸部の軸方向に圧縮して変形させることにより、筒状部の中空の一部に由来するくぼみ部を有するリング状の拡径変形部を形成する。第3工程により、拡径変形部が形成されたリベット(以下、リベット端子とも称する。)を装着した封口板が得られる。拡径変形部は、筒状部の一部が押し潰されることで形成される。拡径変形部におけるくぼみ部の周囲の表面は、密閉型電池の端子面となるとともに、端子部材との接合に利用される。第4工程では、くぼみ部を覆うように拡径変形部に端子部材を配置し、端子部材と拡径変形部とを、くぼみ部の周囲の接合面において溶接法により接合する。 Further, the above manufacturing method includes a third step of crimping the rivet to the sealing plate, and a fourth step of welding the crimped rivet and the terminal member. In the third step, the shaft is inserted into the through hole of the sealing plate, and the rivet is compressed and deformed in the axial direction of the shaft to form a ring shape having a recessed part originating from a hollow part of the cylindrical part. A diameter-expanding deformation portion is formed. In the third step, a sealing plate equipped with a rivet (hereinafter also referred to as a rivet terminal) in which a diameter-expanding deformation portion is formed is obtained. The diameter-expanding deformation portion is formed by crushing a portion of the cylindrical portion. The surface around the concave portion in the diameter-expanding deformation portion becomes the terminal surface of the sealed battery and is used for joining with the terminal member. In the fourth step, the terminal member is placed in the diameter-expanding deformation portion so as to cover the recess, and the terminal member and the diameter-expanding deformation portion are joined by a welding method at the joint surfaces around the recess.

以下、従来の端子付き密閉型電池の製造方法における、くぼみ部を有さない拡径変形部と、端子部材との溶接工程を、図5を参照しながら説明する。図5は、くぼみ部を有さない拡径変形部と、端子部材との溶接時の状態を模式的に示す図である。図5中の矢印は、熱の移動を示す。 Hereinafter, a welding process for welding a terminal member to a diameter-expanding deformation portion having no recessed portion in a conventional method for manufacturing a sealed battery with a terminal will be described with reference to FIG. FIG. 5 is a diagram schematically showing a state in which a diameter-expanding deformation portion having no recessed portion and a terminal member are welded together. Arrows in FIG. 5 indicate heat transfer.

図5に示すように、金属製のリベット端子21は、封口板7にガスケット9を介して装着されている。リベット端子21は、軸部12と、軸部12の第1端部に連設された拡径変形部23と、軸部12の第1端部とは反対側の第2端部に連設された軸部12よりも径が大きい係止部4と、を有する。拡径変形部23は、中央にくぼみ部を有さない円盤状である。 As shown in FIG. 5, the metal rivet terminal 21 is attached to the sealing plate 7 via the gasket 9. The rivet terminal 21 includes a shaft portion 12, a diameter-expanding deformation portion 23 connected to a first end of the shaft portion 12, and a second end connected to the shaft portion 12 at a second end opposite to the first end. The locking portion 4 has a diameter larger than that of the shaft portion 12. The diameter-expanding deformation portion 23 has a disc shape without a depression in the center.

溶接工程では、端子部材17と拡径変形部23とを接合面28において溶接する。具体的には、図5に示すように、拡径変形部23の上に端子部材17を配置し、溶接箇所29に熱を供給する。このとき、拡径変形部23はくぼみ部を有さないため、溶接箇所29に供給された熱は、リベット端子21の中心部および周縁部に広く拡散し易い。このため、溶接箇所29への熱供給が効率的に行われにくく、必要な溶接強度を得るために溶接箇所29に供給される熱量が増大する。溶接箇所29に供給される熱量の増大によりリベット端子21の周縁部(ガスケット9側)に拡散する熱量が増大し、ガスケット9は溶接時の熱の影響を受け易くなり、ガスケット9が劣化する。 In the welding process, the terminal member 17 and the enlarged diameter portion 23 are welded together at the joint surface 28 . Specifically, as shown in FIG. 5, the terminal member 17 is placed on the diameter-expanding deformation portion 23, and heat is supplied to the welding location 29. At this time, since the diameter-expanding deformation portion 23 does not have a recessed portion, the heat supplied to the welding location 29 is likely to widely diffuse to the center and peripheral portions of the rivet terminal 21. For this reason, it is difficult to efficiently supply heat to the welding location 29, and the amount of heat supplied to the welding location 29 increases in order to obtain the necessary welding strength. As the amount of heat supplied to the welding location 29 increases, the amount of heat diffused to the peripheral portion of the rivet terminal 21 (on the side of the gasket 9) increases, making the gasket 9 more susceptible to the effects of heat during welding, and causing the gasket 9 to deteriorate.

以下、本発明の実施形態に係る端子付き密閉型電池の製造方法の第4工程を、図1を参照しながら説明する。図1は、第3工程で形成されたくぼみ部を有する拡径変形部と、端子部材との溶接時の状態を模式的に示す図である。図1中の矢印は、熱の移動を示す。 Hereinafter, the fourth step of the method for manufacturing a sealed battery with terminals according to an embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a diagram schematically showing a state during welding of a diameter-expanding deformation portion having a recessed portion formed in the third step and a terminal member. Arrows in FIG. 1 indicate heat transfer.

図1に示すように、金属製のリベット端子11は、封口板7にガスケット9を介して装着されている。リベット端子11は、中央にくぼみ部15を有するリング状の拡径変形部13を備える。上記以外、リベット端子11は、リベット端子21と同様の構造を有する。 As shown in FIG. 1, a metal rivet terminal 11 is attached to a sealing plate 7 via a gasket 9. The rivet terminal 11 includes a ring-shaped diameter-expanding deformation portion 13 having a recessed portion 15 in the center. Other than the above, the rivet terminal 11 has the same structure as the rivet terminal 21.

第4工程では、端子部材17と拡径変形部13とを、くぼみ15の周囲の接合面18において溶接する。具体的には、図1に示すように、端子部材17を、くぼみ部15を覆うように拡径変形部13に配置し、溶接箇所19に熱を供給する。このとき、第3工程で形成されるくぼみ部15により、溶接箇所19に供給される熱のリベット端子11の中心部への拡散(放熱)が抑制される。これにより、溶接箇所19への熱供給が効率的に行われ、必要な溶接強度を得るために溶接箇所19に供給する熱量を低減することができる。溶接箇所19に供給される熱量の低減によりリベット端子11の周縁部(ガスケット9側)に拡散する熱量が減少し、溶接時の熱によるガスケット9の劣化が抑制される。 In the fourth step, the terminal member 17 and the diameter-expanding deformation portion 13 are welded together at the joint surface 18 around the recess 15. Specifically, as shown in FIG. 1, the terminal member 17 is placed in the diameter-expanding deformation portion 13 so as to cover the recessed portion 15, and heat is supplied to the welding location 19. At this time, the recessed portion 15 formed in the third step suppresses the diffusion (heat radiation) of the heat supplied to the welding location 19 to the center of the rivet terminal 11 . Thereby, heat is efficiently supplied to the welding location 19, and the amount of heat supplied to the welding location 19 can be reduced in order to obtain the necessary welding strength. By reducing the amount of heat supplied to the welding location 19, the amount of heat diffused to the peripheral portion of the rivet terminal 11 (on the side of the gasket 9) is reduced, and deterioration of the gasket 9 due to heat during welding is suppressed.

上記の製造方法は、更に、リベット端子を装着した封口板を、発電要素を収容したケースの開口に配置する封口工程を含んでもよい。第4工程は、通常、封口工程の後に行うが、端子部材が外部端子である場合、封口工程の前に行ってもよい。 The above manufacturing method may further include a sealing step of arranging a sealing plate equipped with a rivet terminal in the opening of the case housing the power generation element. The fourth step is usually performed after the sealing step, but if the terminal member is an external terminal, it may be performed before the sealing step.

リベットの軸部の軸心を含む断面(以下、断面Sとも称する。)において、くぼみ部は、先細り形状の底部を有することが好ましい。この場合、リベットの機械的強度が確保され易く、第3工程のリベットの加締め加工に対する信頼性が向上する。上記の先細り形状としては、V字状、U字状等が挙げられる。くぼみ部の底部は、矩形状でもよい。 In a cross section including the axis of the rivet shaft (hereinafter also referred to as cross section S), the recess preferably has a tapered bottom. In this case, the mechanical strength of the rivet is easily ensured, and the reliability of the rivet caulking process in the third step is improved. Examples of the tapered shape include a V-shape and a U-shape. The bottom of the recess may be rectangular.

第4工程では、リベットを軸部の軸方向からみて、接合面の、軸部の外周よりも内側、かつ、くぼみ部の開口よりも外側の領域(以下、領域Aとも称する。)において、複数個所をスポット溶接することが好ましい。複数個所を間隔空けて溶接してもよく、線状に連なるように溶接してもよい。第4工程では、接合面の領域Aにおいて、軸部の軸心を中心とする円周上に等間隔に複数の箇所をスポット溶接することがより好ましい。この場合、溶接時の熱によるガスケットの劣化が抑制され易く、端子部材と拡径変形部との接合に対する信頼性が更に向上する。 In the fourth step, when the rivet is seen from the axial direction of the shaft, a plurality of Preferably, the points are spot welded. The welding may be performed at a plurality of locations at intervals, or may be welded in a linear manner. In the fourth step, it is more preferable to spot weld a plurality of locations at equal intervals on a circumference centered on the axis of the shaft in region A of the joint surface. In this case, deterioration of the gasket due to heat during welding is easily suppressed, and the reliability of joining the terminal member and the diameter-expanding deformation portion is further improved.

軸部の直径D1(mm)に対する、くぼみ部の開口径D2(mm)の比:D2/D1は、好ましくは0.3以上、1未満であり、より好ましくは0.3以上、0.7以下である。D2/D1が1未満である場合、接合面においてリング状の領域Aが形成される。D2/D1が0.3以上である場合、溶接強度を確保しつつ、くぼみ部が十分に確保され、溶接時の熱によるガスケットの劣化が抑制され易い。D2/D1が0.7以下である場合、領域Aの溶接領域が十分に確保される。 The ratio of the opening diameter D2 (mm) of the hollow part to the diameter D1 (mm) of the shaft part: D2/D1 is preferably 0.3 or more and less than 1, more preferably 0.3 or more and 0.7. It is as follows. When D2/D1 is less than 1, a ring-shaped region A is formed at the bonding surface. When D2/D1 is 0.3 or more, sufficient recessed portions are ensured while ensuring welding strength, and deterioration of the gasket due to heat during welding is easily suppressed. When D2/D1 is 0.7 or less, a sufficient welding area in area A is ensured.

くぼみ部の開口の形状は、円形でもよく、三角形、四角形、五角形等の多角形でもよく、星型等の他の特殊な形状でもよい。くぼみ部の開口の形状が円形の場合、その中心は、軸部の軸心と一致していてもよく、当該軸心から少しずれていてもよい。なお、くぼみ部の開口の形状が円形でない場合、くぼみ部の開口径とは、くぼみ部の開口において軸部の軸心から最も遠い点を選択し、当該点を通るように軸部の軸心を中心とする円を描いた時の円の直径を指す。 The shape of the opening of the recessed portion may be circular, a polygon such as a triangle, a quadrangle, or a pentagon, or another special shape such as a star shape. When the shape of the opening of the recess is circular, the center may coincide with the axis of the shaft, or may be slightly shifted from the axis. In addition, when the shape of the opening of the recess is not circular, the opening diameter of the recess is determined by selecting the point farthest from the axis of the shaft at the opening of the recess, and moving the axis of the shaft through the selected point. Refers to the diameter of a circle drawn with the center at.

溶接法としては、例えば、レーザ溶接法または抵抗溶接法が用いられる。
端子部材は、例えば、密閉型電池と電子機器とを電気的に接続するためのリード端子または外部端子(外装キャップ)である。密閉型電池に溶接された外装キャップは、例えば、電子機器の端子に圧接される。密閉型電池に溶接された短冊状のリード端子は、例えば、ハンダ付けにより機器の回路基板に接続される。また、密閉型電池に溶接されたリード端子にリード線を接続し、リード線の先端に配されたコネクタによりリード線を機器の回路基板に接続してもよい。
As the welding method, for example, a laser welding method or a resistance welding method is used.
The terminal member is, for example, a lead terminal or an external terminal (exterior cap) for electrically connecting the sealed battery and the electronic device. The exterior cap welded to the sealed battery is, for example, pressed into contact with a terminal of an electronic device. The strip-shaped lead terminals welded to the sealed battery are connected to the circuit board of the device by, for example, soldering. Alternatively, the lead wire may be connected to a lead terminal welded to the sealed battery, and the lead wire may be connected to a circuit board of the device using a connector disposed at the tip of the lead wire.

リベット端子の材質としては、例えば、ステンレス鋼、銅、真鍮、アルミニウムが挙げられる。ステンレス鋼としては、例えば、SUS304、SUS305、SUS316等のオーステナイト系ステンレス鋼や、SUS430、SUS444等のフェライト系ステンレス鋼が挙げられる。外装キャップとしては、例えば、ニッケルめっき鋼板が用いられる。短冊状のリード端子には、例えば、先端にハンダを備えるステンレス鋼板が用いられる。 Examples of the material of the rivet terminal include stainless steel, copper, brass, and aluminum. Examples of the stainless steel include austenitic stainless steels such as SUS304, SUS305, and SUS316, and ferritic stainless steels such as SUS430 and SUS444. For example, a nickel-plated steel plate is used as the exterior cap. For example, a stainless steel plate with solder at the tip is used for the strip-shaped lead terminal.

以下、第3工程において、封口板の貫通孔にリベットの軸部が挿入された状態の一例を、図2を参照しながら説明する。図2は、封口板の貫通孔にリベットの軸部が挿入された状態の断面Sを示し、リベットの封口板への加締め加工前の状態を示す。 Hereinafter, an example of a state in which the shaft portion of the rivet is inserted into the through hole of the sealing plate in the third step will be described with reference to FIG. 2. FIG. 2 shows a cross section S of a state where the shaft portion of the rivet is inserted into the through hole of the sealing plate, and shows a state before the rivet is crimped onto the sealing plate.

リベット1は、第1端部側に中空の筒状部3を有する軸部2と、軸部2の第1端部とは反対側の第2端部に連設された軸部2よりも径が大きい係止部4と、を有する。 The rivet 1 includes a shaft portion 2 having a hollow cylindrical portion 3 on a first end side, and a shaft portion 2 connected to a second end portion on the opposite side of the first end portion of the shaft portion 2. The locking portion 4 has a large diameter.

筒状部3は、第1端部側の肉厚がほぼ一定の領域P1と、第2端部側の底部に向かって肉厚が大きくなる領域P2と、を有する。筒状部3の中空部5は、領域P2により形成されたV字状の底部6を有する。筒状部3の領域P1の肉厚は、例えば、0.2mm以上、1.0mm以下である。 The cylindrical portion 3 has a region P1 having a substantially constant wall thickness on the first end side, and a region P2 where the wall thickness increases toward the bottom portion on the second end side. The hollow part 5 of the cylindrical part 3 has a V-shaped bottom part 6 formed by the region P2. The thickness of the region P1 of the cylindrical portion 3 is, for example, 0.2 mm or more and 1.0 mm or less.

封口板7は、中央に貫通孔8を有し、貫通孔8に軸部2が挿入されている。係止部4によりリベット1は封口板7に係止されている。封口板7の厚さは、例えば、0.1mm以上、0.5mm以下である。封口板7とリベット1(軸部2および係止部4)との間に絶縁性のガスケット9が介在している。ガスケット9の一部9aは、軸部2を覆うように配置されている。 The sealing plate 7 has a through hole 8 in the center, and the shaft portion 2 is inserted into the through hole 8. The rivet 1 is locked to the sealing plate 7 by the locking portion 4 . The thickness of the sealing plate 7 is, for example, 0.1 mm or more and 0.5 mm or less. An insulating gasket 9 is interposed between the sealing plate 7 and the rivet 1 (shaft portion 2 and locking portion 4). A portion 9a of the gasket 9 is arranged to cover the shaft portion 2.

以下、第4工程において、第3工程により形成されたリベットの拡径変形部と、端子部材とが接合された状態の一例を、図3を参照しながら説明する。図3は、拡径変形部と端子部材とが接合された状態の断面Sを示す。 Hereinafter, in the fourth step, an example of a state in which the diameter-expanding deformation portion of the rivet formed in the third step and the terminal member are joined will be described with reference to FIG. 3. FIG. 3 shows a cross section S in which the diameter-expanding deformation portion and the terminal member are joined.

封口板7の貫通孔8に軸部2を挿入した状態でリベット1を軸部2の軸方向に圧縮して変形させることにより、リベット端子11が形成される。すなわち、リベット端子11は、図2の軸部2の一部に由来する軸部12と、軸部12の第1端部に連設されたリング状の拡径変形部13と、軸部12の第1端部とは反対側の第2端部に連設された軸部よりも径が大きい係止部4と、を有する。拡径変形部13は、図2の筒状部3の一部が押し潰されることにより形成され、その中央に、図2の筒状部3の中空部5の一部(底部6)に由来するくぼみ部15を有する。ガスケット9の一部9aは、拡径変形部13の形成に伴い封口板7側に折れ曲がり、拡径変形部13と封口板7とを絶縁している。 The rivet terminal 11 is formed by compressing and deforming the rivet 1 in the axial direction of the shaft 2 while the shaft 2 is inserted into the through hole 8 of the sealing plate 7 . That is, the rivet terminal 11 includes a shaft portion 12 originating from a part of the shaft portion 2 in FIG. It has a locking part 4 having a diameter larger than the shaft part connected to the second end opposite to the first end. The enlarged diameter deformed part 13 is formed by crushing a part of the cylindrical part 3 in FIG. It has a recessed part 15. A portion 9a of the gasket 9 is bent toward the sealing plate 7 as the diameter-expanding deformation portion 13 is formed, and insulates the diameter-expansion deformation portion 13 and the sealing plate 7.

くぼみ部15を覆うように拡径変形部13の上に端子部材17が配置されている。端子部材17と拡径変形部13とが、くぼみ部15の周囲の接合面18において、溶接法により接合されている。 A terminal member 17 is disposed on the diameter-expanding deformation portion 13 so as to cover the recessed portion 15 . The terminal member 17 and the diameter-expanding deformation portion 13 are joined at a joining surface 18 around the recessed portion 15 by a welding method.

軸部12の直径D1(mm)に対する、くぼみ部15の開口径D2(mm)の比:D2/D1は、好ましくは0.3以上、1未満であり、より好ましくは0.3以上、0.7以下である。軸部12の直径D1が、例えば、4mm以上、6mm以下であるとき、くぼみ部15の開口径D2は、例えば、1.5mm以上、4.0mm以下である。 The ratio of the opening diameter D2 (mm) of the hollow part 15 to the diameter D1 (mm) of the shaft part 12: D2/D1 is preferably 0.3 or more and less than 1, more preferably 0.3 or more and 0. .7 or less. When the diameter D1 of the shaft portion 12 is, for example, 4 mm or more and 6 mm or less, the opening diameter D2 of the recessed portion 15 is, for example, 1.5 mm or more and 4.0 mm or less.

断面Sにおいて、くぼみ部15の底部の先細り形状は、V字状である。リベットの加締め加工に対する信頼性の確保の観点から、V字状により形成される角度θは、120°以上であってもよく、120°以上、170°以下であってもよい。くぼみ部15の底部の先細り形状は、V字状に限定されず、U字状等の形状でもよい。 In the cross section S, the tapered shape of the bottom of the recess 15 is V-shaped. From the viewpoint of ensuring reliability in crimping the rivet, the angle θ formed by the V-shape may be 120° or more, or may be 120° or more and 170° or less. The tapered shape of the bottom of the recessed portion 15 is not limited to a V-shape, but may be a U-shape or the like.

くぼみ部15の深さTは、軸部12の軸方向における封口板7と接合面18との距離Lよりも小さいことが望ましい。これにより、くぼみ部の底部のV字状により形成される角度θが120°以上である場合でも、D2を適度に調整し易く、領域Aの溶接領域を確保し易い。くぼみ部15の深さTは、例えば0.05mm以上、1.25mm以下であり、好ましくは0.07mm以上、1.15mm以下である。なお、くぼみ部15の深さTとは、軸部12の軸方向におけるくぼみ部15の最大深さを意味する。また、くぼみ部15の体積は、例えば、0.04mm以上、4.80mm以下が好ましい。 The depth T of the recessed portion 15 is desirably smaller than the distance L between the sealing plate 7 and the joint surface 18 in the axial direction of the shaft portion 12 . Thereby, even if the angle θ formed by the V-shape at the bottom of the recess is 120° or more, it is easy to adjust D2 appropriately and it is easy to secure the welding area of area A. The depth T of the recessed portion 15 is, for example, 0.05 mm or more and 1.25 mm or less, preferably 0.07 mm or more and 1.15 mm or less. Note that the depth T of the recessed portion 15 means the maximum depth of the recessed portion 15 in the axial direction of the shaft portion 12. Further, the volume of the recessed portion 15 is preferably, for example, 0.04 mm 3 or more and 4.80 mm 3 or less.

接合面18において、軸部12の軸心を中心とする直径D3(mm)の円周上に等間隔に4つの溶接箇所19を有する。溶接箇所19は4つ以外の複数でもよい。図3に示すように、D2<D3<D1を満たすことが好ましい。溶接時の熱によるガスケットの劣化抑制の観点から、D3に対するD2の比:D2/D3は、好ましくは0.65以上、1未満であり、より好ましくは0.75以上、1未満である。 On the joint surface 18, four welding points 19 are provided at equal intervals on a circumference having a diameter D3 (mm) centered on the axis of the shaft portion 12. There may be a plurality of welding locations 19 other than four. As shown in FIG. 3, it is preferable to satisfy D2<D3<D1. From the viewpoint of suppressing deterioration of the gasket due to heat during welding, the ratio of D2 to D3: D2/D3 is preferably 0.65 or more and less than 1, more preferably 0.75 or more and less than 1.

拡径変形部13は、ガスケット9と密着するリング状の領域を有する。溶接時の熱によるガスケットの劣化抑制の観点から、封口板7の貫通孔8の直径D4(mm)に対する、拡径変形部13とガスケット9とが密着するリング状領域の外径D5(mm)の比:D5/D4は、好ましくは1.5以下であり、より好ましくは1以下である。 The diameter-expanding deformation portion 13 has a ring-shaped region that comes into close contact with the gasket 9. From the viewpoint of suppressing deterioration of the gasket due to heat during welding, the outer diameter D5 (mm) of the ring-shaped region where the diameter expansion deformation portion 13 and the gasket 9 are in close contact with the diameter D4 (mm) of the through hole 8 of the sealing plate 7. The ratio: D5/D4 is preferably 1.5 or less, more preferably 1 or less.

軸部12の直径D1(mm)に対する、拡径変形部13の外径D6(mm)の比:D6/D1は、1.25以上、2以下であることが好ましい。D6/D1が1.25以上である場合、拡径変形部とガスケットとの接触面積を適度に調整し易く、電池の封止性が向上し易い。D6/D1が2以下である場合、拡径変形部の厚みを適度に調整し易く、電池の封止性が向上し易い。また、D6/D1が上記範囲内である場合、溶接箇所からリベット端子の周縁部への熱の拡散が適度に行われ易く、ガスケットへの熱影響が低減され易い。 The ratio of the outer diameter D6 (mm) of the diameter-expanding deformable portion 13 to the diameter D1 (mm) of the shaft portion 12: D6/D1 is preferably 1.25 or more and 2 or less. When D6/D1 is 1.25 or more, it is easy to appropriately adjust the contact area between the diameter-expanding deformation portion and the gasket, and the sealing performance of the battery is easily improved. When D6/D1 is 2 or less, it is easy to appropriately adjust the thickness of the diameter-expanding deformation portion, and the sealing performance of the battery is easily improved. Further, when D6/D1 is within the above range, heat is likely to be appropriately diffused from the welding location to the peripheral edge of the rivet terminal, and the influence of heat on the gasket is likely to be reduced.

[端子付き密閉型電池]
本発明の実施形態に係る端子付き密閉型電池は、発電要素と、発電要素を収容するケースと、ケースの開口を封口するとともに貫通孔を有する封口板と、貫通孔に挿入された状態で封口板にガスケットを介して装着されたリベット端子と、リベット端子に接続された端子部材と、を具備する。
[Sealed battery with terminal]
A sealed battery with a terminal according to an embodiment of the present invention includes a power generation element, a case that accommodates the power generation element, a sealing plate that seals an opening of the case and has a through hole, and a sealing plate that is inserted into the through hole. The device includes a rivet terminal attached to a plate via a gasket, and a terminal member connected to the rivet terminal.

リベット端子は、軸部と、軸部の第1端部に連設された拡径変形部と、軸部の第1端部とは反対側の第2端部に連設された軸部よりも径が大きい係止部と、を有する。拡径変形部は、中央にくぼみ部を有するリング状であり、端子部材は、くぼみ部を覆うように拡径変形部に配置され、端子部材と拡径変形部とが、くぼみ部の周囲の接合面において接合されている。 The rivet terminal includes a shaft, a diameter-expanding deformation portion connected to a first end of the shaft, and a shaft connected to a second end opposite to the first end of the shaft. The locking portion also has a large diameter locking portion. The diameter-expanding deformation part is ring-shaped with a recessed part in the center, and the terminal member is arranged in the diameter-expanding deformation part so as to cover the recessed part. Bonded at the bonding surface.

密閉型電池としては、リチウム一次電池、アルカリ乾電池、リチウムイオン二次電池、ニッケル水素二次電池等が挙げられる。発電要素は、例えば、正極と負極と電解液とを備え、正極および負極の一方は、リベット端子と電気的に接続され、正極および負極の他方は、ケースと電気的に接続されていてもよい。発電要素は、シート状の正極とシート状の負極とをセパレータを介して積層した積層型電極体でもよく、シート状の正極とシート状の負極とをセパレータを介して巻回した巻回型電極体でもよい。また、発電要素は、筒状の正極と、正極の中空部内にセパレータを介して配されるゲル状負極と、を備えるインサイドアウト型の構造を有してもよい。ゲル状負極の代わりにロール状負極を配置してもよい。また、リベット端子のくぼみ部を有する拡径変形部と、端子部材との溶接は、電気二重層キャパシタやコンデンサ等の電気化学素子にも適用可能である。 Examples of sealed batteries include lithium primary batteries, alkaline dry batteries, lithium ion secondary batteries, nickel-metal hydride secondary batteries, and the like. The power generation element may include, for example, a positive electrode, a negative electrode, and an electrolyte, one of the positive and negative electrodes may be electrically connected to the rivet terminal, and the other of the positive and negative electrodes may be electrically connected to the case. . The power generation element may be a laminated electrode body in which a sheet-shaped positive electrode and a sheet-shaped negative electrode are laminated with a separator in between, or a wound-type electrode in which a sheet-shaped positive electrode and a sheet-shaped negative electrode are wound with a separator in between. It can be your body. Further, the power generation element may have an inside-out structure including a cylindrical positive electrode and a gelled negative electrode disposed within a hollow portion of the positive electrode with a separator interposed therebetween. A rolled negative electrode may be arranged instead of the gel negative electrode. Furthermore, welding of the diameter-expanding deformation portion having the recessed portion of the rivet terminal and the terminal member can also be applied to electrochemical elements such as electric double layer capacitors and capacitors.

以下、端子付き密閉型電池の一例として、端子付きリチウム一次電池を、図4を参照しながら説明する。図4は、本発明の一実施形態に係る端子付き密閉型電池の一部を概略的な縦断面で示した正面図である。 Hereinafter, a lithium primary battery with a terminal will be described as an example of a sealed battery with a terminal, with reference to FIG. 4. FIG. 4 is a front view schematically showing a part of a sealed battery with a terminal according to an embodiment of the present invention in longitudinal section.

リチウム一次電池30は、有底円筒形の電池缶100と、電池缶100に収容された巻回式電極体200と、電池缶100の開口を塞ぐ封口ユニットと、を具備する。封口ユニットは、封口板310と、リベット端子320と、封口板310とリベット端子320との間に配された絶縁性のガスケット330と、を具備する。リベット端子320にリード端子340が接続されている。また、リベット端子320とは逆の極性側(電池缶100の底部)に別のリード端子350が接続されている。 The lithium primary battery 30 includes a cylindrical battery can 100 with a bottom, a wound electrode body 200 housed in the battery can 100, and a sealing unit that closes the opening of the battery can 100. The sealing unit includes a sealing plate 310, a rivet terminal 320, and an insulating gasket 330 disposed between the sealing plate 310 and the rivet terminal 320. A lead terminal 340 is connected to the rivet terminal 320. Further, another lead terminal 350 is connected to the polarity side opposite to that of the rivet terminal 320 (at the bottom of the battery can 100).

封口板310の周縁は、溶接により電池缶100の開口近傍に固定されている。封口板310の中央には貫通孔が形成されており、リベット端子320は、貫通孔に挿入された状態で封口板310にガスケット330を介して装着されている。 The peripheral edge of the sealing plate 310 is fixed near the opening of the battery can 100 by welding. A through hole is formed in the center of the sealing plate 310, and the rivet terminal 320 is inserted into the through hole and attached to the sealing plate 310 via a gasket 330.

リベット端子320は、軸部321と、軸部321の第1端部に連設された拡径変形部322と、軸部321の第1端部とは反対側の第2端部に連設された軸部321よりも径が大きい係止部323と、を有する。拡径変形部322は、中央にくぼみ部324を有するリング状である。リード端子340は、くぼみ部324を覆うように拡径変形部322の上に配置され、リード端子340と拡径変形部322とが、くぼみ部324の周囲の接合面325において溶接により接合されている。 The rivet terminal 320 includes a shaft portion 321, a diameter expanding deformation portion 322 connected to a first end of the shaft portion 321, and a second end of the shaft portion 321 opposite to the first end. and a locking portion 323 having a larger diameter than the shaft portion 321. The diameter-expanding deformation portion 322 is ring-shaped with a recessed portion 324 in the center. The lead terminal 340 is placed on the enlarged diameter deformed part 322 so as to cover the recessed part 324, and the lead terminal 340 and the enlarged diameter deformed part 322 are joined by welding at the joint surface 325 around the recessed part 324. There is.

電池缶100および封口板310は、それぞれ、例えば、鉄、鉄合金(SUS等)、アルミニウム、アルミニウム合金(マンガン、銅等の他の金属を微量含有するアルミニウム合金等)等で構成され、必要に応じて、メッキ処理されていてもよい。 The battery can 100 and the sealing plate 310 are each made of, for example, iron, iron alloy (SUS, etc.), aluminum, aluminum alloy (aluminum alloy, etc. containing trace amounts of other metals such as manganese and copper), etc. Depending on the situation, it may be plated.

電極体200は、シート状の正極201とシート状の負極202とをシート状のセパレータ203を介してスパイラル状に巻回することにより構成されている。正極201および負極202の一方(図示例では、負極202)には第1集電ワイヤ210の一端が接続されている。第1集電ワイヤ210の他端は、リベット端子320の係止部323に溶接等により接続されている。正極201および負極202の他方(図示例では、正極201)には、第2集電ワイヤ220の一端が接続されている。第2集電ワイヤ220の他端は、電池缶100の内面に溶接等により接続されている。 The electrode body 200 is configured by spirally winding a sheet-like positive electrode 201 and a sheet-like negative electrode 202 with a sheet-like separator 203 in between. One end of a first current collection wire 210 is connected to one of the positive electrode 201 and the negative electrode 202 (in the illustrated example, the negative electrode 202). The other end of the first current collector wire 210 is connected to a locking portion 323 of a rivet terminal 320 by welding or the like. One end of a second current collection wire 220 is connected to the other of the positive electrode 201 and the negative electrode 202 (in the illustrated example, the positive electrode 201). The other end of the second current collector wire 220 is connected to the inner surface of the battery can 100 by welding or the like.

巻回式電極体200は、非水電解液(図示せず)とともに、電池缶100の内部に収納されている。内部短絡防止のために、電極体200の上部および下部には、それぞれ上部絶縁板230Aおよび下部絶縁板230Bが配置されている。 The wound electrode body 200 is housed inside the battery can 100 along with a non-aqueous electrolyte (not shown). To prevent internal short circuits, an upper insulating plate 230A and a lower insulating plate 230B are arranged at the upper and lower parts of the electrode body 200, respectively.

図示例では、円筒形のリチウム一次電池について説明したが、この場合に限らず、本実施形態は、他の密閉型電池にも適用できる。また、電池缶の開口は、封口板の周縁部にかしめることにより封口されていてもよい。 In the illustrated example, a cylindrical lithium primary battery has been described, but the present embodiment is not limited to this case and can be applied to other sealed batteries. Further, the opening of the battery can may be sealed by caulking the peripheral edge of the sealing plate.

以下、リチウム一次電池の構成要素について更に説明する。
(負極)
負極は、金属リチウム、または金属リチウムとリチウム合金を含む。リチウム合金としては、例えば、Li-Al、Li-Sn、Li-Ni-Si、Li-Pb等が挙げられる。リチウム合金のうち、電位とリチウムとの合金化組成の観点から、Li-Al合金が好ましい。リチウム合金に含まれるリチウム以外の金属元素の含有量は、リチウムと合金化する金属元素に対して、0.05質量%以上、1.0質量%以下とすることが好ましい。なお、金属リチウムは0.05質量%未満のリチウム以外の元素を含んでもよい。
The constituent elements of the lithium primary battery will be further explained below.
(Negative electrode)
The negative electrode contains metallic lithium or an alloy of metallic lithium and lithium. Examples of the lithium alloy include Li--Al, Li--Sn, Li--Ni--Si, and Li--Pb. Among lithium alloys, Li--Al alloy is preferred from the viewpoint of potential and alloying composition with lithium. The content of metal elements other than lithium contained in the lithium alloy is preferably 0.05% by mass or more and 1.0% by mass or less based on the metal element alloyed with lithium. Note that the metallic lithium may contain less than 0.05% by mass of elements other than lithium.

シート状の負極としては、例えば、金属リチウム箔、または、金属リチウムとリチウム合金とを含む複合物のシートが利用される。複合物においてリチウム合金は金属リチウム中に粒子状で点在させてもよい。シート状の負極は、例えば、金属リチウム、または、金属リチウムとリチウム合金とを押出成形することにより形成できる。リチウム合金は、金属リチウム箔の表面にAl格子等を張り付けて金属リチウム箔の表層を合金化させて形成してもよい。 As the sheet-shaped negative electrode, for example, a metallic lithium foil or a composite sheet containing metallic lithium and a lithium alloy is used. In the composite, the lithium alloy may be dispersed in the form of particles in metallic lithium. The sheet-like negative electrode can be formed, for example, by extruding metallic lithium or metallic lithium and a lithium alloy. The lithium alloy may be formed by attaching an Al lattice or the like to the surface of a metal lithium foil and alloying the surface layer of the metal lithium foil.

(正極)
正極は、正極活物質を含む。正極活物質としては、一次電池および二次電池の正極に用いられる材料を任意に選択して用い得る。例えば、二酸化マンガン、フッ化黒鉛、硫化鉄、マンガン酸リチウム等を用い得る。正極は、例えば、正極集電体と、正極集電体に担持され、正極活物質を含む正極合剤層と、を具備する。
(positive electrode)
The positive electrode includes a positive electrode active material. As the positive electrode active material, any material used for positive electrodes of primary batteries and secondary batteries may be selected and used. For example, manganese dioxide, fluorinated graphite, iron sulfide, lithium manganate, etc. can be used. The positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector and containing a positive electrode active material.

正極集電体の材質としては、ステンレス鋼、Alおよび/またはTiを含む金属材料等を用いることができる。ステンレス鋼としては、SUS444、SUS316等の高耐食性のものが好ましい。Alおよび/またはTiを含む金属材料は、合金であってもよい。正極集電体としては、例えば、シートや多孔体が使用される。正極集電体として、金属箔等を用いてもよい。また、多孔質の正極集電体として、金属メッシュ(またはネット)、エキスパンドメタル、パンチングメタル等を用いてもよい。 As the material of the positive electrode current collector, stainless steel, a metal material containing Al and/or Ti, etc. can be used. As the stainless steel, highly corrosion resistant ones such as SUS444 and SUS316 are preferable. The metal material containing Al and/or Ti may be an alloy. As the positive electrode current collector, for example, a sheet or a porous body is used. A metal foil or the like may be used as the positive electrode current collector. Furthermore, a metal mesh (or net), expanded metal, punched metal, or the like may be used as the porous positive electrode current collector.

正極合剤層を構成する正極合剤は、正極活物質に加え、任意成分として結着剤および/または導電剤等を含んでもよい。結着剤としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体等が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In addition to the positive electrode active material, the positive electrode mixture constituting the positive electrode mixture layer may optionally contain a binder and/or a conductive agent. Examples of the binder include fluororesin, polyacrylonitrile, polyimide resin, acrylic resin, polyolefin resin, rubber-like polymer, and the like. Examples of the fluororesin include polytetrafluoroethylene and polyvinylidene fluoride. One type of binder may be used alone, or two or more types may be used in combination.

導電剤としては、炭素材料が好ましい。炭素材料としては、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、カーボンナノチューブ、および黒鉛等が挙げられる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。導電剤は、正極集電体と正極合剤層との間に存在させてもよい。 A carbon material is preferable as the conductive agent. Examples of the carbon material include carbon black (acetylene black, Ketjen black, etc.), carbon nanotubes, graphite, and the like. One type of conductive agent may be used alone, or two or more types may be used in combination. The conductive agent may be present between the positive electrode current collector and the positive electrode mixture layer.

正極の製造方法は特に制限されない。正極は、例えば、正極合剤を正極集電体に付着させることにより得ることができる。例えば、正極合剤を、正極集電体に塗布してもよく、多孔質の正極集電体に充填してもよい。また、正極合剤をシート状に成形し、正極集電体に物理的に接触するように積層してもよい。正極を作製する際には、正極合剤は、必要に応じて、正極合剤の構成成分に加え、分散媒(例えば、水および/または有機媒体)を用いて、ペースト状や粘土状の形態で用いてもよい。正極を作製する適当な段階で、必要に応じて、乾燥を行ってもよく、正極の厚み方向への圧縮(圧延等)を行ってもよい。 The method for manufacturing the positive electrode is not particularly limited. The positive electrode can be obtained, for example, by attaching a positive electrode mixture to a positive electrode current collector. For example, the positive electrode mixture may be applied to a positive electrode current collector, or may be filled into a porous positive electrode current collector. Alternatively, the positive electrode mixture may be formed into a sheet and laminated so as to physically contact the positive electrode current collector. When producing a positive electrode, the positive electrode mixture is prepared in a paste-like or clay-like form using a dispersion medium (e.g., water and/or an organic medium) in addition to the constituent components of the positive electrode mixture, as necessary. May be used in At an appropriate stage of producing the positive electrode, drying may be performed as necessary, and compression (rolling, etc.) in the thickness direction of the positive electrode may be performed.

(セパレータ)
セパレータには、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートとしては、例えば、微多孔フィルム、織布、不織布が挙げられる。セパレータは、単層構造でも多層構造であってもよい。多層構造のセパレータとしては、例えば、材質および/または構造が異なる複数の層を含むセパレータが挙げられる。
(Separator)
A porous sheet having ion permeability and insulation properties is used for the separator. Examples of porous sheets include microporous films, woven fabrics, and nonwoven fabrics. The separator may have a single layer structure or a multilayer structure. Examples of the multilayer separator include a separator including a plurality of layers having different materials and/or structures.

セパレータの材質としては、特に限定されないが、高分子材料であってもよい。高分子材料としては、オレフィン樹脂(ポリエチレン、ポリプロピレン、およびエチレンとプロピレンとの共重合体等)、ポリアミド樹脂、ポリイミド樹脂(ポリイミド、ポリアミドイミド等)、セルロース、ポリフェニレンサルファイト(PPS)、ポリテトラフロオロエチレン(PTFE)等が挙げられる。セパレータは、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。 The material of the separator is not particularly limited, but may be a polymer material. Examples of polymeric materials include olefin resins (polyethylene, polypropylene, copolymers of ethylene and propylene, etc.), polyamide resins, polyimide resins (polyimide, polyamideimide, etc.), cellulose, polyphenylene sulfite (PPS), polytetrafluorocarbons, etc. Examples include oleoethylene (PTFE). The separator may contain additives as necessary. Examples of additives include inorganic fillers.

セパレータの厚みは、例えば、10μm以上、200μm以下の範囲から選択できる。セパレータを微多孔フィルムで構成する場合、セパレータの厚みは、例えば、10μm以上、80μm以下であり、20μm以上、70μm以下が好ましい。 The thickness of the separator can be selected, for example, from a range of 10 μm or more and 200 μm or less. When the separator is composed of a microporous film, the thickness of the separator is, for example, 10 μm or more and 80 μm or less, preferably 20 μm or more and 70 μm or less.

(非水電解液)
非水電解液としては、リチウムイオン伝導性を有するものが使用される。このような非水電解液は、非水溶媒と、非水溶媒に溶解した電解質としてのリチウム塩とを含む。非水電解液は、リチウム塩を非水溶媒に溶解させることにより調製される。
(Non-aqueous electrolyte)
As the non-aqueous electrolyte, one having lithium ion conductivity is used. Such a nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt as an electrolyte dissolved in the nonaqueous solvent. A non-aqueous electrolyte is prepared by dissolving a lithium salt in a non-aqueous solvent.

リチウム塩としては、リチウム一次電池の非水電解液に利用されるものでよいが、特に制限なく使用できる。リチウム塩としては、ホウフッ化リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメチルスルホニル)イミド、過塩素酸リチウム等が挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the lithium salt, any salt used in the non-aqueous electrolyte of a lithium primary battery may be used without any particular limitation. Examples of the lithium salt include lithium borofluoride, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethylsulfonyl)imide, lithium perchlorate, and the like. One type of lithium salt may be used alone, or two or more types may be used in combination.

非水溶媒としては、例えば、エステル(例えば、炭酸エステル、γ-ブチロラクトン等のカルボン酸エステル等)、エーテル(1,2-ジメトキシエタン等)が挙げられるが、これらに限定されない。炭酸エステルとしては、環状カーボネート(プロピレンカーボネート、エチレンカーボネート等)、鎖状カーボネート(ジエチルカーボネート、エチルメチルカーボネート等)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the nonaqueous solvent include, but are not limited to, esters (eg, carbonic acid esters, carboxylic acid esters such as γ-butyrolactone, etc.), and ethers (1,2-dimethoxyethane, etc.). Examples of carbonate esters include cyclic carbonates (propylene carbonate, ethylene carbonate, etc.), chain carbonates (diethyl carbonate, ethylmethyl carbonate, etc.), and the like. The non-aqueous solvents may be used alone or in combination of two or more.

非水電解液中のリチウム塩の濃度は、例えば、0.1mol/L以上、3.5mol/L以下である。 The concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.1 mol/L or more and 3.5 mol/L or less.

非水電解液は、必要に応じて、添加剤を含んでもよい。添加剤としては、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、ビニルエチルカーボネート等が挙げられる。添加剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The non-aqueous electrolyte may contain additives, if necessary. Examples of the additive include vinylene carbonate, fluoroethylene carbonate, vinyl ethyl carbonate, and the like. One type of additive may be used alone, or two or more types may be used in combination.

[実施例]
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

《実施例1》
(第1工程)
第1端部側に中空の筒状部を有する軸部と、軸部の第1端部とは反対側の第2端部に連設された軸部よりも径が大きい係止部と、を有する、ステンレス鋼製のリベットを準備した。
《Example 1》
(1st step)
a shaft portion having a hollow cylindrical portion on the first end side; a locking portion having a diameter larger than the shaft portion connected to a second end portion on the opposite side of the first end portion of the shaft portion; A stainless steel rivet was prepared.

リベットは、図2に示すリベット1と同様の構造を有していた。軸部の直径D1は、6mmとした。係止部の直径は、10mmとした。軸部の軸方向の長さは、4.0mmとした。筒状部の軸方向の長さは、2.5mmとした。筒状部は、第1端部側の肉厚が一定の領域P1と、第2端部側の底部に向かって肉厚が大きくなる領域P2と、を備えた。領域P1の肉厚は、0.5mmとした。領域P1の軸方向の長さは、2.0mmとした。領域P2の軸方向の長さは、0.5mmとした。領域P2により筒状部の中空部においてV字状の底部が形成され、V字形成角度θは150°とした。 The rivet had a similar structure to rivet 1 shown in FIG. The diameter D1 of the shaft portion was 6 mm. The diameter of the locking portion was 10 mm. The length of the shaft portion in the axial direction was 4.0 mm. The axial length of the cylindrical portion was 2.5 mm. The cylindrical portion includes a region P1 having a constant thickness on the first end side, and a region P2 having a thickness increasing toward the bottom on the second end side. The thickness of the region P1 was set to 0.5 mm. The length of the region P1 in the axial direction was 2.0 mm. The length of the region P2 in the axial direction was 0.5 mm. A V-shaped bottom was formed in the hollow part of the cylindrical part by the region P2, and the V-shaped formation angle θ was 150°.

(第2工程)
リベットが装着される貫通孔を有し、かつ、リベットとの絶縁を確保するポリプロピレン製のガスケットを備えたステンレス製の封口板を準備した(第2工程)。封口板は、図2に示す封口板7と同様の構造を有していた。封口板の厚さは、0.4mmとした。封口板の貫通孔の直径D4は、7.0mmとした。
(Second process)
A stainless steel sealing plate was prepared, which had a through hole into which a rivet was attached, and a polypropylene gasket to ensure insulation from the rivet (second step). The sealing plate had the same structure as the sealing plate 7 shown in FIG. The thickness of the sealing plate was 0.4 mm. The diameter D4 of the through hole of the sealing plate was 7.0 mm.

(第3工程)
図2に示すように、封口板の貫通孔に軸部を挿入した。リベットを軸部の軸方向に圧縮して変形させることにより、筒状部の中空の一部に由来するくぼみ部を有するリング状の拡径変形部を形成した(第3工程)。このようにして、図3に示すような、リベット端子を装着した封口板を得た。
(3rd step)
As shown in FIG. 2, the shaft portion was inserted into the through hole of the sealing plate. By compressing and deforming the rivet in the axial direction of the shaft part, a ring-shaped diameter-expanding deformation part having a recessed part originating from a hollow part of the cylindrical part was formed (third step). In this way, a sealing plate equipped with rivet terminals as shown in FIG. 3 was obtained.

軸部の軸方向における、拡径変形部の端子部材との接合面と、封口板との距離Lは、0.83mmとした。拡径変形部とガスケットとのリング状の密着領域の外径D5は、6.6mmとした。拡径変化部の外径D6は、9.0mmとした。D6/D1は、1.5であった。 The distance L between the joint surface of the diameter-expanding deformation portion with the terminal member and the sealing plate in the axial direction of the shaft portion was set to 0.83 mm. The outer diameter D5 of the ring-shaped contact area between the diameter-expanding deformation portion and the gasket was 6.6 mm. The outer diameter D6 of the diameter expanding portion was 9.0 mm. D6/D1 was 1.5.

第3工程では、中空部の底部に由来するV字状の底部を有するくぼみ部が形成された。くぼみ部の開口径D2は、1.0mmとした。くぼみ部の深さTは、0.13mmとした。くぼみ部の底部のV字形成角度θは、150°とした。くぼみ部の体積Vは、0.03mmとした。 In the third step, a recessed portion having a V-shaped bottom originating from the bottom of the hollow portion was formed. The opening diameter D2 of the recess was 1.0 mm. The depth T of the recessed portion was 0.13 mm. The V-shaped forming angle θ at the bottom of the recess was 150°. The volume V of the recessed portion was 0.03 mm 3 .

(第4工程)
図3に示すように、くぼみ部を覆うように拡径変形部に端子部材を配置し、端子部材と拡径変形部とを、くぼみの周囲の接合面においてレーザ溶接法により接合した。
(4th step)
As shown in FIG. 3, the terminal member was placed in the diameter-expanding deformation portion so as to cover the recess, and the terminal member and the diameter-expanding deformation portion were joined by laser welding at the joint surfaces around the recess.

端子部材には、ステンレス鋼製の短冊状のリード端子(長さ20mm、幅5mm、厚さ0.15mm)を用いた。第4工程では、接合面において、軸部の軸心を中心とする直径D3が4.5mmの円周上に等間隔に4箇所をスポット溶接した。第4工程では、後述の評価1により求められる溶接強度が300Nとなるように、接合面に照射するレーザの出力を調整し、レーザの照射時間は一定とした。レーザ照射は、1箇所ずつ順次行った。4箇所のレーザ照射は、同条件で行った。 As the terminal member, a stainless steel strip-shaped lead terminal (length 20 mm, width 5 mm, thickness 0.15 mm) was used. In the fourth step, on the joint surface, spot welding was performed at four locations equally spaced on a circumference having a diameter D3 of 4.5 mm centered on the axis of the shaft portion. In the fourth step, the output of the laser irradiated to the joint surface was adjusted so that the welding strength determined by Evaluation 1, which will be described later, was 300 N, and the laser irradiation time was kept constant. Laser irradiation was performed one by one in sequence. Laser irradiation at four locations was performed under the same conditions.

《実施例2~4》
第1工程で準備するリベットの筒状部(中空部)の形状および寸法を調整して、第3工程で形成されるくぼみ部の、開口径D2、深さT、底部のV字形成角度θおよび体積Vを、表1に示す値とした。開口径D2の調節は、筒状部の領域P1、領域P2の軸方向の長さおよびV字形成角度θは一定にして、軸部2の軸方向の長さを変えることにより行った。上記以外、実施例1と同様の方法により、リベット端子を装着した封口板を作製し、リベット端子の拡径変形部と端子部材とを接合した。
《Examples 2 to 4》
By adjusting the shape and dimensions of the cylindrical part (hollow part) of the rivet prepared in the first step, the opening diameter D2, depth T, and bottom V-shaped formation angle θ of the recessed part to be formed in the third step are adjusted. and the volume V were set to the values shown in Table 1. The opening diameter D2 was adjusted by changing the axial length of the shaft portion 2 while keeping the axial lengths of the regions P1 and P2 of the cylindrical portion constant and the V-shaped forming angle θ. Except for the above, a sealing plate equipped with a rivet terminal was produced by the same method as in Example 1, and the diameter-expanding deformation portion of the rivet terminal and the terminal member were joined.

《比較例1》
第1工程で、円柱状の軸部と、軸部の一端部に連設された軸部よりも径が大きい係止部と、を有するリベットを準備した。第3工程で、くぼみ部を有さない円盤状の拡径変形部を形成した。上記以外、実施例1と同様の方法により、リベット端子を装着した封口板を作製した。
《Comparative example 1》
In the first step, a rivet having a cylindrical shaft portion and a locking portion having a diameter larger than the shaft portion and connected to one end of the shaft portion was prepared. In the third step, a disk-shaped diameter-expanding deformation portion having no recessed portion was formed. A sealing plate equipped with a rivet terminal was produced by the same method as in Example 1 except for the above.

くぼみ部を有さない拡径変形部に端子部材を配置した以外、実施例1と同様の方法により、拡径変形部と端子部材とを接合した。 The diameter-expanding deformation portion and the terminal member were joined by the same method as in Example 1, except that the terminal member was placed in the diameter-expanding deformation portion having no recessed portion.

実施例1~4および比較例1の製造方法(第4工程)について、以下の評価を行った。
[評価1:溶接強度]
リベット端子を装着した封口板を固定し、端子部材の拡張変形部との接合面以外の部分を当該接合面と垂直な方向に折り曲げた。溶接部の4箇所のうち折り曲げ部側の2箇所が破断するまで折り曲げ部を引っ張り、このときに要した力の最大値を溶接強度として求めた。
The manufacturing methods (fourth step) of Examples 1 to 4 and Comparative Example 1 were evaluated as follows.
[Evaluation 1: Welding strength]
The sealing plate with the rivet terminal mounted thereon was fixed, and the portion of the terminal member other than the joint surface with the expansion deformation portion was bent in a direction perpendicular to the joint surface. The bent part was pulled until two of the four parts of the welded part on the bent part side were broken, and the maximum value of the force required at this time was determined as the welding strength.

[評価2:熱量]
接合面の1箇所に照射するレーザの出力および照射時間に基づいて、4箇所の溶接に要した熱量(4箇所の熱量を合計した値)を求めた。
[Evaluation 2: Heat amount]
Based on the output and irradiation time of the laser irradiated to one location on the joint surface, the amount of heat required for welding the four locations (the sum of the amount of heat at the four locations) was determined.

[評価3:ガスケット温度]
熱電対を用いて、溶接時のガスケットの温度の最高値を測定した。
[Evaluation 3: Gasket temperature]
The maximum temperature of the gasket during welding was measured using a thermocouple.

実施例1~4および比較例1の製造方法の評価結果を表1に示す。 Table 1 shows the evaluation results of the manufacturing methods of Examples 1 to 4 and Comparative Example 1.

Figure 0007411925000001
Figure 0007411925000001

実施例1~4では、比較例1と比べて、小さい熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が抑制された。中でも、D2/D1が0.3以上の実施例2~4では、より小さな熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が更に抑制された。 In Examples 1 to 4, compared to Comparative Example 1, the diameter expansion deformation portion and the terminal member could be firmly joined with a smaller amount of heat, and the temperature rise of the gasket during welding was suppressed. Among them, in Examples 2 to 4 in which D2/D1 is 0.3 or more, the diameter expansion deformation part and the terminal member can be firmly joined with a smaller amount of heat, and the temperature rise of the gasket during welding is further suppressed. Ta.

《実施例5~9》
リベットの軸部の直径D1は、4.4mmとした。封口板の貫通孔の直径D4は、5.4mmとした。リベットの筒状部(中空部)の形状および寸法を調整して、第3工程で形成されるくぼみ部の、開口径D2、深さT、底部のV字形成角度θおよび体積Vを、表2に示す値とした。第4工程では、接合面において、軸部の軸心を中心とする直径D3が表2に示す値の円周上に等間隔に4箇所をスポット溶接した。拡径変形部とガスケットとのリング状の密着領域の外径D5は、5.0mmとした。軸部の軸方向における、拡径変形部の端子部材との接合面と、封口板との距離Lは、0.83mm(実施例5、6、8)または1.3mm(実施例7、9)とした。拡径変化部の外径D6は、6.6mmとした。D6/D1は、1.5であった。
《Examples 5 to 9》
The diameter D1 of the shaft portion of the rivet was 4.4 mm. The diameter D4 of the through hole of the sealing plate was 5.4 mm. The shape and dimensions of the cylindrical part (hollow part) of the rivet are adjusted, and the opening diameter D2, depth T, bottom V-shaped formation angle θ, and volume V of the recessed part formed in the third step are shown in the table. The values shown in 2 were used. In the fourth step, on the joint surface, spot welding was performed at four locations at equal intervals on the circumference of the diameter D3 centered on the axis of the shaft portion as shown in Table 2. The outer diameter D5 of the ring-shaped close contact region between the diameter-expanding deformation portion and the gasket was set to 5.0 mm. The distance L between the joint surface of the diameter-expanding deformable portion with the terminal member and the sealing plate in the axial direction of the shaft portion was 0.83 mm (Examples 5, 6, 8) or 1.3 mm (Examples 7, 9). ). The outer diameter D6 of the diameter expanding portion was 6.6 mm. D6/D1 was 1.5.

上記以外、実施例1と同様の方法により、リベット端子を装着した封口板を作製し、リベット端子の拡径変形部と端子部材とを接合した。 Except for the above, a sealing plate equipped with a rivet terminal was produced by the same method as in Example 1, and the diameter-expanding deformation portion of the rivet terminal and the terminal member were joined.

《比較例2》
第1工程で、円柱状の軸部と、軸部の一端部に連設された軸部よりも径が大きい係止部と、を有するリベットを準備した。第3工程で、くぼみ部を有さない円盤状の拡径変形部を形成した。上記以外、実施例5と同様の方法により、リベット端子を装着した封口板を作製した。
《Comparative example 2》
In the first step, a rivet having a cylindrical shaft portion and a locking portion having a diameter larger than the shaft portion and connected to one end of the shaft portion was prepared. In the third step, a disk-shaped diameter-expanding deformation portion having no recessed portion was formed. A sealing plate equipped with a rivet terminal was produced in the same manner as in Example 5 except for the above.

くぼみ部を有さない拡径変形部に端子部材を配置した以外、実施例5と同様の方法により、拡径変形部と端子部材とを接合した。 The diameter-expanding deformation portion and the terminal member were joined by the same method as in Example 5, except that the terminal member was placed in the diameter-expanding deformation portion having no recessed portion.

実施例5~9および比較例2の製造方法(第4工程)について、上記の評価1~3を行った。実施例5~9および比較例2の製造方法の評価結果を表2に示す。 The above evaluations 1 to 3 were performed on the manufacturing methods (fourth step) of Examples 5 to 9 and Comparative Example 2. Table 2 shows the evaluation results of the manufacturing methods of Examples 5 to 9 and Comparative Example 2.

Figure 0007411925000002
Figure 0007411925000002

実施例5~9では、比較例2と比べて、小さい熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が抑制された。中でも、実施例5~7では、溶接時のガスケットの温度上昇が更に抑制された。実施例5~7では、開口径D2は、1.5mm以上、4.0mm以下であり、くぼみ部の底部のV字形成角度θは、120°以上、170°以下であり、くぼみ部の体積Vは、0.04mm以上、4.82mm以下であった。 In Examples 5 to 9, compared to Comparative Example 2, it was possible to firmly join the diameter-expanding deformation portion and the terminal member with a smaller amount of heat, and the temperature rise of the gasket during welding was suppressed. Among them, in Examples 5 to 7, the temperature rise of the gasket during welding was further suppressed. In Examples 5 to 7, the opening diameter D2 is 1.5 mm or more and 4.0 mm or less, the V-shaped forming angle θ at the bottom of the recess is 120° or more and 170° or less, and the volume of the recess is V was 0.04 mm 3 or more and 4.82 mm 3 or less.

《実施例10~12、参考例13》
第4工程で、接合面において、軸部の軸心を中心とする直径D3が表3に示す値の円周上に等間隔に4箇所をスポット溶接した以外、実施例3と同様の方法により、リベット端子を装着した封口板を作製し、リベット端子の拡径変形部と端子部材とを接合した。
《Examples 10 to 12, Reference Example 13》
In the fourth step, the same method as in Example 3 was used, except that on the joint surface, four spots were spot welded at equal intervals on the circumference with a diameter D3 centered on the axis of the shaft part as shown in Table 3. A sealing plate equipped with a rivet terminal was prepared, and the expanded diameter portion of the rivet terminal and the terminal member were joined.

実施例10~12、参考例13の製造方法(第4工程)について、上記の評価1~3を行った。実施例10~12、参考例13の製造方法の評価結果を表3に示す。表3では、実施例3の製造方法の評価結果も示す。 The above evaluations 1 to 3 were performed for the manufacturing methods (fourth step) of Examples 10 to 12 and Reference Example 13. Table 3 shows the evaluation results of the manufacturing methods of Examples 10 to 12 and Reference Example 13. Table 3 also shows the evaluation results of the manufacturing method of Example 3.

Figure 0007411925000003
Figure 0007411925000003

実施例10~12では、実施例3の場合と同様に、小さい熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が抑制された。中でも、D2/D3が0.65以上の実施例3、10~11では、より小さな熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が更に抑制された。 In Examples 10 to 12 , as in Example 3, the diameter expansion deformation portion and the terminal member could be firmly joined with a small amount of heat, and the temperature rise of the gasket during welding was suppressed. Among them, in Examples 3 and 10 to 11 in which D2/D3 is 0.65 or more, the diameter expansion deformation part and the terminal member can be firmly joined with a smaller amount of heat, and the temperature rise of the gasket during welding is further reduced. suppressed.

《実施例14~18》
リベットの軸部の直径D1は、5mmとした。封口板の貫通孔の直径D4は、6mmとした。第3工程で形成されるくぼみ部の開口径D2は、2mmとした。くぼみ部の深さTは、0.27mmとした。くぼみ部の底部のV字形成角度θは、150°とした。くぼみ部の体積Vは、0.14mmとした。第4工程では、接合面において、軸部の軸心を中心とする直径D3が3mmの円周上に等間隔に4箇所をスポット溶接した。
《Examples 14 to 18》
The diameter D1 of the shaft portion of the rivet was 5 mm. The diameter D4 of the through hole of the sealing plate was 6 mm. The opening diameter D2 of the recess formed in the third step was 2 mm. The depth T of the recessed portion was 0.27 mm. The V-shaped forming angle θ at the bottom of the recess was 150°. The volume V of the recessed portion was 0.14 mm 3 . In the fourth step, on the joint surface, spot welding was performed at four locations at equal intervals on a circumference having a diameter D3 of 3 mm centered on the axis of the shaft portion.

拡径変形部とガスケットとのリング状の密着領域の外径D5は、表4に示す値とした。上記の外径D5の調節は、第3工程において、封口板の貫通孔に軸部を挿入し、リベットを軸部の軸方向に圧縮して変形させる際の圧縮力を変えることにより行った。実施例14~18において、軸部の軸方向における、拡径変形部の端子部材との接合面と、封口板との距離Lは、0.75mm~0.9mmの範囲であった。拡径変化部の外径D6は、8.2mm~9.5mmの範囲であった。D6/D1は、1.64~1.9の範囲であった。 The outer diameter D5 of the ring-shaped close contact region between the diameter-expanding deformation portion and the gasket was set to the value shown in Table 4. The outer diameter D5 was adjusted in the third step by inserting the shaft into the through hole of the sealing plate and changing the compression force when compressing and deforming the rivet in the axial direction of the shaft. In Examples 14 to 18, the distance L between the joint surface of the diameter-expanding deformation portion with the terminal member and the sealing plate in the axial direction of the shaft portion was in the range of 0.75 mm to 0.9 mm. The outer diameter D6 of the diameter expansion change portion was in the range of 8.2 mm to 9.5 mm. D6/D1 ranged from 1.64 to 1.9.

上記以外、実施例1と同様の方法により、リベット端子を装着した封口板を作製し、リベット端子の拡径変形部と端子部材とを接合した。 Except for the above, a sealing plate equipped with a rivet terminal was produced by the same method as in Example 1, and the diameter-expanding deformation portion of the rivet terminal and the terminal member were joined.

実施例14~18の製造方法(第4工程)について、上記の評価1~3を行った。実施例14~18の製造方法の評価結果を表4に示す。 Regarding the manufacturing methods (fourth step) of Examples 14 to 18, the above evaluations 1 to 3 were performed. Table 4 shows the evaluation results of the manufacturing methods of Examples 14 to 18.

Figure 0007411925000004
Figure 0007411925000004

実施例14~18では、小さい熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が抑制された。中でも、D5/D4が1以下の実施例14~15では、より小さな熱量で拡径変形部と端子部材とを強固に接合することができ、溶接時のガスケットの温度上昇が更に抑制された。 In Examples 14 to 18, the enlarged diameter portion and the terminal member could be firmly joined with a small amount of heat, and the temperature rise of the gasket during welding was suppressed. Among them, in Examples 14 to 15 in which D5/D4 was 1 or less, the diameter expansion deformation part and the terminal member could be firmly joined with a smaller amount of heat, and the temperature rise of the gasket during welding was further suppressed.

本発明に係る端子付き密閉型電池は、産業用および民生用の各種機器の電源として好適に用いられる。 The sealed battery with terminals according to the present invention is suitably used as a power source for various industrial and consumer devices.

1:リベット、2:軸部、3:筒状部、4:係止部、5:中空部、6:底部、7:封口板、8:貫通孔、9:ガスケット、9a:ガスケットの一部、11,21:リベット端子、12:軸部、13,23:拡径変形部、15:くぼみ部、17:端子部材、18,28:接合面、19,29:溶接箇所、30:リチウム一次電池、100:電池缶、200:電極体、201:正極、202:負極、203:セパレータ、210:第1集電ワイヤ、220:第2集電ワイヤ、230A:上部絶縁板、230B:下部絶縁板、310:封口板、320:リベット端子、321:軸部、322:拡径変形部、323:係止部、324:くぼみ部、325:接合面、330:ガスケット、340,350:リード端子 1: Rivet, 2: Shaft, 3: Cylindrical part, 4: Locking part, 5: Hollow part, 6: Bottom, 7: Sealing plate, 8: Through hole, 9: Gasket, 9a: Part of gasket , 11, 21: Rivet terminal, 12: Shaft portion, 13, 23: Diameter expansion deformation portion, 15: Hollow portion, 17: Terminal member, 18, 28: Joint surface, 19, 29: Welding location, 30: Primary lithium Battery, 100: Battery can, 200: Electrode body, 201: Positive electrode, 202: Negative electrode, 203: Separator, 210: First current collecting wire, 220: Second current collecting wire, 230A: Upper insulating plate, 230B: Lower insulating Plate, 310: Sealing plate, 320: Rivet terminal, 321: Shaft, 322: Expanding diameter portion, 323: Locking portion, 324: Recessed portion, 325: Joint surface, 330: Gasket, 340, 350: Lead terminal

Claims (5)

第1端部側に中空の筒状部を有する軸部と、前記軸部の前記第1端部とは反対側の第2端部に連設された前記軸部よりも径が大きい係止部と、を有するリベットを準備する第1工程と、
前記リベットが装着される貫通孔を有し、かつ前記リベットとの絶縁を確保するガスケットを備えた封口板を準備する第2工程と、
前記封口板の前記貫通孔に前記軸部を挿入し、前記リベットを前記軸部の軸方向に圧縮して変形させることにより、前記筒状部の中空の一部に由来するくぼみ部を有するリング状の拡径変形部を形成する第3工程と、
前記くぼみ部を覆うように前記拡径変形部に端子部材を配置し、前記端子部材と前記拡径変形部とを、前記くぼみ部の周囲の接合面において溶接法により接合する第4工程と、を含み、
前記軸部の直径D1mmと、前記接合面に開口する前記くぼみ部の開口径D2mmと、前記接合面における前記拡径変形部の前記端子部材との溶接箇所から前記軸部の中心までの距離D3mmとは、
前記くぼみ部の体積Vが0.31mm よりも大きい場合、D2<D3<D1の関係を満たし、
前記くぼみ部の体積Vが0.31mm 以下である場合、D2<D3≦(5/6)×D1の関係を満たす、端子付き密閉型電池の製造方法。
A shaft portion having a hollow cylindrical portion on a first end side, and a lock having a diameter larger than the shaft portion connected to a second end portion of the shaft portion on the opposite side from the first end portion. a first step of preparing a rivet having a part;
a second step of preparing a sealing plate having a through hole into which the rivet is installed and a gasket for ensuring insulation from the rivet;
By inserting the shaft into the through hole of the sealing plate and compressing and deforming the rivet in the axial direction of the shaft, a ring having a recessed portion originating from a hollow part of the cylindrical portion. a third step of forming a diameter-expanding deformation portion of the shape;
a fourth step of arranging a terminal member in the diameter-expanding deformation portion so as to cover the recess portion, and joining the terminal member and the diameter-expansion deformation portion at a joint surface around the recess portion by a welding method; including;
A diameter D1 mm of the shaft portion, an opening diameter D2 mm of the recessed portion opening to the joint surface, and a distance D3 mm from the welding point of the diameter enlarged deformation portion with the terminal member on the joint surface to the center of the shaft portion. What is
When the volume V of the recessed portion is larger than 0.31 mm3, the relationship D2<D3<D1 is satisfied ,
A method for manufacturing a sealed battery with a terminal , which satisfies the relationship D2<D3≦(5/6)×D1 when the volume V of the recessed portion is 0.31 mm 3 or less.
前記リベットの前記軸部の軸心を含む断面において、前記くぼみ部は、先細り形状の底部を有する、請求項1に記載の端子付き密閉型電池の製造方法。 2. The method for manufacturing a sealed battery with a terminal according to claim 1, wherein the recess has a tapered bottom in a cross section including the axis of the shaft of the rivet. 前記第4工程では、前記リベットを前記軸部の軸方向からみて、前記接合面の、前記軸部の外周よりも内側、かつ、前記くぼみ部の開口よりも外側の領域において、複数個所をスポット溶接し、
前記軸部の直径D1mmと、前記くぼみ部の開口径D2mmとが、関係式:
0.3≦D2/D1<D3/D1
を満たす、請求項1または2に記載の端子付き密閉型電池の製造方法。
In the fourth step, when the rivet is viewed from the axial direction of the shaft, a plurality of spots are placed on the joining surface in a region inside the outer periphery of the shaft and outside the opening of the recess. weld,
The diameter D1mm of the shaft portion and the opening diameter D2mm of the recessed portion are expressed by the following relational expression:
0.3≦D2/D1< D3/D1
The method for manufacturing a sealed battery with a terminal according to claim 1 or 2, which satisfies the following.
前記端子部材は、密閉型電池を電子機器と電気的に接続するためのリード端子または密閉型電池の外部端子である、請求項1~3のいずれか1項に記載の端子付き密閉型電池の製造方法。 The sealed battery with a terminal according to claim 1, wherein the terminal member is a lead terminal for electrically connecting the sealed battery to an electronic device or an external terminal of the sealed battery. Production method. 発電要素と、
前記発電要素を収容するケースと、
前記ケースの開口を封口するとともに貫通孔を有する封口板と、
前記貫通孔に挿入された状態で前記封口板にガスケットを介して装着されたリベット端子と、
前記リベット端子に接続された端子部材と、を具備し、
前記リベット端子は、軸部と、前記軸部の第1端部に連設された拡径変形部と、前記軸部の前記第1端部とは反対側の第2端部に連設された前記軸部よりも径が大きい係止部と、を有し、
前記拡径変形部は、中央にくぼみ部を有するリング状であり、
前記端子部材は、前記くぼみ部を覆うように前記拡径変形部に配置され、前記端子部材と前記拡径変形部とが、前記くぼみ部の周囲の接合面において接合され
前記軸部の直径D1mmと、前記接合面に開口する前記くぼみ部の開口径D2mmと、前記接合面における前記拡径変形部の前記端子部材との溶接箇所から前記軸部の中心までの距離D3mmとは、
前記くぼみ部の体積Vが0.31mm よりも大きい場合、D2<D3<D1の関係を満たし、
前記くぼみ部の体積Vが0.31mm 以下である場合、D2<D3≦(5/6)×D1の関係を満たす、端子付き密閉型電池。
power generation element,
a case housing the power generation element;
a sealing plate that seals the opening of the case and has a through hole;
a rivet terminal inserted into the through hole and attached to the sealing plate via a gasket;
a terminal member connected to the rivet terminal,
The rivet terminal includes a shaft, a diameter expanding deformation portion connected to a first end of the shaft, and a second end of the shaft opposite to the first end. a locking portion having a larger diameter than the shaft portion;
The diameter expanding deformation portion is ring-shaped with a recessed portion in the center;
The terminal member is disposed in the diameter-expanding deformation portion so as to cover the recess, and the terminal member and the diameter-expansion deformation portion are joined at a joint surface around the recess ,
A diameter D1mm of the shaft portion, an opening diameter D2mm of the recessed portion opening to the joint surface, and a distance D3mm from the welding point of the diameter expansion deformation portion with the terminal member on the joint surface to the center of the shaft portion. What is
When the volume V of the recessed portion is larger than 0.31 mm 3 , the relationship D2<D3<D1 is satisfied,
A sealed battery with a terminal that satisfies the relationship D2<D3≦(5/6)×D1 when the volume V of the recessed portion is 0.31 mm 3 or less.
JP2019180364A 2019-09-30 2019-09-30 Manufacturing method of sealed battery with terminal and sealed battery with terminal Active JP7411925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180364A JP7411925B2 (en) 2019-09-30 2019-09-30 Manufacturing method of sealed battery with terminal and sealed battery with terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180364A JP7411925B2 (en) 2019-09-30 2019-09-30 Manufacturing method of sealed battery with terminal and sealed battery with terminal

Publications (2)

Publication Number Publication Date
JP2021057234A JP2021057234A (en) 2021-04-08
JP7411925B2 true JP7411925B2 (en) 2024-01-12

Family

ID=75271007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180364A Active JP7411925B2 (en) 2019-09-30 2019-09-30 Manufacturing method of sealed battery with terminal and sealed battery with terminal

Country Status (1)

Country Link
JP (1) JP7411925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219393532U (en) * 2021-10-22 2023-07-21 株式会社Lg新能源 Cylindrical battery, battery pack including the same, and automobile
CN219350422U (en) * 2021-10-22 2023-07-14 株式会社Lg新能源 Cylindrical battery, battery pack including the same, and automobile
KR20230078926A (en) * 2021-11-26 2023-06-05 주식회사 엘지에너지솔루션 Riveting structure of electrode terminal, and battery cell, battery pack and vehicle including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087693A (en) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2015197974A (en) 2014-03-31 2015-11-09 株式会社Gsユアサ Power storage element and power storage device
WO2017090706A1 (en) 2015-11-27 2017-06-01 株式会社Gsユアサ Power storage element and power storage module
US20190221827A1 (en) 2018-01-18 2019-07-18 Contemporary Amperex Technology Co., Limited Secondary battery top cover assembly, secondary battery and vehicle
JP2019121468A (en) 2017-12-28 2019-07-22 トヨタ自動車株式会社 Sealed battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087693A (en) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2015197974A (en) 2014-03-31 2015-11-09 株式会社Gsユアサ Power storage element and power storage device
WO2017090706A1 (en) 2015-11-27 2017-06-01 株式会社Gsユアサ Power storage element and power storage module
JP2019121468A (en) 2017-12-28 2019-07-22 トヨタ自動車株式会社 Sealed battery
US20190221827A1 (en) 2018-01-18 2019-07-18 Contemporary Amperex Technology Co., Limited Secondary battery top cover assembly, secondary battery and vehicle

Also Published As

Publication number Publication date
JP2021057234A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7411925B2 (en) Manufacturing method of sealed battery with terminal and sealed battery with terminal
US11456513B2 (en) Battery and method for producing the same
JP2009110751A (en) Secondary battery
JP2003317805A (en) Cylindrical lithium ion secondary cell, and manufacturing method of the same
US20120040239A1 (en) Sealing construction for secondary cell
JP2007227137A (en) Sealed storage battery
JP2007018962A (en) Sealed secondary battery
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP2009117092A (en) Secondary battery and its manufacturing method
JP3877619B2 (en) Sealed battery
CN106025110B (en) Sealed battery
JP2009266738A (en) Cylinder-shaped battery and method of manufacturing the same
JP2009123646A (en) Battery pack and manufacturing method of battery pack
JP5364512B2 (en) Cylindrical battery
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP2010170920A (en) Battery
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JP2022031953A (en) Cylindrical non-aqueous electrolyte primary battery
US20220255121A1 (en) Battery
JP2018056075A (en) Lithium primary battery
WO2024070513A1 (en) Cylindrical battery
JP7398719B2 (en) sealed battery
JP2005293859A (en) Nonaqueous electrolyte solution battery
WO2024004451A1 (en) Cylindrical battery
US20230015845A1 (en) Terminal component and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R151 Written notification of patent or utility model registration

Ref document number: 7411925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151