JP7406702B2 - solid liquid separator - Google Patents

solid liquid separator Download PDF

Info

Publication number
JP7406702B2
JP7406702B2 JP2020132774A JP2020132774A JP7406702B2 JP 7406702 B2 JP7406702 B2 JP 7406702B2 JP 2020132774 A JP2020132774 A JP 2020132774A JP 2020132774 A JP2020132774 A JP 2020132774A JP 7406702 B2 JP7406702 B2 JP 7406702B2
Authority
JP
Japan
Prior art keywords
ring
center
solid
filter
rotating ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020132774A
Other languages
Japanese (ja)
Other versions
JP2022029502A (en
Inventor
邦佳 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2020132774A priority Critical patent/JP7406702B2/en
Publication of JP2022029502A publication Critical patent/JP2022029502A/en
Application granted granted Critical
Publication of JP7406702B2 publication Critical patent/JP7406702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、上水・下水汚泥及び工場排水等の汚泥を脱水処理する固液分離機に関し、特に、渦巻状の回転環を公転させることでろ過室に容積変化を発生させ、連続的に汚泥を固液分離する固液分離機に関する。 The present invention relates to a solid-liquid separator that dewaters sludge such as water/sewage sludge and factory wastewater, and in particular, it generates a volume change in a filtration chamber by revolving a spiral rotating ring, and continuously removes sludge from the sludge. This invention relates to a solid-liquid separator that separates solid-liquid.

従来、円盤状のろ過板とろ室外環とでろ過室を形成し、このろ過室に回転自在な羽根車を配設して、ろ過室の中心部から圧入した原液を羽根車で供回りさせながら、ろ過板と原液との間に発生する摩擦抵抗と、ろ過面に積層するケーキと原液との間にせん断摩擦抵抗力を発生させて脱水し、ろ室外環の排出口からケーキを取出す連続加圧脱水機は特許文献1に開示されている。 Conventionally, a filtration chamber is formed by a disc-shaped filtration plate and an outer ring of the filtration chamber, and a rotatable impeller is installed in this filtration chamber, and the undiluted solution press-ined from the center of the filtration chamber is circulated by the impeller. , a continuous process in which the frictional resistance generated between the filter plate and the stock solution and the shear frictional resistance force between the cake stacked on the filtration surface and the stock solution are dehydrated, and the cake is removed from the outlet of the outer ring of the filter chamber. A pressure dehydrator is disclosed in Patent Document 1.

また、原水を保持する底板上に渦巻状回転板を水平方向に回転可能に配設し、この渦巻状回転板を駆動機で回転させて原水中の汚泥を中心部あるいは外周部へ搬送する固液分離装置は特許文献2に開示されている。 In addition, a spiral rotary plate is horizontally rotatably arranged on the bottom plate that holds the raw water, and this spiral rotary plate is rotated by a drive machine to transport the sludge in the raw water to the center or the outer periphery. A liquid separation device is disclosed in Patent Document 2.

特許第4370772号公報Patent No. 4370772 特許第5478842号公報Patent No. 5478842

特許文献1に記載される脱水機は、円盤の中心部から原液を供給し、外周端に設けた排出口まで搬送しつつ固液分離を行っている。そのため、供給された原液が外周端に近づくほど原液の濃縮が進行して体積が減少するが、外周端に近づくほどろ過室の容積は増大する。原液の体積とろ過室の容積を適合させるためには供給量を増加させる必要があるが、中心部から外周端までの距離が近く、原液の搬送路も単純で短いため、充分な脱水ができない可能性がある。 The dehydrator described in Patent Document 1 performs solid-liquid separation while supplying a stock solution from the center of a disk and transporting it to a discharge port provided at an outer peripheral end. Therefore, as the supplied stock solution approaches the outer peripheral end, the concentration of the stock solution progresses and the volume decreases, but the volume of the filtration chamber increases as the stock solution approaches the outer peripheral end. It is necessary to increase the supply amount in order to match the volume of the stock solution with the volume of the filtration chamber, but sufficient dehydration cannot be achieved because the distance from the center to the outer edge is short and the transport path for the stock solution is simple and short. there is a possibility.

特許文献2に記載される固液分離装置は、原水を重力濃縮により固液分離するものであり、渦巻状回転板は重力濃縮により底板上に堆積した固形物(汚泥)を搬送するために作用している。渦巻状回転板そのものが360°回転するため、流路体積は変動するが、原水には基本的に重力しか作用しないので分離汚泥の含水率が高い。また、重量物(渦巻状回転板)を回転させるため初期トルクが大きく、大型の駆動機が必要となる。 The solid-liquid separator described in Patent Document 2 separates raw water into solid-liquid by gravity concentration, and the spiral rotating plate acts to transport solids (sludge) deposited on the bottom plate by gravity concentration. are doing. Since the spiral rotating plate itself rotates 360 degrees, the volume of the channel changes, but basically only gravity acts on the raw water, so the water content of the separated sludge is high. Furthermore, since the heavy object (the spiral rotary plate) is rotated, the initial torque is large, and a large-sized drive machine is required.

本発明は、渦巻状の回転環の公転による容積変化で原液に圧力を付与しつつ、両側方に設けたろ過面から液分を排出し、固形物を排出口に連続的に搬送する固液分離機を提供する。 The present invention is a solid-liquid solution that continuously conveys solids to the discharge port by applying pressure to the stock solution through the volume change caused by the revolution of a spiral rotating ring, and discharging the liquid from the filtration surfaces provided on both sides. Provide separator.

本発明は、一対のろ過面を有する円盤状のろ過板と環状のろ室外環とでろ過室を形成し、ろ室外環の接線上に設けた供給管が連結された供給口からろ室外環の内壁に沿って原液を供給し、ろ過板で固液分離しつつ中心部に設けた排出口からケーキを排出する固液分離機において、一対のろ過板間に供給口から中心部に向かって渦巻状に形成した固定環と、固定環で形成された渦巻状の流路に固定環と同ピッチに形成した回転環と、固定環の中心から所定の距離だけ偏心した状態で回転環を旋回させる駆動環と、を備えたもので、固定環で形成された渦巻状の流路内で回転環が旋回することにより連続的に容積変化と搬送を同時に行うことが可能である。 In the present invention, a filtration chamber is formed by a disc-shaped filtration plate having a pair of filtration surfaces and an annular outer ring of the filter chamber, and a supply pipe provided on a tangent to the outer ring of the filter chamber is connected to a supply port connected to the outer ring of the filter chamber. In a solid-liquid separator, a raw solution is supplied along the inner wall of the filter plate, and the cake is discharged from a discharge port in the center while separating the solid and liquid with a filter plate. A fixed ring formed in a spiral shape, a rotating ring formed at the same pitch as the fixed ring in the spiral flow path formed by the fixed ring, and the rotating ring rotated with a predetermined distance eccentric from the center of the fixed ring. The rotary ring rotates within the spiral flow path formed by the fixed ring, thereby making it possible to continuously change the volume and carry out conveyance at the same time.

駆動環を回転自在にハウジングに内挿し、駆動環の中心に駆動軸を挿通し、中心から離れた所定位置に連結軸を回転自在に挿通して回転環に連結するとともに、ハウジングの内壁に駆動軸中心と偏心した状態で円環状に制御溝を形成し、連結軸の端部を制御ピンと係合し、制御ピンに設けたピン部を制御溝に遊嵌すると、渦巻状の回転環を固定環の中心に公転する。 The drive ring is rotatably inserted into the housing, the drive shaft is inserted into the center of the drive ring, and the connecting shaft is rotatably inserted into a predetermined position away from the center to connect to the rotating ring, and the drive shaft is inserted into the inner wall of the housing. A control groove is formed in an annular shape eccentric to the shaft center, the end of the connecting shaft is engaged with the control pin, and the pin part provided on the control pin is loosely fitted into the control groove to fix the spiral rotating ring. It revolves around the center of the ring.

回転環は、ろ過板の一対のろ過面それぞれと対向する両側端部にスクレーパを係合させると、スクレーパがろ過板と摺動することによって流路内の原液の逆流を防止するとともに、ろ過板の目詰まりを防止する。 When a scraper is engaged with both ends of the rotating ring facing each of the pair of filtration surfaces of the filtration plate , the scraper slides on the filtration plate, thereby preventing backflow of the stock solution in the flow path and preventing filtration. Prevent clogging of the board.

一対のろ過板の少なくとも一方を、外周から中心に向かうほど内部容積が縮小するようにテーパに形成すると、流路内の原液が排出口に向かうほど容積が縮小し、効率よく固液分離が可能となる。 If at least one of the pair of filter plates is tapered so that the internal volume decreases from the outer periphery toward the center, the volume of the stock solution in the channel decreases as it moves toward the outlet, allowing efficient solid-liquid separation. becomes.

本発明は、固定環で形成された渦巻状の流路内で回転環が偏心旋回することにより容積変化と搬送を同時に行うことができる。また、両側方に設けたスクリーンによりろ過面積を大きくとれ、連続的に大容量の処理が可能となる。さらに、回転環にスクレーパを設けると、渦巻状の流路を越流することなく脱水ケーキを搬送するとともに、ろ過板の目詰まり防止と再生を行うことができる。 According to the present invention, the rotating ring eccentrically rotates within the spiral flow path formed by the fixed ring, so that volume change and conveyance can be performed simultaneously. In addition, the screens provided on both sides allow for a large filtration area, allowing continuous large-capacity treatment. Furthermore, if a scraper is provided on the rotating ring, the dehydrated cake can be transported without overflowing the spiral flow path, and the filter plate can be prevented from clogging and regenerated.

本発明に係る固液分離機の縦断面図である。1 is a longitudinal sectional view of a solid-liquid separator according to the present invention. 同じく、固液分離機の横断面図である。Similarly, it is a cross-sectional view of the solid-liquid separator. 図1に記載の駆動環の拡大図である。FIG. 2 is an enlarged view of the drive ring shown in FIG. 1; 図3に記載のA-A断面図である。FIG. 4 is a sectional view taken along the line AA shown in FIG. 3; 本発明に係る固液分離機の連結軸の側面図および正面図である。FIG. 2 is a side view and a front view of a connecting shaft of a solid-liquid separator according to the present invention. 同じく、制御ピンの側面図および正面図である。Similarly, it is a side view and a front view of a control pin. 同じく、回転環の一部断面図である。Similarly, it is a partial sectional view of the rotating ring. 本発明に係る駆動環の回転に伴う連結軸とピン部の軌跡である。It is a trajectory of a connecting shaft and a pin portion as the drive ring according to the present invention rotates. 本発明に係る固液分離機の(a)回転環が0°および(b)90°の状態での流路の様子を示す横断面図である。FIG. 2 is a cross-sectional view showing the state of the flow path in the solid-liquid separator according to the present invention when (a) the rotating ring is at 0° and (b) at 90°. 同じく、(c)回転環が180°および(d)270°の状態での流路の様子を示す横断面図である。Similarly, (c) is a cross-sectional view showing the state of the flow path in a state where the rotating ring is at 180° and (d) at 270°. 同じく、(e)回転環が360°の状態での流路の様子を示す横断面図である。Similarly, (e) is a cross-sectional view showing the state of the flow path in a state where the rotating ring is at 360°.

図1および図2は、本発明に係る固液分離機の縦断面図および横断面図である。
金属ろ材を張設した一対の円板状のろ過板1,1に、その外周端に環状のろ室外環2が連結してあり、一対のろ過板1,1の間に円環状のろ過室5が形成している。
1 and 2 are a longitudinal sectional view and a transverse sectional view of a solid-liquid separator according to the present invention.
An annular filtration chamber outer ring 2 is connected to a pair of disc-shaped filtration plates 1 and 1 on which metal filter media are stretched, and an annular filtration chamber outer ring 2 is connected to the outer peripheral edge of the pair. 5 is formed.

ろ室外環2には供給管3が接線に外環の供給口4に連結してあり、ろ室外環2の内壁に沿ってろ過室5内に原液を供給する。 A supply pipe 3 is tangentially connected to the outer ring 2 of the filtration chamber to a supply port 4 of the outer ring, and supplies the stock solution into the filtration chamber 5 along the inner wall of the outer ring 2 of the filtration chamber.

ろ過室5には対向するろ過板1,1間に供給口4から中心部に向かって同一幅で渦巻状に形成した固定環6を設けてある。供給口4から中心部に向かって渦巻状に流路を形成してあり、一方のろ過板1の中心部近傍には排出口7を開口している。
排出口7にはケーキ排出管8を接続してあり、ろ過室5で固液分離された原液の固形物(ケーキ)を外部に排出する。
ろ過板1およびろ室外環2はケーシング9にて囲繞されており、下方に設けたろ液排出管10から固液分離されてろ過板1を透過してくる液分を外部に排出する。
In the filtration chamber 5, a fixed ring 6 spirally formed with the same width from the supply port 4 toward the center is provided between the opposing filtration plates 1, 1. A spiral flow path is formed from the supply port 4 toward the center, and a discharge port 7 is opened near the center of one of the filter plates 1.
A cake discharge pipe 8 is connected to the discharge port 7, and the solid matter (cake) of the stock solution separated into solid and liquid in the filtration chamber 5 is discharged to the outside.
The filter plate 1 and the outer ring 2 of the filter chamber are surrounded by a casing 9, and the solid-liquid separated liquid that passes through the filter plate 1 is discharged to the outside from a filtrate discharge pipe 10 provided below.

ろ過室5の固定環6で形成された流路には、固定環6と同様の形状で形成された回転環11を揺動自在に配設している。回転環11は固定環6と同ピッチで渦巻状に形成してあり、回転環11の始端は供給口4の近傍に位置し、終端はろ過板1の中心部近傍に位置させてある。 In the flow path formed by the fixed ring 6 of the filtration chamber 5, a rotating ring 11 formed in the same shape as the fixed ring 6 is swingably disposed. The rotating ring 11 is formed in a spiral shape with the same pitch as the fixed ring 6, and the starting end of the rotating ring 11 is located near the supply port 4, and the ending end is located near the center of the filter plate 1.

一方のろ過板1の排出口7と対向する他方のろ過板1中心部近傍は、ハウジング12と接続してあり、ハウジング12には駆動環13を回転自在に内設している。ハウジング12の外方に駆動機14を付設し、駆動軸15を駆動環13の中心に挿通して駆動環13を回転させる。 The vicinity of the center of the other filter plate 1 facing the discharge port 7 of one filter plate 1 is connected to a housing 12, and a drive ring 13 is rotatably installed inside the housing 12. A drive machine 14 is attached to the outside of the housing 12, and a drive shaft 15 is inserted through the center of the drive ring 13 to rotate the drive ring 13.

駆動環13の中心から離れた所定位置に連結軸16を回転自在に挿通してあり、連結軸16の他端を回転環11に連結している。 A connecting shaft 16 is rotatably inserted through a predetermined position apart from the center of the drive ring 13, and the other end of the connecting shaft 16 is connected to the rotating ring 11.

図3は、図1に記載の駆動環の拡大図であり、図4は図3に記載のA-A断面図である。
駆動環13は略円筒状に形成されており、中心に設けた駆動軸穴17に駆動軸15を挿通し、駆動機14によりハウジング12の内壁に摺動しつつ回転する。駆動軸穴17は固定環6の中心と同芯に設定している。
3 is an enlarged view of the drive ring shown in FIG. 1, and FIG. 4 is a sectional view taken along line AA shown in FIG. 3.
The drive ring 13 is formed into a substantially cylindrical shape, and the drive shaft 15 is inserted into the drive shaft hole 17 provided at the center, and rotated by the drive mechanism 14 while sliding on the inner wall of the housing 12 . The drive shaft hole 17 is set to be concentric with the center of the fixed ring 6.

駆動環13の外周には、例えばОリングのような公知のシール部材18を設けている。
駆動環13の中心から離れた所定位置には、連結軸16を回転自在に挿通している。駆動環13を回転させると所定の距離だけ離れた状態で、連結軸16が駆動軸15を中心に公転する。連結軸16は回転環11に連結してあり、駆動環13の回転に応じて回転環11を固定環6で形成した流路内で旋回させる。
A known seal member 18, such as an O-ring, is provided on the outer periphery of the drive ring 13.
A connecting shaft 16 is rotatably inserted into a predetermined position apart from the center of the drive ring 13. When the drive ring 13 is rotated, the connection shaft 16 revolves around the drive shaft 15 while being separated by a predetermined distance. The connecting shaft 16 is connected to the rotating ring 11, and rotates the rotating ring 11 within the flow path formed by the fixed ring 6 in accordance with the rotation of the drive ring 13.

連結軸16の端部は制御ピン19と係合している。駆動環13の背面と対面するハウジング12の内壁には駆動軸15中心と偏心した状態で円環状に制御溝21を形成してあり、制御ピン19に設けたピン部22が制御溝21に遊嵌されている。連結軸16の端部は制御ピン19を押えるためのカバー23を設けてあり、ボルト等の公知の方法にて固定する。
なお、連結軸16を容易に摺動させるために、連結軸穴20内にすべり軸受等を設けて摩擦抵抗を軽減させてもよい。
The end of the connecting shaft 16 engages a control pin 19 . An annular control groove 21 is formed in the inner wall of the housing 12 facing the back surface of the drive ring 13 in a state eccentric to the center of the drive shaft 15. It is fitted. A cover 23 for holding down the control pin 19 is provided at the end of the connecting shaft 16, and is fixed using a known method such as bolts.
In addition, in order to easily slide the connecting shaft 16, a sliding bearing or the like may be provided in the connecting shaft hole 20 to reduce frictional resistance.

図5は、連結軸の側面図および正面図である。
連結軸16の一方の端部は一部を直線状に切削した凸部24に形成している。凸部24の直線部分を制御ピン19と係合し、制御溝21で位置決めされるピン部22に応じて連結軸16の姿勢を制御する。
連結軸16の他方は動力伝達手段を設けて回転環11と連結する。本実施例ではキーを用いて動力を伝達している。
FIG. 5 is a side view and a front view of the connecting shaft.
One end of the connecting shaft 16 is formed into a convex portion 24 which is partially cut into a straight line. The linear portion of the convex portion 24 is engaged with the control pin 19, and the posture of the connecting shaft 16 is controlled according to the pin portion 22 positioned by the control groove 21.
The other side of the connecting shaft 16 is connected to the rotating ring 11 by providing a power transmission means. In this embodiment, power is transmitted using a key.

なお、本実施例では制御ピン19の抜け防止にカバー23で押えてあり、カバー23を固定するためのネジ孔25を凸部24側の端部に形成している。 In this embodiment, the control pin 19 is held down by a cover 23 to prevent it from coming off, and a screw hole 25 for fixing the cover 23 is formed at the end on the protrusion 24 side.

図6は、制御ピンの側面図および正面図である。
制御ピン19はプレート部26とピン部22で構成してあり、略卵状に形成したプレート部26の端部近傍の一側方にピン部22が突設している。ピン部22はハウジング12の制御溝21に遊嵌する。
FIG. 6 is a side view and a front view of the control pin.
The control pin 19 is composed of a plate portion 26 and a pin portion 22, and the pin portion 22 is provided protruding from one side near the end of the plate portion 26 formed in a substantially oval shape. The pin portion 22 loosely fits into the control groove 21 of the housing 12.

プレート部26は開口27を有してあり、連結軸16の凸部24と係合する。制御溝21に遊嵌するピン部22により制御ピン19の姿勢を制御し、開口27と凸部24の係合により連結軸16の自転を制限している。 The plate portion 26 has an opening 27 and engages with the convex portion 24 of the connecting shaft 16. The attitude of the control pin 19 is controlled by the pin portion 22 that loosely fits into the control groove 21, and the rotation of the connecting shaft 16 is restricted by the engagement between the opening 27 and the convex portion 24.

図7は、回転環の一部断面図である。
対向するろ過板1,1間で回転する回転環11の両側端部は、それぞれのろ過板1と間隙を有しており、その間隙を埋めるべく側端部にはスクレーパ28を係合させている。スクレーパ28は可撓性の合成樹脂等で形成したもので、スクレーパ28の一方は回転環11に固定されてあり、他方はろ過板1と摺動することによって流路内の原液の逆流を防止するとともに、ろ過板1の目詰まりを防止する。
FIG. 7 is a partial cross-sectional view of the rotating ring.
Both ends of the rotary ring 11 that rotates between the opposing filter plates 1, 1 have gaps with the respective filter plates 1, and scrapers 28 are engaged with the side ends to fill the gaps. There is. The scraper 28 is made of flexible synthetic resin, etc., and one side of the scraper 28 is fixed to the rotating ring 11, and the other side slides on the filter plate 1 to prevent backflow of the raw solution in the channel. At the same time, clogging of the filter plate 1 is prevented.

本実施例では、スクレーパ28の一方を回転環11の板幅内に挿入することにより固定しているが、流路に面する曲面に沿って公知の手段で固定してもよい。 In this embodiment, one side of the scraper 28 is fixed by being inserted into the plate width of the rotary ring 11, but it may be fixed by known means along the curved surface facing the flow path.

図8は、駆動環の回転に伴う連結軸とピン部の軌跡である。
駆動環13は駆動軸15を中心に回転する。駆動環13に挿通する連結軸16も駆動軸15を中心に回転する。
FIG. 8 shows the trajectory of the connecting shaft and pin portion as the drive ring rotates.
The drive ring 13 rotates around the drive shaft 15. A connecting shaft 16 inserted through the drive ring 13 also rotates around the drive shaft 15.

連結軸16と係合する制御ピン19のピン部22は制御溝21に遊嵌してあり、本実施例では常時連結軸16の上方にピン部22が位置する状態を保持させており、所定の距離だけ偏心した状態で旋回する。具体的には、制御ピン19の開口27中心からピン部22までの距離だけ駆動軸15中心から上方に偏心した点を中心に回転する。 The pin portion 22 of the control pin 19 that engages with the connecting shaft 16 is loosely fitted into the control groove 21, and in this embodiment, the pin portion 22 is always maintained above the connecting shaft 16, and is kept at a predetermined position. Turn eccentrically by a distance of Specifically, it rotates around a point that is offset upward from the center of the drive shaft 15 by the distance from the center of the opening 27 of the control pin 19 to the pin portion 22 .

その結果、連結軸16と接続する回転環11は自転せずに、所定寸法だけ偏心した状態で旋回運動を行い、固定環6が形成した流路内の容積変化を引き起こす。 As a result, the rotating ring 11 connected to the connecting shaft 16 does not rotate, but performs a turning movement while being eccentric by a predetermined dimension, causing a change in volume within the flow path formed by the fixed ring 6.

図9の(a)は、回転環が0°の状態での流路の様子を示す横断面図である。
回転環が0°の時、回転環11は固定環6が形成する渦巻状の流路の上方に位置し、回転環11の上方でろ室外環2あるいは固定環6近傍と近接している。回転環11の始端は供給口のろ室外環2近傍に位置しており、回転環11の内周面と固定環6の外周面との間に原液が供給される。
FIG. 9(a) is a cross-sectional view showing the state of the flow path when the rotating ring is at 0°.
When the rotating ring is at 0°, the rotating ring 11 is located above the spiral flow path formed by the fixed ring 6, and is close to the filter chamber outer ring 2 or the fixed ring 6 above the rotating ring 11. The starting end of the rotating ring 11 is located near the filter chamber outer ring 2 of the supply port 4 , and the stock solution is supplied between the inner circumferential surface of the rotating ring 11 and the outer circumferential surface of the fixed ring 6.

原液は図示しない供給装置により連続的に供給され、ろ過板1で固液分離されつつ回転環11の内周面に沿って渦巻状の流路を中心部に向かって搬送される。一対のろ過板1,1を透過した原液中の水分は、ケーシング9内部で下方に落水し、ろ液排出管10から排出される。 The stock solution is continuously supplied by a supply device (not shown), separated into solid and liquid by the filter plate 1, and transported along the inner peripheral surface of the rotating ring 11 through a spiral flow path toward the center. The water in the stock solution that has passed through the pair of filter plates 1, 1 falls downward inside the casing 9 and is discharged from the filtrate discharge pipe 10.

渦巻状の流路の左方では容積が縮小しており、供給口4からの原液供給により圧密されて固液分離が進行する。 The volume is reduced on the left side of the spiral flow path, and is compressed by the supply of the raw solution from the supply port 4, so that solid-liquid separation progresses.

図9の(b)は、回転環が90°の状態での流路の様子を示す横断面図である。
回転環11が90°の時、回転環11は固定環6が形成する渦巻状の流路の左方に位置し、回転環11の左方でろ室外環2あるいは固定環6近傍と近接している。回転環11の始端は供給口4の中央近傍に位置しており、回転環11の内周面および外周面に沿って原液が供給される。
FIG. 9(b) is a cross-sectional view showing the flow path when the rotating ring is at 90 degrees.
When the rotating ring 11 is at 90°, the rotating ring 11 is located on the left side of the spiral flow path formed by the fixed ring 6, and is adjacent to the filter chamber outer ring 2 or the fixed ring 6 on the left side of the rotating ring 11. There is. The starting end of the rotating ring 11 is located near the center of the supply port 4, and the stock solution is supplied along the inner and outer circumferential surfaces of the rotating ring 11.

回転環11の内周面の流路では、渦巻状の流路上方の容積縮小と、流路左方の容積拡大と、供給口4からの原液供給により原液が左方に搬送される。渦巻状の流路下方では容積が縮小しており、原液が圧密されて固液分離が進行する。 In the flow path on the inner circumferential surface of the rotating ring 11, the stock solution is conveyed to the left by reducing the volume above the spiral flow path, expanding the volume on the left side of the flow path, and supplying the stock solution from the supply port 4. At the bottom of the spiral flow path, the volume is reduced, and the raw liquid is compressed and solid-liquid separation progresses.

図10の(c)は、回転環が180°の状態での流路の様子を示す横断面図である。
回転環11が180°の時、回転環11は固定環6が形成する渦巻状の流路の下方に位置し、回転環11の下方でろ室外環2あるいは固定環6近傍と近接している。回転環11の始端は供給口の固定環6近傍に位置しており、回転環11の外周面とろ室外環2の間に原液が供給される。
FIG. 10(c) is a cross-sectional view showing the flow path when the rotating ring is at 180°.
When the rotating ring 11 is at 180°, the rotating ring 11 is located below the spiral flow path formed by the fixed ring 6, and is close to the filter chamber outer ring 2 or the fixed ring 6 below the rotating ring 11. The starting end of the rotating ring 11 is located near the fixed ring 6 of the supply port 4 , and the stock solution is supplied between the outer peripheral surface of the rotating ring 11 and the filter chamber outer ring 2.

回転環11の内周面の流路では、渦巻状の流路左方の容積縮小と、流路下方の容積拡大とにより原液が下方に搬送される。渦巻状の流路右方では容積が縮小しており、流路内の原液が圧密されて固液分離が進行する。 In the flow path on the inner circumferential surface of the rotating ring 11, the stock solution is transported downward by volume reduction on the left side of the spiral flow path and volume expansion at the bottom of the flow path. On the right side of the spiral flow path, the volume is reduced, and the raw liquid in the flow path is compressed and solid-liquid separation progresses.

また、このとき回転環11の外周面とろ室外環2の間に原液が供給されるが、流路左方の容積縮小と、供給口4からの原液供給により圧密されて回転環11の外周面でも固液分離が進行する。 At this time, the stock solution is supplied between the outer circumferential surface of the rotating ring 11 and the outer ring 2 of the filter chamber, but due to the volume reduction on the left side of the flow path and the supply of the stock solution from the supply port 4, the stock solution is compressed and the outer circumferential surface of the rotating ring 11 is However, solid-liquid separation progresses.

図10の(d)は、回転環が270°の状態での流路の様子を示す横断面図である。
回転環11が270°の時、回転環11は固定環6が形成する渦巻状の流路の右方に位置し、回転環11の右方でろ室外環2あるいは固定環6近傍と近接している。回転環11の始端は供給口4の中央近傍に位置しており、回転環11の内周面および外周面に沿って原液が供給される。
FIG. 10(d) is a cross-sectional view showing the flow path when the rotating ring is at 270 degrees.
When the rotating ring 11 is at 270°, the rotating ring 11 is located on the right side of the spiral flow path formed by the fixed ring 6, and is close to the filter chamber outer ring 2 or the fixed ring 6 on the right side of the rotating ring 11. There is. The starting end of the rotating ring 11 is located near the center of the supply port 4, and the stock solution is supplied along the inner and outer circumferential surfaces of the rotating ring 11.

回転環11の内周面の流路では、渦巻状の流路下方の容積縮小と、流路右方の容積拡大とにより原液が右方に搬送される。渦巻状の流路上方では容積が縮小しており、原液が圧密されて固液分離が進行する。 In the flow path on the inner circumferential surface of the rotating ring 11, the undiluted solution is transported to the right by volume reduction at the bottom of the spiral flow path and volume expansion at the right side of the flow path. The volume is reduced in the upper part of the spiral flow, and the raw liquid is compressed and solid-liquid separation progresses.

回転環11の外周面の流路では、渦巻状の流路上方の容積縮小と、流路左方の容積拡大とにより原液が左方に搬送される。流路下方の容積縮小と、供給口4からの原液供給により圧密されて固液分離が進行する。 In the flow path on the outer circumferential surface of the rotating ring 11, the undiluted solution is transported to the left by reducing the volume above the spiral flow path and expanding the volume on the left side of the flow path. Solid-liquid separation progresses as the volume of the lower part of the flow path is reduced and the liquid is compressed by supplying the raw solution from the supply port 4.

図11の(e)は、回転環が360°の状態での流路の様子を示す横断面図である。
回転環11が0°の時と同様の位置であり、回転環11の始端は供給口4のろ室外環2近傍に位置している。
FIG. 11(e) is a cross-sectional view showing the flow path in a state where the rotating ring is at 360 degrees.
This is the same position as when the rotating ring 11 is at 0°, and the starting end of the rotating ring 11 is located near the filter chamber outer ring 2 of the supply port 4.

回転環11の内周面の流路では、渦巻状の流路右方の容積縮小と、流路上方の容積拡大とにより原液が上方に搬送される。渦巻状の流路左方では容積が縮小しており、供給口4からの原液供給により圧密されて固液分離が進行する。 In the flow path on the inner circumferential surface of the rotating ring 11, the undiluted solution is transported upward by the volume reduction on the right side of the spiral flow path and the volume expansion above the flow path. The volume decreases on the left side of the spiral flow path, and is compressed by the supply of the raw solution from the supply port 4, and solid-liquid separation progresses.

回転環11の外周面の流路では、渦巻状の流路左方の容積縮小と、流路下方の容積拡大とにより原液が下方に搬送される。流路右方の容積縮小と、供給口4からの原液供給により圧密されて固液分離が進行する。 In the flow path on the outer circumferential surface of the rotating ring 11, the stock solution is transported downward by volume reduction on the left side of the spiral flow path and volume expansion at the bottom of the flow path. Solid-liquid separation progresses as the volume on the right side of the flow path is reduced and the liquid is compressed by supplying the raw solution from the supply port 4.

中心部まで搬送された脱水ケーキは、一方のろ過板1に開口した排出口7からケーキ排出管8を介して外部に排出される。 The dehydrated cake transported to the center is discharged to the outside through a cake discharge pipe 8 from a discharge port 7 opened in one of the filter plates 1.

回転環11の偏心旋回により、流路内の固液分離された脱水ケーキに対して揉み解し効果を奏し、内部に滞留する水分を外部表面に排出し、固液分離効果を向上させる。回転環11にはスクレーパ28を設けているので、ろ過板1の表面に堆積する脱水ケーキを搬送するとともに、ろ過板1の目詰まり防止と再生を行うことができる。 The eccentric rotation of the rotary ring 11 has a kneading effect on the solid-liquid separated dehydrated cake in the channel, drains the moisture staying inside to the external surface, and improves the solid-liquid separation effect. Since the rotating ring 11 is provided with a scraper 28, it is possible to convey the dehydrated cake deposited on the surface of the filter plate 1, and also to prevent clogging and regenerate the filter plate 1.

一対のろ過板1,1を外周から中心に向かうほど内部容積が縮小するようにテーパに形成してもよい。このとき、少なくとも一方のろ過板1をテーパに形成することで容積縮小の効果を奏することができる。 The pair of filter plates 1, 1 may be tapered so that the internal volume decreases from the outer periphery toward the center. At this time, by forming at least one of the filter plates 1 into a tapered shape, the volume can be reduced.

本発明に係る固液分離機は、渦巻状の固定環と回転環を組み合わせて流路を形成し、連続的に固液分離運転を行うもので、水負荷の大きい大容量の原液や圧縮性のある有機汚泥でも安定した固液分離を可能としたものである。従って、上水・下水汚泥や工業排水等の大容量の処理を必要とする処理場に好適な連続式固液分離機となるものである。 The solid-liquid separator according to the present invention forms a flow path by combining a spiral fixed ring and a rotating ring, and performs solid-liquid separation operation continuously. This enables stable solid-liquid separation even with organic sludge. Therefore, the continuous solid-liquid separator is suitable for treatment plants that require large-capacity treatment of water, sewage sludge, industrial wastewater, and the like.

1 ろ過板
2 ろ室外環
4 供給口
5 ろ過室
6 固定環
7 排出口
11 回転環
12 ハウジング
13 駆動環
15 駆動軸
16 連結軸
19 制御ピン
21 制御溝
22 ピン部
28 スクレーパ
1 Filtration plate 2 Filter chamber outer ring 4 Supply port 5 Filtration chamber 6 Fixed ring 7 Discharge port 11 Rotating ring 12 Housing 13 Drive ring 15 Drive shaft 16 Connection shaft 19 Control pin 21 Control groove 22 Pin part 28 Scraper

Claims (4)

一対のろ過面を有する円盤状のろ過板(1,1)と環状のろ室外環(2)とでろ過室(5)を形成し、ろ室外環(2)の接線上に設けた供給管(3)が連結された供給口(4)からろ室外環(2)の内壁に沿って原液を供給し、ろ過板(1)で固液分離しつつ中心部に設けた排出口(7)からケーキを排出する固液分離機において、
一対のろ過板(1,1)間に供給口(4)から中心部に向かって渦巻状に形成した固定環(6)と、
固定環(6)で形成された渦巻状の流路に固定環(6)と同ピッチに形成した回転環(11)と、
固定環(6)の中心から所定の距離だけ偏心した状態で回転環(11)を旋回させる駆動環(13)と、を備えた
ことを特徴とする固液分離機。
A filtration chamber (5) is formed by a disc-shaped filtration plate (1, 1) having a pair of filtration surfaces and an annular filtration chamber outer ring (2), and a supply pipe provided on a tangent to the filtration chamber outer ring (2). (3) is connected to the supply port (4) along the inner wall of the filter outdoor ring (2) , and the undiluted solution is supplied along the inner wall of the filter outdoor ring (2), solid-liquid is separated by the filter plate (1), and the discharge port (7) provided in the center is supplied. In the solid-liquid separator that discharges the cake from
A fixed ring (6) formed in a spiral shape from the supply port (4) toward the center between the pair of filter plates (1, 1);
a rotating ring (11) formed at the same pitch as the fixed ring (6) in a spiral flow path formed by the fixed ring (6);
A solid-liquid separator comprising: a drive ring (13) that rotates a rotating ring (11) eccentrically by a predetermined distance from the center of a fixed ring (6).
前記駆動環(13)を回転自在にハウジング(12)に内挿し、
駆動環(13)の中心に駆動軸(15)を挿通し、
中心から離れた所定位置に連結軸(16)を回転自在に挿通して回転環(11)に連結するとともに、
ハウジング(12)の内壁に駆動軸(15)中心と偏心した状態で円環状に制御溝(21)を形成し、
連結軸(16)の端部を制御ピン(19)と係合し、
制御ピン(19)に設けたピン部(22)を制御溝(21)に遊嵌した
ことを特徴とする請求項1に記載の固液分離機。
rotatably inserting the drive ring (13) into the housing (12);
Insert the drive shaft (15) into the center of the drive ring (13),
A connecting shaft (16) is rotatably inserted into a predetermined position away from the center and connected to the rotating ring (11),
A control groove (21) is formed in an annular shape on the inner wall of the housing (12) in a state eccentric to the center of the drive shaft (15),
engaging the end of the connecting shaft (16) with the control pin (19);
The solid-liquid separator according to claim 1, characterized in that a pin portion (22) provided on the control pin (19) is loosely fitted into the control groove (21).
前記回転環(11)は、ろ過板(1,1)の一対のろ過面それぞれと対向する両側端部にスクレーパ(28)を係合させ
ことを特徴とする請求項1または2に記載の固液分離機。
3. The rotary ring (11) has scrapers (28) engaged with both end portions thereof facing each of the pair of filter surfaces of the filter plates (1, 1). Solid-liquid separator.
前記一対のろ過板(1,1)の少なくとも一方を、外周から中心に向かうほど内部容積が縮小するようにテーパに形成した
ことを特徴とする請求項1~3の何れか1項に記載の固液分離機。
4. The filter according to claim 1, wherein at least one of the pair of filter plates (1, 1) is tapered so that the internal volume decreases from the outer periphery toward the center. Solid-liquid separator.
JP2020132774A 2020-08-05 2020-08-05 solid liquid separator Active JP7406702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020132774A JP7406702B2 (en) 2020-08-05 2020-08-05 solid liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132774A JP7406702B2 (en) 2020-08-05 2020-08-05 solid liquid separator

Publications (2)

Publication Number Publication Date
JP2022029502A JP2022029502A (en) 2022-02-18
JP7406702B2 true JP7406702B2 (en) 2023-12-28

Family

ID=80324942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132774A Active JP7406702B2 (en) 2020-08-05 2020-08-05 solid liquid separator

Country Status (1)

Country Link
JP (1) JP7406702B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070718A (en) 1999-09-07 2001-03-21 Ishigaki Co Ltd Filter medium of disk filter machine
JP2004090048A (en) 2002-08-30 2004-03-25 Kubota Corp Rotary type pressure dehydrator
JP2004237229A (en) 2003-02-07 2004-08-26 Ishigaki Co Ltd Apparatus for washing continuous filter press
JP2008284425A (en) 2007-05-15 2008-11-27 Hanex Co Ltd Drainage separator
JP2012081424A (en) 2010-10-13 2012-04-26 Ishigaki Co Ltd Impeller of continuous pressure dehydrator
WO2019044867A1 (en) 2017-08-31 2019-03-07 株式会社ヴァレオジャパン Scroll-type compressor
JP2019100201A (en) 2017-11-29 2019-06-24 三菱重工サーマルシステムズ株式会社 Scroll compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143977A (en) * 1978-04-30 1979-11-09 Tamaki Fujita Continuous pressure rotary filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070718A (en) 1999-09-07 2001-03-21 Ishigaki Co Ltd Filter medium of disk filter machine
JP2004090048A (en) 2002-08-30 2004-03-25 Kubota Corp Rotary type pressure dehydrator
JP2004237229A (en) 2003-02-07 2004-08-26 Ishigaki Co Ltd Apparatus for washing continuous filter press
JP2008284425A (en) 2007-05-15 2008-11-27 Hanex Co Ltd Drainage separator
JP2012081424A (en) 2010-10-13 2012-04-26 Ishigaki Co Ltd Impeller of continuous pressure dehydrator
WO2019044867A1 (en) 2017-08-31 2019-03-07 株式会社ヴァレオジャパン Scroll-type compressor
JP2019100201A (en) 2017-11-29 2019-06-24 三菱重工サーマルシステムズ株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2022029502A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US7191700B2 (en) Solid-liquid separator
TWI574834B (en) Concentration device Integral screw press
JP2006055699A (en) Solid/liquid separator
EP0553783B1 (en) Screw type hydrextractor
KR101258805B1 (en) Apparatus for separating solid and liquid
WO2001026776A1 (en) Rotary type compressive filtrating machine
JP2015167894A (en) Solid-liquid separator
CN103895250B (en) A kind of integrated treatment facility of twin-screw fragmentation dehydration with gear pump
JPH02500726A (en) Rotating drum type separation device
KR101276389B1 (en) Low velocity centrifugal dehydrator
WO2024032167A1 (en) Multi-filter-cartridge-unit circular-rotation-disc-type dehydrator
JP7406702B2 (en) solid liquid separator
TW201536694A (en) Dehydration system for organic sludge
JP4953089B2 (en) Continuous dehydration filtration equipment
JP4978636B2 (en) Concentrator
CN204933742U (en) Sleeping spiral shell conveyer centrifugal
JP2007038068A (en) Solid/liquid separator
JP2009142791A (en) Screw press with concentration function
KR20090093772A (en) Apparatus for synthetically pretreating waste water
JP2008104951A (en) Rotary pressure dehydrator and dehydration method of sludge by the same
WO2001058596A1 (en) Centrifugal separator
JP2006272058A (en) Centrifugal separator
JP2008221044A (en) Rotary pressure dehydrator
RU2730323C1 (en) Decanter centrifuge
KR0161220B1 (en) Dewatering apparatus of centrifugal type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7406702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150