JP7409037B2 - 推定装置、推定方法、推定プログラム - Google Patents

推定装置、推定方法、推定プログラム Download PDF

Info

Publication number
JP7409037B2
JP7409037B2 JP2019210764A JP2019210764A JP7409037B2 JP 7409037 B2 JP7409037 B2 JP 7409037B2 JP 2019210764 A JP2019210764 A JP 2019210764A JP 2019210764 A JP2019210764 A JP 2019210764A JP 7409037 B2 JP7409037 B2 JP 7409037B2
Authority
JP
Japan
Prior art keywords
state quantity
vehicle
parameter
dead reckoning
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210764A
Other languages
English (en)
Other versions
JP2021081370A (ja
Inventor
雄一 南口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019210764A priority Critical patent/JP7409037B2/ja
Priority to CN202080080267.XA priority patent/CN114729812A/zh
Priority to PCT/JP2020/036370 priority patent/WO2021100318A1/ja
Publication of JP2021081370A publication Critical patent/JP2021081370A/ja
Priority to US17/663,810 priority patent/US20220276054A1/en
Application granted granted Critical
Publication of JP7409037B2 publication Critical patent/JP7409037B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/20Sideslip angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Traffic Control Systems (AREA)

Description

本開示は、車両の状態量を推定する推定技術に、関する。
従来、車両の内界から取得される内界情報に基づいたデッドレコニングにより、車両の位置を含む状態量が推定されている。このような推定技術の一種として特許文献1の開示技術は、デッドレコニングでの推定結果に含まれる航法誤差を補正するために、ダイナミクスをモデル化した状態方程式に基づくカルマンフィルタを、用いている。
特開2008-249639号公報
しかし、特許文献1の開示技術では、車両挙動を変化させる動的パラメータとしてダイナミクスモデルに含まれるパラメータ自体に誤差が生じると、デッドレコニングの精度が低下する。この動的パラメータでは、例えば路面状況等、車両挙動以外の要因に応じた変動分が誤差となる。しかし、こうした動的パラメータの誤差は、カルマンフィルタによっては正確には補正又は補償され得ず、状態量の推定精度を低下させてしまう。
本開示の課題は、状態量の推定精度を高める推定装置を、提供することにある。本開示の別の課題は、状態量の推定精度を高める推定方法を、提供することにある。本開示のさらに別の課題は、状態量の推定精度を高める推定プログラムを、提供することにある。
以下、課題を解決するための本開示の技術的手段について、説明する。尚、特許請求の範囲及び本欄に記載された括弧内の符号は、後に詳述する実施形態に記載された具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
本開示の第一態様は、
車両(4)の位置を含む状態量を推定する推定装置(1)であって、
車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、状態量を推定するデッドレコニング部(100)と、
車両の走行環境を表す地図情報(Im)と、車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、状態量を観測するマップマッチング部(120)と、
マップマッチングにより観測される状態量に対して、デッドレコニングにより推定される状態量がオフセットしたオフセット量(δz)に基づき、デッドレコニングへフィードバックする動的パラメータを、補正するパラメータ補正部(140)とを、備え
パラメータ補正部は、オフセット量のうち、デッドレコニングにより推定される状態量が動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測し、当該予測のずれ分に対応した変動量により、動的パラメータを補正する
本開示の第二態様は、
プロセッサ(12)により実行され、車両(4)の位置を含む状態量を推定する推定方法であって、
車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、状態量を推定するデッドレコニングプロセス(S101)と、
車両の走行環境を表す地図情報(Im)と、車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、状態量を観測するマップマッチングプロセス(S102)と、
マップマッチングにより観測される状態量に対して、デッドレコニングにより推定される状態量がオフセットしたオフセット量(δz)に基づき、デッドレコニングへフィードバックする動的パラメータを、補正するパラメータ補正プロセス(S103)とを、含み、
パラメータ補正プロセスは、オフセット量のうち、デッドレコニングにより推定される状態量が動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測し、当該予測のずれ分に対応した変動量により、動的パラメータを補正する
本開示の第三態様は、
車両(4)の位置を含む状態量を推定するために記憶媒体(10)に格納され、プロセッサ(12)に実行させる命令を含む推定プログラムであって、
命令は、
車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、状態量を推定させるデッドレコニングプロセス(S101)と、
車両の走行環境を表す地図情報(Im)と、車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、状態量を観測させるマップマッチングプロセス(S102)と、
マップマッチングにより観測される状態量に対して、デッドレコニングにより推定される状態量がオフセットしたオフセット量(δz)に基づき、デッドレコニングへフィードバックさせる動的パラメータを、補正させるパラメータ補正プロセス(S103)とを、含み、
パラメータ補正プロセスは、オフセット量のうち、デッドレコニングにより推定される状態量が動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測させ、当該予測のずれ分に対応した変動量により、動的パラメータを補正させる
これら第一~第三態様によると、車両挙動を変化させる動的パラメータの補正は、マップマッチングによる観測状態量に対してデッドレコニングによる推定状態量がオフセットしたオフセット量に、基づくこととなる。この補正によれば、動的パラメータを正確に補正してデッドレコニングへとフィードバックすることができる。故に、フィードバックされた動的パラメータを含むダイナミクスモデルに基づくことで、デッドレコニングによる状態量の推定精度を高めることが可能となる。
一実施形態による推定装置の全体構成を示すブロック図である。 一実施形態による推定装置の詳細構成を示すブロック図である。 一実施形態によるデッドレコニングブロックについて説明するための模式図である。 一実施形態によるデッドレコニングブロックについて説明するための模式図である。 一実施形態の変形例による推定装置の詳細構成を示すブロック図である。 一実施形態によるマップマッチングブロックについて説明するための模式図である。 一実施形態によるパラメータ補正ブロックについて説明するための模式図である。 一実施形態の変形例による推定装置の詳細構成を示すブロック図である。 一実施形態の変形例による推定装置の詳細構成を示すブロック図である。 一実施形態による推定方法を示すフローチャートである。 一実施形態の変形例による推定方法を示すフローチャートである。 一実施形態の変形例による推定方法を示すフローチャートである。
以下、本開示の一実施形態を図面に基づいて説明する。
図1及び図2に示すように一実施形態の推定装置1は、センサユニット2及び地図ユニット3と共に、車両4に搭載される。センサユニット2は、外界センサ22及び内界センサ24を含んで構成される。
外界センサ22は、車両4の周辺環境となる外界から、車両4の運動推定に活用可能な情報を、外界情報Iとして取得する。外界センサ22は、車両4の外界に存在する物体を検知することで、外界情報Iを取得してもよい。この検知タイプの外界センサ22は、例えばLIDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)、カメラ、レーダ及びソナー等のうち、一種類又は複数種類である。外界センサ22は、車両4の外界に存在する無線通信システムから信号を受信することで、外界情報Iを取得してもよい。この受信タイプの外界センサ22は、例えばGNSS(Global Navigation Satellite System)の受信機及びITS(Intelligent Transport Systems)の受信機等のうち、一種類又は複数種類である。以下、外界への光照射により反射点からの反射光を検知して点群画像を生成するLIDARが、外界センサ22として車両4に搭載される場合を例にとって、本実施形態を説明する。
内界センサ24は、車両4の内部環境となる内界から、車両4の運動推定に活用可能な情報を、内界情報Iとして取得する。内界センサ24は、車両4の内界において特定の運動物理量を検知することで、内界情報Iを取得してもよい。この検知タイプの内界センサ24は、例えば慣性センサ、車速センサ及び舵角センサ等のうち、一種類又は複数種類である。以下、車体の角速度を検知する慣性センサとしてのジャイロセンサと、車体の速度を検知する車速センサと、車体に対する車輪の舵角を検出する舵角センサとが、内界センサ24として車両4に搭載される場合を例にとって、本実施形態を説明する。
地図ユニット3は、地図情報Iを非一時的に格納又は記憶する、例えば半導体メモリ、磁気媒体及び光学媒体等のうち、一種類又は複数種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)を含んで構成される。地図ユニット3は、車両4の高度運転支援又は自動運転制御に利用される、ロケータのデータベースであってもよい。地図ユニット3は、車両4の運転をナビゲートする、ナビゲーション装置のデータベースであってもよい。
地図情報Iは、車両4の走行環境を表す情報として、二次元又は三次元にデータ化されている。地図情報Iは、例えば道路自体の位置、形状及び路面状態等のうち、一種類又は複数種類を表した道路情報を、少なくとも含んでいる。地図情報Iは、例えば道路に付属する標識及び区画線の位置並びに形状等のうち、一種類又は複数種類を表した標示情報を、含んでいてもよい。地図情報Iは、例えば道路に面する建造物及び信号機の位置並びに形状等のうち、一種類又は複数種類を表した構造物情報を、含んでいてもよい。
図1に示すように推定装置1は、例えばLAN(Local Area Network)、ワイヤハーネス及び内部バス等のうち、一種類又は複数種類一種類を介してセンサユニット2及び地図ユニット3に接続されている。推定装置1は、車両4の高度運転支援又は自動運転制御を実行する、運転制御専用のECU(Electronic Control Unit)であってもよい。推定装置1は、車両4の高度運転支援又は自動運転制御に利用される、ロケータのECU(Electronic Control Unit)であってもよい。推定装置1は、車両4の運転をナビゲートする、ナビゲーション装置のECUであってもよい。推定装置1は、車両4と外界との間の通信を制御する、通信制御装置のECUであってもよい。
推定装置1は、メモリ10及びプロセッサ12を少なくとも一つずつ含んで構成される、専用のコンピュータである。メモリ10は、コンピュータにより読み取り可能なプログラム及びデータ等を非一時的に格納又は記憶する、例えば半導体メモリ、磁気媒体及び光学媒体等のうち、一種類又は複数種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。プロセッサ12は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)及びRISC(Reduced Instruction Set Computer)-CPU等のうち、一種類又は複数種類をコアとして含む。プロセッサ12は、メモリ10に記憶された推定プログラムに含まれる複数の命令を、実行する。これにより推定装置1は、車両4の位置を含む状態量を推定するための複数の機能ブロックを、図2に示すように構築する。このように推定装置1では、車両4の状態量を推定するためにメモリ10に格納された推定プログラムが複数の命令をプロセッサ12に実行させることで、複数の機能ブロックが構築される。
推定装置1により構築される複数の機能ブロックには、デッドレコニングブロック100、マップマッチングブロック120、パラメータ補正ブロック140及び誤差補償ブロック160が、含まれる。デッドレコニングブロック100は、ダイナミクスモデルDM(Dynamics Model)と内界情報Iとに基づいたデッドレコニングにより、車両4の状態量を推定する。そのためにデッドレコニングブロック100は、挙動推定サブブロック102及び状態量推定サブブロック104を有している。以下の説明においてデッドレコニングは、DR(Dead Reckoning)と表記されるものとする。
挙動推定サブブロック102は、最新時刻tでの車両4の運転状態となる挙動(以下、単に車両挙動と表記される)を、図3に示すダイナミクスモデルDMによって推定する。具体的にダイナミクスモデルDMは、車両挙動を動力学に基づきモデル化した、例えば二輪モデル等である。本実施形態のダイナミクスモデルDMは、車両挙動を特定する運動物理量として、滑り角βを推定可能にモデル化されている。図3においてγ及びψは、それぞれ車両4の角速度及び舵角である。図3においてF、G及びLは、それぞれ車両4における横力、横加速度及びホイールベースである。図3においてβ、F及びLに付されたrは、車両4のリアモデルの成分を示すサフィックスである。図3においてβ、F及びLに付されたfは、車両4のフロントモデルの成分を示すサフィックスである。
図2に示す挙動推定サブブロック102には、内界センサ24により最新時刻tに取得された内界情報Iのうち角速度γ及び舵角ψが、入力される。挙動推定サブブロック102には、後に詳述するパラメータ補正ブロック140により補正且つフィードバックされる、最新時刻tに関しての動的パラメータpが、入力される。動的パラメータpは、車両挙動以外の要因に応じて変動する物理量のうち、一種類又は複数種類を対象として含んでいる。本実施形態の動的パラメータpは、車両4が走行する路面の動摩擦係数を、少なくとも含んでいる。この動摩擦係数の他に動的パラメータpは、乗員体重を含めた車両4の重量を、含んでいてもよい。
角速度γ及び舵角ψに加えて挙動推定サブブロック102へと入力される動的パラメータpは、本実施形態のダイナミクスモデルDMにより最新時刻tに関して推定される車両挙動としての滑り角βを、同パラメータpの変動に応じて変化させる。そこで挙動推定サブブロック102は、角速度γ及び舵角ψと共に動的パラメータpを変数とする、ダイナミクスモデルDMに基づいたモデル関数Mとしての下記式1により、最新時刻tの滑り角βを推定演算する。
Figure 0007409037000001
図2に示す状態量推定サブブロック104は、挙動推定サブブロック102のダイナミクスモデルDMによる推定結果に応じて、最新時刻tにおける車両4の状態量Zを推定する。具体的に最新時刻tでの状態量Zは、車両4の二次元座標位置x、y及びヨー角θを用いたベクトル式としての下記式2により、定義される。
Figure 0007409037000002
図4に示すように最新時刻tでの状態量Zを構成する二次元座標位置x、yは、それぞれ前回推定時刻t-1での二次元座標位置xt-1、yt-1を用いた線形関数としての下記式3及び4により、表される。式3及び式4においてβは、挙動推定サブブロック102により推定される、最新時刻tでの滑り角である。式3及び式4においてVは、車両4の車速である。式3及び式4においてθは、最新時刻tでの状態量Zを構成するヨー角である。このヨー角θは、前回推定時刻t-1での値θt-1を用いた下記式5により、表される。式3、式4及び式5においてΔtは、最新時刻tと前回推定時刻t-1との差分、即ち推定時刻間隔である。式5においてγは、最新時刻tでの車両4の角速度である。
Figure 0007409037000003
Figure 0007409037000004
Figure 0007409037000005
図2に示すように状態量推定サブブロック104には、内界センサ24により最新時刻tに取得された内界情報Iのうち車速V及び角速度γが、入力される。状態量推定サブブロック104には、挙動推定サブブロック102のダイナミクスモデルDMにより推定された最新時刻tの滑り角βが、入力される。状態量推定サブブロック104にはさらに、前回推定において前回時刻t-1に関連付けて記憶された状態量Zt-1が、メモリ10における推定記憶領域180からの読み出しにより入力される。これらの入力に基づき状態量推定サブブロック104は、式3、式4及び式5を代入した式2の状態量Zを構成する二次元座標位置x、y及びヨー角θを、最新時刻tに関して推定演算する。状態量推定サブブロック104は、これら今回推定の結果を、最新時刻tと関連付けて推定記憶領域180に記憶する。
ここで、式1を代入した式3及び式4の各右辺第二項と、式5の右辺第二項とは、推定時刻間隔Δtでの状態量の推定変位量をベクトル式により表す、変位量関数ΔZとしての下記式6に集約される。この式6は、滑り角βを表したダイナミクスモデルDMのモデル関数Mを用いることで、動的パラメータpを変数とした変位量関数ΔZを、定義しているとも言える。以上より最新時刻tでの状態量Zは、前回推定時刻t-1での状態量Zt-1及び最新時刻tでの変位量関数ΔZを用いた下記式7により、表される。そこで、図5に変形例を示すようにDRブロック100は、角速度γ、舵角ψ、車速V、動的パラメータp、及び前回状態量Zt-1の入力に基づくことで、式6を代入した式7の状態量Zを構成する二次元座標位置x、y及びヨー角θを、当該滑り角βの演算なしに推定してもよい。
Figure 0007409037000006
Figure 0007409037000007
図2に戻ってマップマッチングブロック120は、地図情報Iと外界情報Iとに基づいたマップマッチングにより、車両4の状態量を観測する。以下の説明においてマップマッチングは、MM(Map Matching)と表記されるものとする。
具体的にMMブロック120には、DRブロック100により推定された最新時刻tの状態量Zが、入力される。MMブロック120には、入力された状態量Zのうち二次元座標位置x、yに対応する地図情報Iが、地図ユニット3からの読み出しにより入力される。MMブロック120には、外界センサ22のうちLIDARにより最新時刻tに取得された点群画像が、外界情報Iとして入力される。これらの入力に基づきMMブロック120は、点群画像において外界物体を観測した観測点群Sに対して、図6に示すようにマッチングする複数特徴点Sを、地図情報Iから抽出する。尚、図6では、観測点群Sが白丸により表されている一方、複数特徴点Sが黒丸により表されている。
MMブロック120は、観測点群Sとマッチングした複数特徴点Sに基づくことで、最新時刻tにおける車両4の状態量Zを観測する。このときMMブロック120は、車両4の二次元座標位置x、y及びヨー角θを用いて定義される下記式8のベクトル式により、状態量Zを推定演算する。
Figure 0007409037000008
図2に示すパラメータ補正ブロック140は、MMブロック120により観測される状態量Zに対して、DRにより推定される状態量Zが図7に示すようにオフセットした、オフセット量δzに基づき動的パラメータpを補正する。そのためにパラメータ補正ブロック140は、最小化サブブロック142及び調整サブブロック144を有している。
最小化サブブロック142には、DRブロック100により推定された最新時刻tの状態量Zと、MMブロック120により観測された同時刻tの状態量Zとが、入力される。この入力に基づき最小化サブブロック142は、観測状態量Zに対して推定状態量Zのオフセットしたオフセット量δzを、下記式9の差分演算により取得する。
Figure 0007409037000009
最小化サブブロック142は、図7に示すように取得したオフセット量δzのうち、DRブロック100による最新時刻tの推定状態量Zが動的パラメータpの変動量δpに応じてずれた、ずれ分δzを予測する。具体的にずれ分δzは、動的パラメータp、pt-1をそれぞれ変数とした最新時刻t及び前回時刻t-1での変位量関数ΔZ間の差分値として、下記式10により定義される。ここで式10は、最新時刻t及び前回時刻t-1での動的パラメータp、pt-1間の変動量δpを用いることで、下記式11に変形される。ずれ分δzは、最新時刻t及び前回時刻t-1での動的パラメータp、pt-1間の変動量δpを変数とした変位量関数ΔZの値として、下記式12により近似されてもよい。
Figure 0007409037000010
Figure 0007409037000011
Figure 0007409037000012
そこで最小化サブブロック142には、前回時刻t-1での動的パラメータpt-1が、メモリ10における推定記憶領域180からの読み出しにより入力される。この入力に基づき最小化サブブロック142は、オフセット量δzとの差の絶対値(即ち、絶対差)を最小にするずれ分δzを、下記式13の最小化関数Mを用いた最適化演算により、取得する。このとき最小化サブブロック142は、動的パラメータpt-1を代入演算した式11又は式12に基づくことで、ずれ分δzに対応する変動量δpの最適値も、取得する。
Figure 0007409037000013
図2に示す調整サブブロック144には、前回時刻t-1での動的パラメータpt-1が、推定記憶領域180からの読み出しにより入力される。調整サブブロック144には、ずれ分δzと対応して最小化サブブロック142により予測された変動量δpの最適値が、入力される。これらの入力に基づき調整サブブロック144は、前回時刻t-1の動的パラメータpt-1と変動量δpの最適値と共にカルマンゲインKを用いた下記式14の重み付け演算により、最新時刻tでの動的パラメータpを取得する。これは、カルマンフィルタを通すことで、動的パラメータpを変動量δpの最適値により補正しているとも言える。調整サブブロック144は、こうして補正された動的パラメータpを、最新時刻tと関連付けて推定記憶領域180に記憶すると共に、次回の最新時刻に関する動的パラメータとしてDRブロック100のDRへとフィードバックする。
Figure 0007409037000014
図2に示す誤差補償ブロック160は、DRブロック100により推定される状態量Zの誤差を、MMブロック120により観測される状態量Zに基づいたフィルタリングにより、補償する。
具体的に誤差補償ブロック160には、DRブロック100により推定された最新時刻tの状態量Zと、MMブロック120により観測された最新時刻tの状態量Zとが、入力される。この入力に基づき誤差補償ブロック160は、MMブロック120による観測状態量Zと共にカルマンゲインKを用いた下記式15の重み付け演算により、DRブロック100による推定状態量Zの誤差を補償する。これは、カルマンフィルタを通して観測状態量Zをフュージョンさせることで、推定状態量Zを確定しているとも言える。尚、誤差補償により確定された推定状態量Zは、誤差補償ブロック160からの出力により、例えば車両4の高度運転支援又は自動運転制御等に活用される。
Figure 0007409037000015
ここで式15は、オフセット量δzを用いて変形されることで、下記式16により表される。そこで、図8及び図9にそれぞれ変形例を示すように誤差補償ブロック160は、最小化サブブロック142による取得量δzと共にカルマンゲインKを用いた下記式16の重み付け演算により、DRブロック100による推定状態量Zの誤差を補償してもよい。尚、図8は、図2に対しての変形例を示している一方、図9は、図5の変形例に対してのさらなる変形例を示している。
Figure 0007409037000016
以上より本実施形態では、DRブロック100が「デッドレコニング部」に相当し、MMブロック120が「マップマッチング部」に相当する。また本実施形態では、パラメータ補正ブロック140が「パラメータ補正部」に相当し、誤差補償ブロック160が「誤差補償部」に相当する。
機能ブロック100、120、140及び160の共同により、推定装置1が車両4の状態量を推定する推定方法のフローを、図10に従って以下に説明する。尚、本フローは、車両4が推定を必要する推定タイミング毎に、実行される。また、本フローにおいて「S」とは、推定プログラムに含まれた複数命令により実行される複数ステップを、意味する。
S101においてDRブロック100は、車両挙動を変化させる動的パラメータpを含んだダイナミクスモデルDMと、車両4の内界から取得される内界情報Iとに基づいたDRにより、車両4の状態量Zを推定する。S102においてMMブロック120は、車両4の走行環境を表す地図情報Iと、車両4の外界から取得される外界情報Iとに基づいたMMにより、車両4の状態量Zを観測する。
S103においてパラメータ補正ブロック140は、S102のMMにより観測される状態量Zに対して、S101のDRにより推定される状態量Zのオフセットしたオフセット量δzに基づき、動的パラメータpを補正する。このときパラメータ補正ブロック140は、車両挙動以外の要因に応じて変動する動的パラメータpとして、車両4が走行する路面の動摩擦係数を含んだパラメータを、補正対象とする。そこで、パラメータ補正ブロック140は、オフセット量δzのうち、補正対象とした動的パラメータpの変動量δpに応じてDRによる推定状態量Zがずれた、ずれ分δzを予測する。このときラメータ補正ブロック140は、オフセット量δzとの差の絶対値を最小にするように、ずれ分δzを予測する。パラメータ補正ブロック140はまた、予測のずれ分δzに対応した変動量δpの最適値により、動的パラメータpを補正する。パラメータ補正ブロック140はさらに、補正した動的パラメータpを、次回フローのS101によるDRブロック100でのDRに向けてフィードバックする。
S104において誤差補償ブロック160は、S102のMMにより観測される状態量Zに基づいたフィルタリングにより、S101のDRにより推定される状態量Zの誤差を補償して確定する。以上により、本フローの今回実行が終了する。尚、S103とS104とは、図10に示すようにステップナンバーの順に実行されてもよいし、図11に変形例を示すように逆順に実行されてもよいし、図12に別の変形例を示すように同時並行的に実行されてもよい。
以上より本実施形態では、S101が「デッドレコニングプロセス」に相当し、S102が「マップマッチングプロセス」に相当する。また本実施形態では、S103の組が「パラメータ補正プロセス」に相当し、S104が「誤差補償プロセス」に相当する。
(作用効果)
以上説明した本実施形態の作用効果を、以下に説明する。
本実施形態によると、車両挙動を変化させる動的パラメータpの補正は、MMによる観測状態量Zに対してDRによる推定状態量Zがオフセットしたオフセット量δzに、基づくこととなる。この補正によれば、動的パラメータpを正確に補正してDRへとフィードバックすることができる。故に、フィードバックされた動的パラメータpを含むダイナミクスモデルDMに基づくことで、DRによる状態量Zの推定精度を高めることが可能となる。
本実施形態によると、オフセット量δzのうち、DRによる推定状態量Zが動的パラメータpの変動量δpに応じてずれたずれ分δzの予測下、当該予測のずれ分δzに対応した変動量δpにより、動的パラメータpが補正される。この補正によれば、オフセット量δzの発生要因となっている変動量δpが正確に反映された動的パラメータpを、DRへとフィードバックすることができる。故に、フィードバックされた動的パラメータpを含むダイナミクスモデルDMに基づくことで、DRによる状態量Zの推定精度を高めることが可能となる。
本実施形態によると、オフセット量δzとの差を最小にするずれ分δzに対応した変動量δpは、それにより補正される動的パラメータpを含んでのダイナミクスモデルDMに基づくDRにより、推定状態量Zを観測状態量Zに可及的に近づけることができる。即ち、DRによる状態量Zの推定精度を高めることが可能となる。
本実施形態によると、車両が走行する路面の動摩擦係数を含んだ動的パラメータpのように、車両挙動以外の要因に応じて変動する動的パラメータpが、オフセット量δzに基づき補正される。この補正によれば、車両挙動以外の要因に応じた変動分(即ち、変動量δp)が誤差となる動的パラメータpを狙って、当該誤差を補正することができる。故に、この補正に応じてフィードバックされた動的パラメータpを含むダイナミクスモデルDMに基づくことで、DRによる状態量Zの推定精度を高めることが可能となる。
本実施形態によると、MMによる観測状態量Zに基づいたフィルタリングにより、DRによる推定状態量Zの誤差が補償される。この誤差補償によれば、オフセット量δzに基づく補正に応じてフィードバックされる動的パラメータpを含んだ、ダイナミクスモデルDMの利用と相俟って、状態量Zの高い推定精度を担保することが可能となる。
(他の実施形態)
以上、一実施形態について説明したが、本開示は、当該実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
具体的に変形例の推定装置1は、デジタル回路及びアナログ回路のうち少なくとも一方をプロセッサとして含んで構成される、専用のコンピュータであってもよい。ここで特にデジタル回路とは、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)及びCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。またこうしたデジタル回路は、プログラムを格納したメモリを、備えていてもよい。
変形例の推定装置1では、推定及び観測対象の状態量Z、Zとして、それぞれヨー角θ、θに代えて又は加えて、例えば速度等の車両関連物理量が含まれていてもよい。変形例の推定装置1では、カルマンフィルタでの重み付け演算に代えて、前回時刻t-1での動的パラメータpt-1に対する変動量δpの加算演算により、動的パラメータpがパラメータ補正ブロック140及びS103において補正されてもよい。
変形例の推定装置1では、DRブロック100及びS101による推定状態量Zの誤差を、MMブロック120及びS102とは異なる原理により推定された状態量に基づき補償するように、誤差補償ブロック160及びS104が実施されてもよい。変形例の推定装置1では、誤差補償ブロック160及びS104が省略されることで、DRブロック100及びS101による推定状態量Zがそのまま確定値として出力されてもよい。
1 推定装置、4 車両、10 メモリ、12 プロセッサ、100 デッドレコニング(DR)ブロック、120 マップマッチング(MM)ブロック、140 パラメータ補正ブロック、160 誤差補償ブロック、DM ダイナミクスモデル、I 内界情報、I 地図情報、I 外界情報、Z (観測)状態量、Z (推定)状態量、p 動的パラメータ、δp 変動量、δz オフセット量、δz ずれ分

Claims (15)

  1. 車両(4)の位置を含む状態量を推定する推定装置(1)であって、
    前記車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、前記車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、前記状態量を推定するデッドレコニング部(100)と、
    前記車両の走行環境を表す地図情報(Im)と、前記車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、前記状態量を観測するマップマッチング部(120)と、
    前記マップマッチングにより観測される前記状態量に対して、前記デッドレコニングにより推定される前記状態量がオフセットしたオフセット量(δz)に基づき、前記デッドレコニングへフィードバックする前記動的パラメータを、補正するパラメータ補正部(140)とを、備え
    前記パラメータ補正部は、前記オフセット量のうち、前記デッドレコニングにより推定される前記状態量が前記動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測し、当該予測のずれ分に対応した前記変動量により、前記動的パラメータを補正する推定装置。
  2. 前記パラメータ補正部は、前記オフセット量との差を最小にする前記ずれ分を、予測する請求項に記載の推定装置。
  3. 前記パラメータ補正部は、前記挙動以外の要因に応じて変動する前記動的パラメータを、補正する請求項1又は2に記載の推定装置。
  4. 前記パラメータ補正部は、前記車両が走行する路面の動摩擦係数を含んだ前記動的パラメータを、補正する請求項に記載の推定装置。
  5. 前記マップマッチングにより観測される前記状態量に基づいたフィルタリングにより、前記デッドレコニングにより推定される前記状態量の誤差を補償する誤差補償部(160)を、さらに備える請求項1~のいずれか一項に記載の推定装置。
  6. プロセッサ(12)により実行され、車両(4)の位置を含む状態量を推定する推定方法であって、
    前記車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、前記車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、前記状態量を推定するデッドレコニングプロセス(S101)と、
    前記車両の走行環境を表す地図情報(Im)と、前記車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、前記状態量を観測するマップマッチングプロセス(S102)と、
    前記マップマッチングにより観測される前記状態量に対して、前記デッドレコニングにより推定される前記状態量がオフセットしたオフセット量(δz)に基づき、前記デッドレコニングへフィードバックする前記動的パラメータを、補正するパラメータ補正プロセス(S103)とを、含み、
    前記パラメータ補正プロセスは、前記オフセット量のうち、前記デッドレコニングにより推定される前記状態量が前記動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測し、当該予測のずれ分に対応した前記変動量により、前記動的パラメータを補正する推定方法。
  7. 前記パラメータ補正プロセスは、前記オフセット量との差を最小にする前記ずれ分を、予測する請求項に記載の推定方法。
  8. 前記パラメータ補正プロセスは、前記挙動以外の要因に応じて変動する前記動的パラメータを、補正する請求項6又は7に記載の推定方法。
  9. 前記パラメータ補正プロセスは、前記車両が走行する路面の動摩擦係数を含んだ前記動的パラメータを、補正する請求項に記載の推定方法。
  10. 前記マップマッチングにより観測される前記状態量に基づいたフィルタリングにより、前記デッドレコニングにより推定される前記状態量の誤差を補償する誤差補償プロセス(S104)を、さらに含む請求項6~9のいずれか一項に記載の推定方法。
  11. 車両(4)の位置を含む状態量を推定するために記憶媒体(10)に格納され、プロセッサ(12)に実行させる命令を含む推定プログラムであって、
    前記命令は、
    前記車両の挙動を変化させる動的パラメータ(pt)を含んだダイナミクスモデル(DM)と、前記車両の内界から取得される内界情報(Ii)とに基づいたデッドレコニングにより、前記状態量を推定させるデッドレコニングプロセス(S101)と、
    前記車両の走行環境を表す地図情報(Im)と、前記車両の外界から取得される外界情報(Io)とに基づいたマップマッチングにより、前記状態量を観測させるマップマッチングプロセス(S102)と、
    前記マップマッチングにより観測される前記状態量に対して、前記デッドレコニングにより推定される前記状態量がオフセットしたオフセット量(δz)に基づき、前記デッドレコニングへフィードバックさせる前記動的パラメータを、補正させるパラメータ補正プロセス(S103)とを、含み、
    前記パラメータ補正プロセスは、前記オフセット量のうち、前記デッドレコニングにより推定される前記状態量が前記動的パラメータの変動量(δp)に応じてずれたずれ分(δzp)を、予測させ、当該予測のずれ分に対応した前記変動量により、前記動的パラメータを補正させる推定プログラム。
  12. 前記パラメータ補正プロセスは、前記オフセット量との差を最小にする前記ずれ分を、予測させる請求項11に記載の推定プログラム。
  13. 前記パラメータ補正プロセスは、前記挙動以外の要因に応じて変動する前記動的パラメータを、補正させる請求項11又は12に記載の推定プログラム。
  14. 前記パラメータ補正プロセスは、前記車両が走行する路面の動摩擦係数を含んだ前記動的パラメータを、補正させる請求項13に記載の推定プログラム。
  15. 前記命令は、
    前記マップマッチングにより観測される前記状態量に基づいたフィルタリングにより、前記デッドレコニングにより推定される前記状態量の誤差を補償させる誤差補償プロセス(S104)を、さらに含む請求項11~14のいずれか一項に記載の推定プログラム。
JP2019210764A 2019-11-21 2019-11-21 推定装置、推定方法、推定プログラム Active JP7409037B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019210764A JP7409037B2 (ja) 2019-11-21 2019-11-21 推定装置、推定方法、推定プログラム
CN202080080267.XA CN114729812A (zh) 2019-11-21 2020-09-25 估计装置、估计方法、估计程序
PCT/JP2020/036370 WO2021100318A1 (ja) 2019-11-21 2020-09-25 推定装置、推定方法、推定プログラム
US17/663,810 US20220276054A1 (en) 2019-11-21 2022-05-17 Estimation device, estimation method, program product for estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210764A JP7409037B2 (ja) 2019-11-21 2019-11-21 推定装置、推定方法、推定プログラム

Publications (2)

Publication Number Publication Date
JP2021081370A JP2021081370A (ja) 2021-05-27
JP7409037B2 true JP7409037B2 (ja) 2024-01-09

Family

ID=75964850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210764A Active JP7409037B2 (ja) 2019-11-21 2019-11-21 推定装置、推定方法、推定プログラム

Country Status (4)

Country Link
US (1) US20220276054A1 (ja)
JP (1) JP7409037B2 (ja)
CN (1) CN114729812A (ja)
WO (1) WO2021100318A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097714A (ja) 1998-09-21 2000-04-07 Sumitomo Electric Ind Ltd カーナビゲーション装置
JP2002213979A (ja) 2001-01-12 2002-07-31 Clarion Co Ltd 測位位置/方位の修正が可能なdr機能付きgpsレシーバ
US20050021229A1 (en) 2003-07-21 2005-01-27 Lg Electronic Inc. Apparatus and method for detecting vehicle location in navigation system
JP2006138834A (ja) 2004-11-12 2006-06-01 Mitsubishi Electric Corp 航法装置、航法システム、航法測位方法、および車両
JP2008249639A (ja) 2007-03-30 2008-10-16 Mitsubishi Electric Corp 自己位置標定装置、自己位置標定方法および自己位置標定プログラム
JP2011174771A (ja) 2010-02-24 2011-09-08 Clarion Co Ltd 位置推定装置および位置推定方法
JP2013075632A (ja) 2011-09-30 2013-04-25 Nissan Motor Co Ltd 走行状態推定装置
JP2013088208A (ja) 2011-10-14 2013-05-13 Furuno Electric Co Ltd 密結合gpsおよび推測航法車両航法用のロードマップ・フィードバック・サーバ
JP2017508966A (ja) 2014-03-04 2017-03-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated 熟知しているルートに沿ってナビゲートするときの低減された電力消費および改善されたユーザエクスペリエンス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360165B1 (en) * 1999-10-21 2002-03-19 Visteon Technologies, Llc Method and apparatus for improving dead reckoning distance calculation in vehicle navigation system
JP5016246B2 (ja) * 2006-03-28 2012-09-05 クラリオン株式会社 ナビゲーション装置、及びナビゲーション方法
US20110208424A1 (en) * 2010-02-23 2011-08-25 Eric Hirsch Road Map Feedback Corrections in Tightly Coupled GPS and Dead Reckoning Vehicle Navigation
US20110257882A1 (en) * 2010-04-15 2011-10-20 Mcburney Paul W Road map feedback server for tightly coupled gps and dead reckoning vehicle navigation
US9273966B2 (en) * 2010-11-08 2016-03-01 Elektrobit Automotive Gmbh Technique for calibrating dead reckoning positioning data
KR20130057114A (ko) * 2011-11-23 2013-05-31 현대자동차주식회사 학습을 이용한 자립 항법 시스템 및 그 방법
WO2014149044A1 (en) * 2013-03-20 2014-09-25 International Truck Intellectual Property Company, Llc Smart cruise control system
US20160146616A1 (en) * 2014-11-21 2016-05-26 Alpine Electronics, Inc. Vehicle positioning by map matching as feedback for ins/gps navigation system during gps signal loss
EP3109589B1 (en) * 2015-06-23 2019-01-30 Volvo Car Corporation A unit and method for improving positioning accuracy
US20180188031A1 (en) * 2016-08-31 2018-07-05 Faraday&Future Inc. System and method for calibrating vehicle dynamics expectations for autonomous vehicle navigation and localization
US10330479B2 (en) * 2016-09-20 2019-06-25 Trimble Inc. Vehicle navigation by dead reckoning and GNSS-aided map-matching

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097714A (ja) 1998-09-21 2000-04-07 Sumitomo Electric Ind Ltd カーナビゲーション装置
JP2002213979A (ja) 2001-01-12 2002-07-31 Clarion Co Ltd 測位位置/方位の修正が可能なdr機能付きgpsレシーバ
US20050021229A1 (en) 2003-07-21 2005-01-27 Lg Electronic Inc. Apparatus and method for detecting vehicle location in navigation system
JP2006138834A (ja) 2004-11-12 2006-06-01 Mitsubishi Electric Corp 航法装置、航法システム、航法測位方法、および車両
JP2008249639A (ja) 2007-03-30 2008-10-16 Mitsubishi Electric Corp 自己位置標定装置、自己位置標定方法および自己位置標定プログラム
JP2011174771A (ja) 2010-02-24 2011-09-08 Clarion Co Ltd 位置推定装置および位置推定方法
JP2013075632A (ja) 2011-09-30 2013-04-25 Nissan Motor Co Ltd 走行状態推定装置
JP2013088208A (ja) 2011-10-14 2013-05-13 Furuno Electric Co Ltd 密結合gpsおよび推測航法車両航法用のロードマップ・フィードバック・サーバ
JP2017508966A (ja) 2014-03-04 2017-03-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated 熟知しているルートに沿ってナビゲートするときの低減された電力消費および改善されたユーザエクスペリエンス

Also Published As

Publication number Publication date
WO2021100318A1 (ja) 2021-05-27
US20220276054A1 (en) 2022-09-01
CN114729812A (zh) 2022-07-08
JP2021081370A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
CN106476728B (zh) 用于车载的车辆传感器的运动补偿
JP6224370B2 (ja) 車両用コントローラ、車両システム
CN110554376A (zh) 用于运载工具的雷达测程法
WO2019188745A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
US10990111B2 (en) Position determination apparatus and method for vehicle
WO2021112074A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
KR101909953B1 (ko) 라이다 센서를 이용한 차량의 자세 추정 방법
US9864067B2 (en) Method for determining a current position of a motor vehicle in a geodetic coordinate system and motor vehicle
KR101704634B1 (ko) 자율 주행 차량의 주행경로 생성 장치 및 그 방법과, 자율 주행 차량의 주행 제어 방법
CN109900490B (zh) 基于自主式和协同式传感器的车辆运动状态检测方法及系统
CN111806421B (zh) 车辆姿态确定系统和方法
CN114264301B (zh) 车载多传感器融合定位方法、装置、芯片及终端
US20220205804A1 (en) Vehicle localisation
CN110637209B (zh) 估计机动车的姿势的方法、设备和具有指令的计算机可读存储介质
CN113008248A (zh) 用于生成和更新数字地图的方法和系统
JP7196876B2 (ja) センサ遅延時間推定装置
CN116777984A (zh) 用于校准自主交通载具中摄像头的外部参数的系统
KR101296190B1 (ko) 지형 정보 활용 항법 및 그 구동 방법
JP2021081272A (ja) 位置推定装置および位置推定用コンピュータプログラム
CN112345798B (zh) 位置姿势推定装置以及位置姿势推定方法
JP7206883B2 (ja) ヨーレート補正装置
JP7409037B2 (ja) 推定装置、推定方法、推定プログラム
JP2019066444A (ja) 位置演算方法、車両制御方法及び位置演算装置
JP2021193340A (ja) 自己位置推定装置
US20220307860A1 (en) Map creation device, map creation system, map creation method, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R151 Written notification of patent or utility model registration

Ref document number: 7409037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151