JP2006272058A - Centrifugal separator - Google Patents

Centrifugal separator Download PDF

Info

Publication number
JP2006272058A
JP2006272058A JP2005091401A JP2005091401A JP2006272058A JP 2006272058 A JP2006272058 A JP 2006272058A JP 2005091401 A JP2005091401 A JP 2005091401A JP 2005091401 A JP2005091401 A JP 2005091401A JP 2006272058 A JP2006272058 A JP 2006272058A
Authority
JP
Japan
Prior art keywords
bowl
liquid
discharge port
screw conveyor
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091401A
Other languages
Japanese (ja)
Inventor
Takashi Uchikawa
隆史 内川
Noboru Suzuki
鈴木  登
Shiyuujiro Nagoshi
収二郎 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005091401A priority Critical patent/JP2006272058A/en
Publication of JP2006272058A publication Critical patent/JP2006272058A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a moisture content of a discharge cake by enhancing the flow of a liquid staying in a precipitation layer in a discharge port direction in a decanter type centrifugal separator. <P>SOLUTION: The centrifugal separator is provided with a cylindrical bowl 1; and a screw conveyor 10 rotating coaxially to the bowl 1 in the same direction with a rotation speed difference in the bowl 1. The precipitation layer (b<SB>1</SB>) is separated from a treatment liquid (a) fed into the bowl 1 by centrifugal force, the discharge cake (b<SB>3</SB>) is discharged from a discharge port 7 provided near a bowl inner peripheral wall at one side of the bowl 1 and a separation liquid (c) is discharged from a discharge port 8 at the other side of the bowl 1. Projections 23 and 24 are provided on an outer peripheral surface of a rotation body 11 of the screw conveyor 10 and a helical impeller 12. A void is formed in the precipitation layer (b<SB>2</SB>) and easily makes the liquid staying in the precipitation layer (b<SB>2</SB>) flow in an axial and discharge port 8 direction. Since the separation liquid (c) staying in the precipitation layer (b<SB>2</SB>) is mixed into the discharge cake (b<SB>3</SB>) and is discharged, the water content is not reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水汚泥や工業排水、および化学・食品工業用諸生産品の濃縮、脱水、沈殿重成分および分離水の回収を遠心力により行うようにした遠心分離装置に関する。   TECHNICAL FIELD The present invention relates to a centrifugal separator that collects concentrated sewage sludge, industrial waste water, and various products for chemical and food industry, dewatering, precipitation heavy components, and recovered water by centrifugal force.

従来、汚泥等の処理液を固体と液体とに分離する固液分離には、一般にデカンタ型の遠心分離装置が使用されている。このデカンタ型の遠心分離装置の一種である上側溢流方式、所謂ネガティブ方式の装置は基本的に、分離した沈殿層(脱水ケーキ)の排出口はボウル内の液面と同等或いはそれより高い位置にある。排出にボウル内の水頭圧を利用するとしても、ボウル内の処理液の水頭圧は、重い沈殿層の水頭圧よりも小さいため、水頭圧のみで排出することは原理的に不可能であり、なんらかの排出機構を必要とする。ここで、ボウル内の或る層には、その上の液層又は沈殿層に作用する遠心力による強い押圧力を受けるが、それが水頭圧である。また、この明細書では、遠心力の作用する方向、即ちボウルの回転軸心から遠い方向を下、近い方向を上と呼ぶ。   Conventionally, a decanter type centrifugal separator is generally used for solid-liquid separation for separating a treatment liquid such as sludge into a solid and a liquid. In this type of decanter type centrifugal separator, the upper overflow method, the so-called negative device, is basically the position where the discharge port of the separated sediment layer (dehydrated cake) is equal to or higher than the liquid level in the bowl. It is in. Even if the head pressure in the bowl is used for discharge, the head pressure of the treatment liquid in the bowl is smaller than the head pressure of the heavy sediment layer, so it is impossible in principle to discharge only with the head pressure. Some sort of discharge mechanism is required. Here, a certain layer in the bowl is subjected to a strong pressing force due to the centrifugal force acting on the liquid layer or the sediment layer above it, which is the water head pressure. Further, in this specification, the direction in which the centrifugal force acts, that is, the direction far from the rotation axis of the bowl is referred to as “down” and the direction close to it is referred to as “up”.

特許文献1には、デカンタ型遠心分離装置において、ボウル内の最も含水率の低い部分から直接に脱水ケーキを排出し、含水率の低下と分離効率の向上とを図ることを目的とした遠心分離装置が提示されている。この装置は図4に示すように、高速回転されるボウル1内に、これと相対速度差をもって回転するスクリューコンベア10を収容した遠心分離装置において、ボウル1の前端壁2に脱水ケーキの排出経路20を設け、その排出経路20のボウル1内への開口20aはボウルの内周壁近傍に設け、排出経路20の端壁外への排出口20bはそれよりも高い位置、即ち、ボウル内周壁半径よりも小さな半径位置に設ける。   In Patent Document 1, in a decanter-type centrifuge, a centrifugal separator is used to discharge a dehydrated cake directly from a portion having the lowest moisture content in a bowl, thereby reducing moisture content and improving separation efficiency. A device is presented. As shown in FIG. 4, this apparatus is a centrifugal separator in which a screw conveyor 10 that rotates with a relative speed difference is housed in a bowl 1 that is rotated at a high speed, and a dewatered cake discharge path on the front end wall 2 of the bowl 1. 20, the opening 20a of the discharge path 20 into the bowl 1 is provided in the vicinity of the inner peripheral wall of the bowl, and the discharge port 20b to the outside of the end wall of the discharge path 20 is located at a higher position, that is, the radius of the inner peripheral wall of the bowl Smaller radius position.

上記の装置において、脱水処理する処理液aは、矢印のように供給管16から供給室14に入り、供給口15から環状空間17内に供給され、ボウル1及びスクリューコンベア10の回転の遠心力で固液分離されながら、スクリューコンベア10の回転胴11の外周に固定された螺旋翼12により、ボウル1内の前端に向け搬送される。そして、分離された液体分である分離液cは、後端壁の排出口8から機外に排出される。一方、沈殿層bは螺旋翼12によってボウル1の前端方向へと掻き寄せられて行きながら、さらに遠心力による分離作用を受けて、残留液分の分離が進み、圧密されて含水率の低下した沈殿層bとなり、その分離液cも排出口8より排出される。 In the above apparatus, the treatment liquid a to be dehydrated enters the supply chamber 14 from the supply pipe 16 as indicated by the arrow, and is supplied from the supply port 15 into the annular space 17, and the centrifugal force of the rotation of the bowl 1 and the screw conveyor 10. And is separated toward the front end in the bowl 1 by the spiral blade 12 fixed to the outer periphery of the rotary drum 11 of the screw conveyor 10. The separated liquid c, which is the separated liquid, is discharged out of the apparatus from the discharge port 8 on the rear end wall. On the other hand, the sediment layer b 1 is scraped toward the front end of the bowl 1 by the spiral blade 12 and further subjected to separation action by centrifugal force, so that the separation of the remaining liquid proceeds and is consolidated to decrease the water content. precipitate layer b 2, and the the separated liquid c is also discharged from the discharge port 8.

また、ボウル1の前部に搬送された沈殿層bは、環状空間17の前端に、排出経路20からの排出量との差分だけ堆積する。この堆積層は、沈殿した重成分が例えば砂であれば比重は約2.5〜3であり、水の1に比して格段に重いため、この堆積層に作用する遠心力による水頭圧も水の場合に比して2倍以上となる。さらに、分離液排出口8によって決定される液面の高さが、スクリューコンベア10の回転胴11より低く、その間に空間が残っていれば、堆積層は液面を超えて盛り上がり、その比重の大きさと盛り上がりの高さによって、排出経路の開口20a近傍には大きな遠心水頭圧が作用して堆積層に対する大きな圧密効果を生じ、この遠心水頭圧とスクリューの搬送力とにより排出経路への押出し作用が生じる。 Further, the sediment layer b 2 conveyed to the front portion of the bowl 1 is accumulated at the front end of the annular space 17 by a difference from the discharge amount from the discharge path 20. This sedimentary layer has a specific gravity of about 2.5 to 3 if the sedimented heavy component is, for example, sand, and is much heavier than 1 of water. It becomes more than twice as compared with water. Furthermore, if the liquid level determined by the separated liquid discharge port 8 is lower than the rotary drum 11 of the screw conveyor 10 and a space remains between them, the deposited layer rises beyond the liquid level, and its specific gravity Depending on the size and the height of the rise, a large centrifugal head pressure acts in the vicinity of the opening 20a of the discharge path to produce a large consolidation effect on the sedimentary layer, and this centrifugal head pressure and the conveying force of the screw cause an extrusion action to the discharge path. Occurs.

これにより、排出経路20からの排出ケーキbは、ボウル1の一端に堆積した沈殿層b中、堆積物に作用する遠心力の水頭圧による圧密効果の最も高い部分からのもののみが排出経路20を経て遠心力のかからないボウル外へ排出される。これによって、ボウル1内の沈殿物の堆積層のうち、最も高い圧密作用を受けている部分、すなわち、最も含水率の低い堅い部分のみを直接に排出するので、従前の遠心分離装置と比較すると脱水ケーキbの含水率を大幅に下げることができる。
特開2001−219097号公報
As a result, the discharge cake b 3 from the discharge path 20 is discharged only from the portion of the sediment layer b 2 deposited on one end of the bowl 1 that has the highest consolidation effect due to the hydraulic head pressure of the centrifugal force acting on the deposit. It is discharged out of the bowl through which the centrifugal force is not applied via the path 20. As a result, of the sediment layer of the sediment in the bowl 1, only the hard part having the highest compaction effect, that is, the hard part having the lowest moisture content is directly discharged. the water content of the dehydrated cake b 3 can be drastically reduced.
JP 2001-219097 A

しかしながら、上記従来の遠心分離装置において、排出ケーキbの含水率が設定値よりも高くなる現象が見られた。また、ボウル1の回転数を上昇させていったときに、含水率の低下が頭打ちになる現象がみられた。この現象が現れる原因は、沈殿層bが螺旋翼12によってボウル1の前端方向へと掻き寄せられて行きながら、さらに遠心力による分離作用を受けて、残留液分の分離が進み、圧密されて含水率の低下した沈殿層bとなり、その分離液cが排出口8より排出されるときに、残留液分の一部が排出ケーキb中に混入して排出されるためである。このように残留液分が排出ケーキb中に混入してしまうのは、圧密された沈殿層bは水の透過率が低いため、残留液分が沈殿層b中を回転胴11の軸心方向へ透過によって移動するのに時間がかかることから、その移動が終わり、分離液排出口8の方向へ流れる前に沈殿層bと共にケーキの排出口7より排出されてしまうからと考えられる。 However, in the conventional centrifugal separator, a phenomenon in which the water content of the discharged cake b 3 is higher than the set value was observed. Moreover, when the rotation speed of the bowl 1 was increased, a phenomenon in which the decrease in the moisture content reached a peak was observed. The cause of this phenomenon is that the sediment layer b 1 is scraped toward the front end of the bowl 1 by the spiral blade 12 and further separated by the centrifugal force, and the separation of the remaining liquid proceeds and is consolidated. decrease in water content Te precipitate layer b 2, and the when the separated liquid c is discharged from the discharge port 8, because the portion of the residual liquid fraction is discharged mixed in the discharge cake b 3. Thus the residual liquid fraction will be mixed in the exhaust cake b 3 is precipitated layer b 2 which is compacted has a low permeability for water, residual liquid content of the rotating cylinder 11 the middle precipitate layer b 2 Since it takes time to move in the axial direction by permeation, it is considered that the movement ends and is discharged from the cake discharge port 7 together with the sediment layer b 2 before flowing in the direction of the separation liquid discharge port 8. It is done.

本発明は、このような問題点に鑑みてなされたもので、その目的は、デカンタ型の遠心分離装置において、沈殿層中の残留液分がその排出口方向へ流れることを促進して、排出ケーキの含水率を低下させることである。   The present invention has been made in view of such problems, and an object thereof is to promote the flow of residual liquid in the sedimentation layer in the direction of the discharge port in the decanter type centrifugal separator, and to discharge it. It is to reduce the moisture content of the cake.

請求項1に係る発明は、一方向に回転する円筒形のボウルと、該ボウル内で該ボウルと同軸に、かつ回転速度差を有して同方向に回転するスクリューコンベアとを有し、回転中の前記ボウル内に供給される処理液から重成分を遠心力によって分離し、前記スクリューコンベアによって前記ボウルの一側に搬送して集積し、該一側に設けた重成分排出口から押し出すとともに、分離液を前記ボウルの他側に設け分離液排出口から排出するようにした遠心分離装置において、前記スクリューコンベアの螺旋翼の前記一側若しくは他側の表面、又は前記スクリューコンベアの回転胴の外周面に突起を設け、前記重成分中に滞留している液体を前記分離液排出口の方向へ逃がすことを特徴とする遠心分離装置である。
請求項2に係る発明は、請求項1記載の遠心分離装置において、前記突起を螺旋状に配置したことを特徴とする遠心分離装置である。ここで、螺旋状に配置とは、配置範囲が螺旋の1回転より短い場合も含む。また、螺旋はその旋回半径が一定のものだけではなく、変化するものも含む。
The invention according to claim 1 includes a cylindrical bowl that rotates in one direction, and a screw conveyor that rotates coaxially within the bowl and rotates in the same direction with a rotational speed difference. The heavy components are separated from the processing solution supplied into the inside of the bowl by centrifugal force, conveyed to one side of the bowl by the screw conveyor and accumulated, and pushed out from the heavy component discharge port provided on the one side. In the centrifugal separator provided on the other side of the bowl and discharged from the separation liquid discharge port, the surface of the one side or the other side of the spiral blade of the screw conveyor, or the rotary drum of the screw conveyor The centrifugal separator is characterized in that a protrusion is provided on an outer peripheral surface, and the liquid staying in the heavy component escapes in the direction of the separation liquid discharge port.
A second aspect of the present invention is the centrifugal separator according to the first aspect, wherein the protrusions are arranged in a spiral shape. Here, the spiral arrangement includes a case where the arrangement range is shorter than one rotation of the spiral. In addition, the spiral includes not only one whose turning radius is constant but also one that changes.

(作用)
請求項1に係る発明によれば、スクリューコンベアの螺旋翼の前記他側の表面又はスクリューコンベアの回転胴の外周面に突起を設けたことにより、重成分を攪拌して、その重成分中に滞留している液体を開放し、併せてその液体の流れる空隙を形成することで、液体は軸心かつ分離液排出口方向へ導かれる。
請求項2に係る発明によれば、突起を螺旋状に配置したことにより、重成分中の空隙がつながるため、重成分中に滞留している液体が効率良く排出口方向へ導かれる。
(Function)
According to the invention according to claim 1, by providing protrusions on the surface of the other side of the spiral blade of the screw conveyor or on the outer peripheral surface of the rotary drum of the screw conveyor, the heavy component is stirred, By releasing the staying liquid and forming a void through which the liquid flows, the liquid is guided in the axial direction toward the separated liquid discharge port.
According to the second aspect of the present invention, since the protrusions are arranged in a spiral shape, the voids in the heavy component are connected, so that the liquid staying in the heavy component is efficiently guided toward the discharge port.

本発明によれば、デカンタ型の遠心分離装置において、重成分中に滞留している液分がその排出口方向へ流れることを促進することで、排出ケーキの含水率を低下させることができる。   According to the present invention, in the decanter-type centrifuge, the moisture content of the discharged cake can be reduced by promoting the flow of the liquid remaining in the heavy component in the direction of the discharge port.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は本発明の実施形態に係る遠心分離装置の軸心方向の縦断面図であり、図2はそのスクリューコンベアの斜視図である。これらの図において、図4と同一の構成要素には同一の符号を付した。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view in the axial direction of a centrifugal separator according to an embodiment of the present invention, and FIG. 2 is a perspective view of the screw conveyor. In these drawings, the same components as those in FIG. 4 are denoted by the same reference numerals.

図1に示すように、この遠心分離装置において、ボウル(外側回転筒)1は、横型円筒の直胴形をなし、その前端の排泥室壁6及び後端壁3の中央部には中空軸4,5が突設され、図示を略した軸受に回動可能に支持されて、駆動装置により高速回転される。また、ボウル1の前端部の排泥室6の周壁には、周方向に沿って複数の排泥口7が一定間隔毎に設けられている。この排泥室壁6と排泥口7とは、本実施の態様においてはボウル1と一体に構成されているが、遠心分離装置の基本構成ではなく、ボウル1と別体に構成するなど、適宜の設計変更が可能である。また、ボウル1の後端壁3には、分離液cの排出口8が設けられている。この排出口8は例えば複数の扇形のものを周方向に一定間隔毎に設けるか、或は、後端壁3に多数の小孔を同心状に一定間隔毎に設けてもよい。   As shown in FIG. 1, in this centrifugal separator, a bowl (outer rotating cylinder) 1 has a straight cylindrical shape that is a horizontal cylinder, and is hollow at the center of the drainage chamber wall 6 and the rear end wall 3 at its front end. The shafts 4 and 5 are protruded, are rotatably supported by a bearing (not shown), and are rotated at high speed by a driving device. A plurality of mud discharge ports 7 are provided at regular intervals along the circumferential direction on the peripheral wall of the mud discharge chamber 6 at the front end of the bowl 1. The mud chamber wall 6 and the mud port 7 are configured integrally with the bowl 1 in this embodiment, but are not the basic configuration of the centrifuge, but are configured separately from the bowl 1, Appropriate design changes are possible. The rear end wall 3 of the bowl 1 is provided with a discharge port 8 for the separation liquid c. For example, a plurality of fan-shaped outlets 8 may be provided at regular intervals in the circumferential direction, or a plurality of small holes may be provided concentrically at regular intervals in the rear end wall 3.

ボウル1内に収容されたスクリューコンベア10は、横型円筒形の回転胴llの外周に螺旋翼12が巻いた状態で取り付けられており、その両端部を、ボウル1の中空軸4,5のボウル内突出部に回動可能に支持され、中空軸4に挿通された回転軸13により、ボウル1と所要の速度差をもって回動されるようになっている。そして、回転胴11内には、処理液aの供給室14が設けられ、その周壁には、ボウル1と回転胴11との間の環状空間17に通ずる供給口15が設けられるとともに、ボウル1の後部中空軸5より挿通された処理液の供給管16が供給室14に開口して設けられている。   The screw conveyor 10 accommodated in the bowl 1 is attached in a state in which the spiral blade 12 is wound around the outer periphery of the horizontal cylindrical rotary drum 11, and both ends thereof are attached to the bowls of the hollow shafts 4 and 5 of the bowl 1. A rotating shaft 13 that is rotatably supported by the inner protrusion and is inserted through the hollow shaft 4 is rotated with a required speed difference from the bowl 1. A supply chamber 14 for the processing liquid a is provided in the rotary drum 11, and a supply port 15 leading to the annular space 17 between the bowl 1 and the rotary drum 11 is provided on the peripheral wall thereof. A treatment liquid supply pipe 16 inserted through the rear hollow shaft 5 is provided in the supply chamber 14 so as to open.

ボウル1の環状空間17の前端には壁2が設けられ、この壁2内に脱水ケーキb3の排出経路20が設けられている。排出経路20のボウル内への開口部20aは、ボウル1の周壁内面に接して設けられ、一方、ボウル外への排出口となる開口部20bは半径方向への高さを有している。従って、開口部20aから排出経路に侵入できる沈殿物は堆積層の最も下部の部分のみに限定されることとなる。一方、開口部20bは、運転初期において、処理液がこの開口部20bを溢流しない程度に供給されるもので、ボウル1内の液面の初期の高さを定める。この開口部20bが高過ぎると、排出経路20内の脱水ケーキに作用する遠心力がボウル内の堆積層に作用する押圧力を相殺することによって、脱水ケーキの排出力を低減してしまうので、必要な範囲でなるべく低いことが望ましい。   A wall 2 is provided at the front end of the annular space 17 of the bowl 1, and a discharge path 20 for the dehydrated cake b <b> 3 is provided in the wall 2. The opening 20a into the bowl of the discharge path 20 is provided in contact with the inner surface of the peripheral wall of the bowl 1, while the opening 20b serving as a discharge port to the outside of the bowl has a height in the radial direction. Therefore, the deposit that can enter the discharge path from the opening 20a is limited to only the lowermost part of the deposited layer. On the other hand, the opening 20b is supplied to such an extent that the processing liquid does not overflow the opening 20b in the initial stage of operation, and determines the initial height of the liquid level in the bowl 1. If the opening 20b is too high, the centrifugal force acting on the dewatered cake in the discharge path 20 cancels out the pressing force acting on the deposited layer in the bowl, thereby reducing the discharge power of the dehydrated cake. It is desirable that it is as low as possible within the required range.

また、分離液の排出口8は、運転中の環状空間17の液面を定め、排出口8の位置が開口部20bよりも低いときはいわゆる「下側溢流」の状態での運転となり、高いときは「上側溢流」の状態での運転となる。そして、上側溢流の状態での運転の場合、処理液の排出経路20からの流出は、開口部20aの近傍に堆積した沈殿層によって阻止される。その最も極端な場合は、分離液の排出は軸心からの排出とすることも可能である。   Further, the separation liquid discharge port 8 defines the liquid level of the annular space 17 during operation, and when the position of the discharge port 8 is lower than the opening 20b, the operation is performed in a so-called "lower overflow" state. When it is high, the operation is in the “upper overflow” state. In the case of the operation in the upper overflow state, the outflow of the processing liquid from the discharge path 20 is blocked by the sediment layer deposited in the vicinity of the opening 20a. In the most extreme case, the separation liquid can be discharged from the axial center.

図2に示すように、スクリューコンベア10の回転胴11の外周面及び螺旋翼12における後端側の表面には、それぞれ突起23及び24が設けられている。ここで、スクリューコンベア10は、その全体がステンレスで構成されており、突起23及び24は溶接により固定されている。また、突起23及び24は、25mm×25mm×100mm程度のサイズの直方体(角柱状)であり、突起23は50mmの間隔を開けて螺旋状(図示は3個のみ)に配置されており、突起24は50mmの間隔を開けて螺旋翼12における後端側の表面における回転胴11の軸心から所定の半径位置に配置されている。つまり、突起24も螺旋状に配置されていると言える。ここで、突起23及び24は、圧密されて含水率の低下した沈殿層bが集積されるボウル前端付近に配置することが好適であるが、配置位置は供給口15から前方であればよい。また、突起24に関しては、図1のように螺旋翼12のボウル後端側の表面に設けてもよいし、ボウル前端側の表面に設けてもよい。 As shown in FIG. 2, projections 23 and 24 are provided on the outer peripheral surface of the rotary drum 11 of the screw conveyor 10 and the rear end side surface of the spiral blade 12, respectively. Here, the screw conveyor 10 is entirely made of stainless steel, and the protrusions 23 and 24 are fixed by welding. The protrusions 23 and 24 are rectangular parallelepipeds (square column shapes) having a size of about 25 mm × 25 mm × 100 mm, and the protrusions 23 are arranged in a spiral shape (only three in the drawing) with an interval of 50 mm. 24 is arranged at a predetermined radial position from the axial center of the rotating drum 11 on the surface on the rear end side of the spiral blade 12 with an interval of 50 mm. That is, it can be said that the protrusions 24 are also arranged in a spiral shape. Here, the protrusions 23 and 24 are preferably arranged in the vicinity of the front end of the bowl where the sedimented layer b 2 having a reduced moisture content is consolidated, but the arrangement position may be in front of the supply port 15. . Further, the protrusion 24 may be provided on the surface of the spiral blade 12 on the rear end side of the bowl as shown in FIG. 1 or on the front surface of the bowl.

以上の構成を有する遠心分離装置において、脱水処理する処理液aは、矢印のように供給管16から供給室14に入り、供給口15から環状空間17内に供給され、ボウル1及びスクリューコンベア10の回転の遠心力で固液分離されながら、スクリューコンベア10の回転胴11の外周に固定された螺旋翼12により、ボウル1内の前端に向け搬送される。そして、分離された液体分である分離液cは、後端壁の排出口8から機外に排出される。一方、沈殿層bは螺旋翼12によってボウル1の前端方向へと掻き寄せられて行きながら、さらに遠心力による分離作用を受けて、残留液分の分離が進み、圧密されて含水率の低下した沈殿層bとなり、その分離液cも排出口8より排出される。このとき、スクリューコンベア10の回転胴11の外周面及び螺旋翼12における後端側の表面に断続的に配置された突起23及び24は、沈殿層bを攪拌して、その内部に滞留している液体を開放し、併せて沈殿層bを押し退け、前記液体の流れる空隙を形成するので、液体は軸心方向かつ排出口8方向へ導かれる。ここで、突起23及び24を螺旋状に配置したことで、空隙がつながって液体の流路となるため、沈殿層bの内部に滞留している液体が効率良く軸心かつ排出口8方向へ導かれる。さらに、突起24に関しては、回転胴11の軸心から一定の半径位置に配置しても良いが、突起24の位置が螺旋翼12における排出口方向に行く程半径が小さくなるように配置すれば、液体の流路が軸心方向かつ排出口8方向につながるため、液体がさらに効率的に軸心かつ排出口8方向へ導かれる。 In the centrifugal separator having the above configuration, the treatment liquid a to be dehydrated enters the supply chamber 14 from the supply pipe 16 as shown by the arrow, and is supplied from the supply port 15 into the annular space 17, and the bowl 1 and the screw conveyor 10. While being separated into a solid and a liquid by the centrifugal force of the rotation, the spiral blade 12 fixed to the outer periphery of the rotary drum 11 of the screw conveyor 10 is conveyed toward the front end in the bowl 1. The separated liquid c, which is the separated liquid, is discharged out of the apparatus from the discharge port 8 on the rear end wall. On the other hand, the sediment layer b 1 is scraped toward the front end of the bowl 1 by the spiral blade 12 and further subjected to separation action by centrifugal force, so that the separation of the remaining liquid proceeds and is consolidated to decrease the water content. precipitate layer b 2, and the the separated liquid c is also discharged from the discharge port 8. At this time, the protrusions 23 and 24 that are intermittently disposed on the outer peripheral surface of the rotary drum 11 of the screw conveyor 10 and the surface on the rear end side of the spiral blade 12 stir the precipitate layer b 2 and stay in it. The liquid is released, and at the same time, the precipitation layer b 2 is pushed away to form a void through which the liquid flows, so that the liquid is guided in the axial direction and in the direction of the discharge port 8. Here, since the projections 23 and 24 are arranged in a spiral shape, the gaps are connected to form a liquid flow path, so that the liquid staying in the precipitation layer b 2 is efficiently axially and in the direction of the discharge port 8. Led to. Further, the protrusion 24 may be arranged at a certain radial position from the axis of the rotating drum 11, but if the protrusion 24 is arranged so that the radius becomes smaller as it goes in the direction of the discharge port in the spiral blade 12. Since the liquid flow path is connected in the axial direction and in the direction of the discharge port 8, the liquid is more efficiently guided in the axial direction and in the direction of the discharge port 8.

ボウル1の前部に搬送された沈殿層bは、環状空間17の前端に、排出経路20からの排出量との差分だけ堆積する。この堆積層は、沈殿した重成分が例えば砂であれば比重は約2.5〜3であり、水の1に比して格段に重いため、この堆積層に作用する遠心力による水頭圧も水の場合に比して2倍以上となる。さらに、分離液排出口8によって決定される液面の高さが、スクリューコンベア10の回転胴11より低く、その間に空間が残っていれば、堆積層は液面を超えて盛り上がり、その比重の大きさと盛り上がりの高さによって、排出経路の開口20a近傍には大きな遠心水頭圧が作用して堆積層に対する大きな圧密効果を生じ、この遠心水頭圧とスクリューの搬送力とにより排出経路への押出し作用が生じる。 The sedimentation layer b 2 conveyed to the front part of the bowl 1 is accumulated at the front end of the annular space 17 by a difference from the discharge amount from the discharge path 20. This sedimentary layer has a specific gravity of about 2.5 to 3 if the sedimented heavy component is, for example, sand, and is much heavier than 1 of water. It becomes more than twice as compared with water. Furthermore, if the liquid level determined by the separated liquid discharge port 8 is lower than the rotary drum 11 of the screw conveyor 10 and a space remains between them, the deposited layer rises beyond the liquid level, and its specific gravity Depending on the size and the height of the rise, a large centrifugal head pressure acts in the vicinity of the opening 20a of the discharge path to produce a large consolidation effect on the sedimentary layer. Occurs.

このように、本実施形態に係る遠心分離装置によれば、スクリューコンベア10に設けた突起23及び24により、沈殿層b内に空隙を形成して、沈殿層b中に滞留している液体を軸心かつ排出口8方向へ流れ易くすることにより、沈殿層bの含水率低下を防止した後に、ボウル1の一端に堆積した沈殿層b中、堆積物に作用する遠心力の水頭圧による圧密効果の最も高い部分からのもののみが排出経路20を経て遠心力のかからないボウル外へ排出するので、沈殿層b中に滞留した液体が排出ケーキb中に混入して排出されることにより含水率の低下が抑制される事態を回避することができる。なお、以上の実施形態では、突起23及び24として、複数の直方体の突起片を間隔を開けて断続的に配置することで、突起の構成部材の入手及び取付けを容易にし、かつ液体の流路を効率的に形成可能にしているが、突起を回転胴11の外周面及び螺旋翼12の表面に連続的に配置しても良い。 Thus, according to the centrifugal separator according to the present embodiment, the projections 23 and 24 provided in the screw conveyor 10, to form voids in the precipitation layer b 2, staying in the precipitation layer b 2 By making the liquid easy to flow in the direction of the axial center and the discharge port 8, the centrifugal force acting on the sediment in the sediment layer b 2 deposited on one end of the bowl 1 is prevented after preventing the water content of the sediment layer b 2 from decreasing. since only those from the highest part of the compaction effect of the water head pressure is discharged to the bowl out not applied the centrifugal force through the discharge path 20, discharge liquid staying in the precipitation layer b 2 is mixed in the exhaust cake b 3 By doing so, it is possible to avoid a situation in which a decrease in moisture content is suppressed. In the above embodiment, as the protrusions 23 and 24, a plurality of rectangular parallelepiped protrusion pieces are intermittently arranged at intervals, thereby facilitating the acquisition and mounting of the constituent members of the protrusion and the liquid flow path. However, the protrusions may be continuously arranged on the outer peripheral surface of the rotating drum 11 and the surface of the spiral blade 12.

図3は本発明の効果を実証するために、本発明に係る遠心分離装置を試作して含水率を測定し、従来の遠心分離装置の含水率と比較したものである。ここで、試作した遠心分離装置は図1及び2に示したように突起23及び24を有するものであり、従来装置は突起を備えていないものであり、突起の有無以外は同一の構成及び仕様(標準処理量:1m/h、動力:主電動機5.5kW、処理対象汚泥:消化汚泥)を有する。また、図3の横軸の遠心効果(G)は、G=Nr2/895である。ここで、rはボウル1の半径、Nはボウル1の回転数である。 In order to demonstrate the effect of the present invention, FIG. 3 is a prototype of a centrifugal separator according to the present invention, the moisture content is measured, and compared with the moisture content of a conventional centrifugal separator. Here, the prototype centrifuge has projections 23 and 24 as shown in FIGS. 1 and 2, and the conventional device has no projections, and has the same configuration and specifications except for the presence or absence of the projections. (Standard treatment amount: 1 m 3 / h, power: main motor 5.5 kW, treated sludge: digested sludge). Also, the centrifugal effect of the horizontal axis in FIG. 3 (G) is a G = Nr 2/895. Here, r is the radius of the bowl 1 and N is the number of rotations of the bowl 1.

図3より、突起の無い従来装置の場合は、回転数を上げて遠心効果を高めたときに、ケーキの含水率の低下が頭打ちになる傾向があるのに対して、突起が有る実施例装置の場合は、測定した全域(G=1000〜2500)において、従来装置よりも含水率が低く、かつ圧密の進んでいる遠心効果の高い領域(G=2500)においても含水率の低下に頭打ちの傾向がないことが確認できた。   From FIG. 3, in the case of a conventional apparatus without protrusions, when the centrifugal effect is increased by increasing the number of revolutions, the decrease in the moisture content of the cake tends to reach a peak, whereas the embodiment apparatus having protrusions In this case, in the whole area measured (G = 1000-2500), the moisture content is lower than that of the conventional device, and the decrease in the moisture content has peaked even in the region where the consolidation effect is high and the centrifugal effect is high (G = 2500). It was confirmed that there was no tendency.

本発明の実施形態に係る遠心分離装置の軸心方向の縦断面図である。It is a longitudinal cross-sectional view of the axial center direction of the centrifuge which concerns on embodiment of this invention. 本発明の実施形態におけるスクリューコンベアの斜視図である。It is a perspective view of the screw conveyor in the embodiment of the present invention. 本発明の実施例と従来装置との含水率の測定結果を示す図である。It is a figure which shows the measurement result of the moisture content of the Example of this invention, and a conventional apparatus. 従来のデカンタ型遠心分離装置の軸心方向の縦断面図である。It is a longitudinal cross-sectional view of the axial center direction of the conventional decanter type centrifuge.

符号の説明Explanation of symbols

1・・・ボウル、10・・・スクリューコンベア、11・・・回転胴、12・・・螺旋翼、23、24・・・突起。   DESCRIPTION OF SYMBOLS 1 ... Bowl, 10 ... Screw conveyor, 11 ... Rotary drum, 12 ... Spiral wing, 23, 24 ... Protrusion.

Claims (2)

一方向に回転する円筒形のボウルと、該ボウル内で該ボウルと同軸に、かつ回転速度差を有して同方向に回転するスクリューコンベアとを有し、回転中の前記ボウル内に供給される処理液から重成分を遠心力によって分離し、前記スクリューコンベアによって前記ボウルの一側に搬送して集積し、該一側に設けた重成分排出口から押し出すとともに、分離液を前記ボウルの他側に設けた分離液排出口から排出するようにした遠心分離装置において、
前記スクリューコンベアの螺旋翼の前記一側若しくは他側の表面、又は前記スクリューコンベアの回転胴の外周面に突起を設け、前記重成分中に滞留している液体を前記分離液排出口の方向へ逃がすことを特徴とする遠心分離装置。
A cylindrical bowl that rotates in one direction, and a screw conveyor that rotates in the same direction in the bowl, coaxially with the bowl and rotating in the same direction, and is fed into the rotating bowl The heavy components are separated from the processing liquid by centrifugal force, conveyed to one side of the bowl by the screw conveyor and accumulated, pushed out from the heavy component discharge port provided on the one side, and the separated liquid is separated from the other of the bowl. In the centrifugal separator that is to be discharged from the separation liquid outlet provided on the side,
Protrusions are provided on the one or other surface of the spiral wing of the screw conveyor, or on the outer peripheral surface of the rotating drum of the screw conveyor, and the liquid staying in the heavy component is directed toward the separated liquid discharge port. Centrifugal separator characterized by escape.
請求項1記載の遠心分離装置において、
前記突起を螺旋状に配置したことを特徴とする遠心分離装置。
The centrifuge according to claim 1,
A centrifugal separator characterized by arranging the protrusions in a spiral shape.
JP2005091401A 2005-03-28 2005-03-28 Centrifugal separator Pending JP2006272058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091401A JP2006272058A (en) 2005-03-28 2005-03-28 Centrifugal separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091401A JP2006272058A (en) 2005-03-28 2005-03-28 Centrifugal separator

Publications (1)

Publication Number Publication Date
JP2006272058A true JP2006272058A (en) 2006-10-12

Family

ID=37207318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091401A Pending JP2006272058A (en) 2005-03-28 2005-03-28 Centrifugal separator

Country Status (1)

Country Link
JP (1) JP2006272058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428762B1 (en) * 2013-02-01 2014-08-12 덕산엔지니어링 주식회사 Centrifugal hydroextractor for sludge
US20190255467A1 (en) * 2018-02-19 2019-08-22 Korea Institute Of Science And Technology Rotating type foreign substance collection equipment
NO20200491A1 (en) * 2020-04-24 2021-10-25 Dennis Mason Organisms treatment device and method
CN115301421A (en) * 2022-10-10 2022-11-08 苏州星亿机械有限公司 Filtering centrifuge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428762B1 (en) * 2013-02-01 2014-08-12 덕산엔지니어링 주식회사 Centrifugal hydroextractor for sludge
US20190255467A1 (en) * 2018-02-19 2019-08-22 Korea Institute Of Science And Technology Rotating type foreign substance collection equipment
US10933354B2 (en) * 2018-02-19 2021-03-02 Korea Institute Of Science And Technology Rotating type foreign substance collection equipment
NO20200491A1 (en) * 2020-04-24 2021-10-25 Dennis Mason Organisms treatment device and method
NO347082B1 (en) * 2020-04-24 2023-05-08 Dennis Mason A micro-organisms treatment device and a method for mechanical treatment of micro-organisms
CN115301421A (en) * 2022-10-10 2022-11-08 苏州星亿机械有限公司 Filtering centrifuge
CN115301421B (en) * 2022-10-10 2022-12-30 苏州星亿机械有限公司 Filtering centrifuge

Similar Documents

Publication Publication Date Title
JP4489343B2 (en) Centrifugal sedimentation separator
JP2007307526A (en) Solid-liquid separation apparatus
JP4575668B2 (en) Spiral conveyor centrifuge
JPH04193363A (en) Decanter type centrifugal separator
JP4924466B2 (en) Centrifugal dehydrator
KR100953671B1 (en) The separating screw decanter centrifuges having helical designed outlet for discharging concentrated liquid or cake
JP2006272058A (en) Centrifugal separator
EP0868217B1 (en) Decanter centrifuge
AU2001230553B2 (en) Centrifugal separator
JP6038717B2 (en) Sand settling device
JP2002153772A (en) Centrifuge
JP2005169322A (en) Solid/liquid separation device
JP3748798B2 (en) centrifuge
JP3241273B2 (en) Continuous centrifuge
JP7431008B2 (en) Centrifugal separator and method for manufacturing centrifugal separator
JP4163050B2 (en) Upper solids reflux type screw conveyor centrifugal dehydrator
JPH0459065A (en) Screw centrifugal separator
JP2002273269A (en) Centrifugal separator
JPS63194759A (en) Centrifugal dehydrator
JP3174879U (en) Solid-liquid separator
JP2005074374A (en) Screw decanter type centrifugal separator
JP2002273270A (en) Centrifugal separator
JP6255821B2 (en) Cleaning method and screw decanter type centrifuge
JP6255821B6 (en) Cleaning method and screw decanter type centrifuge
KR970002601Y1 (en) Centrifugal separation apparatus