JP7400638B2 - Sample condition determination method and device - Google Patents

Sample condition determination method and device Download PDF

Info

Publication number
JP7400638B2
JP7400638B2 JP2020108535A JP2020108535A JP7400638B2 JP 7400638 B2 JP7400638 B2 JP 7400638B2 JP 2020108535 A JP2020108535 A JP 2020108535A JP 2020108535 A JP2020108535 A JP 2020108535A JP 7400638 B2 JP7400638 B2 JP 7400638B2
Authority
JP
Japan
Prior art keywords
particles
sample
image
aspect ratio
elliptical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020108535A
Other languages
Japanese (ja)
Other versions
JP2021043183A (en
Inventor
和也 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2021043183A publication Critical patent/JP2021043183A/en
Application granted granted Critical
Publication of JP7400638B2 publication Critical patent/JP7400638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、試料状態判別方法およびその装置に属する。 The present invention relates to a sample state determination method and apparatus.

複数の粒子を含有する試料において、BET法による比表面積は重要なパラメータになり得る。この比表面積をBET比表面積ともいう。 In a sample containing multiple particles, the specific surface area determined by the BET method can be an important parameter. This specific surface area is also called BET specific surface area.

BET比表面積は、試料中の粒子形状に大きく影響を受ける。そのため、試料中の粒子形状を把握することは重要である。 The BET specific surface area is greatly influenced by the particle shape in the sample. Therefore, it is important to understand the particle shape in the sample.

試料中の粒子形状を把握するための手法としては、走査型電子顕微鏡(SEM)による観察が挙げられる。このSEMによる観察としては、全自動鉱物分析装置に内蔵された走査型電子顕微鏡を用いて鉱物粒子を観察し、粒子形状を分析する方法(特許文献1)、磁石粉末を解砕した後、SEM観察を行って粒子形状を確認していること(特許文献2)が開示されている。 A method for understanding the shape of particles in a sample includes observation using a scanning electron microscope (SEM). This SEM observation method involves observing mineral particles using a scanning electron microscope built into a fully automatic mineral analyzer and analyzing the particle shape (Patent Document 1); It is disclosed that the particle shape is confirmed by observation (Patent Document 2).

特開2018-163153号公報JP 2018-163153 Publication 特開2018-31053号公報JP 2018-31053 Publication

その一方、SEM観察を行う場合、試料中の粒子に対して導電性を付与すべく導電膜の蒸着作業が必要となる。また、SEM像から所定の粒子形状の粒子を数える際、そもそも所定の粒子形状自体の定義が観察者の主観に大きく依存する。また、観察者の人力により粒子を数えるため、作業効率が良くない。 On the other hand, when performing SEM observation, it is necessary to evaporate a conductive film in order to impart conductivity to the particles in the sample. Furthermore, when counting particles having a predetermined particle shape from a SEM image, the definition of the predetermined particle shape itself largely depends on the subjectivity of the observer. Furthermore, since the particles are counted manually by the observer, the work efficiency is not good.

本発明の課題は、試料中の粒子形状の把握に際し、SEM観察に比べて作業効率を向上させる手法を提供することにある。 An object of the present invention is to provide a method that improves work efficiency compared to SEM observation when grasping the shape of particles in a sample.

本発明者は上述の知見に基づき、上述の課題を解決するための手段を検討した。その結果、フロー式粒子像分析装置を使用するという手法を想到した。 Based on the above-mentioned knowledge, the present inventor investigated means for solving the above-mentioned problems. As a result, we came up with the idea of using a flow-type particle image analyzer.

フロー式粒子像分析装置は、スラリー中の粒子形状や粒子径の測定を迅速に行うための、自動フロー式粒子画像イメージング分析装置である。フロー式粒子像分析装置は、有機溶媒にも対応可能であり、粒子濃度にかかわらず粒子を撮影可能である。本発明者は、このフロー式粒子像分析装置を、試料中の楕円球粒子(像内では楕円粒子、以降、このように呼称)の判別に使用する、という技術的思想を想到した。 The flow-type particle image analyzer is an automatic flow-type particle image imaging analyzer for quickly measuring the shape and diameter of particles in slurry. The flow-type particle image analyzer is also compatible with organic solvents and can image particles regardless of particle concentration. The present inventor came up with the technical idea of using this flow-type particle image analyzer to discriminate ellipsoidal particles (hereinafter referred to as ellipsoidal particles in the image) in a sample.

上述の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する、試料状態判別方法である。
Aspects of the present invention based on the above findings are as follows.
The first aspect of the present invention is
Among multiple particles in an image obtained by subjecting a sample to a flow-type particle image analyzer, particles with a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the number of particles in the image are calculated. This method determines the state of a sample by determining at least one of the proportions.

本発明の第2の態様は、第1の態様に記載の発明において、
前記所定のアスペクト比の閾値は0.5~0.7の間で設定する。
A second aspect of the present invention is the invention described in the first aspect,
The predetermined aspect ratio threshold is set between 0.5 and 0.7.

本発明の第3の態様は、第2の態様に記載の発明において、
前記所定のアスペクト比以下の粒子のうち包絡度が0.95以上の粒子を前記楕円粒子とみなす。
A third aspect of the present invention is the invention described in the second aspect,
Among the particles having the predetermined aspect ratio or less, particles having an envelope degree of 0.95 or more are regarded as the elliptical particles.

本発明の第4の態様は、第1~第3のいずれかの態様に記載の発明において、
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する。
A fourth aspect of the present invention is the invention according to any one of the first to third aspects,
If the number or proportion of the elliptical particles is greater than or equal to a predetermined threshold, the sample is determined to be defective.

本発明の第5の態様は、第1~第4のいずれかの態様に記載の発明において、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する。
A fifth aspect of the present invention is the invention according to any one of the first to fourth aspects,
Among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer, particle images having a small number of pixels constituting the particle image are excluded when determining the state of the sample.

本発明の第6の態様は、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数または該像内の複数の粒子での占める割合を算出する演算部と、
前記楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、試料を不良と判定する判定部と、
を有する、試料状態判別装置である。
The sixth aspect of the present invention is
an image processing unit that considers particles with a predetermined aspect ratio or less to be elliptical particles among a plurality of particles in an image obtained by subjecting the sample to a flow-type particle image analyzer;
a calculation unit that calculates the number of elliptical particles in the image or the proportion of the plurality of particles in the image;
a determination unit that determines the sample to be defective if at least one of the number and proportion of the elliptical particles is equal to or greater than a predetermined threshold;
This is a sample condition discriminating device having:

本発明によれば、試料中の粒子形状の把握に際し、SEM観察に比べて作業効率を向上させる手法を提供できる。 According to the present invention, it is possible to provide a method that improves work efficiency compared to SEM observation when understanding the shape of particles in a sample.

以下、本実施形態を説明する。なお、「~」は所定の数値以上且つ所定の数値以下を指す。 This embodiment will be described below. Note that "~" indicates a value greater than or equal to a predetermined value and less than or equal to a predetermined value.

本実施形態においては、試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する。 In this embodiment, particles having a predetermined aspect ratio or less among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer are regarded as elliptical particles, and the number of elliptical particles in the image and the number of particles in the image are determined. The state of the sample is determined by determining at least one of the ratios occupied by a plurality of particles.

本明細書における「アスペクト比」とは、画像内の一つの粒子の最大幅(最大長)と、最大長の方向に垂直な方向の長さ(最大長の垂直長)を用いて表される。具体的には、アスペクト比=(最大長の垂直長/最大長)で表される。 In this specification, "aspect ratio" is expressed using the maximum width (maximum length) of one particle in an image and the length in the direction perpendicular to the direction of the maximum length (vertical length of maximum length) . Specifically, the aspect ratio is expressed as (vertical length of maximum length/maximum length).

この態様により、瞬時に数万~数十万個の粒子形状を判別できる。これは、先に述べた人力によるSEM観察では到底得られない効果である。 With this aspect, the shapes of tens of thousands to hundreds of thousands of particles can be instantly determined. This is an effect that cannot be obtained by the above-mentioned manual SEM observation.

所定のアスペクト比の閾値は0.5~0.7の間で設定するのが好ましい。 The predetermined aspect ratio threshold is preferably set between 0.5 and 0.7.

楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、BET比表面積が低下するため、試料を不良と判定するのが好ましい。なお、楕円粒子の絶対数を基に試料状態を判別してもよいし、楕円粒子に関する相対値(占める割合)を基に試料状態を判別してもよい。 If at least one of the number and the proportion of elliptical particles is equal to or greater than a predetermined threshold, the BET specific surface area decreases, so it is preferable to judge the sample as defective. Note that the sample state may be determined based on the absolute number of elliptical particles, or the sample state may be determined based on the relative value (occupancy) of the elliptical particles.

本実施形態は、試料状態判別方法のみならず、試料状態判別装置としても特徴がある。具体的な構成は以下のとおりである。
「試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを算出する演算部と、
前記楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、試料を不良と判定する判定部と、
を有する、試料状態判別装置。」
The present embodiment is unique not only as a method for determining a sample condition but also as a device for determining a sample condition. The specific configuration is as follows.
"an image processing unit that considers particles with a predetermined aspect ratio or less to be elliptical particles among a plurality of particles in an image obtained by subjecting the sample to a flow-type particle image analyzer;
a calculation unit that calculates at least one of the number of elliptical particles in the image and the proportion of the plurality of particles in the image;
a determination unit that determines the sample to be defective if at least one of the number and proportion of the elliptical particles is equal to or greater than a predetermined threshold;
A sample condition determination device having: ”

なお、試料状態判別装置にフロー式粒子像分析装置を構成の一部として有するのが好ましい。これにより、フロー式粒子像分析装置内の構成を画像処理部、演算部および判定部として使用できる。もちろん、試料状態判別装置とフロー式粒子像分析装置とを別構成としてもよい。その場合、試料状態判別装置に対し、別途フロー式粒子像分析装置で得られた像をインプットする。 Note that it is preferable that the sample state determination device include a flow type particle image analyzer as part of its configuration. Thereby, the configuration inside the flow type particle image analyzer can be used as an image processing section, a calculation section, and a determination section. Of course, the sample state determination device and the flow type particle image analysis device may be configured separately. In that case, an image obtained by a separate flow-type particle image analyzer is input to the sample state discriminator.

試料状態判別装置は、コンピュータに対し、コンピュータ内の制御部の指令により、先に挙げた画像処理部、演算部および判定部としての機能を奏させる試料状態判別システムでもある。また、そのようにコンピュータに機能を奏させるプログラムにおいても、本発明の技術的思想が反映されている。また、画像処理部、演算部および判定部を画像処理工程、演算工程、判定工程と読み替えたものが試料状態判別方法でもある。 The sample condition determination device is also a sample condition determination system that causes a computer to perform the functions of the image processing section, calculation section, and determination section mentioned above in response to instructions from a control section within the computer. Further, the technical idea of the present invention is also reflected in a program that causes a computer to perform functions in this way. Further, the image processing section, calculation section, and determination section are replaced with an image processing step, a calculation step, and a determination step, which is also the sample state determination method.

なお、本発明の技術的範囲は上述した実施形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the above-described embodiments, but also includes various modifications and improvements within the scope of deriving specific effects obtained by the constituent elements of the invention and their combinations. .

例えば、後掲の実施例では、フロー式粒子像分析装置にかける際の溶剤としてヘキサメタリン酸ナトリウムを使用しているが、本発明はこれに限定されない。例えば、メタノール、エタノール、イソプロパノール、エチレングリコール水溶液(25wt%)等を溶剤として使用してもよい。 For example, in the examples described later, sodium hexametaphosphate is used as a solvent when applying to a flow type particle image analyzer, but the present invention is not limited thereto. For example, methanol, ethanol, isopropanol, ethylene glycol aqueous solution (25 wt%), etc. may be used as the solvent.

判別対象とする粒子の個数の上限には特に限定は無いが、例えば360,000個、好適には30,000個、更に好適には10,000個であってもよい。 The upper limit of the number of particles to be determined is not particularly limited, but may be, for example, 360,000, preferably 30,000, and more preferably 10,000.

また、像内において重なって配置された粒子は、一つの粒子の形状を把握する際の障害となる。そのため、この重複粒子を分析対象から排除することが望ましい。
以下、この好適例に至った知見について説明する。
Further, particles arranged overlapping each other in an image become an obstacle when grasping the shape of a single particle. Therefore, it is desirable to exclude these duplicate particles from the analysis target.
The knowledge that led to this preferred example will be explained below.

従来技術であるところのSEMにて試料中の粒子形状を測定した場合には低アスペクト比(例えばアスペクト比の閾値0.6未満)の粒子が見られない一方で、フロー式粒子像分析装置にて測定した場合だと低アスペクト比の粒子が全体の3%程度という結果が得られた。本発明者が、フロー式粒子像分析装置での撮像粒子を確認したところ、低アスペクト比と認定された粒子の大半が重複粒子であった。つまり、フロー式粒子像分析装置を採用することによりSEM観察に比べて作業効率を向上させられる一方で、幾ばくかの重複粒子が分析対象に混在してしまう。 When measuring the shape of particles in a sample using a conventional SEM, particles with a low aspect ratio (for example, an aspect ratio threshold of less than 0.6) are not observed. When measured, it was found that particles with a low aspect ratio accounted for about 3% of the total. When the present inventor confirmed the particles imaged using a flow type particle image analyzer, most of the particles recognized as having a low aspect ratio were overlapping particles. In other words, although the use of a flow-type particle image analyzer improves work efficiency compared to SEM observation, some duplicate particles are mixed in the analysis target.

そこで、フロー式粒子像分析装置にて測定した結果、低アスペクト比の粒子と判別された粒子を、更に包絡度0.95以上という規定により絞り込むという手法を本発明者は想到した。この手法を採用したところ、低アスペクト比の粒子は全体の0.5%程度と認定された。そして、低アスペクト比と認定された粒子を像から確認したところ、重複粒子ではなく単一の楕円粒子であった。この知見に基づき、重複粒子を分析対象から排除するという好適例が創出された。 Therefore, the inventors of the present invention have devised a method of further narrowing down particles that are determined to be low aspect ratio particles as a result of measurement using a flow type particle image analyzer, based on the requirement that the degree of envelopment be 0.95 or more. When this method was adopted, it was determined that particles with a low aspect ratio accounted for approximately 0.5% of the total. When the particles identified as having a low aspect ratio were confirmed from the image, they were not duplicate particles but a single elliptical particle. Based on this knowledge, a suitable example of eliminating duplicate particles from the analysis target was created.

本明細書における「包絡度」とは、包絡長を粒子周囲長で除した値である。
包絡長とは、像内における重複粒子の輪郭を包絡する線の長さを指す。つまり、包絡長は、像内における重複粒子の出っ張り部分(すなわち重複粒子を構成する各粒子の重なりにより形成される粒子像での凸部)と外接するように囲んだ曲線の長さを指す。
粒子周囲長とは、像内における、重複粒子を構成する各粒子の周長の合計を指す。
つまり、包絡度は0から1の値であり、包絡度が1に近いほど、一つの粒子により粒子像が形成されていることを示す。
The "envelopment degree" in this specification is the value obtained by dividing the envelope length by the particle circumference length.
Envelope length refers to the length of a line that envelops the contours of overlapping particles in an image. In other words, the envelope length refers to the length of a curve that circumscribes the protruding part of the overlapping particle in the image (that is, the convex part in the particle image formed by the overlap of each particle constituting the overlapping particle).
The particle circumference refers to the total circumference of each particle constituting the overlapping particles in the image.
That is, the degree of envelope is a value from 0 to 1, and the closer the degree of envelope is to 1, the more the particle image is formed by one particle.

以上の観点から、低アスペクト比と認定された粒子のうち、包絡度が0.95以上の粒子のみを分析対象に加えるのが好ましい。これにより、重複粒子を分析対象から排除でき、測定精度が向上する。 From the above viewpoint, it is preferable to add only particles with an envelopment degree of 0.95 or more to the analysis target among particles recognized as having a low aspect ratio. As a result, duplicate particles can be excluded from the analysis target, improving measurement accuracy.

なお、本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 Note that the technical scope of the present invention is not limited to the embodiments described above, and various changes and improvements may be made within the scope of deriving specific effects obtained by the constituent elements of the invention and their combinations. include.

アスペクト比および包絡度に基づいた認定作業は、判定部が行ってもよいし、演算部が包絡度の演算と共に行ってもよい。 The recognition work based on the aspect ratio and the degree of envelope may be performed by the determination section, or may be performed by the calculation section together with the calculation of the degree of envelope.

試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外してもよい。画素数が少ない粒子像は、画素数が多い粒子像に比べ、一つの画素の配置が粒子像の形状把握に与える影響が大きい。そのため、予め所定の画素数以下の粒子像を除外すれば、不確定要素を減らせるため好ましい。なお、この除外の作業は判定部が行ってもよい。 Among a plurality of particles in an image obtained by subjecting a sample to a flow type particle image analyzer, particle images having a small number of pixels constituting the particle image may be excluded when determining the state of the sample. In a particle image with a small number of pixels, the arrangement of one pixel has a greater influence on grasping the shape of the particle image than in a particle image with a large number of pixels. Therefore, it is preferable to exclude particle images having a predetermined number of pixels or less in advance, since the uncertain elements can be reduced. Note that this exclusion work may be performed by the determination unit.

上記画素は2次元のピクセルであってもよいし3次元のボクセルであってもよい。所定の画素数については、粒子の実寸とフロー式粒子像分析装置で採用する倍率により適宜設定可能である。一例をあげると、フロー式粒子像分析装置の倍率設定を高倍率(×20倍)とし、フロー式粒子像分析装置像内に写った粒子のうち0.6~20μmの粒子を測定対象とする場合、1つの粒子像の構成画素数が25個(例えば縦5個×横5個)以下である場合、該粒子像は試料の状態の判別対象から除外してもよい。 The pixels may be two-dimensional pixels or three-dimensional voxels. The predetermined number of pixels can be appropriately set depending on the actual size of the particles and the magnification employed in the flow type particle image analyzer. For example, the magnification setting of the flow type particle image analyzer is set to high magnification (×20 times), and particles of 0.6 to 20 μm among the particles reflected in the image of the flow type particle image analyzer are measured. In this case, if the number of pixels constituting one particle image is 25 or less (for example, 5 pixels vertically x 5 pixels horizontally), the particle image may be excluded from the target for determining the state of the sample.

以下、本実施例について説明する。なお、本発明の技術的範囲は以下の実施例に限定されるものではない。 This example will be described below. Note that the technical scope of the present invention is not limited to the following examples.

[実施例1]
まず、試料0.2g程度(スパチュラ1盛)を10mlの0.2%ヘキサメタリン酸ナトリウムに投入し、攪拌し、スラリーを得た。その後、スラリー全量をフロー式粒子像分析装置(シスメックス株式会社製のFPIA-3000)に導入した。そして、フロー式粒子像分析装置の設定により300rpmで攪拌しながら導入スラリー中の粒子のうち10,000個の粒子の大きさと形状を測定した。なお、その際、フロー式粒子像分析装置は高倍率(×20倍)での測定の設定とし、フロー式粒子像分析装置像内に写った粒子のうち0.6~20μmの粒子を測定対象とした。
[Example 1]
First, about 0.2 g of a sample (one spatula) was poured into 10 ml of 0.2% sodium hexametaphosphate and stirred to obtain a slurry. Thereafter, the entire slurry was introduced into a flow type particle image analyzer (FPIA-3000 manufactured by Sysmex Corporation). Then, the size and shape of 10,000 particles among the particles in the introduced slurry were measured while stirring at 300 rpm using a flow type particle image analyzer. At this time, the flow type particle image analyzer is set to measure at high magnification (×20 times), and the measurement target is particles of 0.6 to 20 μm among the particles reflected in the image of the flow type particle image analyzer. And so.

形状測定の際に、アスペクト比(最大長の垂直長/最大長)=0.6を閾値として限定解析した。この限定解析により把握された楕円粒子としての粒子数を、形状測定の際の対象となった粒子数(すなわち10,000個)で除して得られた値を、低アスペクト粒子率とした。 When measuring the shape, limited analysis was performed using the aspect ratio (vertical length of maximum length/maximum length) = 0.6 as a threshold. The value obtained by dividing the number of particles as elliptical particles ascertained by this limited analysis by the number of particles targeted for shape measurement (ie, 10,000 particles) was defined as the low aspect particle rate.

別途、同試料に対し、人力でSEM観察を行った(対象粒子数約2,500)。その結果得られた低アスペクト粒子率は、フロー式粒子像分析装置により得られた低アスペクト粒子率と同等であり、フロー式粒子像分析装置を用いた試料状態判別方法が有用であることが示された。 Separately, SEM observation was performed manually on the same sample (approximately 2,500 particles). The low aspect particle rate obtained as a result is equivalent to the low aspect particle rate obtained by a flow type particle image analyzer, indicating that the sample state determination method using a flow type particle image analyzer is useful. It was done.

なお、SEM観察だと1日20試料を取り扱うのが限界であるのに対し、フロー式粒子像分析装置を用いた手法だと1日50試料を取り扱うことができた。 Note that while SEM observation has a limit of handling 20 samples per day, using a method using a flow-type particle image analyzer, it was possible to handle 50 samples per day.

Claims (6)

試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する際、
前記所定のアスペクト比の閾値は0.5~0.7の間で設定し、
前記所定のアスペクト比未満の粒子のうち包絡度が0.95以上の粒子を前記楕円粒子とみなす、試料状態判別方法。
Among multiple particles in an image obtained by subjecting a sample to a flow-type particle image analyzer, particles with a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the number of particles in the image are calculated. When determining the condition of a sample by understanding at least one of the proportions,
The predetermined aspect ratio threshold is set between 0.5 and 0.7,
A method for determining a sample state, in which particles having an envelope degree of 0.95 or more among particles having an aspect ratio less than the predetermined aspect ratio are regarded as the elliptical particles .
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する、請求項1記載の試料状態判別方法。The sample according to claim 1, wherein among the plurality of particles in an image obtained by subjecting the sample to a flow-type particle image analyzer, particle images having a small number of pixels constituting the particle image are excluded when determining the state of the sample. Status determination method. 試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する際、Among multiple particles in an image obtained by subjecting a sample to a flow-type particle image analyzer, particles with a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the number of particles in the image are calculated. When determining the condition of a sample by understanding at least one of the proportions,
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する、試料状態判別方法。A method for determining the state of a sample in which, among multiple particles in an image obtained by subjecting a sample to a flow-type particle image analyzer, particle images with a small number of pixels making up the particle image are excluded when determining the state of the sample.
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する、請求項1~3のいずれかに記載の試料状態判別方法。 4. The sample condition determination method according to claim 1, wherein the sample is determined to be defective if the number or proportion of the elliptical particles is greater than or equal to a predetermined threshold. 試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを算出する演算部と、
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する判定部と、
を有し、
前記所定のアスペクト比の閾値は0.5~0.7の間で設定し、
前記所定のアスペクト比未満の粒子のうち包絡度が0.95以上の粒子を前記楕円粒子とみなす、試料状態判別装置。
an image processing unit that considers particles with a predetermined aspect ratio or less to be elliptical particles among a plurality of particles in an image obtained by subjecting the sample to a flow-type particle image analyzer;
a calculation unit that calculates at least one of the number of elliptical particles in the image and the proportion of the plurality of particles in the image;
a determination unit that determines the sample to be defective when the number or proportion of the elliptical particles is greater than or equal to a predetermined threshold;
has
The predetermined aspect ratio threshold is set between 0.5 and 0.7,
A sample state discriminating device that regards particles having an envelope degree of 0.95 or more among particles having an aspect ratio less than the predetermined aspect ratio as the elliptical particles .
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、an image processing unit that considers particles with a predetermined aspect ratio or less to be elliptical particles among a plurality of particles in an image obtained by subjecting the sample to a flow-type particle image analyzer;
該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを算出する演算部と、a calculation unit that calculates at least one of the number of elliptical particles in the image and the proportion of the plurality of particles in the image;
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する判定部と、a determination unit that determines the sample to be defective when the number or proportion of the elliptical particles is greater than or equal to a predetermined threshold;
を有し、has
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する、試料状態判別装置。A sample state determination device that excludes particle images with a small number of pixels from among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer when determining the state of the sample.
JP2020108535A 2019-09-03 2020-06-24 Sample condition determination method and device Active JP7400638B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019160110 2019-09-03
JP2019160110 2019-09-03

Publications (2)

Publication Number Publication Date
JP2021043183A JP2021043183A (en) 2021-03-18
JP7400638B2 true JP7400638B2 (en) 2023-12-19

Family

ID=74862257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108535A Active JP7400638B2 (en) 2019-09-03 2020-06-24 Sample condition determination method and device

Country Status (1)

Country Link
JP (1) JP7400638B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078590A (en) 2005-09-15 2007-03-29 Seishin Enterprise Co Ltd Particle property analysis display device
JP2014137367A (en) 2013-01-15 2014-07-28 Ryokeiso Kk Abrasive grain inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411112B2 (en) * 1994-11-04 2003-05-26 シスメックス株式会社 Particle image analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078590A (en) 2005-09-15 2007-03-29 Seishin Enterprise Co Ltd Particle property analysis display device
JP2014137367A (en) 2013-01-15 2014-07-28 Ryokeiso Kk Abrasive grain inspection device

Also Published As

Publication number Publication date
JP2021043183A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6505885B2 (en) Method of analyzing an object and charged particle beam device for carrying out this method
KR101165162B1 (en) Method of determining particle size distribution of fine particles contained in metallic material
US9335277B2 (en) Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method
JP2016502661A (en) Methods for characterizing particles by image analysis
Blanc et al. Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions
De Temmerman et al. Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles
JP7209287B2 (en) How to identify nanoparticles
CN104346437B (en) Method and data analysis system for semi-automatic particle analysis using a charged particle beam
Brodusch et al. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold‐field emission scanning electron microscope for nanomaterials characterization
EP3702766A1 (en) Crystal orientation map generation device, charged particle radiation device, crystal orientation map generation method, and program
NL8902196A (en) AUTOMATED METHOD FOR IDENTIFYING MINERALS AND CHARACTERIZING STONES.
JP7400638B2 (en) Sample condition determination method and device
JP7199290B2 (en) Pattern cross-sectional shape estimation system and program
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
WO2016121009A1 (en) Charged particle beam device
JP5277906B2 (en) Measuring method of particle size distribution of fine particles
KR101371663B1 (en) Method and apparatus for quantitative measuring the particles
US20130191037A1 (en) Characterization of particulates using electron microscopy and image processing methods
CN105241897A (en) Analysis test method for three-dimensional shape of WC crystal grain in hard alloy
Glanowski et al. Combined techniques and relevant image processing for quantitative statistical characterization of inclusions in elastomers
US9804107B2 (en) Pattern measurement device and computer program for evaluating patterns based on centroids of the patterns
JPWO2016121471A1 (en) Charged particle beam equipment that creates analytical images from secondary particle images
DE102014100765A1 (en) Time-optimized, qualitatively improved evaluation of EBSD pattern by iterative, local increase of the Hough transformation
JP6939373B2 (en) How to calculate the particle size of powder particles
Olbert et al. Size and shape analysis of micro-to nano-particles of quartz powders using advanced electron microscopy and laser diffraction methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150