JP2019121468A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2019121468A
JP2019121468A JP2017254027A JP2017254027A JP2019121468A JP 2019121468 A JP2019121468 A JP 2019121468A JP 2017254027 A JP2017254027 A JP 2017254027A JP 2017254027 A JP2017254027 A JP 2017254027A JP 2019121468 A JP2019121468 A JP 2019121468A
Authority
JP
Japan
Prior art keywords
negative electrode
caulking
negative
terminal
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017254027A
Other languages
Japanese (ja)
Other versions
JP6970889B2 (en
Inventor
才昇 大倉
Toshinori Okura
才昇 大倉
中山 博之
Hiroyuki Nakayama
博之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017254027A priority Critical patent/JP6970889B2/en
Publication of JP2019121468A publication Critical patent/JP2019121468A/en
Application granted granted Critical
Publication of JP6970889B2 publication Critical patent/JP6970889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a sealed battery in which a conductive state between a negative inner terminal and a negative outer terminal becomes stably and has an excellent state.SOLUTION: The present invention provides a sealed battery comprising: an electrode body; a battery case; an inner terminal of a positive and negative electrode; and an outer terminal of the positive and negative electrode. The inner terminal in the negative electrode includes: a pedestal part; an axial part provided so as to penetrate a penetration hole or the like of the outer terminal of the negative electrode while being projected from the pedestal part; and a caulked part projected to an outer side from the penetration hole of the outer terminal of the negative electrode, and caulked and formed in a peripheral edge part surrounding the penetration hole of the outer terminal of the negative electrode. The peripheral edge part in a radial direction of the axial part of the caulked part is welded to a plate part. The welding is performed to the caulked part that a distance from a front surface opposite to the side where the plate part of the caulked part is positioned to the plate part is equal to 0.1 mm or more and 0.55 mm or less in the peripheral edge part of the caulked part.SELECTED DRAWING: Figure 1

Description

本発明は、密閉型電池に関する。   The present invention relates to a sealed battery.

近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。この種の二次電池においては、電池ケースの内部に電極体を収容し、当該電極体と接続する電極端子を電池ケースの上端(蓋体)に引き出した電池構造が知られている。例えば、電極端子が電池ケースの蓋体に引き出され、該蓋体にガスケットを介してかしめ固定された密閉型電池が広く知られている。この種の密閉型電池に関する従来技術として特許文献1が開示されている。   BACKGROUND ART In recent years, lithium ion batteries, nickel hydrogen batteries and other secondary batteries have increased in importance as vehicle-mounted power supplies or as power supplies for personal computers and portable terminals. In particular, a lithium ion secondary battery which is light in weight and capable of obtaining a high energy density is preferably used as a high power supply for vehicle mounting. In this type of secondary battery, a battery structure is known in which an electrode body is housed inside a battery case, and an electrode terminal connected to the electrode body is drawn out to an upper end (lid) of the battery case. For example, a sealed battery is widely known in which an electrode terminal is drawn out to a lid of a battery case and caulked and fixed to the lid via a gasket. Patent document 1 is disclosed as a prior art regarding this type of sealed battery.

特開2016−105355号公報JP, 2016-105355, A

特許文献1には、かしめ部材(内部端子)が蓋体の貫通孔と外部端子の貫通孔とに挿通された後にかしめ変形されることにより、蓋体と外部端子とが締結されて構築された密閉型電池が開示されている。この種の密閉型電池によると、かしめ部材のかしめ変形した部位と外部端子との接触部位が両端子(即ち、かしめ部材と外部端子)間の導電経路となる。   According to Patent Document 1, the cover and the external terminal are fastened by being caulked and deformed after the caulking member (internal terminal) is inserted into the through hole of the cover and the through hole of the external terminal. A sealed battery is disclosed. According to this type of sealed battery, the contact portion between the crimped portion of the caulking member and the external terminal serves as a conductive path between the two terminals (that is, the caulking member and the external terminal).

ここで、上記両端子間の導通抵抗(電気抵抗)をより低下させるために、電池ケースと外部端子とかしめ部材(内部端子)とをかしめ加工により一体に組み付けた後、かしめ部材のかしめ変形した部位と外部端子とが接した部位を溶接(例えばレーザ溶接)して強固に接合することが行われることがある。かかる溶接によると、上記両端子間の導通面積(即ち、導通経路が形成された部位の面積)が増加し、これにより該両端子間の低抵抗が実現され得る。   Here, the battery case, the external terminal, and the caulking member (internal terminal) are integrally assembled by caulking in order to lower the conduction resistance (electrical resistance) between the two terminals, and the caulking member is caulked and deformed. There is a case where welding (for example, laser welding) is performed to firmly bond a portion where the portion and the external terminal are in contact with each other. According to such welding, the conduction area between the two terminals (that is, the area of the portion where the conduction path is formed) is increased, whereby low resistance between the two terminals can be realized.

しかしながら、一般に、溶接による部品同士の接合は、その性質上、一定の水準以上に工作精度を向上させることが困難であった。このため、かしめ部材(内部端子)と外部端子との間の低抵抗を安定して実現するためには、溶接による両端子間の導通面積をなるべく増大させる必要があった。   However, in general, due to the nature of joining of parts by welding, it has been difficult to improve machining accuracy beyond a certain level. For this reason, in order to stably realize low resistance between the caulking member (internal terminal) and the external terminal, it is necessary to increase the conduction area between both terminals by welding as much as possible.

特に、かかる課題は、素材として銅を用いることが多い負極側の端子を溶接して接合する際に顕著にあらわれる傾向がある。本発明は、かかる点に鑑みてなされたものであり、負極側のかしめ部材(負極内部端子)と負極側の外部端子(負極外部端子)との間の導通状態が安定して優れたものとなり得る密閉型電池を提供することを目的とする。   In particular, such problems tend to be noticeable when welding and joining negative terminals, which often use copper as a material. The present invention has been made in view of such a point, and the conduction state between the caulking member on the negative electrode side (negative electrode internal terminal) and the external terminal on the negative electrode side (negative electrode external terminal) becomes stable and excellent. It is an object of the present invention to provide a sealed battery to be obtained.

本発明によると、正極と負極とを備える電極体と、該電極体を収容する電池ケースと、該ケースの内側において該正負極とそれぞれ電気的に接続される正負極の内部端子と、該ケースの外側に設けられ該正負極の内部端子とそれぞれ電気的に接続される正負極の外部端子と、を備える密閉型電池が提供される。   According to the present invention, an electrode body comprising a positive electrode and a negative electrode, a battery case accommodating the electrode body, internal terminals of positive and negative electrodes electrically connected to the positive and negative electrodes inside the case, and the case And an external terminal of positive and negative electrodes respectively provided outside the positive and negative electrodes and electrically connected to the internal terminals of the positive and negative electrodes.

そして、上記負極外部端子は、上記ケースの外壁に沿った方向に形成されたプレート部を有する。また、上記負極内部端子は、上記ケースの内側に位置する台座部と、上記台座部から突設して該ケースの貫通孔および上記プレート部の貫通孔を貫通するように設けられた軸部と、該軸部の該台座部が位置する側とは反対側の端部に設けられ、該プレート部の貫通孔から外側に突出して該プレート部の貫通孔を囲む周縁部分にかしめられて形成されたかしめ部と、を有する。   The negative electrode external terminal has a plate portion formed in the direction along the outer wall of the case. Further, the negative electrode internal terminal is provided with a pedestal portion located inside the case, and a shaft portion projecting from the pedestal portion and penetrating through the through hole of the case and the through hole of the plate portion. The shaft portion is provided at an end opposite to the side where the pedestal portion is located, and is formed by being crimped to a peripheral portion surrounding the through hole of the plate portion by protruding outward from the through hole of the plate portion And a stiffening portion.

上記かしめ部の上記軸部の径方向における周縁部は、上記プレート部に対して溶接されている。ここで、上記溶接は、以下の条件:上記かしめ部の上記周縁部において、該かしめ部の上記プレート部が位置する側とは反対側の表面から該プレート部までの距離hが、0.1mm以上0.55mm以下である;を満たす上記かしめ部に対して行われている。 The peripheral edge portion in the radial direction of the shaft portion of the caulking portion is welded to the plate portion. Here, the welding, the following conditions: in the peripheral portion of the caulking portion, the side on which the plate portion of the caulking portion is located a distance h a from the surface opposite to the plate portion, 0. 1 mm or more and 0.55 mm or less;

かかる構成によると、負極内部端子のかしめ部の軸部の径方向における周縁部と、負極外部端子とが好適に溶接され得る。これにより、負極内部端子と負極外部端子との間の導電面積が増大し得る。かかる導電面積の増大は、負極内部端子と負極外部端子との溶接により実現する両端子間の導通状態の品質安定化に寄与し得る。   According to this structure, the peripheral part in the radial direction of the axial part of the caulking part of the negative electrode internal terminal and the negative electrode external terminal can be suitably welded. Thereby, the conductive area between the negative electrode internal terminal and the negative electrode external terminal can be increased. The increase in the conductive area can contribute to quality stabilization of the conduction state between the two terminals realized by welding the negative electrode internal terminal and the negative electrode external terminal.

一実施形態に係る密閉型電池の要部断面を示す図である。It is a figure which shows the principal part cross section of the sealed battery which concerns on one Embodiment. 一実施形態に係るかしめ加工前の各部材を模式的に示す分解図である。It is an exploded view which shows typically each member before caulking processing concerning one embodiment. 一実施形態に係る負極内部端子のかしめ加工を説明するための断面図である。It is sectional drawing for demonstrating caulking processing of the negative electrode internal terminal which concerns on one Embodiment. 一実施形態に係る負極内部端子のかしめ部の周縁部と中央部を拡大して示す側面図である。It is a side view which expands and shows a peripheral part and a central part of a caulking part of a negative electrode internal terminal concerning one embodiment. 一実施形態に係る負極内部端子と負極外部端子の溶接加工を説明するための断面図である。It is sectional drawing for demonstrating the welding process of the negative electrode internal terminal which concerns on one Embodiment, and a negative electrode external terminal. 一実施形態に係る負極内部端子と負極外部端子の溶接加工を説明するための平面図である。It is a top view for demonstrating the welding process of the negative electrode internal terminal which concerns on one Embodiment, and a negative electrode external terminal. 図6中のVII−VII’線による断面図である。It is sectional drawing by the VII-VII 'line | wire in FIG. かしめ部のエッジ高さと導通面積との関係を示すグラフである。It is a graph which shows the relationship between the edge height of a crimping part, and a conduction area.

以下、適宜図面を参照しながら、本発明の好適な実施形態を説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as appropriate. Matters necessary for the implementation of the present invention other than the matters specifically mentioned in the present specification can be understood as design matters for a person skilled in the art based on prior art in the art. The present invention can be implemented based on the contents disclosed in the present specification and common technical knowledge in the field. In addition, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. Also, the dimensional relationships (length, width, thickness, etc.) in the drawings do not necessarily reflect the actual dimensional relationships.

特に限定することを意図したものではないが、以下では捲回型の電極体(捲回電極体)と非水系の液状電解質(電解液)とを扁平な角形(箱形)のケースに収容した形態の密閉型リチウムイオン二次電池を例として本発明を説明する。   Although not intended to be particularly limited, in the following, the wound electrode assembly (wound electrode assembly) and the non-aqueous liquid electrolyte (electrolytic solution) are housed in a flat rectangular (box) case. The present invention will be described by taking a sealed lithium ion secondary battery in the form as an example.

図1に本実施形態に係る密閉型電池100の要部断面を示す。図1に示すように、密閉型電池100は、負極内部端子10と電池ケース20と負極外部端子30とを備えている。負極内部端子10は、電池ケース20の内側において電極体の負極と電気的に接続されている。また、負極外部端子30は、電池ケース20の外側に設けられ、負極内部端子10と電気的に接続されている。密閉型電池100はさらに、ガスケット40とインシュレータ50とを備えている。ここで、図1における負極内部端子10は、後述するかしめ加工後の状態を示している。   The principal part cross section of the sealed battery 100 which concerns on FIG. 1 at this embodiment is shown. As shown in FIG. 1, the sealed battery 100 includes a negative electrode internal terminal 10, a battery case 20, and a negative electrode external terminal 30. The negative electrode internal terminal 10 is electrically connected to the negative electrode of the electrode body inside the battery case 20. In addition, the negative electrode external terminal 30 is provided on the outside of the battery case 20 and is electrically connected to the negative electrode internal terminal 10. Sealed battery 100 further includes a gasket 40 and an insulator 50. Here, the negative electrode internal terminal 10 in FIG. 1 shows a state after caulking as described later.

<電池ケース>
電池ケース20は、扁平直方体形状における幅狭面の一つが開口部となっている箱形(すなわち有底四角筒状)のケース本体と、その開口部を塞ぐ蓋体とを備える。電池ケース20を構成する材質は、一般的なリチウムイオン二次電池で使用されるものと同様のもの等を適宜使用することができる。放熱性等の観点から、本体および蓋体のほぼ全体が金属製(例えばアルミニウム製、ステンレススチール(SUS)製、スチール製等)である電池ケース20を好ましく採用し得る。電池ケース20の上面(ここでは蓋体)には、捲回電極体の負極と負極内部端子10を介して電気的に接続される負極外部端子30が配置されている。また、電池ケース20には、後述する負極内部端子10の軸部12が挿通される貫通孔22が形成されている。なお、この実施形態において、リチウムイオン二次電池100は角型電池であるが、かかる電池の形状は角型に限定されず、円柱形状等の任意の形状であってよい。
<Battery case>
The battery case 20 includes a box-shaped (that is, a bottomed rectangular cylindrical) case main body in which one of the narrow surfaces in the flat rectangular parallelepiped shape is an opening, and a lid that closes the opening. As a material which constitutes battery case 20, the thing similar to what is used by a common lithium ion secondary battery etc. can be used suitably. From the viewpoint of heat dissipation and the like, a battery case 20 in which almost the entire body and lid are made of metal (for example, aluminum, stainless steel (SUS), steel, etc.) can be preferably employed. A negative electrode external terminal 30 electrically connected via the negative electrode of the wound electrode body and the negative electrode internal terminal 10 is disposed on the upper surface (here, the lid) of the battery case 20. Further, the battery case 20 is formed with a through hole 22 through which a shaft portion 12 of the negative electrode internal terminal 10 described later is inserted. In this embodiment, the lithium ion secondary battery 100 is a square battery, but the shape of the battery is not limited to a square, and may be any shape such as a cylindrical shape.

<負極外部端子>
負極外部端子30は、電池ケース20の外側に設けられている。本実施形態では、負極外部端子30は、電池ケース20の外壁に沿った方向に形成されたプレート部34と、プレート部34から電池ケース20の外側へ向かって突設した突起部(図示せず)を有している。プレート部34には、かしめ加工前における負極内部端子10(図2に示す未変形負極内部端子10a)の軸部12を挿通可能な貫通孔32が設けられている。貫通孔32は、電池ケース20の貫通孔22に対応する位置に形成され、負極内部端子10の軸部12を嵌合する程度の大きさの内径を有している。負極外部端子30の構成材料としては、アルミニウム等の金属材料を好ましく採用することができる。
<Negative external terminal>
The negative electrode external terminal 30 is provided on the outside of the battery case 20. In the present embodiment, the negative electrode external terminal 30 has a plate portion 34 formed in a direction along the outer wall of the battery case 20, and a projection (not shown) protruding from the plate portion 34 toward the outside of the battery case 20. )have. The plate portion 34 is provided with a through hole 32 through which the shaft portion 12 of the negative electrode internal terminal 10 (the non-deformed negative internal terminal 10a shown in FIG. 2) before caulking can be inserted. The through hole 32 is formed at a position corresponding to the through hole 22 of the battery case 20 and has an inner diameter of a size that fits the shaft portion 12 of the negative electrode internal terminal 10. As a constituent material of the negative electrode external terminal 30, a metal material such as aluminum can be preferably adopted.

<インシュレータ>
インシュレータ50は、負極外部端子30と電池ケース20とを絶縁する部材である。インシュレータ50は、電池ケース20における電池の外側に位置する外面に配置されている。インシュレータ50は、電池ケース20の貫通孔22に対応する位置に貫通孔52を有する。この貫通孔52は、負極内部端子10の軸部12を嵌合する程度の大きさの内径を有している。インシュレータ50は、負極内部端子10のかしめ加工により、貫通孔52を囲む部分が電池ケース20と負極外部端子30との間に挟み込まれて軸部12の軸方向に圧縮されている。インシュレータ50の構成材料としては、ポリフェニレンサルファイド樹脂(PPS)、脂肪族ポリアミド等の樹脂材料を好ましく採用することができる。
<Insulator>
The insulator 50 is a member that insulates the negative electrode external terminal 30 and the battery case 20. The insulator 50 is disposed on the outer surface of the battery case 20 located on the outside of the battery. The insulator 50 has a through hole 52 at a position corresponding to the through hole 22 of the battery case 20. The through hole 52 has an inner diameter of such a size as to fit the shaft portion 12 of the negative electrode internal terminal 10. The insulator 50 is compressed in the axial direction of the shaft 12 by being pinched between the battery case 20 and the negative electrode external terminal 30 by caulking the negative electrode internal terminal 10 so as to surround the through hole 52. As a constituent material of insulator 50, resin materials, such as polyphenylene sulfide resin (PPS) and aliphatic polyamide, can be adopted preferably.

<ガスケット>
ガスケット40には、かしめ加工前における負極内部端子10(図2に示す未変形負極内部端子10a)の軸部12を挿通させる貫通孔42が設けられている。ガスケット40は、貫通孔42を囲む部分が電池ケース20と負極内部端子10の台座部14との間に挟み込まれて圧縮されることにより、負極内部端子10(台座部14)と電池ケース20とを絶縁するとともに、電池ケース20の貫通孔22をシールする。ガスケット40は、電池ケース20の貫通孔22に内側から挿入されて負極内部端子10の軸部12と電池ケース20との直接接触を阻む(絶縁する)筒部44を有する。筒部44は中空円筒状の形状を有している。筒部44は、その外周面が貫通孔22の内周面に接触し、かつ、その内周面が負極内部端子10の軸部12の外周面に接触するように設けられている。ガスケット40の構成材料としては、使用する電解液に対して耐性を示す各種の樹脂材料を適宜選択して用いることができる。例えば、ペルフルオロアルコキシフッ素樹脂(PFA)等のフッ素化樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルケトンケトン樹脂(PEKK)、ポリエーテルスルホン樹脂(PES)等の樹脂材料を採用することができる。
<Gasket>
The gasket 40 is provided with a through hole 42 through which the shaft portion 12 of the negative electrode internal terminal 10 (the non-deformed negative internal terminal 10 a shown in FIG. 2) is crimped. In the gasket 40, the portion surrounding the through hole 42 is sandwiched between the battery case 20 and the pedestal portion 14 of the negative electrode internal terminal 10 and compressed so that the negative electrode internal terminal 10 (pedestal portion 14) and the battery case 20 And the through hole 22 of the battery case 20 is sealed. The gasket 40 has a cylindrical portion 44 which is inserted from the inside into the through hole 22 of the battery case 20 and prevents (insulates) direct contact between the shaft portion 12 of the negative electrode internal terminal 10 and the battery case 20. The cylindrical portion 44 has a hollow cylindrical shape. The cylindrical portion 44 is provided such that its outer peripheral surface is in contact with the inner peripheral surface of the through hole 22 and its inner peripheral surface is in contact with the outer peripheral surface of the shaft 12 of the negative electrode internal terminal 10. As a constituent material of the gasket 40, various resin materials exhibiting resistance to the electrolyte to be used can be appropriately selected and used. For example, fluorinated resin such as perfluoroalkoxy fluorine resin (PFA), polyphenylene sulfide resin (PPS), polyimide resin, polyamide imide resin, polyether ether ketone resin (PEEK), polyether ketone ketone resin (PEKK), polyether sulfone A resin material such as resin (PES) can be employed.

<負極内部端子>
負極内部端子10は、金属材料(銅やアルミニウム)等の導電性材料により構成されている。負極内部端子10は、電池ケース20に設けられた貫通孔22に挿通されている。負極内部端子10は、電池ケース20の外部で負極外部端子30に接続され、電池ケース20の内部で電極体に電気的に接続されている。負極内部端子10は、負極外部端子30と電極体とを電気的に接続している。
<Negative internal terminal>
The negative electrode internal terminal 10 is made of a conductive material such as a metal material (copper or aluminum). The negative electrode internal terminal 10 is inserted into the through hole 22 provided in the battery case 20. The negative electrode internal terminal 10 is connected to the negative electrode external terminal 30 outside the battery case 20, and is electrically connected to the electrode body inside the battery case 20. The negative electrode internal terminal 10 electrically connects the negative electrode external terminal 30 to the electrode body.

図2は、後述するかしめ加工前の各部材を模式的に示す分解図である。図1および図2に示す実施形態では、負極内部端子10(未変形負極内部端子10a)は、電池ケース20および負極外部端子30を貫通する軸部12と、軸部12の一端部の外周面に設けられた台座部14とを有している。軸部12は、電池ケース20の貫通孔22に挿通され、電池ケース20を軸方向に貫通して延びている。また、軸部12は、電池ケース20の外部において、さらにインシュレータ50の貫通孔52および負極外部端子30の貫通孔32に挿通され、インシュレータ50および負極外部端子30を軸方向に貫通している。台座部14は、電池ケース20内において、軸部12の一端部の外周面に設けられている。台座部14は、負極内部端子10の軸方向に対して直交する方向に延出した鍔形状を有している。この実施形態では、台座部14は、電池ケース(ここでは蓋体)20の内面と略平行に広がるとともに、電池ケース20と電極体との間に配置されている。   FIG. 2: is an exploded view which shows typically each member before the crimping process mentioned later. In the embodiment shown in FIG. 1 and FIG. 2, the negative electrode internal terminal 10 (non-deformed negative internal terminal 10 a) has the shaft portion 12 penetrating the battery case 20 and the negative electrode external terminal 30 and the outer peripheral surface of one end of the shaft portion 12 And a pedestal portion 14 provided on the The shaft portion 12 is inserted into the through hole 22 of the battery case 20 and extends through the battery case 20 in the axial direction. The shaft portion 12 is further inserted through the through hole 52 of the insulator 50 and the through hole 32 of the negative electrode external terminal 30 outside the battery case 20, and penetrates the insulator 50 and the negative electrode external terminal 30 in the axial direction. The pedestal portion 14 is provided on the outer peripheral surface of one end portion of the shaft portion 12 in the battery case 20. The pedestal portion 14 has a bowl shape extending in a direction orthogonal to the axial direction of the negative electrode internal terminal 10. In this embodiment, the pedestal 14 extends substantially in parallel with the inner surface of the battery case (here, the lid) 20 and is disposed between the battery case 20 and the electrode body.

<かしめ加工>
負極内部端子10と負極外部端子30とは、かしめ(リベッティング)加工によって負極内部端子10が負極外部端子30にかしめられることで、電池ケース20に固定される。図1の負極内部端子10(軸部12)の先端には、かしめ加工によりかしめ部16が形成されている。
<Screw processing>
The negative electrode internal terminal 10 and the negative electrode external terminal 30 are fixed to the battery case 20 by caulking (revetting) the negative electrode internal terminal 10 to the negative electrode external terminal 30. A caulking portion 16 is formed by caulking on the tip of the negative electrode internal terminal 10 (shaft portion 12) in FIG.

図3は、一実施形態に係る負極内部端子10(未変形負極内部端子10a)のかしめ加工を説明するための断面図である。負極内部端子10のかしめ加工を行うためには、まず、未だかしめ加工が施されていない負極内部端子10である未変形負極内部端子10aの軸部12を、負極外部端子30とインシュレータ50と電池ケース20とガスケット40とを積層した積層部分を貫通するように、電池ケース20の外側に突出させる。そして、突出した未変形負極内部端子10の先端部分であって軸部12の台座部14が位置する側とは反対側の端部を、回転ヘッド62を有するロータリかしめ機60を用いて、放射状に拡径して負極外部端子30の貫通孔32を囲む周縁部分にかしめることにより、かしめ部16が形成され、電池ケース20と負極外部端子30との間でインシュレータ50が圧縮されるとともに、負極外部端子30と電池ケース20とインシュレータ50と負極内部端子10とが一体に固定される。また、上記かしめ加工により、電池ケース20と台座部14の間でガスケット40が圧縮され、これにより電池ケース20の貫通孔22がシールされる。   FIG. 3 is a cross-sectional view for explaining caulking processing of the negative electrode internal terminal 10 (non-deformed negative internal terminal 10a) according to one embodiment. In order to crimp the negative internal terminal 10, first, the shaft 12 of the non-deformed negative internal terminal 10a, which is the negative internal terminal 10 that has not been crimped, is processed by the negative external terminal 30, the insulator 50, and the battery. The battery case 20 is protruded to the outside of the battery case 20 so as to penetrate the laminated portion in which the case 20 and the gasket 40 are laminated. Then, using the rotary caulking machine 60 having the rotary head 62, the end portion of the tip end portion of the non-deformed negative internal terminal 10 which is protruded and opposite to the side where the pedestal portion 14 of the shaft portion 12 is positioned The caulking portion 16 is formed by caulking at the peripheral portion surrounding the through hole 32 of the negative electrode external terminal 30, and the insulator 50 is compressed between the battery case 20 and the negative electrode external terminal 30, Negative electrode external terminal 30, battery case 20, insulator 50, and negative electrode internal terminal 10 are integrally fixed. Further, the gasket 40 is compressed between the battery case 20 and the pedestal portion 14 by the caulking process, whereby the through hole 22 of the battery case 20 is sealed.

図4は、かしめ加工により形成された一実施形態に係るかしめ部16の軸部12の径方向における周縁部16aと、かしめ部16の軸部12の径方向における中央部16bとを拡大して示す側面図である。以下、「かしめ部16の周縁部16a」とはかしめ部16の軸部12の径方向における周縁部16aのことを指す。図4を参照しながら、かしめ部16の形状について、簡単に説明する。   FIG. 4 is an enlarged view of a peripheral edge portion 16 a in the radial direction of the shaft portion 12 of the caulking portion 16 according to an embodiment formed by caulking and a central portion 16 b in the radial direction of the shaft portion 12 of the caulking portion 16. FIG. Hereinafter, the “peripheral edge portion 16 a of the caulking portion 16” refers to the peripheral edge portion 16 a in the radial direction of the shaft portion 12 of the caulking portion 16. The shape of the caulking portion 16 will be briefly described with reference to FIG.

かしめ部16の周縁部16aにおいて、かしめ部16の負極外部端子30(プレート部34)が位置する側とは反対側の表面からプレート部34までの距離をエッジ高さhとする。また、かしめ部16の軸部12の径方向における最外側の位置からプレート部34までの距離を、最外周高さhとする。かしめ部16が、かしめ部16と負極外部端子30のプレート部34とが密着している位置から、軸部12の径方向の外側へ突出した長さを、エッジ長さdとする。さらに、かしめ部16の軸部16の径方向における中央部16bにおいてプレート部34から最も離れた位置からプレート部34までの距離を、かしめ高さhとする。また、後述する図6に、かしめ部16の軸部12の径方向における直径であるかしめ径eを示す。 In the peripheral portion 16a of the caulking portion 16, and the negative electrode external terminal 30 (plate portion 34) is the distance the edge height h a of the surface opposite to the side where it is located to the plate portion 34 of the caulking portion 16. Further, the distance from the outermost position in the radial direction of the shaft portion 12 of the caulking portion 16 to the plate portion 34 is taken as the outermost circumference height h b . The length of the caulking portion 16 protruding outward in the radial direction of the shaft portion 12 from the position where the caulking portion 16 and the plate portion 34 of the negative electrode external terminal 30 are in close contact is an edge length d. Further, the distance from the position most distant from the plate portion 34 to the plate portion 34 in the radial central portion 16 b of the shaft portion 16 of the caulking portion 16 is taken as the caulking height h c . Further, FIG. 6 described later shows a caulking diameter e which is a diameter in the radial direction of the shaft portion 12 of the caulking portion 16.

後に詳述するが、溶接加工による負極内部端子10と負極外部端子30との導通性向上の観点から、かしめ加工は、エッジ高さhが0.1mm以上0.55mm以下となるように行われることが好ましい。最外周高さh、エッジ長さd、かしめ高さhおよびかしめ径eの大きさは特に限定されない。通常は、上述したかしめ加工により、かしめ部16は、図4に示すように、h<h<hを満たす形状となる。 As will be described later in detail, from the viewpoint of improving the conductivity between the negative electrode internal terminal 10 and the negative electrode external terminal 30 by welding, caulking is performed so that the edge height h a is 0.1 mm or more and 0.55 mm or less. Preferably it is The sizes of the outermost circumferential height h b , edge length d, caulking height h c and caulking diameter e are not particularly limited. Usually, the caulking portion 16 has a shape satisfying h b <h a <h c as shown in FIG. 4 by the caulking process described above.

<溶接加工>
かしめ加工が行われてかしめ部16が形成された負極内部端子10は、その後、負極外部端子30のプレート部34に対して溶接される。図5および図6は、一実施形態に係る負極内部端子10と負極外部端子30との溶接加工を説明するための断面図および平面図であり、図7は図6中のVII−VII’線による断面図である。図5、図6および図7に示すように、かしめ部16の周縁部16aは負極外部端子30に溶接される。好ましくは、かしめ部16の周縁部16a近傍(かしめ部16の周縁部16aから、その外側(軸部16の径方向の外側)に位置するプレート部34までを跨ぐ領域)に対して、連続発振のレーザ光Laが照射され、さらにレーザ光Laはかしめ部16の外縁に沿って周回するように移動することにより、溶接(レーザ溶接)がかしめ部16の全周囲に対して行われる。
<Welding process>
The negative electrode internal terminal 10 in which the caulking portion 16 is formed by caulking is then welded to the plate portion 34 of the negative electrode external terminal 30. 5 and 6 are a cross-sectional view and a plan view for explaining the welding process of the negative electrode internal terminal 10 and the negative electrode external terminal 30 according to one embodiment, and FIG. 7 is a VII-VII 'line in FIG. FIG. As shown in FIGS. 5, 6 and 7, the peripheral portion 16 a of the caulking portion 16 is welded to the negative electrode external terminal 30. Preferably, continuous oscillation is performed in the vicinity of the peripheral portion 16a of the caulking portion 16 (a region extending from the peripheral portion 16a of the caulking portion 16 to the plate portion 34 located on the outer side thereof (radially outer side of the shaft portion 16)) The laser beam La is irradiated, and the laser beam La further travels along the outer edge of the caulking portion 16 so that welding (laser welding) is performed on the entire periphery of the caulking portion 16.

図7は、溶接加工後のかしめ部16の周縁部16aを拡大して示している。かしめ部16の周縁部16aには溶接加工により溶接部70が形成している。図7に示すように、溶接加工後の負極内部端子10と負極外部端子30との境界領域における溶接部70の長さを溶接部長さfとする。かしめ部16の溶接加工を行った後、この溶接部長さfを測定することにより、負極内部端子10と負極外部端子30の間における導通面積を算出することができる。かかる導通面積は、負極内部端子10と負極外部端子30との間の導通性の指標となり得る。   FIG. 7 is an enlarged view of the peripheral portion 16 a of the caulking portion 16 after the welding process. A welded portion 70 is formed on the peripheral portion 16 a of the caulking portion 16 by welding. As shown in FIG. 7, the length of the welded portion 70 in the boundary region between the negative electrode internal terminal 10 and the negative electrode external terminal 30 after welding is taken as the welded portion length f. After the caulking portion 16 is subjected to the welding process, the conduction area between the negative electrode internal terminal 10 and the negative electrode external terminal 30 can be calculated by measuring the welded portion length f. The conduction area can be an indicator of the conduction between the negative electrode internal terminal 10 and the negative electrode external terminal 30.

ここで、本発明者らは、負極内部端子10のかしめ部16の形状(特にかしめ部16の周辺部の形状)を制御することにより、負極内部端子10のかしめ部16と負極外部端子30(プレート部34)との溶接による両端子間の導電面積が増大することを見出した。ここに開示する技術によると、かしめ部16のエッジ高さhは、0.55mm以下であることが好ましい。エッジ高さhが0.55mm以下であると、例え溶接により形成される溶接部70の形状またはサイズにバラつきがあったとしても、安定して負極内部端子10と負極外部端子30の間の低抵抗を実現するのに十分な大きさの導通面積を実現することができる。また、エッジ高さhは0.1mm以上であることが好ましい。エッジ高さhが0.1mmより小さすぎると、レーザ溶接加工時に発生し得る熱の影響が周辺部品に及ぶおそれがある。 Here, the present inventors control the shape of the caulking portion 16 of the negative electrode internal terminal 10 (in particular, the shape of the peripheral portion of the caulking portion 16), thereby the caulking portion 16 of the negative electrode internal terminal 10 and the negative electrode external terminal 30 ( It has been found that the conductive area between the two terminals by welding with the plate portion 34) is increased. According to the disclosed technique, edge height h a of the caulking portion 16 is preferably not more than 0.55 mm. When the edge height h a is not more than 0.55 mm, even if variation in the example the shape or size of the weld 70 formed by welding, stable during the negative internal terminal 10 and the negative electrode external terminal 30 A conduction area large enough to realize low resistance can be realized. Further, it is preferable that the edge height h a is 0.1mm or more. When the edge height h a is too small than 0.1 mm, the influence of heat is likely to extend to peripheral components that may occur during the laser welding process.

かしめ部16のエッジ高さhを制御する方法としては、特に限定されない。図3に示すように、回転ヘッド62を有するロータリかしめ機60を用いて、未変形負極内部端子10aの先端部分をかしめ変形させるかしめ加工を行う場合において、ロータリかしめ機60の下死点を制御することにより、好適な範囲のエッジ高さhを実現することができる。具体的には、ロータリかしめ機60の下死点を降下させるほど、エッジ高さhが低下する傾向がある。 As a method of controlling the edge height h a of the caulking portion 16 is not particularly limited. As shown in FIG. 3, in the case of performing a caulking process in which the tip portion of the non-deformed negative internal terminal 10 a is caulked and deformed using the rotary caulking machine 60 having the rotary head 62, the bottom dead center of the rotary caulking machine 60 is controlled by, it is possible to realize the edge height h a of the preferred range. Specifically, as lowering the bottom dead center of the rotary swaging machine 60, the edge height h a tends to decrease.

以下、本発明に関する試験例を説明するが、以下の説明は本発明を限定することを意図したものではない。   Hereinafter, test examples relating to the present invention will be described, but the following description is not intended to limit the present invention.

図2に示すように、電池ケース(ここでは蓋体)20を用意し、その内側面にガスケット40を、外側面にインシュレータ50および負極外部端子30をセットした。次いで、かしめ加工する前の未変形負極内部端子10aを用意し、その軸部12を電池ケース20の貫通孔22、ガスケット40の貫通孔42および負極外部端子30の貫通孔32に順次挿通して、電池ケース20および負極外部端子30に貫通させた。そして、押圧治具を用いてガスケット40およびインシュレータ50に対して負極外部端子30側から荷重を加えて押圧することで、上記貫通した未変形負極内部端子10aの軸部12の先端部分であって台座部14が位置する側とは反対側の端部を、負極外部端子30の貫通孔32から外方に突出させた。その状態で、図3に示すように、回転ヘッド62を有するロータリかしめ機60を用いて、上記突出した軸部12の端部を放射状に拡径して負極外部端子30の貫通孔32を囲む周縁部分にかしめることにより、電池ケース20の貫通孔22に負極外部端子30を取り付けて(かしめ加工)、組立体を構築した。   As shown in FIG. 2, a battery case (a lid in this case) 20 was prepared, and a gasket 40 was set on the inner side, and an insulator 50 and a negative electrode external terminal 30 were set on the outer side. Then, the undeformed negative internal terminal 10a before caulking is prepared, and its shaft portion 12 is sequentially inserted through the through hole 22 of the battery case 20, the through hole 42 of the gasket 40, and the through hole 32 of the negative electrode external terminal 30. The battery case 20 and the negative electrode external terminal 30 were penetrated. Then, a load is applied to the gasket 40 and the insulator 50 from the side of the negative electrode external terminal 30 using a pressing jig, and the load is applied to the tip portion of the shaft portion 12 of the non-deformed negative internal terminal 10a. The end on the side opposite to the side where the pedestal portion 14 is positioned is protruded outward from the through hole 32 of the negative electrode external terminal 30. In that state, as shown in FIG. 3, the end of the protruding shaft portion 12 is radially expanded using a rotary caulking machine 60 having a rotary head 62 to surround the through hole 32 of the negative electrode external terminal 30. The negative electrode external terminal 30 was attached to the through hole 22 of the battery case 20 by caulking on the peripheral portion (crimping process) to construct an assembly.

かかるかしめ工程において、ロータリかしめ機60の下死点の設定を上下に変化させてかしめ加工を行い、かしめ加工後に形成されるかしめ部16の形状を観察した。表1に、ロータリかしめ機60の下死点を相対的に下方に設定してかしめ加工を行った例1と、ロータリかしめ機60の下死点を相対的に上方に設定してかしめ加工を行った例2について、かしめ部16の形状を観察した結果を示す。   In the caulking process, the setting of the bottom dead center of the rotary caulking machine 60 was changed up and down to perform caulking, and the shape of the caulking portion 16 formed after caulking was observed. Table 1 shows an example 1 where the bottom dead center of the rotary caulking machine 60 is set relatively lower and the caulking process is performed, and the lower dead center of the rotary caulking machine 60 is set relatively upper and the caulking process is performed. The result of having observed the shape of caulking part 16 is shown about Example 2 performed.

Figure 2019121468
Figure 2019121468

表1に示すように、ロータリかしめ機60の下死点を制御することにより、かしめ部16の形状(特にエッジ高さh)を制御することができることが確かめられた。かかる試験を複数回行った結果、ロータリかしめ機60の下死点を降下させるほど、かしめ部16のエッジ高さhが低下する傾向があることが確かめられた。 As shown in Table 1, it was confirmed that the shape of the caulking portion 16 (particularly, the edge height ha ) can be controlled by controlling the bottom dead center of the rotary caulking machine 60. Result of performing a plurality of times such tests, as lowering the bottom dead center of the rotary swaging machine 60, the edge height h a of the caulking portion 16 was confirmed to be prone to decrease.

次に、かしめ加工を行った組立体について、かしめ部16の周縁部16aと負極外部端子30とをレーザ溶接により全周接合した。溶接加工後のかしめ部16の周縁部16aを観測し、溶接部長さf(図7)を測定し、溶接部長さfから導通面積を算出した。その結果を表1および図8に示す。なお、図8は、かしめ部16のエッジ高さh[mm]と導通面積[mm]との関係を表したグラフである。 Next, with respect to the assembly subjected to caulking, the peripheral edge portion 16a of the caulking portion 16 and the negative electrode external terminal 30 were joined by laser welding all around. The peripheral portion 16a of the crimped portion 16 after welding was observed, the weld length f (FIG. 7) was measured, and the conduction area was calculated from the weld length f. The results are shown in Table 1 and FIG. Incidentally, FIG. 8 is a graph showing the relationship between the edge height h a [mm] and conduction area of the crimped portion 16 [mm 2].

表1および図8に示す結果から明らかなように、かしめ部のエッジ高さhが小さいほど、導通面積は向上することが分かった。ここで、導通面積が約0.6mm以上であると、例え溶接工程において溶接品質のバラつきが生じたとしても、負極内部端子10と負極外部端子30との間の低抵抗が安定して達成され得るといえる。図8に示す結果より、かしめ部16のエッジ高さhが0.55mm以下であると、導通面積は概ね0.6mm以上となり、実用上好適な安定的品質を有する密閉型電池を構築することができることが分かった。 Table 1 and is apparent from the results shown in FIG. 8, as the edge height h a of the caulking portion is small, the conduction area was improved. Here, if the conduction area is about 0.6 mm 2 or more, low resistance between the negative electrode internal terminal 10 and the negative electrode external terminal 30 can be stably achieved even if the welding quality varies in the welding process, for example. It can be said that Building from the results shown in Figure 8, the edge height h a of the caulking portion 16 is less than 0.55 mm, the conduction area generally becomes 0.6 mm 2 or more, a sealed battery having a practically suitable stable quality It turns out that you can do it.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Although the specific examples of the present invention have been described above in detail, these are merely examples and do not limit the scope of the claims. The art set forth in the claims includes various variations and modifications of the specific examples illustrated above.

10 負極内部端子
12 軸部
14 台座部
16 かしめ部
20 電池ケース
22 貫通孔
30 負極外部端子
32 貫通孔
34 プレート部
40 ガスケット
42 貫通孔
50 インシュレータ
52 貫通孔
60 ロータリかしめ機
62 回転ヘッド
100 密閉型電池
DESCRIPTION OF SYMBOLS 10 negative internal terminal 12 axial part 14 base part 16 caulking part 20 battery case 22 through hole 30 negative electrode external terminal 32 through hole 34 plate part 40 gasket 42 through hole 50 insulator 52 through hole 60 rotary caulking machine 62 rotary head 100 sealed type battery

Claims (1)

正極と負極とを備える電極体と、
前記電極体を収容する電池ケースと、
前記ケースの内側において前記正負極とそれぞれ電気的に接続される正負極の内部端子と、
前記ケースの外側に設けられ、前記正負極の内部端子とそれぞれ電気的に接続される正負極の外部端子と、
を備える密閉型電池であって、
前記負極外部端子は、
前記ケースの外壁に沿った方向に形成されたプレート部を有し、
前記負極内部端子は、
前記ケースの内側に位置する台座部と、
前記台座部から突設して前記ケースの貫通孔および前記プレート部の貫通孔を貫通するように設けられた軸部と、
前記軸部の前記台座部が位置する側とは反対側の端部に設けられ、前記プレート部の貫通孔から外側に突出して該プレート部の貫通孔を囲む周縁部分にかしめられて形成されたかしめ部と、
を有し、
前記かしめ部の前記軸部の径方向における周縁部は、前記プレート部に対して溶接されており、
前記溶接は、以下の条件:
前記かしめ部の前記周縁部において、前記かしめ部の前記プレート部が位置する側とは反対側の表面から前記プレート部までの距離hが、0.1mm以上0.55mm以下である;
を満たす前記かしめ部に対して行われていること、を特徴とする密閉型電池。
An electrode body comprising a positive electrode and a negative electrode;
A battery case for housing the electrode body;
Internal terminals of positive and negative electrodes electrically connected to the positive and negative electrodes inside the case;
Positive and negative external terminals provided on the outside of the case and electrically connected to the positive and negative internal terminals respectively;
A sealed battery comprising:
The negative external terminal is
It has a plate portion formed in a direction along the outer wall of the case,
The negative internal terminal is
A pedestal located inside the case,
A shaft portion provided so as to protrude from the pedestal portion and pass through the through hole of the case and the through hole of the plate portion;
It is provided at the end opposite to the side where the pedestal portion of the shaft portion is located, and is formed by caulking at the peripheral portion surrounding the through hole of the plate portion by protruding outward from the through hole of the plate portion With caulking part,
Have
A peripheral edge portion in a radial direction of the shaft portion of the caulking portion is welded to the plate portion;
Said welding is under the following conditions:
In the periphery of the caulking portion, and the side of the plate portion of the caulking portion is located a distance h a from the surface opposite to said plate portion, is 0.1mm or 0.55mm or less;
A sealed battery characterized in that it is performed on the crimped portion satisfying the following conditions.
JP2017254027A 2017-12-28 2017-12-28 Sealed battery Active JP6970889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254027A JP6970889B2 (en) 2017-12-28 2017-12-28 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254027A JP6970889B2 (en) 2017-12-28 2017-12-28 Sealed battery

Publications (2)

Publication Number Publication Date
JP2019121468A true JP2019121468A (en) 2019-07-22
JP6970889B2 JP6970889B2 (en) 2021-11-24

Family

ID=67306466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254027A Active JP6970889B2 (en) 2017-12-28 2017-12-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP6970889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4228077A1 (en) 2022-02-14 2023-08-16 Prime Planet Energy & Solutions, Inc. Battery
JP7411925B2 (en) 2019-09-30 2024-01-12 パナソニックIpマネジメント株式会社 Manufacturing method of sealed battery with terminal and sealed battery with terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283256A (en) * 2008-05-21 2009-12-03 Toyota Motor Corp Power supply device and power supply device manufacturing method
JP2012028246A (en) * 2010-07-27 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283256A (en) * 2008-05-21 2009-12-03 Toyota Motor Corp Power supply device and power supply device manufacturing method
JP2012028246A (en) * 2010-07-27 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411925B2 (en) 2019-09-30 2024-01-12 パナソニックIpマネジメント株式会社 Manufacturing method of sealed battery with terminal and sealed battery with terminal
EP4228077A1 (en) 2022-02-14 2023-08-16 Prime Planet Energy & Solutions, Inc. Battery

Also Published As

Publication number Publication date
JP6970889B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP2009283256A (en) Power supply device and power supply device manufacturing method
JP2010199069A (en) Cylindrical secondary battery
JP6037204B2 (en) Storage element and conductive member
JP6460417B2 (en) Battery manufacturing method
JP6693042B2 (en) Storage element
JP2019121468A (en) Sealed battery
US20160343518A1 (en) Capacitor
JP2011029425A (en) Electric double-layer capacitor and method of manufacturing the same
JPWO2012105371A1 (en) Storage element and method for manufacturing the same
JP6915548B2 (en) Manufacturing method of sealing member, power storage element and power storage element
JP4641731B2 (en) battery
JP6963730B2 (en) Sealed battery
JP7214692B2 (en) Terminal, secondary battery with the same, and manufacturing method thereof
JP7214693B2 (en) Terminal, secondary battery with the same, and manufacturing method thereof
CN111081965B (en) Battery and method for manufacturing battery
JP2016054109A (en) battery
JP6836720B2 (en) Sealed battery
JP5297697B2 (en) Cylindrical battery
JP7049586B2 (en) battery
JP2021082449A (en) Manufacturing method of sealed battery
JP2016029609A (en) Insulating gasket of cylindrical battery and cylindrical battery
JP2019125511A (en) Sealed battery
WO2021230014A1 (en) Hermetically sealed battery
JP7449468B2 (en) Current collector terminal
JP6688467B2 (en) Method for manufacturing sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R151 Written notification of patent or utility model registration

Ref document number: 6970889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151