WO2001026776A1 - Rotary type compressive filtrating machine - Google Patents

Rotary type compressive filtrating machine Download PDF

Info

Publication number
WO2001026776A1
WO2001026776A1 PCT/JP2000/007073 JP0007073W WO0126776A1 WO 2001026776 A1 WO2001026776 A1 WO 2001026776A1 JP 0007073 W JP0007073 W JP 0007073W WO 0126776 A1 WO0126776 A1 WO 0126776A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration chamber
cake
rotary compression
ring spacer
screen
Prior art date
Application number
PCT/JP2000/007073
Other languages
French (fr)
Japanese (ja)
Inventor
Takaharu Otsuka
Jun Ohashi
Original Assignee
Tomoe Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Engineering Co., Ltd. filed Critical Tomoe Engineering Co., Ltd.
Priority to AU76846/00A priority Critical patent/AU7684600A/en
Publication of WO2001026776A1 publication Critical patent/WO2001026776A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/15Filters with filtering elements which move during the filtering operation with rotary plane filtering surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/62Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying
    • B01D33/64Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by compression
    • B01D33/644Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by compression by pressure plates, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/18Filters characterised by the openings or pores
    • B01D2201/184Special form, dimension of the openings, pores of the filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/055Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported ring shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/80Handling the filter cake in the filter for purposes other than for regenerating for drying
    • B01D29/82Handling the filter cake in the filter for purposes other than for regenerating for drying by compression

Definitions

  • the present invention relates to a compression filter for filtering and compressing a hydrated material (processed undiluted solution) such as a raw material of a processed food or a semi-processed product thereof, or sludge, etc., and in particular, an annular filter formed around a rotation axis.
  • the present invention relates to a rotary compression filter that performs dehydration treatment by gradually applying pressure to a stock solution as it proceeds in a filtration chamber.
  • FIG. 7 is a partially cutaway perspective view showing the structure of a conventional typical rotary compression filter 101
  • FIG. 8 is an AA line of the rotary compression filter 101 of FIG. FIG.
  • this rotary compression filter 101 is basically composed of a rotating shaft 102, an inner ring spacer 103, an outer ring spacer 104, and two sheets. And a donut-shaped screen 105, 105, a partition plate 106, and a back pressure device (not shown), an outer casing, a driving device, and the like.
  • the rotating shaft 102 is held substantially horizontally, and is supplied with a driving force by a driving device (not shown), so that the rotating shaft 102 shown in FIG. It rotates in the direction of arrow B at a low speed (about 0.2 to 1.3 rotations Z).
  • the inner ring spacer 103 is fixed around the rotation axis 102, and rotates in the same direction according to the rotation axis 102.
  • the outer ring spacer 104 is arranged outside the inner ring spacer 103 and is held by an external casing (not shown). 2 includes a circular portion extending over about 240 ° to 300 ° on the concentric circle, and a linear portion extending in the tangential direction of the concentric circle to the end portion 104b.
  • the outer ring spacer 104 has a circular portion in which the inner peripheral surface 104c is always opposed to the outer peripheral surface 103a of the inner ring spacer 103 at a constant interval.
  • the thickness W 1 of the outer ring spacer 104 in the axial direction of the rotating shaft 102 is equal to the thickness W 2 of the inner ring spacer 103.
  • the two screens 105 and 105 have inner peripheral portions 105 a and 105 a fixed on both side surfaces of the inner ring spacer 103, respectively, and outer peripheral portions 105 and 105.
  • b, 105 b are arranged in such a position and size as to be in contact with both side surfaces of the outer ring spacer 104. Therefore, the screens 105 and 105 rotate in the same direction according to the inner ring spacer 103 when the rotation shaft 102 rotates, and at this time, the outer peripheral edge 105 b , 105 b slide on both side surfaces of the outer ring spacer 104.
  • Each of the screens 105 and 105 has a number of small holes of about 0.18 mm in diameter to ensure water permeability, and removes water from the processing stock solution as described later. It acts as a fill for you.
  • the partition plate 106 is held substantially horizontally and in a direction orthogonal to the axial direction of the rotating shaft 102, and the thickness of the partition plate 106 in the axial direction of the rotating shaft 102 is maintained.
  • the dimension W3 matches the thickness dimension W1 of the outer ring spacer 104 and the thickness dimension W2 of the inner ring spacer 103.
  • the end 106a is formed so as to conform to the curvature of the outer peripheral surface 103a of the inner ring spacer 103, make surface contact with the curvature, and slide.
  • the end (outside end 106b) of the partition plate 106 opposite to the inside end 106a is the base end 104a and the end 104 of the outer ring spacer 104. It is held at a position with a predetermined interval between b and.
  • the space secured between the outer end portion 106 b and the base end portion 104 a of the outer ring spacer 104 is provided as a stock solution supply port 108, and the untreated solution to be introduced into the apparatus.
  • the space secured between the outer end 106 b and the outer end 104 b of the outer race spacer 104 is used to serve as the cake outlet 109. Has become.
  • the bottom surface 106 c of the partition plate 106 coincides with the tangential direction of the outer peripheral surface 103 a of the inner ring spacer 103, and the linear portion of the outer ring spacer 104. It extends parallel to the top surface 104d.
  • the rotary compression filter 101 has a structure that is closed by an outer casing, except for a stock solution supply port 108, a cake outlet 109, and a liquid discharge port (not shown).
  • a back pressure device having a movable valve 107 as shown in FIG. 12 is provided on the side of the cake outlet 109.
  • the movable valve 107 of the back pressure device is formed of a flexible material, and is bent so that the end 107 a on the cake outlet 109 side contacts the inner wall of the outer casing 113 on the opposite side.
  • the opening area of the cake outlet 109 can be freely adjusted from the fully open state shown in (1) of FIG. 12 to the fully closed state shown in (2) of FIG.
  • FIG. 9 a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along the line CC.
  • the back pressure With the valve 107 fully closed, the filtration chamber 110 (the inner ring spacers 103 and the partition plate 106, and the outer ring spacers) were fed through the undiluted solution supply port 108 shown in Fig. 9. It is a space with a rectangular cross section (see Fig.
  • the part of the filtration chamber 110 whose side is blocked by these screens 105, 105 is referred to as “screen part.”)
  • the water in the processing stock solution is screened during the process of storing the processing stock solution in the filtration chamber 110. Through the small holes, the water is gradually discharged out of the filtration chamber 110. As a result, the processing stock solution becomes a slurry by increasing the solid content concentration, and a part thereof adheres to the screen surface.
  • the water discharged to the outside of the filtration chamber 110 flows down the gap between the inner wall of the outer casing and the screen 105, and is discharged to the outside of the device from the liquid discharge port.
  • a driving device (not shown) is driven to supply a driving force to the rotating shaft 102, and the rotating shaft 102 is driven at a low speed (0.2 to 1.3 rotations) in the direction of arrow B shown in FIG. (About Z minutes). Then, the inner ring spacer 103 fixed around the rotation axis 102 and both sides of the inner ring spacer 103 The screen 105 fixed to is rotated in the same direction.
  • the undiluted solution introduced into the filtration chamber 110 is separated from the undiluted solution by the frictional force generated between the rotating screen 105 and the slurry-like undiluted solution. From the supply port 108 to the cake outlet 109, the inside of the filtration chamber 110 is sequentially advanced. As described above, when the slurry-like undiluted solution proceeds in the filtration chamber 110, dehydration further proceeds in the process, and the slurry-like undiluted solution gradually becomes a cake (dehydrated cake). . Then, the frictional force with the screen 105 also increases, and the increased frictional force causes the dehydrated cake to be transported further to the front. However, it is not conveyed at the same speed as the screen 105, and conversely, the preceding dewatered cake is compressed. For this reason, the dehydration of the preceding dehydration cake will further progress.
  • the undiluted solution introduced into the filtration chamber 110 undergoes dehydration as it approaches the cake outlet 109, and becomes near the cake outlet 109 in the filtration chamber 110.
  • the dehydrated cake will stay.
  • the movable valve 107 of the back pressure device is opened, the first dewatered cake that has stayed near the cake outlet 109 is pushed out by the subsequent dewatered cake.
  • it is discharged outside from the cake outlet 109.
  • the start operation is completed and the operation shifts to steady operation.
  • the rotary compression filter 101 can rotate the inner ring spacer 103 and the screen 105 at a low speed, and can convert the undiluted solution into a liquid (water) and a solid (a dewatered cake).
  • energy consumption and noise are low, and the outer casing is hermetically closed. It has the advantage of being easy to control, and that in the case of waste disposal, odor generation can be minimized.
  • the rotary compression filter 101 has the following problems. That is, the dehydrated cake 111 is discharged to the outside from the cake outlet 109 in a state as shown in FIG. 10, and among them, a relatively lower part close to the outer ring spacer 104 is shown. (For example, the dewatered cake at the position indicated by L in this figure) is discharged from a relatively high position near the partition plate 106 (for example, H in this figure). There is a problem that the degree of dehydration is low (that is, the water content is high) as compared with the dehydrated cake at the site shown.
  • the dewatered cake located at F1 proceeds in the direction of F3 according to the frictional force with the screen 105, but at the position of F3, the frictional force is reduced by the partition plate 106.
  • the dewatered cake that has progressed from the position of F1 because it is acting toward the bottom surface 106c, is pressed against the bottom surface 106c of the partition plate 106, and along the bottom surface 106c. It will advance to the position of P1.
  • the dewatered cake located at F2 proceeds in the direction of F5 according to the frictional force with the screen 105, and is pushed out in the direction of P2 by the subsequent dewatered cake, but at the position of F5, Since the frictional force acts toward the bottom surface 106 c of the partition plate 106, a part of the dewatered cake located at F 2 becomes part of the partition plate while traveling to the position P 2. It will flow to 106 side. Accordingly, the density and pressure of the dewatered cake at the position of P 2 are lower than those of the dewatered cake at the position of P 1, and the collision of force as occurs at a portion near the partition plate 106 is as follows. Since it does not occur near P2, the relative position of the fine particles in the dehydrated cake is unlikely to change.
  • the dewatered cake in the filtration chamber 110 is separated from the dewatered cake.
  • dehydration proceeds to some extent, and conversely, at a portion near the outer ring spacer 104, the cake outlet 1 is not so strongly compressed and has a low degree of water removal. It is discharged outside from 09.
  • the number of rotations of the rotating shaft 102, the amount of undiluted solution supplied, and the back pressure device at the cake outlet 109 are set.
  • the operation is performed by controlling the movable valve 107, and even when the rotation speed of the rotating shaft 102 and the supply amount of the undiluted solution are constant, the discharge is achieved by adjusting the back pressure in the back pressure device.
  • the degree of water removal in the dewatered cake can be controlled to some extent.
  • the cake passage 1 12 in FIG. 9 (the part of the filtration chamber 1 110 other than the screen section, and the cake exit from the end of the screen section)
  • the pressure inside the space up to 109 increases, and the friction between the inner wall of the cake passage 1 1 2 and the dewatered cake increases, which hinders the movement of the dewatered cake and causes clogging.
  • the internal pressure may damage the device.
  • the present invention can solve the above-mentioned problems by slightly improving the conventional rotary compression filter, and can dramatically improve the average degree of dewatering of the discharged dewatered cake. It is an object of the present invention to provide a rotary compression filter that can be expected, and that can also improve the dewatering efficiency and can smoothly discharge a dewatered cake. Disclosure of the invention
  • a processing stock solution is continuously introduced into a filtration chamber having a rectangular cross section and extending in an annular shape, and at least one wall surface constituting the filtration chamber is continuously rotated in a direction toward the end of the filtration chamber.
  • a pressurizing means is provided in the filtration chamber, so that the cross-sectional area of the filtration chamber gradually decreases in accordance with the moving direction of the untreated solution or the dewatered cake.
  • the filtration chamber is fixed around a rotation axis and rotates along the rotation axis.
  • An inner peripheral surface of the inner ring spacer and an outer ring spacer disposed outside the inner ring spacer and held by an outer casing.
  • the inner peripheral surface of the spacer and the inner peripheral edge are respectively fixed on both side surfaces of the inner ring spacer, and the outer peripheral edge portion is arranged in a position and size such that the outer peripheral edge is in contact with both side surfaces of the outer ring spacer.
  • the inner surfaces of the two screens thus formed.
  • the pressurizing means in the filtration chamber can be provided on either the inner ring spacer side or the outer ring spacer side.
  • the screen has a large number of at least two types of small holes with different diameters, and the small diameter holes are arranged on the outside with the large diameter small holes. If the pressurizing means is formed so as to close small holes with a large diameter from the inside at locations where the pressure in the filtration chamber becomes higher, it is expected that the dehydration efficiency of the entire device will improve. Can be.
  • a pressure plate is provided in the filtration chamber as the pressure means and the pressure plate is configured to be vertically displaceable, it is possible to set the position of the pressure plate suitable for steady operation. Further, it is possible to prevent the dewatering cake from being clogged in the cake passage.
  • FIG. 1 is a sectional view showing a basic structure of a first embodiment of a rotary compression filter 1 according to the present invention.
  • FIG. 2 is a cross-sectional view showing a basic structure of a second embodiment of the rotary compression filter 1 according to the present invention.
  • FIG. 3 is a sectional view showing a basic structure of a third embodiment of the rotary compression filter 1 according to the present invention.
  • FIG. 4 is a sectional view showing a basic structure of a rotary compression filter 1 according to a fourth embodiment of the present invention.
  • FIG. 5 is a front view of a screen 5 used in the rotary compression filter 1 of FIG.
  • FIG. 6 is a sectional view showing a basic structure of a fifth embodiment of the rotary compression filter 1 according to the present invention.
  • FIG. 7 is a partially cutaway perspective view showing the basic structure of a conventional rotary compression filter 101. As shown in FIG.
  • FIG. 8 is a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along line AA.
  • FIG. 9 is a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along line CC.
  • Fig. 10 shows the rotary compression filter 101 of Fig. 7 with cake outlet 109 It is an enlarged sectional view nearby.
  • FIG. 11 is a cross-sectional view for explaining the operation of the rotary compression filter 101 of FIG.
  • FIG. 12 is an explanatory view of the movable valve 107 of the back pressure device provided near the cake outlet 109 of the rotary compression filter 101 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view showing a structure of a first embodiment of a rotary compression filter 1 according to the present invention.
  • This rotary compression filter 1 is basically composed of a rotating shaft 2, an inner ring spacer 3, an outer ring spacer 4, two donut-shaped screens 5, and a partition plate, as in the conventional one. 6, and an outer casing (not shown), a driving device, etc., and a filtration chamber 10 (formed between the inner ring spacer 3 and the partition plate 6 and the outer ring spacer 4).
  • It is a rectangular space with a cross section, and has a portion (annular portion) extending in a ring (C-shape) and a portion (straight portion) extending in a straight line.
  • This is one of the walls constituting the filtration chamber 10 into which the processing stock solution is continuously introduced through the stock solution supply port 8 through the space and the cake outlet 9 through the portion and the straight portion.
  • the processing stock solution is sequentially moved in the direction of arrow D by friction with the screen 5 and compressed, and at this time, water is removed from the processing stock solution through the screen 5 formed of a material having water permeability, and the remaining The dewatered cake is discharged from the cake outlet 9 to the outside.
  • the rotary compression filter 1 is provided with a pressure plate 13 in a filtration chamber 10 as a pressure means.
  • the cross-sectional area of the chamber 10 is configured to gradually decrease in accordance with the moving direction of the processing stock solution or the dewatered cake. For this reason, as the undiluted solution or dehydrated cake proceeds in the filtration chamber 10, the cross-sectional area of the filtration chamber 10 is gradually reduced, and the undiluted solution or dehydrated cake is orthogonal to the direction of travel as it proceeds. Pressure will be generated in the direction of movement.
  • the rotary compression filter 1 in the present embodiment can compress the undiluted solution or the dewatered cake not only in the traveling direction of the filtration chamber 10 but also in the direction perpendicular to the traveling direction.
  • the pressing plate 13 is provided along the outer peripheral surface 3 a of the inner ring spacer 3 and the bottom surface 6 c of the partition plate 6, and the pressing plate 13 is mainly formed of a screen.
  • the cake passage 12 (of the filtration chamber 10) In the part other than the screen part and in the space from the end of the screen part to the cake outlet 9, the bottom surface of the pressure plate 13 and the upper surface 4d of the outer ring spacer 4 are almost parallel. Since the cross-sectional area of the filtration chamber 10 is hardly reduced in the cake passage 12, the efficiency in the filtration chamber 10 is higher than that of the conventional rotary compression filter. Well-filtered and dewatered, the dewatered cake is discharged Thus, a higher degree of dehydration can be obtained.
  • the cake passage 12 is vertically formed by the bottom surface of the pressure plate 13 and the upper surface 4 d of the outer race spacer 4, and the side surface is formed by an inner wall of an external casing (not shown). It is not structured so that the water in the cake passage 12 is immediately discharged to the outside.Therefore, in the cake passage 12, the dewatered cake is compressed in a direction orthogonal to the traveling direction.
  • the screen 5 is formed of a smooth metal plate having a large number of small holes.
  • the screen 5 is made of a porous material having water permeability, for example, a plastic material may be used.
  • it may be formed of a sintered body of metal or ceramic.
  • FIG. 2 is a sectional view showing a structure of a second embodiment of the rotary compression filter 1 according to the present invention.
  • the rotary compression filter 1 according to the present embodiment has a pressure plate 13 provided along the upper surface 4 d of the outer ring spacer 4, and a filter at the screen.
  • the structure is such that the sectional area of the chamber 10 is gradually reduced. Therefore, similarly to the rotary compression filter 1 in the first embodiment, the processing stock solution or the dewatered cake traveling in the filtration chamber 10 can be compressed in a direction orthogonal to the traveling direction.
  • the compression is performed in the screen portion where the squeezed water is quickly discharged to the outside from the screen 5, so that the filtration and dewatering can be performed efficiently as compared with the conventional rotary compression filter 1.
  • the dewatered cake can be discharged at a higher dehydration degree.
  • the dewatered cake near the outer ring spacer did not easily change the relative position of the fine particles, and the degree of dehydration was low due to low compression.
  • the filtration and dehydration of the dewatered cake at a portion close to the outer ring spacer 4 is promoted, and a higher dehydration degree is obtained. can get. This is due to the pressurization provided along the outer ring This is because the action of the plates 13 deforms the fine part (collection of fine particles) in the dewatered cake near the outer ring spacer 4 and increases the chance of extruding the water surrounded by the collective particles. .
  • the pressurizing means in addition to the partition plate 6 or the outer ring spacer 4, the pressurizing means is not necessarily separate from them. It is not necessary to provide the pressure plate 13 as an independent member, and by forming the partition plate 6 or the outer ring spacer 4 itself in a shape and dimensions that gradually reduce the cross-sectional area of the filtration chamber 10, It is also possible to adopt a configuration in which the undiluted solution or dewatered cake is compressed in a direction perpendicular to the traveling direction.
  • FIG. 3 is a cross-sectional view showing the structure of a rotary compression filter 1 according to a third embodiment of the present invention.
  • the pressurizing portion 6e at the lower portion inside the partition plate 6 has a function as a pressurizing means, and the displacement pressurizing plate 13a pivots at an arbitrary point as shown in FIG. As 16, it is configured such that the cake outlet 9 side can be displaced upward and downward, or that it can be displaced (i.e., oscillates) at a constant cycle.
  • a description of a mechanism for displacing the pressing plate 13 is omitted, but a cam mechanism, a crank mechanism, or the like can be used as appropriate.
  • the pressure plate 13 By configuring the pressure plate 13 to be displaceable in this way, it is possible to set the position of the pressure plate 13 suitable for a steady operation.
  • a sufficient amount of undiluted solution or dewatered cake is accumulated in the machine, and a dewatered cake that has not yet been sufficiently filtered and dewatered is discharged from the cake outlet 9 until the internal pressure sufficient for filtration and dehydration is generated.
  • It can also be used to make the cake passage 12 extremely narrow so that it is not discharged to the outside. Therefore, the back pressure device having the movable valve 107 as shown in FIG. 12 used in the conventional rotary compression filter is omitted in the rotary compression filter 1 in the present embodiment. You can also.
  • the pressure plate 13 is configured to be swingable, the dewatered cake is prevented from clogging in the cake passage 12 and stable operation is possible even when the maximum pressure is set high. .
  • FIG. 3 shows an example in which the pressure plate 13 that can be displaced or oscillated is provided on the partition plate 6 side.
  • the pressing plate 13 may be configured so as to be entirely displaced, or may be configured so that only a part thereof is displaced.
  • the displacement of the pressure plate 13 as shown in FIG. 3 can be applied to automatic control.
  • the solid concentration or solid component of the undiluted solution has a temporal or seasonal fluctuation
  • the operating conditions such as the rotating shaft, the amount of undiluted solution supply, and the displacement of the pressure plate 13 are fixed, Due to the difference in the properties of the undiluted solution, the degree of dehydration of the discharged dehydrated cake will also change.
  • a pressure sensor is attached to the surface of the pressurizing plate 13 in the filtration chamber 10, and various parts in the filtration chamber 10 are installed. If the pressure of the filtration plate 10 is detected and the pressure plate 13 is displaced accordingly, the pressure inside the filtration chamber 10 can be easily controlled, and the degree of dewatering of the discharged dewatered cake can be controlled as desired. Can be controlled within the range.
  • FIG. 4 is a sectional view showing a structure of a rotary compression filter 1 according to a fourth embodiment of the present invention.
  • the partition plate 6 has a shape such that the cross-sectional area of the filtration chamber 10 is gradually reduced, and the partition plate 6 itself functions as a pressurizing means. It has become .
  • the bottom surface 106 c of the partition plate 106 is located on the upper surface 1 of the straight portion of the outer ring spacer 104.
  • the bottom surface 6 c of the partition plate 6 in the present embodiment is not provided with the inner ring spacer 3. From the inner end 6a, which makes surface contact with the outer peripheral surface 3a, to the outer end 6b, first in a direction substantially perpendicular to the upper surface 4d of the linear portion of the outer race spacer 4, and then gradually It extends to the cake exit 9 side while drawing a curve, and finally, in the cake passage 12, it extends almost parallel to the outer ring spacer 4 and reaches the outer end 6 b, and is filtered.
  • the cross-sectional area of the chamber 10 is gradually reduced at the screen.
  • the dewatered cake traveling in the filtration chamber 10 can be compressed in the screen section in a direction orthogonal to the traveling direction, and the filtration can be performed more efficiently than in the conventional rotary compression filter.
  • ⁇ Dehydration can be performed, and a dehydrated cake with a higher degree of dehydration can be obtained.
  • the screen 5 is formed of a smooth metal plate having a large number of small holes and having water permeability. And, as shown in FIG. 5, those small holes have different diameters in the zone G1 on the inner peripheral edge 5a side and the zone G2 on the outer peripheral edge 5b side. Is established . More specifically, a small hole 14 having a diameter of about 0.16 to 0.20 mm (preferably 0.18 mm) and a diameter similar to the conventional one is provided in the zone G1. Zone G2 has pores 1 having a diameter of about 0.11 to 0.15 mm (preferably 0.13 mm) and smaller in diameter than pores 14 of Zone G1. 5 are arranged.
  • the small holes 15 having a small diameter are arranged on the outer side (on the outer peripheral edge 5b side) of the small holes 14 having a large diameter.
  • the line 5c shown in FIGS. 4 and 5 is a boundary between the zone G1 and the zone G2.
  • the small holes 15 having a smaller diameter than the conventional one are arranged on the outer peripheral edge 5 b side of the screen 5, so that the processing can be performed more than the conventional rotary compression filter.
  • the trapping efficiency of the suspended solids (fine particles) in the stock solution by screen 5 has been improved.
  • the undiluted solution introduced into the machine is filtered by the filtration zone K (Fig. 4) within a range of about 200 ° from the upper surface 6d of the partition plate 6 in the filtration chamber 10. ), Most of the water (free water) passes through the small holes 14, 15 of the screen 5 and is discharged out of the filtration chamber 10.
  • the dewatering action in the filtration zone K is based on the fact that the supply pressure of the undiluted solution is relatively low (less than or equal to 0.1 MPa). There is no danger of being discharged out of the filtration chamber 10 through the large (small diameter) pores 14, but in the compression zone J (see Fig. 4), the pressure in the filtration chamber 10 is low. However, due to the partition plate 6 functioning as a pressurizing means, the pressure in the filtration chamber 10 gradually increases (up to about 0.6 MPa) as the undiluted solution or dewatered cake progresses. Fine particles in the cake may be discharged through the small holes 14 of the screen 5 to the outside of the filtration chamber 10 due to the increased internal pressure (note that the zone G on the outer peripheral edge 5 b side).
  • the partition plate 6 is formed so as to gradually reduce the cross-sectional area of the filtration chamber 10, the processing solution which is located on the inner ring spacer 3 side in the filtration chamber 10 is not used.
  • the dewatered cake is gradually moved away from the inner ring spacer 3 as it progresses through the filtration chamber 10 by the partition plate 6, and is moved to the outer ring spacer 4 side. Then, at the position in the filtration chamber 10 where the internal pressure is increased by the partition plate 6 (the position indicated by M in FIG. 4), the processing stock solution or the dewatered cake is removed from the outer peripheral edge of the screen 5.
  • two types of small holes 14 and 15 having different diameters are provided on the screen 5, and the small diameter holes 15 are arranged outside the large diameter small holes 14.
  • 10 types (or more) of small holes with different diameters are provided on the screen 5, and the diameter of the provided small holes is gradually reduced from the inside to the outside. You may.
  • water is used such as “water permeability”, “dehydration”, and “moisture”, but these are used for convenience of explanation, and “oil” and the like are used. It should be noted that this does not mean to exclude but broadly means “liquid”.
  • the rotary compression filter according to the present invention can be expected to dramatically improve the average degree of dewatering of the discharged dewatered cake, and can expect improvement in dewatering efficiency.
  • the pressure of the screen portion in the compression zone can be increased by the action of the pressurizing means, and the pressure of the final dewatering portion of the filtration chamber can be increased, and as a result, the degree of dewatering of the entire dewatered cake can be improved. Can be.
  • a pressure plate is provided in the filtration chamber as a pressure means, and the pressure plate is configured to be swingable up and down, the width for selecting a stable operation condition is limited. Since it is possible to spread and perform the dehydration treatment with a higher pressure, the degree of dehydration of the dehydrated cake is improved. Furthermore, by automatically controlling the displacement of the pressurizing plate in combination with a signal from a pressure sensor or the like, it is possible to cope with a change in the properties of the stock solution and to keep the dehydration degree of the dewatered cake within a certain range.
  • the rotary compression filter of the present invention can be used for the separation of all solid-liquid mixed treatment liquids, but compared with other solid-liquid separators when the solids contained in the undiluted treatment liquid have compaction properties. It offers a particularly significant advantage. For example, fruits and vegetables can be used to separate juice from shredded and crushed material, to separate soy milk, and to treat liquids containing fine fibers such as papermaking wastewater.
  • fruits and vegetables can be used to separate juice from shredded and crushed material, to separate soy milk, and to treat liquids containing fine fibers such as papermaking wastewater.
  • sludge dewatering at a sewage treatment plant as described above, since the part other than the cake outlet can be made a closed structure, environmental pollution due to bad smell and deterioration of the working environment can be minimized. When dewatered cake is incinerated, fuel can be saved and energy can be saved.

Abstract

A rotary type compressive filtrating machine (1) capable of increasing a dewatering efficiency of a dewatering cake to be discharged, wherein unprocessed stock solution is led continuously into a filtration chamber (10) formed in a rectangular cross-section and extending annularly to rotatingly move a permeable donut-shaped screen (5) continuously in the end direction of the filtration chamber (10) in order to move, while compressing, the stock solution successively in the end direction by a friction between the unprocessed stock solution and the screen (5) in the filtration chamber (10), and a pressurizing plate (13) is provided in the filtration chamber (10) so that the cross-sectional area of the filtration chamber (10) is reduced gradually toward the moving direction of the unprocessed stock solution.

Description

明細: 回転式圧縮濾過機 技術分野  Description: Rotary compression filter
この発明は、 加工食品の原料やその半加工品、 又は汚泥等の含水物 ( 処理原液) を濾過 ·圧縮して脱水処理を行う圧縮濾過機に関し、 特に、 回転軸周りに形成された環状の濾過室内を進行させるに従って処理原液 に次第に圧力を加えて脱水処理を行う回転式圧縮濾過機に関する。 背景技術  The present invention relates to a compression filter for filtering and compressing a hydrated material (processed undiluted solution) such as a raw material of a processed food or a semi-processed product thereof, or sludge, etc., and in particular, an annular filter formed around a rotation axis. The present invention relates to a rotary compression filter that performs dehydration treatment by gradually applying pressure to a stock solution as it proceeds in a filtration chamber. Background art
固体と液体を分離する装置には、 遠心分離機、 遠心濾過機、 フィルタ —プレス、 スクリュープレス、 ロータリーバキュームフィル夕、 回転式 の圧縮濾過機等、 様々なタイプのものがある。 これらのうち、 回転式の 圧縮濾過機については、 例えば、 カナダ特許出願第 4 0 4 2 2 3号 (出 願日 : 1 9 8 2年 6月 1 日) の公報に記載されているものや、 第 7図及 び第 8図に示すような構造のものが知られている。  There are various types of devices that separate solids and liquids, such as centrifuges, centrifugal filters, filters—presses, screw presses, rotary vacuum filters, and rotary compression filters. Of these, rotary compression filters are described, for example, in the publication of Canadian Patent Application No. 404223 (filing date: June 1, 1998). Structures shown in FIGS. 7 and 8 are known.
第 7図は、 従来の代表的な回転式圧縮濾過機 1 0 1の構造を示す一部 切欠斜視図であり、 第 8図は、 第 7図の回転式圧縮濾過機 1 0 1の A A 線による断面図である。 これらの図からも明らかなように、 この回転式 圧縮濾過機 1 0 1は、 基本的には、 回転軸 1 0 2、 内輪スぺーサ 1 0 3 、 外輪スぺーサ 1 0 4、 2枚のドーナツ状のスクリーン 1 0 5, 1 0 5 、 隔壁板 1 0 6、 及び、 図示しない背圧装置、 外部ケーシング、 駆動装 置等によって構成されるものである。  FIG. 7 is a partially cutaway perspective view showing the structure of a conventional typical rotary compression filter 101, and FIG. 8 is an AA line of the rotary compression filter 101 of FIG. FIG. As is clear from these figures, this rotary compression filter 101 is basically composed of a rotating shaft 102, an inner ring spacer 103, an outer ring spacer 104, and two sheets. And a donut-shaped screen 105, 105, a partition plate 106, and a back pressure device (not shown), an outer casing, a driving device, and the like.
より詳細には、 回転軸 1 0 2は、 ほぼ水平に保持されるとともに、 図 示しない駆動装置により駆動力が供給されることにより、 第 7図に示す 矢印 Bの方向に低速 (0. 2〜 1. 3回転 Z分程度) で回転するように なっている。 内輪スぺーサ 1 0 3は、 回転軸 1 0 2周りに固定されてお り、 回転軸 1 0 2に従って同方向に回転する。 More specifically, the rotating shaft 102 is held substantially horizontally, and is supplied with a driving force by a driving device (not shown), so that the rotating shaft 102 shown in FIG. It rotates in the direction of arrow B at a low speed (about 0.2 to 1.3 rotations Z). The inner ring spacer 103 is fixed around the rotation axis 102, and rotates in the same direction according to the rotation axis 102.
外輪スぺーサ 1 04は、 内輪スぺ一サ 1 0 3の外側に配置されるとと もに、 図示しない外部ケ一シングにより保持されており、 基端部 1 04 aから回転軸 1 0 2の同心円上に約 2 40 ° 〜 3 0 0 ° 程度に亘つて延 出する円状部分と、 終端部 1 04 bまで当該同心円の接線方向に延出す る直線部分とからなつている。 また、 外輪スぺーサ 1 04は、 円状部分 においては、 その内周面 1 04 cが、 内輪スぺ一サ 1 0 3の外周面 1 0 3 aと常に一定の間隔をもって対向するように配置されており、 回転軸 1 0 2の軸方向についての外輪スぺ一サ 1 04の厚さ寸法 W 1は、 内輪 スぺ一サ 1 0 3の厚さ寸法 W 2と一致している。  The outer ring spacer 104 is arranged outside the inner ring spacer 103 and is held by an external casing (not shown). 2 includes a circular portion extending over about 240 ° to 300 ° on the concentric circle, and a linear portion extending in the tangential direction of the concentric circle to the end portion 104b. The outer ring spacer 104 has a circular portion in which the inner peripheral surface 104c is always opposed to the outer peripheral surface 103a of the inner ring spacer 103 at a constant interval. The thickness W 1 of the outer ring spacer 104 in the axial direction of the rotating shaft 102 is equal to the thickness W 2 of the inner ring spacer 103.
2枚のスクリーン 1 0 5, 1 0 5は、 内周縁部 1 0 5 a, 1 0 5 aが 内輪スぺーサ 1 0 3の両側面上にそれぞれ固定されるとともに、 外周縁 部 1 0 5 b, 1 0 5 bが外輪スぺーサ 1 04の両側面に接するような位 置及び寸法にて配置されている。 従って、 スクリーン 1 0 5 , 1 0 5は 、 回転軸 1 0 2が回転すると、 内輪スぺーサ 1 0 3に従って同方向に回 転することになり、 このとき、 その外周縁部 1 0 5 b, 1 0 5 bは、 外 輪スぺーサ 1 04の両側面上を摺動するようになっている。  The two screens 105 and 105 have inner peripheral portions 105 a and 105 a fixed on both side surfaces of the inner ring spacer 103, respectively, and outer peripheral portions 105 and 105. b, 105 b are arranged in such a position and size as to be in contact with both side surfaces of the outer ring spacer 104. Therefore, the screens 105 and 105 rotate in the same direction according to the inner ring spacer 103 when the rotation shaft 102 rotates, and at this time, the outer peripheral edge 105 b , 105 b slide on both side surfaces of the outer ring spacer 104.
また、 各スクリーン 1 0 5, 1 0 5は、 透水性を確保するために直径 0. 1 8 mm程度の多数の小孔を有しており、 後述するように、 処理原 液から水分を取り除くためのフィル夕一として機能するものである。 隔壁板 1 0 6は、 ほぼ水平に、 かつ、 回転軸 1 0 2の軸方向と直交す る方向に保持されており、 回転軸 1 0 2の軸方向についての隔壁板 1 0 6の厚さ寸法 W 3は、 外輪スぺ一サ 1 04の厚さ寸法 W 1及び内輪スぺ ーサ 1 0 3の厚さ寸法 W 2と一致している。 また、 隔壁板 1 0 6の内側 端部 1 0 6 aは、 内輪スぺーサ 1 0 3の外周面 1 0 3 aの曲率に一致し 、 これと面接触し、 摺動するように形成されている。 Each of the screens 105 and 105 has a number of small holes of about 0.18 mm in diameter to ensure water permeability, and removes water from the processing stock solution as described later. It acts as a fill for you. The partition plate 106 is held substantially horizontally and in a direction orthogonal to the axial direction of the rotating shaft 102, and the thickness of the partition plate 106 in the axial direction of the rotating shaft 102 is maintained. The dimension W3 matches the thickness dimension W1 of the outer ring spacer 104 and the thickness dimension W2 of the inner ring spacer 103. Also, inside the partition plate 106 The end 106a is formed so as to conform to the curvature of the outer peripheral surface 103a of the inner ring spacer 103, make surface contact with the curvature, and slide.
隔壁板 1 0 6の、 内側端部 1 0 6 aとは反対側の端部 (外側端部 1 0 6 b) は、 外輪スぺーサ 1 04の基端部 1 04 a及び終端部 1 04 bと の間に、 それぞれ所定間隔を置いた位置に保持されている。 そして、 外 側端部 1 06 bと外輪スぺーサ 1 04の基端部 1 04 aとの間に確保さ れたスペースは、 原液供給口 1 0 8として、 装置内部に導入する処理原 液を供給するために使用され、 外側端部 1 0 6 bと外輪スぺーサ 1 04 の終端部 1 04 bとの間に確保されたスペースは、 ケーキ出口 1 0 9と して機能するようになっている。  The end (outside end 106b) of the partition plate 106 opposite to the inside end 106a is the base end 104a and the end 104 of the outer ring spacer 104. It is held at a position with a predetermined interval between b and. The space secured between the outer end portion 106 b and the base end portion 104 a of the outer ring spacer 104 is provided as a stock solution supply port 108, and the untreated solution to be introduced into the apparatus. The space secured between the outer end 106 b and the outer end 104 b of the outer race spacer 104 is used to serve as the cake outlet 109. Has become.
隔壁板 1 0 6の底面 1 0 6 cは、 内輪スぺ一サ 1 0 3の外周面 1 0 3 aの接線方向と一致しており、 かつ、 外輪スぺ一サ 1 04の直線部分の 上面 1 04 dと平行に延出している。 尚、 この回転式圧縮濾過機 1 0 1 は、 原液供給口 1 0 8、 ケーキ出口 1 0 9、 及び図示しない液体排出口 を除き、 外部ケーシングにより密閉される構造になっている。  The bottom surface 106 c of the partition plate 106 coincides with the tangential direction of the outer peripheral surface 103 a of the inner ring spacer 103, and the linear portion of the outer ring spacer 104. It extends parallel to the top surface 104d. The rotary compression filter 101 has a structure that is closed by an outer casing, except for a stock solution supply port 108, a cake outlet 109, and a liquid discharge port (not shown).
また、 ケーキ出口 1 0 9の側方には、 第 1 2図に示すような可動弁 1 0 7を有する背圧装置が設けられている。 この背圧装置の可動弁 1 0 7 は、 可撓性の材料によって形成され、 ケーキ出口 1 0 9側の端部 1 0 7 aが反対側の外部ケーシング 1 1 3の内壁に接するまで橈むようになつ ており、 第 1 2図の ( 1 ) に示す全開状態から、 同図の (2 ) に示す全 閉状態まで、 ケーキ出口 1 0 9の開口面積を自由に調整できるようにな つている。  A back pressure device having a movable valve 107 as shown in FIG. 12 is provided on the side of the cake outlet 109. The movable valve 107 of the back pressure device is formed of a flexible material, and is bent so that the end 107 a on the cake outlet 109 side contacts the inner wall of the outer casing 113 on the opposite side. The opening area of the cake outlet 109 can be freely adjusted from the fully open state shown in (1) of FIG. 12 to the fully closed state shown in (2) of FIG.
ここで、 上記のような構造の従来の回転式圧縮濾過機 1 0 1の運転方 法とその作動原理について、 第 9図 (第 7図の回転式圧縮濾過機 1 0 1 の C C線による断面図) 及び第 1 2図を用いて簡単に説明する。 まず、 運転開始時においては、 第 1 2図の (2 ) に示すように背圧装置の可動 弁 1 0 7を全閉状態にし、 第 9図に示す原液供給口 1 0 8より、 濾過室 1 1 0 (内輪スぺ一サ 1 0 3及び隔壁板 1 0 6と、 外輪スぺ一サ 1 0 4 との間に形成されている、 断面が矩形状 (第 8図参照) のスペースであ つて、 環状 (C字状) に延出する部分 (環状部分) と直線状に延出する 部分 (直状部分) を有する。 原液供給口 1 0 8から環状部分及び直状部 分を経て、 ケーキ出口 1 0 9に至るまでのスペース。 ) 内へ、 処理原液 を順次導入していく。 このとき、 背圧装置の可動弁 1 0 7は前述の通り 全閉状態にあるので、 導入された処理原液は、 ケーキ出口 1 0 9より外 部に排出されることなく、 濾過室 1 1 0内に貯留されていくことになる 濾過室 1 1 0のうち、 環状部分の全部及び直状部分の一部においては 、 両側方が、 対向する 2枚のスクリーン 1 0 5, 1 0 5によって閉塞 ( 以下、 濾過室 1 1 0のうち、 これらのスクリーン 1 0 5, 1 0 5によつ て側方が閉塞されている部分を 「スクリーン部」 という。 ) されている が、 スクリーン 1 0 5は、 前述の通り透水性を確保するための小孔を多 数有しているので、 処理原液が濾過室 1 1 0内に貯留されていく過程で 、 処理原液中の水分がスクリーン 1 0 5の小孔を抜けて、 次第に濾過室 1 1 0外に排出されていくことになる。 そうすると、 処理原液は固形分 濃度を増してスラリー状になり、 その一部がスクリーン面に付着する。 尚、 濾過室 1 1 0外に排出された水分は、 外部ケーシングの内壁とスク リーン 1 0 5の間隙を流れ落ち、 液体排出口より、 装置外部に排出され る。 Here, the operation method and operating principle of the conventional rotary compression filter 101 having the above-mentioned structure are shown in FIG. 9 (a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along the line CC). This will be briefly described with reference to FIG. First, at the start of operation, as shown in (2) of Fig. 12, the back pressure With the valve 107 fully closed, the filtration chamber 110 (the inner ring spacers 103 and the partition plate 106, and the outer ring spacers) were fed through the undiluted solution supply port 108 shown in Fig. 9. It is a space with a rectangular cross section (see Fig. 8) formed between it and 104, and it extends linearly with the part (annular part) that extends in an annular shape (C shape). The process solution is introduced into the space from the stock solution supply port 108 to the cake outlet 109 via the annular portion and the straight portion. At this time, since the movable valve 107 of the back pressure device is in the fully closed state as described above, the introduced undiluted solution is not discharged to the outside from the cake outlet 109, and the filtration chamber 110 Of the filtration chamber 110, the entire annular part and part of the straight part are closed on both sides by two opposing screens 105, 105. (Hereinafter, the part of the filtration chamber 110 whose side is blocked by these screens 105, 105 is referred to as “screen part.”) As described above, since a large number of small holes for ensuring water permeability are provided, the water in the processing stock solution is screened during the process of storing the processing stock solution in the filtration chamber 110. Through the small holes, the water is gradually discharged out of the filtration chamber 110. As a result, the processing stock solution becomes a slurry by increasing the solid content concentration, and a part thereof adheres to the screen surface. The water discharged to the outside of the filtration chamber 110 flows down the gap between the inner wall of the outer casing and the screen 105, and is discharged to the outside of the device from the liquid discharge port.
この状態で、 図示しない駆動装置を駆動させ、 回転軸 1 0 2に駆動力 を供給し、 回転軸 1 0 2を第 9図に示す矢印 Bの方向に低速 (0 . 2〜 1 . 3回転 Z分程度) で回転させる。 そうすると、 回転軸 1 0 2周りに 固定された内輪スぺーサ 1 0 3、 及び、 内輪スぺーサ 1 0 3の両側面上 に固定されたスクリーン 1 0 5が同方向に回転する。 In this state, a driving device (not shown) is driven to supply a driving force to the rotating shaft 102, and the rotating shaft 102 is driven at a low speed (0.2 to 1.3 rotations) in the direction of arrow B shown in FIG. (About Z minutes). Then, the inner ring spacer 103 fixed around the rotation axis 102 and both sides of the inner ring spacer 103 The screen 105 fixed to is rotated in the same direction.
スクリーン 1 0 5が回転すると、 濾過室 1 1 0内に導入された処理原 液は、 回転するスクリーン 1 0 5或いはこれに付着したスラリー状の処 理原液との間に生じる摩擦力により、 原液供給口 1 0 8からケーキ出口 1 0 9に向かって、 濾過室 1 1 0内を順次進行していくことになる。 こ のようにしてスラリー状の処理原液が濾過室 1 1 0内を進行していくと 、 その過程で更に脱水が進み、 スラリー状の処理原液は、 次第にケーキ 状 (脱水ケーキ) になっていく。 そうすると、 スクリーン 1 0 5との間 の摩擦力もより大きくなつていき、 その増大した摩擦力によって、 脱水 ケーキは更に先方へと搬送されることになるが、 先行する脱水ケーキに よって抵抗を受けるため、 スクリーン 1 0 5と等速で搬送されることに はならず、 逆に、 先行する脱水ケーキを圧縮することになる。 このため 、 先行する脱水ケーキの脱水が更に進むことになる。  When the screen 105 rotates, the undiluted solution introduced into the filtration chamber 110 is separated from the undiluted solution by the frictional force generated between the rotating screen 105 and the slurry-like undiluted solution. From the supply port 108 to the cake outlet 109, the inside of the filtration chamber 110 is sequentially advanced. As described above, when the slurry-like undiluted solution proceeds in the filtration chamber 110, dehydration further proceeds in the process, and the slurry-like undiluted solution gradually becomes a cake (dehydrated cake). . Then, the frictional force with the screen 105 also increases, and the increased frictional force causes the dehydrated cake to be transported further to the front. However, it is not conveyed at the same speed as the screen 105, and conversely, the preceding dewatered cake is compressed. For this reason, the dehydration of the preceding dehydration cake will further progress.
このようにして、 濾過室 1 1 0内に導入された処理原液は、 ケーキ出 口 1 0 9に近づいて行くに従って脱水が進行し、 濾過室 1 1 0内のケー キ出口 1 0 9付近には、 脱水ケーキが滞留して行くことになる。 そして 、 運転を開始してから所定時間経過後、 背圧装置の可動弁 1 0 7を開く と、 ケーキ出口 1 0 9付近に滞留していた最初の脱水ケーキが、 後続の 脱水ケーキによって押し出され、 ケーキ出口 1 0 9から外部に排出され ることになる。 そして、 最初の脱水ケーキが排出されたら、 開始運転を 完了し、 定常運転へと移行する。  In this manner, the undiluted solution introduced into the filtration chamber 110 undergoes dehydration as it approaches the cake outlet 109, and becomes near the cake outlet 109 in the filtration chamber 110. The dehydrated cake will stay. Then, after a lapse of a predetermined time from the start of the operation, when the movable valve 107 of the back pressure device is opened, the first dewatered cake that has stayed near the cake outlet 109 is pushed out by the subsequent dewatered cake. However, it is discharged outside from the cake outlet 109. When the first dewatered cake is discharged, the start operation is completed and the operation shifts to steady operation.
定常運転においては、 第 1 2図に示されている背圧装置の可動弁 1 0 7を開いた状態で、 開始運転時と同様に原液供給口 1 0 8より濾過室 1 1 0内に処理原液を順次導入するとともに、 スクリーン 1 0 5を所定の 速度で回転させることにより、 処理原液を連続的に濾過 ·脱水してケー キ出口 1 0 9より脱水ケーキを排出するようにする。 かかる定常運転に おいても、 処理原液の導入から脱水ケーキの排出に至るまでの濾過 ·脱 水作用については、 前述の開始運転時と基本的に異なるところはないが 、 処理原液の供給量、 スクリーン 1 0 5の回転速度、 及び、 背圧装置の 可動弁 1 0 7の開度を適宜調節することにより、 所望の脱水度にて脱水 ケーキを排出することができるようになつている。 In steady-state operation, with the movable valve 107 of the back-pressure device shown in Fig. 12 open, treatment is performed from the stock solution supply port 108 into the filtration chamber 110 as in the start operation. The undiluted solution is successively introduced and the screen 105 is rotated at a predetermined speed to continuously filter and dehydrate the treated undiluted solution so that the dehydrated cake is discharged from the cake outlet 109. For such steady operation Regarding the filtration and dewatering operations from the introduction of the undiluted solution to the discharge of the dehydrated cake, there is basically no difference from the above-mentioned start operation, but the supply amount of the undiluted solution and the screen 105 The dehydration cake can be discharged at a desired degree of dehydration by appropriately adjusting the rotation speed of and the degree of opening of the movable valve 107 of the back pressure device.
以上に説明したように、 この回転式圧縮濾過機 1 0 1は、 内輪スぺー サ 1 0 3及びスクリーン 1 0 5を低速で回転させるだけで、 処理原液を 液体 (水分) と固体 (脱水ケーキ) とに、 好適に分離することができる ようになつており、 このため、 エネルギー消費量及び騒音が小さく、 ま た、 外部ケーシングにより密閉されているため、 食品の加工の場合は、 衛生面での管理が容易であり、 汚物の処理の場合は、 臭気の発生を最低 限に抑えることができるという利点がある。  As described above, the rotary compression filter 101 can rotate the inner ring spacer 103 and the screen 105 at a low speed, and can convert the undiluted solution into a liquid (water) and a solid (a dewatered cake). In addition, energy consumption and noise are low, and the outer casing is hermetically closed. It has the advantage of being easy to control, and that in the case of waste disposal, odor generation can be minimized.
しかしながら、 この回転式圧縮濾過機 1 0 1には、 次のような問題が ある。 即ち、 脱水ケーキ 1 1 1は、 第 1 0図に示すような状態で、 ケー キ出口 1 0 9から外部に排出されるが、 それらのうち、 外輪スぺーサ 1 0 4に近い比較的下方の位置から排出されるもの (例えば、 この図中、 Lで示す部位の脱水ケーキ) は、 隔壁板 1 0 6に近い比較的上方の位置 から排出されるもの (例えば、 この図中、 Hで示す部位の脱水ケーキ) に比べて脱水度が低い (即ち、 含水率が高い) という問題がある。  However, the rotary compression filter 101 has the following problems. That is, the dehydrated cake 111 is discharged to the outside from the cake outlet 109 in a state as shown in FIG. 10, and among them, a relatively lower part close to the outer ring spacer 104 is shown. (For example, the dewatered cake at the position indicated by L in this figure) is discharged from a relatively high position near the partition plate 106 (for example, H in this figure). There is a problem that the degree of dehydration is low (that is, the water content is high) as compared with the dehydrated cake at the site shown.
このような問題は、 この種の回転式圧縮濾過機 1 0 1特有のものであ り、 その原因は概ね次の通りであると考えられる。 まず、 第 1 1図に示 されているように、 スクリーン 1 0 5は、 矢印 Bの方向に回転するので 、 脱水ケーキとスクリーン 1 0 5との摩擦力は、 スクリーン 1 0 5の回 転方向、 即ち、 第 1 1図に示す矢印 F ( F 1〜F 5 ) の方向に作用する ことになる。 これらのうち、 回転軸 1 0 2の真下付近においては、 摩擦 力が作用する方向 F 1及び F 2は、 脱水ケーキの進行方向 D 4と一致し ている力 F l 、 F 2の位置から更にケーキ出口 1 0 9側に進むと、 摩 擦力は F 3〜F 5の方向に、 即ち、 隔壁板 1 0 6の底面 1 0 6 cに向か つて作用することになる。 Such a problem is peculiar to this kind of rotary compression filter 101, and its cause is considered to be roughly as follows. First, as shown in FIG. 11, since the screen 105 rotates in the direction of arrow B, the frictional force between the dehydrated cake and the screen 105 is determined by the rotation direction of the screen 105. That is, it acts in the direction of arrow F (F1 to F5) shown in FIG. Of these, just below the rotation axis 102, the directions F1 and F2 in which the frictional force acts coincide with the traveling direction D4 of the dewatered cake. When the force further proceeds from the positions of Fl and F2 to the cake exit 109 side, the frictional force is directed to the direction of F3 to F5, that is, to the bottom surface 106c of the partition plate 106. It will work once.
このようなことから、 F 1に位置していた脱水ケーキは、 スクリーン 1 0 5との摩擦力に従って F 3の方向へ進行するが、 F 3の位置では、 摩擦力は隔壁板 1 0 6の底面 1 0 6 cに向かって作用しているので、 F 1の位置から進行してきた脱水ケーキは、 隔壁板 1 0 6の底面 1 0 6 c に押しつけられつつ、 底面 1 0 6 cに沿って P 1の位置へと進行するこ とになる。 F 1に位置していた脱水ケーキが F 1の位置から隔壁板 1 0 6の底面 1 0 6 cに沿って P 1の位置にまで達する間、 F 1よりも外側 (外輪スぺーサ 1 0 4側) に位置していた脱水ケーキが F 3や F 4の方 向に作用する摩擦力に従って隔壁板 1 0 6の底面 1 0 6 cに向かって絶 えず移動してくるので、 いわゆる力の衝突が起こり、 従って、 隔壁板 1 0 6の底面 1 0 6 c付近、 特に、 P 1付近においては、 脱水ケーキは高 い圧力により圧縮されるほか、 その圧縮は、 脱水ケーキの微粒子が互い に相対位置を変えつつ行われることになる。  For this reason, the dewatered cake located at F1 proceeds in the direction of F3 according to the frictional force with the screen 105, but at the position of F3, the frictional force is reduced by the partition plate 106. The dewatered cake that has progressed from the position of F1 because it is acting toward the bottom surface 106c, is pressed against the bottom surface 106c of the partition plate 106, and along the bottom surface 106c. It will advance to the position of P1. While the dewatered cake located at F 1 reaches the position of P 1 along the bottom surface 106 c of the partition plate 106 from the position of F 1 to the position of P 1, the outer side of F 1 (outer ring spacer 10 0 The dehydrated cake located on the (4) side constantly moves toward the bottom surface 106c of the partition plate 106 according to the frictional force acting in the direction of F3 and F4, so-called force Therefore, near the bottom surface 106 c of the partition plate 106, particularly near P 1, the dewatered cake is compressed by high pressure, and the compression is caused by the particles of the dewatered cake being mutually separated. Is performed while changing the relative position.
一方、 F 2に位置していた脱水ケーキは、 スクリーン 1 0 5との摩擦 力に従って F 5の方向へ進行し、 後続の脱水ケーキによって P 2の方向 に押し出されるが、 F 5の位置では、 摩擦力は隔壁板 1 0 6の底面 1 0 6 cに向かって作用しているので、 F 2に位置していた脱水ケーキは、 P 2の位置へと進行する間にその一部が隔壁板 1 0 6側に流れることに なる。 従って、 P 2の位置における脱水ケーキの密度及び圧力は、 P 1 に位置する脱水ケーキよりも低くなつてしまい、 また、 隔壁板 1 0 6に 近い部位において生じているような力の衝突は、 P 2付近においては生 じないため、 脱水ケーキの微粒子の相対位置変化も起こりにくい。  On the other hand, the dewatered cake located at F2 proceeds in the direction of F5 according to the frictional force with the screen 105, and is pushed out in the direction of P2 by the subsequent dewatered cake, but at the position of F5, Since the frictional force acts toward the bottom surface 106 c of the partition plate 106, a part of the dewatered cake located at F 2 becomes part of the partition plate while traveling to the position P 2. It will flow to 106 side. Accordingly, the density and pressure of the dewatered cake at the position of P 2 are lower than those of the dewatered cake at the position of P 1, and the collision of force as occurs at a portion near the partition plate 106 is as follows. Since it does not occur near P2, the relative position of the fine particles in the dehydrated cake is unlikely to change.
このような作用によって、 濾過室 1 1 0内における脱水ケーキは、 隔 壁板 1 0 6に近い部位では、 ある程度強く圧縮されて脱水が進み、 反対 に、 外輪スぺーサ 1 0 4に近い部位では、 それほど強く圧縮されず、 脱 水度が低いまま、 ケーキ出口 1 0 9より外部に排出されてしまうのであ る。 Due to such an action, the dewatered cake in the filtration chamber 110 is separated from the dewatered cake. At a portion near the wall plate 106, dehydration proceeds to some extent, and conversely, at a portion near the outer ring spacer 104, the cake outlet 1 is not so strongly compressed and has a low degree of water removal. It is discharged outside from 09.
また、 第 7図に示したような従来の回転式圧縮濾過機 1 0 1において は、 回転軸 1 0 2の回転数、 原液供給量、 及び、 ケーキ出口 1 0 9にお ける背圧装置の可動弁 1 0 7を制御することにより運転を行っており、 回転軸 1 0 2の回転数と原液供給量を一定にした場合でも、 背圧装置に おける背圧を調整することによって、 排出される脱水ケーキにおける脱 水度をある程度制御することができる。  In addition, in the conventional rotary compression filter 101 shown in FIG. 7, the number of rotations of the rotating shaft 102, the amount of undiluted solution supplied, and the back pressure device at the cake outlet 109 are set. The operation is performed by controlling the movable valve 107, and even when the rotation speed of the rotating shaft 102 and the supply amount of the undiluted solution are constant, the discharge is achieved by adjusting the back pressure in the back pressure device. The degree of water removal in the dewatered cake can be controlled to some extent.
しかしながら、 より高い脱水度を得るために背圧を高くすると、 第 9 図のケーキ通路 1 1 2 (濾過室 1 1 0のうち、 スクリーン部以外の部分 であって、 スクリーン部の終端からケーキ出口 1 0 9に至るまでのスぺ —ス) 内の圧力が増加し、 ケーキ通路 1 1 2の内壁と脱水ケーキとの摩 擦が大きくなるため、 脱水ケーキの移動が阻害され、 詰まりが生じたり 、 内部圧力により装置の破損を招くこともある。  However, if the back pressure is increased in order to obtain a higher degree of dehydration, the cake passage 1 12 in FIG. 9 (the part of the filtration chamber 1 110 other than the screen section, and the cake exit from the end of the screen section) The pressure inside the space up to 109 increases, and the friction between the inner wall of the cake passage 1 1 2 and the dewatered cake increases, which hinders the movement of the dewatered cake and causes clogging. However, the internal pressure may damage the device.
本発明は、 従来の回転式圧縮濾過機にわずかな改良を加えることによ り、 上記のような問題を解決することができ、 排出される脱水ケーキに おける平均脱水度の飛躍的な向上を期待することができ、 また、 脱水効 率の向上や、 脱水ケーキの円滑な排出をも期待することができる回転式 圧縮濾過機を提供することを目的とする。 発明の開示  The present invention can solve the above-mentioned problems by slightly improving the conventional rotary compression filter, and can dramatically improve the average degree of dewatering of the discharged dewatered cake. It is an object of the present invention to provide a rotary compression filter that can be expected, and that can also improve the dewatering efficiency and can smoothly discharge a dewatered cake. Disclosure of the invention
本発明は、 断面が矩形状で、 環状に延出する濾過室内に処理原液を連 続的に導入し、 前記濾過室を構成する少なくとも一つの壁面を当該濾過 室の終端方向へ連続的に回転移動させることによって、 当該濾過室内に おいて前記処理原液を前記回転移動壁面との摩擦により順次終端方向へ 移動させるとともに圧縮する装置であって、 前記濾過室を構成する少な くとも一つの壁面が透水性を有する材料によって形成されることにより 、 前記処理原液の圧縮の際に処理原液から水分を取り除き、 残余の脱水 ケーキが、 ケーキ通路を通ってケーキ出口より外部へ排出されるように 構成した回転式圧縮濾過機において、 前述のような問題点を解決すべく 、 濾過室内に加圧手段を設けることによって、 濾過室の断面積が、 処理 原液或いは脱水ケーキの移動方向に従って、 次第に減少するように構成 したことを特徴としている。 According to the present invention, a processing stock solution is continuously introduced into a filtration chamber having a rectangular cross section and extending in an annular shape, and at least one wall surface constituting the filtration chamber is continuously rotated in a direction toward the end of the filtration chamber. By moving it, An apparatus for sequentially moving and compressing the undiluted solution in the terminal direction by friction with the rotating wall, wherein at least one wall constituting the filtration chamber is formed of a material having water permeability. Thus, in the rotary compression filter configured to remove water from the processing stock solution during the compression of the processing stock solution and discharge the remaining dehydrated cake to the outside from the cake outlet through the cake passage, In order to solve such a problem, a pressurizing means is provided in the filtration chamber, so that the cross-sectional area of the filtration chamber gradually decreases in accordance with the moving direction of the untreated solution or the dewatered cake.
このような構成とすることにより、 脱水ケーキの移動方向と直交する 方向に脱水ケーキを圧縮することが可能になり、 その結果、 排出される 脱水ケーキにおける平均脱水度を向上させることができる。  With such a configuration, it is possible to compress the dewatered cake in a direction perpendicular to the moving direction of the dewatered cake, and as a result, it is possible to improve the average degree of dewatering of the discharged dewatered cake.
尚、 前記濾過室は、 回転軸周りに固定され、 回転軸に従って回転する 内輪スぺーサの内周面と、 内輪スぺーサの外側に配置され、 外部ケ一シ ングにより保持された外輪スぺ一サの内周面と、 内周縁部が内輪スぺー サの両側面上にそれぞれ固定されるとともに、 外周縁部が外輪スぺ一サ の両側面に接するような位置及び寸法にて配置された 2枚のスクリーン の各内側面とによって構成され、 前記回転軸を回転させることによって 、 前記スクリーンの各内側面を濾過室の終端方向へ連続的に回転移動さ せるように構成することが好ましく、 この場合、 濾過室内において加圧 手段は内輪スぺ一サ側若しくは外輪スぺーサ側のいずれにも設けること ができる。 加圧手段を内輪スぺーサ側に設けた場合には、 直径の異なる 少なくとも 2種類の小孔を多数有し、 直径の小さな小孔が直径の大きな 小孔ょりも外側に配置されたスクリーンを用い、 更に濾過室内の圧力が 高くなる部位において、 加圧手段が直径の大きな小孔を内側から閉塞す るように形成すれば、 装置全体としての脱水効率の向上を期待すること ができる。 The filtration chamber is fixed around a rotation axis and rotates along the rotation axis. An inner peripheral surface of the inner ring spacer and an outer ring spacer disposed outside the inner ring spacer and held by an outer casing. The inner peripheral surface of the spacer and the inner peripheral edge are respectively fixed on both side surfaces of the inner ring spacer, and the outer peripheral edge portion is arranged in a position and size such that the outer peripheral edge is in contact with both side surfaces of the outer ring spacer. And the inner surfaces of the two screens thus formed. By rotating the rotation shaft, each inner surface of the screen is continuously rotated and moved toward the terminal end of the filtration chamber. Preferably, in this case, the pressurizing means in the filtration chamber can be provided on either the inner ring spacer side or the outer ring spacer side. When the pressurizing means is provided on the inner ring spacer side, the screen has a large number of at least two types of small holes with different diameters, and the small diameter holes are arranged on the outside with the large diameter small holes. If the pressurizing means is formed so as to close small holes with a large diameter from the inside at locations where the pressure in the filtration chamber becomes higher, it is expected that the dehydration efficiency of the entire device will improve. Can be.
また、 前記加圧手段として、 濾過室内に加圧板を設け、 当該加圧板が 上下方向に変位可能なように構成すれば、 定常運転に適した加圧板の位 置を設定することが可能であり、 また、 ケーキ通路内において脱水ケー キが詰まることを防止することができる。 図面の簡単な説明  Further, if a pressure plate is provided in the filtration chamber as the pressure means and the pressure plate is configured to be vertically displaceable, it is possible to set the position of the pressure plate suitable for steady operation. Further, it is possible to prevent the dewatering cake from being clogged in the cake passage. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る回転式圧縮濾過機 1の第 1の実施形態の基本 構造を示す断面図である。  FIG. 1 is a sectional view showing a basic structure of a first embodiment of a rotary compression filter 1 according to the present invention.
第 2図は、 本発明に係る回転式圧縮濾過機 1の第 2の実施形態の基本 構造を示す断面図である。  FIG. 2 is a cross-sectional view showing a basic structure of a second embodiment of the rotary compression filter 1 according to the present invention.
第 3図は、 本発明に係る回転式圧縮濾過機 1の第 3の実施形態の基本 構造を示す断面図である。  FIG. 3 is a sectional view showing a basic structure of a third embodiment of the rotary compression filter 1 according to the present invention.
第 4図は、 本発明に係る回転式圧縮濾過機 1の第 4の実施形態の基本 構造を示す断面図である。  FIG. 4 is a sectional view showing a basic structure of a rotary compression filter 1 according to a fourth embodiment of the present invention.
第 5図は、 第 4図の回転式圧縮濾過機 1に用いるスクリーン 5の正面 図である。  FIG. 5 is a front view of a screen 5 used in the rotary compression filter 1 of FIG.
第 6図は、 本発明に係る回転式圧縮濾過機 1の第 5の実施形態の基本 構造を示す断面図である。  FIG. 6 is a sectional view showing a basic structure of a fifth embodiment of the rotary compression filter 1 according to the present invention.
第 7図は、 従来の代表的な回転式圧縮濾過機 1 0 1の基本構造を示す 一部切欠斜視図である。  FIG. 7 is a partially cutaway perspective view showing the basic structure of a conventional rotary compression filter 101. As shown in FIG.
第 8図は、 第 7図の回転式圧縮濾過機 1 0 1の A A線による断面図で ある。  FIG. 8 is a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along line AA.
第 9図は、 第 7図の回転式圧縮濾過機 1 0 1の C C線による断面図で ある。  FIG. 9 is a cross-sectional view of the rotary compression filter 101 of FIG. 7 taken along line CC.
第 1 0図は、 第 7図の回転式圧縮濾過機 1 0 1のケーキ出口 1 0 9付 近の拡大断面図である。 Fig. 10 shows the rotary compression filter 101 of Fig. 7 with cake outlet 109 It is an enlarged sectional view nearby.
第 1 1図は、 第 7図の回転式圧縮濾過機 1 0 1の作用を説明するため の断面図である。  FIG. 11 is a cross-sectional view for explaining the operation of the rotary compression filter 101 of FIG.
第 1 2図は、 第 7図の回転式圧縮濾過機 1 0 1のケーキ出口 1 0 9付 近に設けられた背圧装置の可動弁 1 0 7の説明図である。 発明を実施するための最良の形態  FIG. 12 is an explanatory view of the movable valve 107 of the back pressure device provided near the cake outlet 109 of the rotary compression filter 101 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いて本発明の実施の形態を説明する。 第 1図は、 本発 明に係る回転式圧縮濾過機 1の第 1の実施形態の構造を示す断面図であ る。 この回転式圧縮濾過機 1は、 従来のものと同様に、 基本的には回転 軸 2、 内輪スぺーサ 3、 外輪スぺーサ 4、 2枚のド一ナツ状のスクリー ン 5、 隔壁板 6、 及び、 図示しない外部ケーシング、 駆動装置等によつ て構成されるものであり、 濾過室 1 0 (内輪スぺーサ 3及び隔壁板 6と 、 外輪スぺーサ 4との間に形成されている、 断面が矩形状のスペースで あって、 環状 (C字状) に延出する部分 (環状部分) と直線状に延出す る部分 (直状部分) を有する。 原液供給口 8から環状部分及び直状部分 を経て、 ケーキ出口 9に至るまでのスペース。 ) 内に、 原液供給口 8を 介して処理原液を連続的に導入し、 濾過室 1 0を構成する壁面の一つで あるスクリーン 5を、 濾過室 1 0の終端方向へ連続的に回転移動させる ことによって、 濾過室 1 0内において処理原液をスクリーン 5との摩擦 により矢印 Dの方向へ順次移動させるとともに圧縮し、 その際、 透水性 を有する材料によって形成されたスクリーン 5を介して処理原液から水 分を取り除き、 残余の脱水ケーキがケーキ出口 9より外部へ排出される ように構成されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a structure of a first embodiment of a rotary compression filter 1 according to the present invention. This rotary compression filter 1 is basically composed of a rotating shaft 2, an inner ring spacer 3, an outer ring spacer 4, two donut-shaped screens 5, and a partition plate, as in the conventional one. 6, and an outer casing (not shown), a driving device, etc., and a filtration chamber 10 (formed between the inner ring spacer 3 and the partition plate 6 and the outer ring spacer 4). It is a rectangular space with a cross section, and has a portion (annular portion) extending in a ring (C-shape) and a portion (straight portion) extending in a straight line. This is one of the walls constituting the filtration chamber 10 into which the processing stock solution is continuously introduced through the stock solution supply port 8 through the space and the cake outlet 9 through the portion and the straight portion. By continuously rotating the screen 5 toward the end of the filtration chamber 10, the filtration chamber 1 is rotated. In 0, the processing stock solution is sequentially moved in the direction of arrow D by friction with the screen 5 and compressed, and at this time, water is removed from the processing stock solution through the screen 5 formed of a material having water permeability, and the remaining The dewatered cake is discharged from the cake outlet 9 to the outside.
そして、 第 1図からも明らかなように、 この回転式圧縮濾過機 1には 、 加圧手段として、 濾過室 1 0内に加圧板 1 3が設けられており、 濾過 室 1 0の断面積が、 処理原液或いは脱水ケーキの移動方向に従って次第 に減少するように構成されている。 このため、 処理原液或いは脱水ケー キが濾過室 1 0内を進行していくと、 濾過室 1 0の断面積が次第に減じ られ、 処理原液或いは脱水ケーキには、 その進行に従って進行方向と直 交する方向に圧力が生じることになる。 As is apparent from FIG. 1, the rotary compression filter 1 is provided with a pressure plate 13 in a filtration chamber 10 as a pressure means. The cross-sectional area of the chamber 10 is configured to gradually decrease in accordance with the moving direction of the processing stock solution or the dewatered cake. For this reason, as the undiluted solution or dehydrated cake proceeds in the filtration chamber 10, the cross-sectional area of the filtration chamber 10 is gradually reduced, and the undiluted solution or dehydrated cake is orthogonal to the direction of travel as it proceeds. Pressure will be generated in the direction of movement.
このように、 本実施形態における回転式圧縮濾過機 1は、 処理原液或 いは脱水ケーキを、 濾過室 1 0の進行方向だけでなく、 進行方向と直交 する方向へも圧縮することができるので、 ケーキ出口 9から排出される 脱水ケーキにおいて、 より高い脱水度が得られるようになつている。 尚、 本実施形態においては、 加圧板 1 3が、 内輪スぺ一サ 3の外周面 3 a、 及び、 隔壁板 6の底面 6 cに沿って設けられ、 この加圧板 1 3は 、 主としてスクリーン部 (濾過室 1 0のうち、 スクリーン 5によって側 方を閉塞されている部分) において濾過室 1 0の断面積を次第に減じる ようになつている一方、 ケーキ通路 1 2 (濾過室 1 0のうち、 スクリ一 ン部以外の部分であって、 スクリーン部の終端からケーキ出口 9に至る までのスペース) においては、 加圧板 1 3の底面と外輪スぺーサ 4の上 面 4 dとがほぼ平行となっており、 ケーキ通路 1 2においては濾過室 1 0の断面積は殆ど減じられないような構造となっているので、 従来の回 転式圧縮濾過機と比べ、 濾過室 1 0内において効率良く濾過 ·脱水が行 われ、 排出される脱水ケーキにおいて、 より高い脱水度が得られる。  As described above, the rotary compression filter 1 in the present embodiment can compress the undiluted solution or the dewatered cake not only in the traveling direction of the filtration chamber 10 but also in the direction perpendicular to the traveling direction. In the dewatered cake discharged from the cake outlet 9, a higher degree of dehydration can be obtained. In the present embodiment, the pressing plate 13 is provided along the outer peripheral surface 3 a of the inner ring spacer 3 and the bottom surface 6 c of the partition plate 6, and the pressing plate 13 is mainly formed of a screen. While the cross section of the filtration chamber 10 is gradually reduced at the part (the part of the filtration chamber 10 whose side is closed by the screen 5), the cake passage 12 (of the filtration chamber 10) In the part other than the screen part and in the space from the end of the screen part to the cake outlet 9, the bottom surface of the pressure plate 13 and the upper surface 4d of the outer ring spacer 4 are almost parallel. Since the cross-sectional area of the filtration chamber 10 is hardly reduced in the cake passage 12, the efficiency in the filtration chamber 10 is higher than that of the conventional rotary compression filter. Well-filtered and dewatered, the dewatered cake is discharged Thus, a higher degree of dehydration can be obtained.
この点についてより詳細に説明すると、 ケーキ通路 1 2は、 上下方向 が加圧板 1 3の底面及び外輪スぺーサ 4の上面 4 dにより、 そして、 側 方が図示しない外部ケ一シングの内壁によって構成されており、 ケーキ 通路 1 2内の水分が速やかに外部に排出されるような構造にはなってい ないため、 ケーキ通路 1 2内において、 進行方向と直交する方向に脱水 ケーキを圧縮しても、 脱水ケーキから水分だけを有効に分離することが できず、 脱水ケーキの濾過 · 脱水を促進するには至らないが、 スクリ一 ン部において、 進行方向と直交する方向に脱水ケーキを圧縮した場合に は、 搾り出された水分がスクリーン 5から速やかに外部に排出されるこ とになるので、 効率よく濾過 ·脱水が行われ、 より高い脱水度の脱水ケ ーキを排出させることが可能となるのである。 This point will be described in more detail. The cake passage 12 is vertically formed by the bottom surface of the pressure plate 13 and the upper surface 4 d of the outer race spacer 4, and the side surface is formed by an inner wall of an external casing (not shown). It is not structured so that the water in the cake passage 12 is immediately discharged to the outside.Therefore, in the cake passage 12, the dewatered cake is compressed in a direction orthogonal to the traveling direction. Can effectively separate only water from the dehydrated cake It is not possible to promote the filtration and dehydration of the dewatered cake, but if the dewatered cake is compressed in the screen at right angles to the direction of travel, the water squeezed out of the screen 5 quickly Since the water is discharged to the outside, the filtration and dewatering are performed efficiently, and the dewatered cake with a higher degree of dewatering can be discharged.
尚、 本実施形態においては、 スクリーン 5は、 多数の小孔を有する平 滑な金属板によって形成されているが、 多孔質材であって、 透水性を有 するものであれば、 例えば、 プラスチック、 金属或いはセラミックの焼 結体等によって形成されたものであっても良い。  In the present embodiment, the screen 5 is formed of a smooth metal plate having a large number of small holes. However, if the screen 5 is made of a porous material having water permeability, for example, a plastic material may be used. Alternatively, it may be formed of a sintered body of metal or ceramic.
第 2図は、 本発明に係る回転式圧縮濾過機 1の第 2の実施形態の構造 を示す断面図である。 この図に示されているように、 本実施形態におけ る回転式圧縮濾過機 1は、 加圧板 1 3が外輪スぺーサ 4の上面 4 dに沿 つて設けられており、 スクリーン部において濾過室 1 0の断面積を次第 に減じるような構造となっている。 従って、 第 1の実施形態における回 転式圧縮濾過機 1 と同様に、 濾過室 1 0内を進行する処理原液或いは脱 水ケーキを、 その進行方向と直交する方向に圧縮することができ、 また 、 その圧縮は搾り出された水分がスクリーン 5から速やかに外部に排出 されるスクリーン部において行われるので、 従来の回転式圧縮濾過機 1 にく らべ、 効率よく濾過 ·脱水を行うことができ、 また、 より高い脱水 度にて脱水ケーキを排出することができる。  FIG. 2 is a sectional view showing a structure of a second embodiment of the rotary compression filter 1 according to the present invention. As shown in this figure, the rotary compression filter 1 according to the present embodiment has a pressure plate 13 provided along the upper surface 4 d of the outer ring spacer 4, and a filter at the screen. The structure is such that the sectional area of the chamber 10 is gradually reduced. Therefore, similarly to the rotary compression filter 1 in the first embodiment, the processing stock solution or the dewatered cake traveling in the filtration chamber 10 can be compressed in a direction orthogonal to the traveling direction. However, the compression is performed in the screen portion where the squeezed water is quickly discharged to the outside from the screen 5, so that the filtration and dewatering can be performed efficiently as compared with the conventional rotary compression filter 1. In addition, the dewatered cake can be discharged at a higher dehydration degree.
また、 従来の回転式圧縮濾過機においては、 外輪スぺーザに近い部位 の脱水ケーキは、 微粒子の相対位置変化が起こりにくく、 また、 圧縮も 低調であったために脱水度が低かったが、 本実施形態の回転式圧縮濾過 機 1においては、 外輪スぺーサ 4に近い部位 (例えば、 第 2図において Pで示す部位) の脱水ケーキについても濾過 · 脱水が促進され、 より高 い脱水度が得られる。 これは、 外輪スぺ一サ 4に沿って設けられた加圧 板 1 3の作用により、 外輪スぺーサ 4に近い部位の脱水ケーキ中の微細 部分 (微粒子の集団) が変形し、 微粒子の集団に取り囲まれていた水分 が押し出されるチャンスが増加するためである。 In addition, in the conventional rotary compression filter, the dewatered cake near the outer ring spacer did not easily change the relative position of the fine particles, and the degree of dehydration was low due to low compression. In the rotary compression filter 1 of the embodiment, the filtration and dehydration of the dewatered cake at a portion close to the outer ring spacer 4 (for example, a portion indicated by P in FIG. 2) is promoted, and a higher dehydration degree is obtained. can get. This is due to the pressurization provided along the outer ring This is because the action of the plates 13 deforms the fine part (collection of fine particles) in the dewatered cake near the outer ring spacer 4 and increases the chance of extruding the water surrounded by the collective particles. .
尚、 第 1の実施形態及び第 2の実施形態のいずれにおいても、 一つの 装置につき単一の加圧板 1 3を取り付けた例を示したが、 加圧板 1 3の 数は必ずしも 1個に限定されるものではなく、 第 1図に示したような加 圧板 1 3と第 2図に示したような加圧板 1 3とを組み合わせ、 適宜寸法 を調整した上で、 その両方を一つの回転式圧縮濾過機 1内に設けるよう に構成しても良い。  In each of the first and second embodiments, an example is shown in which a single pressure plate 13 is attached to one device, but the number of pressure plates 13 is not necessarily limited to one. The pressure plate 13 as shown in Fig. 1 and the pressure plate 13 as shown in Fig. 2 are combined, the dimensions are adjusted appropriately, and both are You may comprise so that it may be provided in the compression filtration machine 1.
また、 加圧手段については、 第 1の実施形態及び第 2の実施形態 (第 1図及び第 2図) のように、 必ずしも隔壁板 6或いは外輪スぺーサ 4の ほかに、 これらとは別個独立の部材としての加圧板 1 3を設ける必要は なく、 隔壁板 6或いは外輪スぺーサ 4そのものを、 濾過室 1 0の断面積 を次第に減少させるような形状及び寸法にて形成することにより、 処理 原液又は脱水ケーキを進行方向と直交する方向に圧縮するような構成と することもできる。  As for the pressurizing means, as in the first and second embodiments (FIGS. 1 and 2), in addition to the partition plate 6 or the outer ring spacer 4, the pressurizing means is not necessarily separate from them. It is not necessary to provide the pressure plate 13 as an independent member, and by forming the partition plate 6 or the outer ring spacer 4 itself in a shape and dimensions that gradually reduce the cross-sectional area of the filtration chamber 10, It is also possible to adopt a configuration in which the undiluted solution or dewatered cake is compressed in a direction perpendicular to the traveling direction.
第 3図は、 本発明に係る回転式圧縮濾過機 1の第 3の実施形態の構造 を示す断面図である。 本実施形態においては、 隔壁板 6の内側下部の加 圧部位 6 eが加圧手段としての機能を有し、 第 3図に示すように変位加 圧板 1 3 aが任意の点を回動支点 1 6として、 ケーキ出口 9側が上下方 向に変位可能なように、 或いは、 一定の周期で変位 (即ち、 揺動) 可能 なように構成されている。 加圧板 1 3を変位させるための機構について は説明を省略するが、 カム機構やクランク機構等を適宜利用することが できる。  FIG. 3 is a cross-sectional view showing the structure of a rotary compression filter 1 according to a third embodiment of the present invention. In the present embodiment, the pressurizing portion 6e at the lower portion inside the partition plate 6 has a function as a pressurizing means, and the displacement pressurizing plate 13a pivots at an arbitrary point as shown in FIG. As 16, it is configured such that the cake outlet 9 side can be displaced upward and downward, or that it can be displaced (i.e., oscillates) at a constant cycle. A description of a mechanism for displacing the pressing plate 13 is omitted, but a cam mechanism, a crank mechanism, or the like can be used as appropriate.
このように、 加圧板 1 3を変位可能なように構成することにより、 定 常運転に適した加圧板 1 3の位置を設定することが可能であり、 更に、 開始運転時において、 機内に十分な処理原液或いは脱水ケーキが蓄積し 、 濾過 ·脱水に十分な内部圧力が発生するまでの間、 未だ十分に濾過 · 脱水されていない脱水ケーキがケーキ出口 9から外部に排出されてしま わないように、 ケーキ通路 1 2を極端に狭めることにも使用することが できる。 従って、 従来の回転式圧縮濾過機において使用されていた、 第 1 2図に示したような可動弁 1 0 7を有する背圧装置は、 本実施形態に おける回転式圧縮濾過機 1においては省略することもできる。 By configuring the pressure plate 13 to be displaceable in this way, it is possible to set the position of the pressure plate 13 suitable for a steady operation. During the start-up operation, a sufficient amount of undiluted solution or dewatered cake is accumulated in the machine, and a dewatered cake that has not yet been sufficiently filtered and dewatered is discharged from the cake outlet 9 until the internal pressure sufficient for filtration and dehydration is generated. It can also be used to make the cake passage 12 extremely narrow so that it is not discharged to the outside. Therefore, the back pressure device having the movable valve 107 as shown in FIG. 12 used in the conventional rotary compression filter is omitted in the rotary compression filter 1 in the present embodiment. You can also.
また、 加圧板 1 3を揺動可能なように構成した場合、 ケーキ通路 1 2 内において脱水ケーキが詰まることを防止し、 また、 最高圧力を高めに 設定した場合でも安定した運転が可能になる。  In addition, when the pressure plate 13 is configured to be swingable, the dewatered cake is prevented from clogging in the cake passage 12 and stable operation is possible even when the maximum pressure is set high. .
尚、 第 3図においては、 変位或いは揺動可能な加圧板 1 3が隔壁板 6 側に設けられている例を示したが、 加圧板 1 3を第 2図に示したように 外輪スぺーサ 4に沿って設けた場合でも揺動可能なように構成すること が可能であり、 この場合も前記と同様の効果を期待することができる。 また、 加圧板 1 3は、 全体が変位するように構成しても良いし、 一部分 のみが変位するように構成しても良い。  FIG. 3 shows an example in which the pressure plate 13 that can be displaced or oscillated is provided on the partition plate 6 side. However, as shown in FIG. It is possible to make it swingable even if it is provided along the support 4, and in this case, the same effect as described above can be expected. Further, the pressing plate 13 may be configured so as to be entirely displaced, or may be configured so that only a part thereof is displaced.
更に、 第 3図に示したような加圧板 1 3の変位は、 自動制御にも応用 することができる。 例えば、 処理原液の固形分濃度や固形分の成分に時 間的又は季節的変動がある場合、 回転軸、 処理原液の供給量、 加圧板 1 3の変位量等の運転条件を一定にすると、 処理原液の性状の差異により 、 排出される脱水ケーキの脱水度も変化してしまうことになるが、 濾過 室 1 0内の加圧板 1 3の表面に圧力センサーを取り付け、 濾過室 1 0内 各部の圧力を検出し、 これに応じて加圧板 1 3を変位させるように構成 すれば、 濾過室 1 0内部の圧力を容易に制御することができ、 排出され る脱水ケーキの脱水度も所望の範囲内に制御することができる。  Further, the displacement of the pressure plate 13 as shown in FIG. 3 can be applied to automatic control. For example, if the solid concentration or solid component of the undiluted solution has a temporal or seasonal fluctuation, if the operating conditions such as the rotating shaft, the amount of undiluted solution supply, and the displacement of the pressure plate 13 are fixed, Due to the difference in the properties of the undiluted solution, the degree of dehydration of the discharged dehydrated cake will also change. However, a pressure sensor is attached to the surface of the pressurizing plate 13 in the filtration chamber 10, and various parts in the filtration chamber 10 are installed. If the pressure of the filtration plate 10 is detected and the pressure plate 13 is displaced accordingly, the pressure inside the filtration chamber 10 can be easily controlled, and the degree of dewatering of the discharged dewatered cake can be controlled as desired. Can be controlled within the range.
尚、 従来の回転式圧縮濾過機の場合は、 同様の検出装置を用いて背圧 装置の可動弁 1 0 7 (第 1 2図参照) を変位させた場合、 ケーキ通路 1 1 2の内壁と濾過室 1 1 0からケーキ出口 1 0 9までの脱水ケーキの摩 擦力の積算値が誤差要因となり、 満足の行く制御は不可能であった。 第 4図は、 本発明に係る回転式圧縮濾過機 1の第 4の実施形態の構造 を示す断面図である。 この図からも明らかなように、 本実施形態におい ては、 隔壁板 6が濾過室 1 0の断面積を次第に減じるような形状となつ ており、 隔壁板 6そのものが加圧手段として機能するようになっている 。 より詳細には、 従来の回転式圧縮濾過機 1 0 1 (第 9図参照) におい ては、 隔壁板 1 0 6の底面 1 0 6 cは外輪スぺーサ 1 0 4の直線部分の 上面 1 0 4 dと平行に延出しており、 濾過室 1 1 0の断面積を減じるよ うな構成とはなっていなかつたが、 本実施形態における隔壁板 6の底面 6 cは、 内輪スぺーサ 3の外周面 3 aに面接触する内側端部 6 aから外 側端部 6 bにかけて、 最初は外輪スぺーサ 4の直線部分の上面 4 dに対 してほぼ垂直な方向に、 次いで緩やかな曲線を描きつつケーキ出口 9側 に延びていき、 最終的にケーキ通路 1 2においては、 外輪スぺーサ 4と ほぼ平行に延出して外側端部 6 bへと至るようになつており、 濾過室 1 0の断面積が、 スクリーン部において次第に減じられるようになってい る。 In the case of a conventional rotary compression filter, the back pressure is measured using the same detection device. When the movable valve 107 (see Fig. 12) of the device is displaced, the integrated value of the frictional force of the dehydrated cake from the inner wall of the cake passageway 112 and the filtration chamber 110 to the cake outlet 109 is obtained. Was an error factor, and satisfactory control was not possible. FIG. 4 is a sectional view showing a structure of a rotary compression filter 1 according to a fourth embodiment of the present invention. As is clear from this figure, in the present embodiment, the partition plate 6 has a shape such that the cross-sectional area of the filtration chamber 10 is gradually reduced, and the partition plate 6 itself functions as a pressurizing means. It has become . More specifically, in the conventional rotary compression filter 101 (see FIG. 9), the bottom surface 106 c of the partition plate 106 is located on the upper surface 1 of the straight portion of the outer ring spacer 104. However, the bottom surface 6 c of the partition plate 6 in the present embodiment is not provided with the inner ring spacer 3. From the inner end 6a, which makes surface contact with the outer peripheral surface 3a, to the outer end 6b, first in a direction substantially perpendicular to the upper surface 4d of the linear portion of the outer race spacer 4, and then gradually It extends to the cake exit 9 side while drawing a curve, and finally, in the cake passage 12, it extends almost parallel to the outer ring spacer 4 and reaches the outer end 6 b, and is filtered. The cross-sectional area of the chamber 10 is gradually reduced at the screen.
従って、 本実施形態においても、 濾過室 1 0内を進行する脱水ケーキ を、 スクリーン部において、 進行方向と直交する方向に圧縮することが でき、 従来の回転式圧縮濾過機に比べ、 効率よく濾過 ·脱水を行うこと ができ、 より高い脱水度の脱水ケーキを得ることができる。  Therefore, also in the present embodiment, the dewatered cake traveling in the filtration chamber 10 can be compressed in the screen section in a direction orthogonal to the traveling direction, and the filtration can be performed more efficiently than in the conventional rotary compression filter. · Dehydration can be performed, and a dehydrated cake with a higher degree of dehydration can be obtained.
また、 本実施形態においてもスクリーン 5は、 多数の小孔によって透 水性を有する平滑な金属板によって形成されている。 そして、 それらの 小孔は、 第 5図に示されているように、 内周縁部 5 a側のゾーン G 1と 、 外周縁部 5 b側のゾーン G 2とで、 異なる径のものが配設されている 。 より具体的には、 ゾーン G 1には、 直径が 0. 1 6〜0. 2 0 mm程 度 (好ましくは 0. 1 8mm) の、 従来と同程度の直径の小孔 1 4が配 設され、 ゾーン G 2には、 直径が 0. 1 1〜 0. 1 5 mm程度 (好まし くは 0. 1 3 mm) の、 ゾーン G 1の小孔 1 4よりも直径の小さい小孔 1 5が配設されている。 即ち、 スクリーン 5上においては、 直径の小さ な小孔 1 5力 直径の大きな小孔 1 4よりも外側 (外周縁部 5 b側) に 配置されている。 尚、 第 4図及び第 5図に示されている線 5 cは、 ゾー ン G 1 とゾーン G 2の境界線である。 Also in the present embodiment, the screen 5 is formed of a smooth metal plate having a large number of small holes and having water permeability. And, as shown in FIG. 5, those small holes have different diameters in the zone G1 on the inner peripheral edge 5a side and the zone G2 on the outer peripheral edge 5b side. Is established . More specifically, a small hole 14 having a diameter of about 0.16 to 0.20 mm (preferably 0.18 mm) and a diameter similar to the conventional one is provided in the zone G1. Zone G2 has pores 1 having a diameter of about 0.11 to 0.15 mm (preferably 0.13 mm) and smaller in diameter than pores 14 of Zone G1. 5 are arranged. That is, on the screen 5, the small holes 15 having a small diameter are arranged on the outer side (on the outer peripheral edge 5b side) of the small holes 14 having a large diameter. The line 5c shown in FIGS. 4 and 5 is a boundary between the zone G1 and the zone G2.
このように本実施形態においては、 スクリーン 5の外周縁部 5 b側に 、 従来のものよりも小さな直径の小孔 1 5を配設したことにより、 従来 の回転式圧縮濾過機よりも、 処理原液中の浮遊物質 (微粒子) のスクリ ーン 5による捕捉効率が向上している。 この点についてより詳細に説明 すると、 まず、 機内に導入された処理原液は、 濾過室 1 0のうち、 隔壁 板 6の上面 6 dから約 2 0 0 ° の範囲の濾過ゾーン K (第 4図参照) を 通過中に、 大部分の水分 (遊離水) がスクリーン 5の小孔 1 4 , 1 5を 抜けて濾過室 1 0外に排出されることになる。  As described above, in the present embodiment, the small holes 15 having a smaller diameter than the conventional one are arranged on the outer peripheral edge 5 b side of the screen 5, so that the processing can be performed more than the conventional rotary compression filter. The trapping efficiency of the suspended solids (fine particles) in the stock solution by screen 5 has been improved. To explain this point in more detail, first, the undiluted solution introduced into the machine is filtered by the filtration zone K (Fig. 4) within a range of about 200 ° from the upper surface 6d of the partition plate 6 in the filtration chamber 10. ), Most of the water (free water) passes through the small holes 14, 15 of the screen 5 and is discharged out of the filtration chamber 10.
この濾過ゾーン Kにおける脱水作用は、 処理原液の供給圧力が比較的 低圧 (0. I MP a以下) であるため、 スクリーン 5の内周縁部 5 a側 のゾーン G 1に配設された直径の大きい (従来と同程度の直径の) 小孔 1 4を抜けて濾過室 1 0外に排出されるおそれはないが、 圧搾ゾーン J (第 4図参照) においては、 濾過室 1 0内の圧力が、 加圧手段として機 能する隔壁板 6により、 処理原液或いは脱水ケーキの進行に従って濾過 室 1 0内の圧力が次第に増加 (最大 0. 6 MP a程度) していくため、 処理原液或いは脱水ケーキ中の微粒子が、 その増大した内部圧力によつ て、 スクリーン 5の小孔 1 4を抜けて濾過室 1 0外に排出されるおそれ があり (尚、 外周縁部 5 b側のゾーン G 2に配設されている小孔 1 5は 、 従来よりも直径が小さいので、 濾過室 1 0の内部圧力が増大しても、 微粒子が抜けてしまうおそれはそれ程大きくはない。 ) 、 この場合、 微 粒子の捕捉効率が低下してしまうことになる。 The dewatering action in the filtration zone K is based on the fact that the supply pressure of the undiluted solution is relatively low (less than or equal to 0.1 MPa). There is no danger of being discharged out of the filtration chamber 10 through the large (small diameter) pores 14, but in the compression zone J (see Fig. 4), the pressure in the filtration chamber 10 is low. However, due to the partition plate 6 functioning as a pressurizing means, the pressure in the filtration chamber 10 gradually increases (up to about 0.6 MPa) as the undiluted solution or dewatered cake progresses. Fine particles in the cake may be discharged through the small holes 14 of the screen 5 to the outside of the filtration chamber 10 due to the increased internal pressure (note that the zone G on the outer peripheral edge 5 b side). The small holes 1 5 arranged in 2 However, since the diameter is smaller than in the past, even if the internal pressure of the filtration chamber 10 increases, the possibility that the fine particles will escape is not so large. However, in this case, the efficiency of capturing fine particles is reduced.
しかしながら、 本実施形態においては、 隔壁板 6が濾過室 1 0の断面 積を次第に減じるように形成されているので、 濾過室 1 0内の内輪スぺ ーサ 3側に位置していた処理原液或いは脱水ケーキは、 この隔壁板 6に より、 濾過室 1 0内を進行するに従って内輪スぺーサ 3から次第に離れ 、 外輪スぺ一サ 4側に移動させられることになる。 そうすると、 濾過室 1 0内のうち、 隔壁板 6によって内部圧力が高くなる位置 (第 4図にお いて、 Mで示す位置) においては、 処理原液或いは脱水ケーキは、 スク リーン 5の外周縁部 5 b側のゾーン G 2 (従来よりも小さな直径の小孔 1 5が配設されているゾーン) に対応するところを通過していくことに なり、 スクリーン 5の内周縁部 5 a側のゾーン G 1に配設されている従 来と同程度の直径の小孔 1 4は、 隔壁板 6によって内側から閉塞される ことになる。 従って、 処理原液或いは脱水ケーキの微粒子が、 小孔 1 4 から濾過室 1 0外に排出されてしまうことはなく、 処理原液中の微粒子 の捕捉効率の低下といった問題を好適に回避できるようになっているの である。  However, in the present embodiment, since the partition plate 6 is formed so as to gradually reduce the cross-sectional area of the filtration chamber 10, the processing solution which is located on the inner ring spacer 3 side in the filtration chamber 10 is not used. Alternatively, the dewatered cake is gradually moved away from the inner ring spacer 3 as it progresses through the filtration chamber 10 by the partition plate 6, and is moved to the outer ring spacer 4 side. Then, at the position in the filtration chamber 10 where the internal pressure is increased by the partition plate 6 (the position indicated by M in FIG. 4), the processing stock solution or the dewatered cake is removed from the outer peripheral edge of the screen 5. 5b, which passes through the area corresponding to the zone G2 (the zone in which the small holes 15 having a smaller diameter than the conventional one are arranged), and the zone on the inner peripheral edge 5a side of the screen 5. The small hole 14 having the same diameter as the conventional one disposed in G 1 is closed from the inside by the partition plate 6. Therefore, the fine particles of the undiluted solution or dehydrated cake are not discharged out of the filtration chamber 10 from the small holes 14, and the problem of a decrease in the efficiency of capturing the fine particles in the undiluted solution can be suitably avoided. ing.
尚、 本実施形態においては、 スクリーン 5上に直径の異なる 2種類の 小孔 1 4 , 1 5が設けられ、 直径の小さい小孔 1 5が直径の大きい小孔 1 4よりも外側に配置されているが、 例えば、 スクリーン 5上に直径の 異なる 1 0種類 (或いはそれ以上) の小孔を設け、 内側から外側にかけ て、 配設された小孔の直径が次第に小さくなつていくように構成しても 良い。  In the present embodiment, two types of small holes 14 and 15 having different diameters are provided on the screen 5, and the small diameter holes 15 are arranged outside the large diameter small holes 14. However, for example, 10 types (or more) of small holes with different diameters are provided on the screen 5, and the diameter of the provided small holes is gradually reduced from the inside to the outside. You may.
最後に、 第 6図に従って、 ケーキ通路 1 2が水平ではない回転式圧縮 濾過機 1の第 5の実施形態について説明する。 これまでの説明は、 ケー キ通路 1 2がほぼ水平に配置された例を示したが、 これは説明の便宜の ためであり、 本発明においては、 ケーキ通路 1 2の角度を何ら限定する ものではない。 ケーキ通路 1 2が機械の最下部に配置され、 ケーキ通路 1 2及びケーキ出口 9を閉じる機構が全くない場合、 運転開始時におい て処理原液の一部は、 スクリーン 5の小孔 1 4 , 1 5を抜けずに、 ケー キ通路 1 2を通ってケーキ出口 9から流れてしまうため、 ケーキ通路 1 2を一時的に閉鎖するための装置 (例えば、 第 1 2図に示されているよ うな可動弁 1 0 7を有する背圧装置等) が必要になっていた。 これに対 し第 6図に示されているように、 ケーキ通路 1 2が上向きになっていれ ば、 運転開始時において特別な措置を講ずることなく、 処理原液或いは 脱水ケーキの蓄積を待つことができる。 Finally, a fifth embodiment of the rotary compression filter 1 in which the cake passage 12 is not horizontal will be described with reference to FIG. The explanation so far is Although an example in which the key passages 12 are arranged substantially horizontally has been shown, this is for convenience of explanation, and in the present invention, the angle of the cake passages 12 is not limited at all. If the cake passage 12 is located at the bottom of the machine and there is no mechanism to close the cake passage 12 and the cake outlet 9, at the start of operation, a part of the undiluted solution will flow through the small holes 14 and 1 in the screen 5. A device for temporarily closing the cake passage 12 because it flows from the cake outlet 9 through the cake passage 12 without passing through the device 5 (for example, as shown in FIG. 12). Back pressure device with movable valve 107). On the other hand, as shown in Fig. 6, if the cake passage 12 faces upward, it is possible to wait for the stock solution or dewatered cake to accumulate without any special measures at the start of operation. it can.
以上、 本発明の実施形態について説明したが、 本発明はこれらの実施 形態に限定されるものではない。 また、 本明細書においては、 「透水性 」 、 「脱水」 、 「水分」 などのように 「水」 という言葉を用いているが 、 これらは説明の便宜上用いたもので、 「油」 等を排除する趣旨ではな く、 広く 「液体」 を意味するものであることを付言しておく。 産業上の利用可能性  As described above, the embodiments of the present invention have been described, but the present invention is not limited to these embodiments. Further, in the present specification, the term "water" is used such as "water permeability", "dehydration", and "moisture", but these are used for convenience of explanation, and "oil" and the like are used. It should be noted that this does not mean to exclude but broadly means "liquid". Industrial applicability
本発明の回転式圧縮濾過機は、 排出される脱水ケーキにおける平均脱 水度の飛躍的な向上を期待することができ、 また、 脱水効率の向上を期 待することができる。 また、 加圧手段の作用により圧榨ゾーンにおいて スクリーン部の圧力を高めることができ、 濾過室の最終脱水部分の圧力 を高めることができ、 結果的に脱水ケーキ全体の脱水度を向上させるこ とができる。  The rotary compression filter according to the present invention can be expected to dramatically improve the average degree of dewatering of the discharged dewatered cake, and can expect improvement in dewatering efficiency. In addition, the pressure of the screen portion in the compression zone can be increased by the action of the pressurizing means, and the pressure of the final dewatering portion of the filtration chamber can be increased, and as a result, the degree of dewatering of the entire dewatered cake can be improved. Can be.
更に、 加圧手段として濾過室内に加圧板を設け、 この加圧板を上下に 揺動可能なように構成した場合には、 安定した運転条件を選択する幅が 広がり、 また、 より高い圧力をもって脱水処理を行うことが可能になる ため、 脱水ケーキの脱水度が向上する。 更に、 加圧板の変位を圧力セン サ一等の信号と組合わせて自動制御することにより、 処理原液の性状変 化に対応し、 脱水ケーキの脱水度を一定範囲に収めることが可能となる また、 本発明の回転式圧縮濾過機は、 あらゆる固液混合処理液の分離 の用途に使用できるが、 処理原液に含まれる固形分が圧密性を有する場 合に他の固液分離機と比較して特に顕著な優位性を発揮する。 一例を挙 げるならば、 果物や野菜を細断粉砕物からのジュースの分離、 豆乳の分 離、 製紙廃液等の微細な繊維を含む液体の処理に使用できる。 また、 下 水処理場における汚泥の脱水の場合は、 前述の通り、 ケーキ出口以外の 部分を密閉構造にすることができるために、 悪臭による環境汚染と作業 環境の悪化を最小限にすることができるとともに、 脱水ケーキを焼却処 理する場合は、 燃料を節約することができ、 省エネルギーにも寄与する ことができる。 Further, when a pressure plate is provided in the filtration chamber as a pressure means, and the pressure plate is configured to be swingable up and down, the width for selecting a stable operation condition is limited. Since it is possible to spread and perform the dehydration treatment with a higher pressure, the degree of dehydration of the dehydrated cake is improved. Furthermore, by automatically controlling the displacement of the pressurizing plate in combination with a signal from a pressure sensor or the like, it is possible to cope with a change in the properties of the stock solution and to keep the dehydration degree of the dewatered cake within a certain range. However, the rotary compression filter of the present invention can be used for the separation of all solid-liquid mixed treatment liquids, but compared with other solid-liquid separators when the solids contained in the undiluted treatment liquid have compaction properties. It offers a particularly significant advantage. For example, fruits and vegetables can be used to separate juice from shredded and crushed material, to separate soy milk, and to treat liquids containing fine fibers such as papermaking wastewater. In addition, in the case of sludge dewatering at a sewage treatment plant, as described above, since the part other than the cake outlet can be made a closed structure, environmental pollution due to bad smell and deterioration of the working environment can be minimized. When dewatered cake is incinerated, fuel can be saved and energy can be saved.

Claims

請求の範囲 The scope of the claims
1 . 断面が矩形状で、 環状に延出する濾過室内に処理原液を連続的に導 入し、 前記濾過室を構成する少なくとも一つの壁面を当該濾過室の終端 方向へ連続的に回転移動させることによって、 当該濾過室内において前 記処理原液を前記回転移動壁面との摩擦により順次終端方向へ移動させ るとともに圧縮する装置であって、 前記濾過室を構成する少なくとも一 つの壁面が透水性を有する材料によって形成されることにより、 前記処 理原液の圧縮の際に処理原液から水分を取り除き、 残余の脱水ケーキが 、 ケーキ通路を通ってケーキ出口より外部へ排出されるように構成した 回転式圧縮濾過機において、 前記濾過室内に加圧手段を設けることによ つて、 前記濾過室の断面積が、 処理原液或いは脱水ケーキの移動方向に 従って、 次第に減少するように構成されていることを特徴とする、 回転 式圧縮濾過機。 1. The treatment stock solution is continuously introduced into the filtration chamber having a rectangular cross section and extending annularly, and at least one wall surface constituting the filtration chamber is continuously rotated and moved toward the end of the filtration chamber. This is a device for sequentially moving and compressing the undiluted solution in the filtration chamber in the terminal direction by friction with the rotating wall surface, wherein at least one wall surface constituting the filtration chamber has water permeability. The rotary compression is formed by removing the water from the processing stock solution when the processing stock solution is compressed by being formed of the material, and discharging the remaining dehydrated cake to the outside from the cake outlet through the cake passage. In the filter, by providing a pressurizing means in the filtration chamber, the cross-sectional area of the filtration chamber gradually increases in accordance with the moving direction of the processing stock solution or the dewatered cake. A rotary compression filter characterized by being configured to reduce.
2 . 前記濾過室は、 回転軸周りに固定され、 回転軸に従って回転する内 輪スぺーサの外周面と、 内輪スぺーザの外側に配置された外輪スぺーサ の内周面と、 内周縁部が内輪スぺーサの両側面上にそれぞれ固定される とともに、 外周縁部が外輪スぺーサの両側面に接するような位置及び寸 法にて配置された 2枚のスクリーンの各内側面とによって構成され、 前 記回転軸を回転させることによって、 前記スクリーンの各内側面を濾過 室の終端方向へ連続的に回転移動させるように構成したことを特徴とす る、 請求の範囲第 1項に記載の回転式圧縮濾過機。  2. The filtration chamber is fixed around a rotation axis, and has an outer peripheral surface of an inner ring spacer that rotates according to the rotation axis; an inner peripheral surface of an outer ring spacer disposed outside the inner ring spacer; The inner surface of each of the two screens whose peripheral edges are fixed on both sides of the inner ring spacer and whose outer peripheral edges are in contact with the dimensions of the outer ring spacer. Wherein the inner surface of the screen is continuously rotated and moved in the direction toward the end of the filtration chamber by rotating the rotating shaft. The rotary compression filter according to the above item.
3 . 前記加圧手段は、 前記濾過室内の内輪スぺ一サ側に設けられること を特徴とする、 請求の範囲第 2項に記載の回転式圧縮濾過機。  3. The rotary compression filter according to claim 2, wherein the pressurizing means is provided on an inner ring spacer side in the filtration chamber.
4 . 前記加圧手段は、 前記濾過室内の外輪スぺーサ側に設けられること を特徴とする、 請求の範囲第 2項に記載の回転式圧縮濾過機。 4. The rotary compression filter according to claim 2, wherein the pressurizing unit is provided on an outer ring spacer side in the filtration chamber.
5 . 前記スクリーンは、 直径の異なる少なくとも 2種類の小孔を多数有 し、 前記スクリーン上において、 直径の小さな小孔が、 直径の大きな小 孔よりも外側に配置されることを特徴とする、 請求の範囲第 3項に記載 の回転式圧縮濾過機。 5. The screen has a large number of at least two types of small holes having different diameters, and the small diameter small holes are arranged outside the large diameter small holes on the screen. 4. The rotary compression filter according to claim 3.
6 . 前記加圧手段として、 前記濾過室内に加圧板が設けられ、 当該加圧 板は、 上下方向に変位可能なように構成されていることを特徴とする、 請求の範囲第 1項から第 5項のいずれかに記載の回転式圧縮濾過機。  6. A pressure plate is provided in the filtration chamber as the pressure means, and the pressure plate is configured to be vertically displaceable. Item 6. The rotary compression filter according to any one of items 5.
PCT/JP2000/007073 1999-10-14 2000-10-12 Rotary type compressive filtrating machine WO2001026776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU76846/00A AU7684600A (en) 1999-10-14 2000-10-12 Rotary type compressive filtrating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29222499A JP3739613B2 (en) 1999-10-14 1999-10-14 Rotary compression filter
JP11/292224 1999-10-14

Publications (1)

Publication Number Publication Date
WO2001026776A1 true WO2001026776A1 (en) 2001-04-19

Family

ID=17779116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007073 WO2001026776A1 (en) 1999-10-14 2000-10-12 Rotary type compressive filtrating machine

Country Status (5)

Country Link
JP (1) JP3739613B2 (en)
KR (1) KR100481628B1 (en)
CN (1) CN1199705C (en)
AU (1) AU7684600A (en)
WO (1) WO2001026776A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004130A1 (en) * 2001-07-05 2003-01-16 Les Industries Fournier Inc. Method and apparatus for extracting liquid present in a humid mass
WO2004087406A1 (en) * 2003-03-27 2004-10-14 Tomoe Engineering Co., Ltd. Rotary compression filtering machine and method for dewatering soft material being treated
EP1781394A2 (en) * 2004-08-09 2007-05-09 Prime Solution, Inc. Rotary fan press
EP1943006A1 (en) * 2005-10-28 2008-07-16 Prime Solution, Inc. Rotary fan press
CN100493666C (en) * 2004-04-28 2009-06-03 巴工业株式会社 High dehydration type rotary pressurization dehydrator
US8662315B2 (en) 2008-07-14 2014-03-04 Prime Solution, Inc. Rotary fan press
US10391728B2 (en) 2014-04-08 2019-08-27 Prime Solution Inc. Rotary fan press with auger

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636581B2 (en) * 2001-09-27 2011-02-23 孝治 大塚 Rotary compression filter and method for dehydrating treatment liquid containing sludge
WO2005077848A1 (en) * 2004-02-18 2005-08-25 Tomoe Engineering Co., Ltd. System and method for concentrating sludge
JP4687866B2 (en) * 2004-06-17 2011-05-25 巴工業株式会社 Sludge dewatering agent for rotary compression filter and sludge dewatering method using the same
EP1971533A4 (en) * 2005-10-28 2009-12-23 Prime Solution Inc Mass thickening apparatus
US8192624B2 (en) 2007-07-23 2012-06-05 Tsukishima Kikai Co., Ltd. Filtering apparatus
US20110083701A1 (en) * 2009-10-09 2011-04-14 General Electric Company Process to clean gas turbine fuel chamber components
CN102641614A (en) * 2011-02-16 2012-08-22 浙江科力尔环保设备有限公司 Rotary extrusion-type filter mud-discharging guide block
CN102107103A (en) * 2011-02-17 2011-06-29 浙江科力尔环保设备有限公司 Channel for rotary extruding-type filter
CN103896473A (en) * 2014-03-28 2014-07-02 四川环能德美科技股份有限公司 Deep electroosmotic dewatering device of sludge
JP5913698B1 (en) * 2015-07-23 2016-04-27 巴工業株式会社 Electroosmotic rotary pressure dehydrator
CN105776809B (en) * 2016-05-03 2018-09-25 武汉市修远科技有限公司 A kind of sludge dehydration device
JP6148804B1 (en) * 2017-03-28 2017-06-14 巴工業株式会社 Control method of rotary pressure dehydrator
JP6383039B1 (en) * 2017-03-28 2018-08-29 巴工業株式会社 Rotary pressure dehydrator
CN107056010B (en) * 2017-05-08 2023-06-30 江苏涞森环保设备有限公司 Worm extrusion type dehydrator
CN109896191B (en) * 2019-04-18 2020-03-17 陈凤娟 Environment-friendly medical waste collection equipment
CN112337167A (en) * 2020-12-08 2021-02-09 重庆市涪陵区奋发农业开发有限公司 Kiwi fruit juice filter equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361263A (en) * 1965-06-10 1968-01-02 Frank W Egan & Company Automatic screening head for extruders
US4139467A (en) * 1977-02-18 1979-02-13 Myrens Verksted A/S Disc press for continuous pressing of aqueous or suspended pulp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361263A (en) * 1965-06-10 1968-01-02 Frank W Egan & Company Automatic screening head for extruders
US4139467A (en) * 1977-02-18 1979-02-13 Myrens Verksted A/S Disc press for continuous pressing of aqueous or suspended pulp

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166229B2 (en) 2001-07-05 2007-01-23 Les Industries Fournier Inc. Method and apparatus for extracting liquid present in a humid mass
CN1309445C (en) * 2001-07-05 2007-04-11 富尼耶工业公司 Method and apparatus for extracting liquid present in a humid mass
WO2003004130A1 (en) * 2001-07-05 2003-01-16 Les Industries Fournier Inc. Method and apparatus for extracting liquid present in a humid mass
WO2004087406A1 (en) * 2003-03-27 2004-10-14 Tomoe Engineering Co., Ltd. Rotary compression filtering machine and method for dewatering soft material being treated
CN100493666C (en) * 2004-04-28 2009-06-03 巴工业株式会社 High dehydration type rotary pressurization dehydrator
EP2108427A1 (en) * 2004-08-09 2009-10-14 Prime Solution, Inc. Rotary fan press
EP1781394A4 (en) * 2004-08-09 2008-09-17 Prime Solution Inc Rotary fan press
EP1781394A2 (en) * 2004-08-09 2007-05-09 Prime Solution, Inc. Rotary fan press
US7895943B2 (en) 2004-08-09 2011-03-01 Prime Solution, Inc. Rotary fan press
US7946225B2 (en) 2004-08-09 2011-05-24 Prime Solution, Inc. Rotary fan press
US8091474B2 (en) 2004-08-09 2012-01-10 Prime Solution, Inc. Rotary fan press
EP1943006A1 (en) * 2005-10-28 2008-07-16 Prime Solution, Inc. Rotary fan press
EP1943006A4 (en) * 2005-10-28 2009-11-11 Prime Solution Inc Rotary fan press
US7975854B2 (en) 2005-10-28 2011-07-12 Prime Solution, Inc. Rotary fan press
US8146750B2 (en) 2005-10-28 2012-04-03 Prime Solution, Inc. Rotary fan press
US8662315B2 (en) 2008-07-14 2014-03-04 Prime Solution, Inc. Rotary fan press
US10391728B2 (en) 2014-04-08 2019-08-27 Prime Solution Inc. Rotary fan press with auger

Also Published As

Publication number Publication date
CN1378478A (en) 2002-11-06
CN1199705C (en) 2005-05-04
JP3739613B2 (en) 2006-01-25
KR20020029784A (en) 2002-04-19
JP2001113109A (en) 2001-04-24
AU7684600A (en) 2001-04-23
KR100481628B1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2001026776A1 (en) Rotary type compressive filtrating machine
US4041854A (en) Sludge dewatering
US3938434A (en) Sludge dewatering
KR101495906B1 (en) Impurities disposer improved dehydration performance
JP4051395B1 (en) Rotary pressure dehydrator
CN101244349A (en) A screw press type filter for wastewater treatment
WO2003064002A1 (en) Method and device for fluid treatment
JP3903069B1 (en) Sludge dewatering method using rotary pressure dehydrator and rotary pressure dehydrator
JP4953089B2 (en) Continuous dehydration filtration equipment
KR102082719B1 (en) Waste disposal machine
JP4702358B2 (en) Screw press with concentration mechanism
KR200339408Y1 (en) Waste water sludge removal device
KR102379522B1 (en) Concomitant comprehensive disposal apparatus with improved concomitant separation performance
JP2009000627A (en) Rotary pressure dehydrator
JP2008221044A (en) Rotary pressure dehydrator
JP3779236B2 (en) Screw type filter dehydrator
JP5318555B2 (en) Rotating pressure dehydrator and sludge dewatering method using rotating pressure dehydrator
JP3751578B2 (en) Screw type filter dehydrator
JPH02268805A (en) Filter for sewage or the like and dehydration filter for sludge or the like
JP3751577B2 (en) Screw type filter dehydrator
JP2003093812A (en) Rotary compression filter and dehydrating method for soft material to be treated
JP4362346B2 (en) Screw type filter dehydrator
JP3936278B2 (en) Screw type filter dehydrator
KR102534293B1 (en) Inclusion dehydrator
KR102461500B1 (en) Compressive Typed Dehydrating Machine Using Hiper Pressure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID IN KR NZ SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027003069

Country of ref document: KR

Ref document number: 1020027003070

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008141754

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027003070

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020027003069

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020027003070

Country of ref document: KR