JP2021043183A - Sample condition identification method and device therefor - Google Patents

Sample condition identification method and device therefor Download PDF

Info

Publication number
JP2021043183A
JP2021043183A JP2020108535A JP2020108535A JP2021043183A JP 2021043183 A JP2021043183 A JP 2021043183A JP 2020108535 A JP2020108535 A JP 2020108535A JP 2020108535 A JP2020108535 A JP 2020108535A JP 2021043183 A JP2021043183 A JP 2021043183A
Authority
JP
Japan
Prior art keywords
particles
sample
image
elliptical
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020108535A
Other languages
Japanese (ja)
Other versions
JP7400638B2 (en
Inventor
和也 寺嶋
Kazuya Terashima
和也 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2021043183A publication Critical patent/JP2021043183A/en
Application granted granted Critical
Publication of JP7400638B2 publication Critical patent/JP7400638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a method of improving work efficiency in grasping shapes of particles in a sample in comparison to SEM observation.SOLUTION: A sample condition identification method and related techniques are provided, the sample condition identification method comprising regarding particles with a given aspect ratio or less among a plurality of particles in an image obtained by subjecting a sample to a flow particle image analyzer as elliptical particles, and identifying the condition of the sample by checking the number of the elliptical particles in the image or percentage of the elliptical particles with respect to the plurality of particles in the image.SELECTED DRAWING: None

Description

本発明は、試料状態判別方法およびその装置に属する。 The present invention belongs to the sample state determination method and its apparatus.

複数の粒子を含有する試料において、BET法による比表面積は重要なパラメータになり得る。この比表面積をBET比表面積ともいう。 In a sample containing multiple particles, the specific surface area by the BET method can be an important parameter. This specific surface area is also referred to as BET specific surface area.

BET比表面積は、試料中の粒子形状に大きく影響を受ける。そのため、試料中の粒子形状を把握することは重要である。 The BET specific surface area is greatly affected by the particle shape in the sample. Therefore, it is important to understand the particle shape in the sample.

試料中の粒子形状を把握するための手法としては、走査型電子顕微鏡(SEM)による観察が挙げられる。このSEMによる観察としては、全自動鉱物分析装置に内蔵された走査型電子顕微鏡を用いて鉱物粒子を観察し、粒子形状を分析する方法(特許文献1)、磁石粉末を解砕した後、SEM観察を行って粒子形状を確認していること(特許文献2)が開示されている。 As a method for grasping the particle shape in the sample, observation with a scanning electron microscope (SEM) can be mentioned. Observation by this SEM includes a method of observing mineral particles using a scanning electron microscope built in a fully automatic mineral analyzer and analyzing the particle shape (Patent Document 1), crushing magnet powder, and then SEM. It is disclosed that the particle shape is confirmed by observing (Patent Document 2).

特開2018−163153号公報Japanese Unexamined Patent Publication No. 2018-163153 特開2018−31053号公報JP-A-2018-31053

その一方、SEM観察を行う場合、試料中の粒子に対して導電性を付与すべく導電膜の蒸着作業が必要となる。また、SEM像から所定の粒子形状の粒子を数える際、そもそも所定の粒子形状自体の定義が観察者の主観に大きく依存する。また、観察者の人力により粒子を数えるため、作業効率が良くない。 On the other hand, when SEM observation is performed, it is necessary to carry out a vapor deposition work of a conductive film in order to impart conductivity to the particles in the sample. Further, when counting particles having a predetermined particle shape from an SEM image, the definition of the predetermined particle shape itself largely depends on the subjectivity of the observer. In addition, the work efficiency is not good because the particles are counted by the human power of the observer.

本発明の課題は、試料中の粒子形状の把握に際し、SEM観察に比べて作業効率を向上させる手法を提供することにある。 An object of the present invention is to provide a method for improving work efficiency as compared with SEM observation when grasping the particle shape in a sample.

本発明者は上述の知見に基づき、上述の課題を解決するための手段を検討した。その結果、フロー式粒子像分析装置を使用するという手法を想到した。 Based on the above findings, the present inventor has examined means for solving the above-mentioned problems. As a result, we came up with the method of using a flow-type particle image analyzer.

フロー式粒子像分析装置は、スラリー中の粒子形状や粒子径の測定を迅速に行うための、自動フロー式粒子画像イメージング分析装置である。フロー式粒子像分析装置は、有機溶媒にも対応可能であり、粒子濃度にかかわらず粒子を撮影可能である。本発明者は、このフロー式粒子像分析装置を、試料中の楕円球粒子(像内では楕円粒子、以降、このように呼称)の判別に使用する、という技術的思想を想到した。 The flow-type particle image analyzer is an automatic flow-type particle image imaging analyzer for quickly measuring the particle shape and particle size in a slurry. The flow-type particle image analyzer is also compatible with organic solvents and can photograph particles regardless of the particle concentration. The present inventor has come up with the technical idea that this flow-type particle image analyzer is used for discriminating elliptical sphere particles in a sample (elliptical particles in the image, hereinafter referred to as this).

上述の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する、試料状態判別方法である。
Aspects of the present invention made based on the above findings are as follows.
The first aspect of the present invention is
Of the plurality of particles in the image obtained by subjecting the sample to a flow-type particle image analyzer, particles having a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the plurality of particles in the image are used. This is a sample state determination method for determining the state of a sample by grasping at least one of the proportions.

本発明の第2の態様は、第1の態様に記載の発明において、
前記所定のアスペクト比の閾値は0.5〜0.7の間で設定する。
A second aspect of the present invention is the invention described in the first aspect.
The threshold value of the predetermined aspect ratio is set between 0.5 and 0.7.

本発明の第3の態様は、第2の態様に記載の発明において、
前記所定のアスペクト比以下の粒子のうち包絡度が0.95以上の粒子を前記楕円粒子とみなす。
A third aspect of the present invention is the invention described in the second aspect.
Among the particles having a predetermined aspect ratio or less, the particles having an envelope degree of 0.95 or more are regarded as the elliptical particles.

本発明の第4の態様は、第1〜第3のいずれかの態様に記載の発明において、
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する。
A fourth aspect of the present invention is the invention described in any one of the first to third aspects.
When the number or proportion of the elliptical particles is equal to or greater than a predetermined threshold value, the sample is determined to be defective.

本発明の第5の態様は、第1〜第4のいずれかの態様に記載の発明において、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する。
A fifth aspect of the present invention is the invention described in any one of the first to fourth aspects.
Of the plurality of particles in the image obtained by subjecting the sample to the flow-type particle image analyzer, the particle image having a small number of pixels constituting the particle image is excluded when determining the state of the sample.

本発明の第6の態様は、
試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数または該像内の複数の粒子での占める割合を算出する演算部と、
前記楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、試料を不良と判定する判定部と、
を有する、試料状態判別装置である。
A sixth aspect of the present invention is
An image processing unit that regards particles with a predetermined aspect ratio or less as elliptical particles among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer.
An arithmetic unit that calculates the number of elliptical particles in the image or the proportion of multiple particles in the image.
When at least one of the number and proportion of elliptical particles is equal to or greater than a predetermined threshold value, a determination unit for determining the sample as defective, and a determination unit.
It is a sample state determination device having.

本発明によれば、試料中の粒子形状の把握に際し、SEM観察に比べて作業効率を向上させる手法を提供できる。 According to the present invention, it is possible to provide a method for improving work efficiency as compared with SEM observation when grasping the particle shape in a sample.

以下、本実施形態を説明する。なお、「〜」は所定の数値以上且つ所定の数値以下を指す。 Hereinafter, this embodiment will be described. In addition, "~" refers to a predetermined numerical value or more and a predetermined numerical value or less.

本実施形態においては、試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する。 In the present embodiment, among a plurality of particles in the image obtained by subjecting the sample to a flow-type particle image analyzer, particles having a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the number of the elliptical particles in the image. The state of the sample is determined by grasping at least one of the proportions of the particles in the plurality of particles.

本明細書における「アスペクト比」とは、画像内の一つの粒子の最大幅(最大長)と、最大長の方向に垂直な方向の長さ(最大長の垂直長)を用いて表される。具体的には、アスペクト比=(最大長の垂直長/最大長)で表される。 As used herein, the "aspect ratio" is expressed using the maximum width (maximum length) of one particle in an image and the length in the direction perpendicular to the maximum length direction (maximum vertical length). .. Specifically, it is represented by aspect ratio = (maximum length vertical length / maximum length).

この態様により、瞬時に数万〜数十万個の粒子形状を判別できる。これは、先に述べた人力によるSEM観察では到底得られない効果である。 According to this aspect, tens of thousands to hundreds of thousands of particle shapes can be instantly discriminated. This is an effect that cannot be obtained by the above-mentioned manual SEM observation.

所定のアスペクト比の閾値は0.5〜0.7の間で設定するのが好ましい。 The threshold value of the predetermined aspect ratio is preferably set between 0.5 and 0.7.

楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、BET比表面積が低下するため、試料を不良と判定するのが好ましい。なお、楕円粒子の絶対数を基に試料状態を判別してもよいし、楕円粒子に関する相対値(占める割合)を基に試料状態を判別してもよい。 If at least one of the number and proportion of elliptical particles is equal to or greater than a predetermined threshold value, the BET specific surface area decreases, and it is preferable to determine the sample as defective. The sample state may be determined based on the absolute number of elliptical particles, or the sample state may be determined based on the relative value (occupancy ratio) of the elliptical particles.

本実施形態は、試料状態判別方法のみならず、試料状態判別装置としても特徴がある。具体的な構成は以下のとおりである。
「試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを算出する演算部と、
前記楕円粒子の数および占める割合のうち少なくともいずれかが所定の閾値以上の場合、試料を不良と判定する判定部と、
を有する、試料状態判別装置。」
This embodiment is characterized not only as a sample state determination method but also as a sample state determination device. The specific configuration is as follows.
"An image processing unit that regards particles with a predetermined aspect ratio or less as elliptical particles among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer.
An arithmetic unit that calculates at least one of the number of elliptical particles in the image and the proportion of the plurality of particles in the image.
When at least one of the number and proportion of elliptical particles is equal to or greater than a predetermined threshold value, a determination unit for determining the sample as defective, and a determination unit.
A sample state determination device having. "

なお、試料状態判別装置にフロー式粒子像分析装置を構成の一部として有するのが好ましい。これにより、フロー式粒子像分析装置内の構成を画像処理部、演算部および判定部として使用できる。もちろん、試料状態判別装置とフロー式粒子像分析装置とを別構成としてもよい。その場合、試料状態判別装置に対し、別途フロー式粒子像分析装置で得られた像をインプットする。 It is preferable that the sample state determination device includes a flow type particle image analyzer as a part of the configuration. Thereby, the configuration in the flow type particle image analyzer can be used as an image processing unit, a calculation unit, and a determination unit. Of course, the sample state determination device and the flow type particle image analyzer may be configured separately. In that case, the image obtained by the flow type particle image analyzer is separately input to the sample state determination device.

試料状態判別装置は、コンピュータに対し、コンピュータ内の制御部の指令により、先に挙げた画像処理部、演算部および判定部としての機能を奏させる試料状態判別システムでもある。また、そのようにコンピュータに機能を奏させるプログラムにおいても、本発明の技術的思想が反映されている。また、画像処理部、演算部および判定部を画像処理工程、演算工程、判定工程と読み替えたものが試料状態判別方法でもある。 The sample state determination device is also a sample state determination system that causes the computer to function as the image processing unit, the calculation unit, and the determination unit described above by the command of the control unit in the computer. Further, the technical idea of the present invention is also reflected in the program for causing the computer to perform such a function. Further, the sample state determination method is also obtained by replacing the image processing unit, the calculation unit, and the determination unit with the image processing step, the calculation process, and the determination process.

なお、本発明の技術的範囲は上述した実施形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the above-described embodiment, and includes various modifications and improvements within the range in which specific effects obtained by the constituent requirements of the invention and the combination thereof can be derived. ..

例えば、後掲の実施例では、フロー式粒子像分析装置にかける際の溶剤としてヘキサメタリン酸ナトリウムを使用しているが、本発明はこれに限定されない。例えば、メタノール、エタノール、イソプロパノール、エチレングリコール水溶液(25wt%)等を溶剤として使用してもよい。 For example, in the examples described below, sodium hexametaphosphate is used as a solvent when the particle image analyzer is applied to the flow type particle image analyzer, but the present invention is not limited to this. For example, methanol, ethanol, isopropanol, an aqueous ethylene glycol solution (25 wt%) or the like may be used as the solvent.

判別対象とする粒子の個数の上限には特に限定は無いが、例えば360,000個、好適には30,000個、更に好適には10,000個であってもよい。 The upper limit of the number of particles to be discriminated is not particularly limited, but may be, for example, 360,000, preferably 30,000, and more preferably 10,000.

また、像内において重なって配置された粒子は、一つの粒子の形状を把握する際の障害となる。そのため、この重複粒子を分析対象から排除することが望ましい。
以下、この好適例に至った知見について説明する。
Further, the particles arranged so as to overlap in the image become an obstacle in grasping the shape of one particle. Therefore, it is desirable to exclude these overlapping particles from the analysis target.
Hereinafter, the findings leading to this preferred example will be described.

従来技術であるところのSEMにて試料中の粒子形状を測定した場合には低アスペクト比(例えばアスペクト比の閾値0.6未満)の粒子が見られない一方で、フロー式粒子像分析装置にて測定した場合だと低アスペクト比の粒子が全体の3%程度という結果が得られた。本発明者が、フロー式粒子像分析装置での撮像粒子を確認したところ、低アスペクト比と認定された粒子の大半が重複粒子であった。つまり、フロー式粒子像分析装置を採用することによりSEM観察に比べて作業効率を向上させられる一方で、幾ばくかの重複粒子が分析対象に混在してしまう。 When the particle shape in the sample is measured by SEM, which is a conventional technique, particles having a low aspect ratio (for example, an aspect ratio threshold of less than 0.6) are not observed, but the flow type particle image analyzer is used. When measured, the result was that particles with a low aspect ratio accounted for about 3% of the total. When the present inventor confirmed the imaged particles with the flow type particle image analyzer, most of the particles recognized as having a low aspect ratio were overlapping particles. That is, while the work efficiency can be improved by adopting the flow type particle image analyzer as compared with the SEM observation, some overlapping particles are mixed in the analysis target.

そこで、フロー式粒子像分析装置にて測定した結果、低アスペクト比の粒子と判別された粒子を、更に包絡度0.95以上という規定により絞り込むという手法を本発明者は想到した。この手法を採用したところ、低アスペクト比の粒子は全体の0.5%程度と認定された。そして、低アスペクト比と認定された粒子を像から確認したところ、重複粒子ではなく単一の楕円粒子であった。この知見に基づき、重複粒子を分析対象から排除するという好適例が創出された。 Therefore, the present inventor has conceived a method of further narrowing down the particles determined to be particles having a low aspect ratio as a result of measurement with a flow-type particle image analyzer according to the regulation that the envelopment degree is 0.95 or more. When this method was adopted, particles with a low aspect ratio were certified as about 0.5% of the total. Then, when the particles recognized as having a low aspect ratio were confirmed from the image, they were not overlapping particles but single elliptical particles. Based on this finding, a good example of excluding duplicate particles from the analysis target was created.

本明細書における「包絡度」とは、包絡長を粒子周囲長で除した値である。
包絡長とは、像内における重複粒子の輪郭を包絡する線の長さを指す。つまり、包絡長は、像内における重複粒子の出っ張り部分(すなわち重複粒子を構成する各粒子の重なりにより形成される粒子像での凸部)と外接するように囲んだ曲線の長さを指す。
粒子周囲長とは、像内における、重複粒子を構成する各粒子の周長の合計を指す。
つまり、包絡度は0から1の値であり、包絡度が1に近いほど、一つの粒子により粒子像が形成されていることを示す。
The "envelope degree" in the present specification is a value obtained by dividing the envelope length by the particle circumference length.
Envelope length refers to the length of the line that envelops the contours of overlapping particles in the image. That is, the envelope length refers to the length of the curve circumscribing the protruding portion of the overlapping particles in the image (that is, the convex portion in the particle image formed by the overlapping of the overlapping particles constituting the overlapping particles).
The perimeter of particles refers to the total perimeter of each particle constituting the overlapping particles in the image.
That is, the degree of envelopment is a value from 0 to 1, and the closer the degree of envelopment is to 1, the more the particle image is formed by one particle.

以上の観点から、低アスペクト比と認定された粒子のうち、包絡度が0.95以上の粒子のみを分析対象に加えるのが好ましい。これにより、重複粒子を分析対象から排除でき、測定精度が向上する。 From the above viewpoint, it is preferable to add only the particles having an enveloping degree of 0.95 or more among the particles recognized as having a low aspect ratio to the analysis target. As a result, overlapping particles can be excluded from the analysis target, and the measurement accuracy is improved.

なお、本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications and improvements may be made to the extent that a specific effect obtained by the constituent requirements of the invention and the combination thereof can be derived. Including.

アスペクト比および包絡度に基づいた認定作業は、判定部が行ってもよいし、演算部が包絡度の演算と共に行ってもよい。 The certification work based on the aspect ratio and the degree of envelopment may be performed by the determination unit or may be performed by the calculation unit together with the calculation of the degree of envelopment.

試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外してもよい。画素数が少ない粒子像は、画素数が多い粒子像に比べ、一つの画素の配置が粒子像の形状把握に与える影響が大きい。そのため、予め所定の画素数以下の粒子像を除外すれば、不確定要素を減らせるため好ましい。なお、この除外の作業は判定部が行ってもよい。 Of the plurality of particles in the image obtained by subjecting the sample to the flow-type particle image analyzer, the particle image having a small number of pixels constituting the particle image may be excluded when determining the state of the sample. In a particle image having a small number of pixels, the arrangement of one pixel has a greater influence on grasping the shape of the particle image than in a particle image having a large number of pixels. Therefore, it is preferable to exclude the particle image having a predetermined number of pixels or less in advance because the uncertainties can be reduced. The determination unit may perform this exclusion work.

上記画素は2次元のピクセルであってもよいし3次元のボクセルであってもよい。所定の画素数については、粒子の実寸とフロー式粒子像分析装置で採用する倍率により適宜設定可能である。一例をあげると、フロー式粒子像分析装置の倍率設定を高倍率(×20倍)とし、フロー式粒子像分析装置像内に写った粒子のうち0.6〜20μmの粒子を測定対象とする場合、1つの粒子像の構成画素数が25個(例えば縦5個×横5個)以下である場合、該粒子像は試料の状態の判別対象から除外してもよい。 The pixel may be a two-dimensional pixel or a three-dimensional voxel. The predetermined number of pixels can be appropriately set depending on the actual size of the particles and the magnification used in the flow-type particle image analyzer. As an example, the magnification setting of the flow type particle image analyzer is set to high magnification (× 20 times), and the particles of 0.6 to 20 μm among the particles reflected in the flow type particle image analyzer image are measured. In this case, when the number of constituent pixels of one particle image is 25 (for example, 5 vertical × 5 horizontal) or less, the particle image may be excluded from the determination target of the state of the sample.

以下、本実施例について説明する。なお、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, this embodiment will be described. The technical scope of the present invention is not limited to the following examples.

[実施例1]
まず、試料0.2g程度(スパチュラ1盛)を10mlの0.2%ヘキサメタリン酸ナトリウムに投入し、攪拌し、スラリーを得た。その後、スラリー全量をフロー式粒子像分析装置(シスメックス株式会社製のFPIA−3000)に導入した。そして、フロー式粒子像分析装置の設定により300rpmで攪拌しながら導入スラリー中の粒子のうち10,000個の粒子の大きさと形状を測定した。なお、その際、フロー式粒子像分析装置は高倍率(×20倍)での測定の設定とし、フロー式粒子像分析装置像内に写った粒子のうち0.6〜20μmの粒子を測定対象とした。
[Example 1]
First, about 0.2 g of a sample (1 serving of spatula) was put into 10 ml of 0.2% sodium hexametaphosphate and stirred to obtain a slurry. Then, the entire amount of the slurry was introduced into a flow-type particle image analyzer (FPIA-3000 manufactured by Sysmex Corporation). Then, the size and shape of 10,000 particles in the introduced slurry were measured while stirring at 300 rpm by setting the flow type particle image analyzer. At that time, the flow-type particle image analyzer is set to measure at a high magnification (× 20 times), and the particles of 0.6 to 20 μm among the particles reflected in the flow-type particle image analyzer image are to be measured. And said.

形状測定の際に、アスペクト比(最大長の垂直長/最大長)=0.6を閾値として限定解析した。この限定解析により把握された楕円粒子としての粒子数を、形状測定の際の対象となった粒子数(すなわち10,000個)で除して得られた値を、低アスペクト粒子率とした。 At the time of shape measurement, a limited analysis was performed with the aspect ratio (vertical length of maximum length / maximum length) = 0.6 as a threshold value. The value obtained by dividing the number of particles as elliptical particles grasped by this limited analysis by the number of particles (that is, 10,000) targeted at the time of shape measurement was defined as the low aspect particle ratio.

別途、同試料に対し、人力でSEM観察を行った(対象粒子数約2,500)。その結果得られた低アスペクト粒子率は、フロー式粒子像分析装置により得られた低アスペクト粒子率と同等であり、フロー式粒子像分析装置を用いた試料状態判別方法が有用であることが示された。 Separately, SEM observation was performed manually on the same sample (the number of target particles was about 2,500). The low aspect particle ratio obtained as a result is equivalent to the low aspect particle ratio obtained by the flow type particle image analyzer, and it is shown that the sample state determination method using the flow type particle image analyzer is useful. Was done.

なお、SEM観察だと1日20試料を取り扱うのが限界であるのに対し、フロー式粒子像分析装置を用いた手法だと1日50試料を取り扱うことができた。 In SEM observation, the limit is to handle 20 samples a day, whereas in the method using a flow-type particle image analyzer, 50 samples can be handled a day.

Claims (6)

試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなし、該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを把握することにより試料の状態を判別する、試料状態判別方法。 Of the plurality of particles in the image obtained by subjecting the sample to a flow-type particle image analyzer, particles having a predetermined aspect ratio or less are regarded as elliptical particles, and the number of elliptical particles in the image and the plurality of particles in the image are used. A sample state determination method for determining the state of a sample by grasping at least one of the proportions. 前記所定のアスペクト比の閾値は0.5〜0.7の間で設定する、請求項1に記載の試料状態判別方法。 The sample state determination method according to claim 1, wherein the threshold value of the predetermined aspect ratio is set between 0.5 and 0.7. 前記所定のアスペクト比未満の粒子のうち包絡度が0.95以上の粒子を前記楕円粒子とみなす、請求項2に記載の試料状態判別方法。 The sample state determination method according to claim 2, wherein among the particles having an aspect ratio less than the predetermined aspect ratio, the particles having an envelope degree of 0.95 or more are regarded as the elliptical particles. 前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する、請求項1〜3のいずれかに記載の試料状態判別方法。 The sample state determination method according to any one of claims 1 to 3, wherein when the number or proportion of elliptical particles is equal to or greater than a predetermined threshold value, the sample is determined to be defective. 試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち、粒子像を構成する画素数が少ない粒子像は、試料の状態を判別する際に除外する、請求項1〜4のいずれかに記載の試料状態判別方法。 Claims 1 to 4, wherein among the plurality of particles in the image obtained by subjecting the sample to the flow-type particle image analyzer, the particle image having a small number of pixels constituting the particle image is excluded when determining the state of the sample. The sample state determination method according to any one. 試料をフロー式粒子像分析装置にかけて得られる像内の複数の粒子のうち所定のアスペクト比以下の粒子を楕円粒子とみなす画像処理部と、
該像内の楕円粒子の数および該像内の複数の粒子での占める割合のうち少なくともいずれかを算出する演算部と、
前記楕円粒子の数または占める割合が所定の閾値以上の場合、試料を不良と判定する判定部と、
を有する、試料状態判別装置。
An image processing unit that regards particles with a predetermined aspect ratio or less as elliptical particles among a plurality of particles in an image obtained by subjecting a sample to a flow-type particle image analyzer.
An arithmetic unit that calculates at least one of the number of elliptical particles in the image and the proportion of the plurality of particles in the image.
When the number or proportion of the elliptical particles is equal to or greater than a predetermined threshold value, a determination unit for determining the sample as defective, and
A sample state determination device having.
JP2020108535A 2019-09-03 2020-06-24 Sample condition determination method and device Active JP7400638B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019160110 2019-09-03
JP2019160110 2019-09-03

Publications (2)

Publication Number Publication Date
JP2021043183A true JP2021043183A (en) 2021-03-18
JP7400638B2 JP7400638B2 (en) 2023-12-19

Family

ID=74862257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108535A Active JP7400638B2 (en) 2019-09-03 2020-06-24 Sample condition determination method and device

Country Status (1)

Country Link
JP (1) JP7400638B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136439A (en) * 1994-11-04 1996-05-31 Toa Medical Electronics Co Ltd Grain image analysis device
JP2007078590A (en) * 2005-09-15 2007-03-29 Seishin Enterprise Co Ltd Particle property analysis display device
JP2014137367A (en) * 2013-01-15 2014-07-28 Ryokeiso Kk Abrasive grain inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136439A (en) * 1994-11-04 1996-05-31 Toa Medical Electronics Co Ltd Grain image analysis device
JP2007078590A (en) * 2005-09-15 2007-03-29 Seishin Enterprise Co Ltd Particle property analysis display device
JP2014137367A (en) * 2013-01-15 2014-07-28 Ryokeiso Kk Abrasive grain inspection device

Also Published As

Publication number Publication date
JP7400638B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
Mondini et al. PEBBLES and PEBBLEJUGGLER: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs
De Temmerman et al. Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy
Almar et al. Microstructural feature analysis of commercial Li-ion battery cathodes by focused ion beam tomography
De Temmerman et al. Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles
Randle Electron backscatter diffraction: Strategies for reliable data acquisition and processing
De Temmerman et al. Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy
JP2016502661A (en) Methods for characterizing particles by image analysis
EP3702766B1 (en) Crystal orientation map generation device, charged particle radiation device, crystal orientation map generation method, and program
WO2013183758A1 (en) Defect determination device, radiography system, and defect determination method
JP7209287B2 (en) How to identify nanoparticles
Fleßner et al. Assessment of the single point uncertainty of dimensional CT measurements
JP2018163153A (en) Powder shape analysis method, fluidity evaluation method of powder, and fluidity evaluation method of resin with powder dispersed therein
JP2021043183A (en) Sample condition identification method and device therefor
KR101371663B1 (en) Method and apparatus for quantitative measuring the particles
Mast et al. Physical characterization of nanomaterials in dispersion by transmission electron microscopy in a regulatory framework
Jonić et al. A novel method for improvement of visualization of power spectra for sorting cryo-electron micrographs and their local areas
EP3859304A1 (en) Method for generating data for particle analysis, program for generating data for particle analysis, and device for generating data for particle analysis
US20130191037A1 (en) Characterization of particulates using electron microscopy and image processing methods
Coleman et al. Nanoparticles and metrology: a comparison of methods for the determination of particle size distributions
Englisch et al. 3d analysis of equally x-ray attenuating mineralogical phases utilizing a correlative tomographic workflow across multiple length scales
Probst et al. Focal spot characterization of an industrial X-ray CT scanner
WO2019152585A2 (en) Orientation determination and mapping by stage rocking electron channeling and imaging reconstruction
Vimort et al. Detection of bone loss via subchondral bone analysis
Deal et al. EBSD geometry in the SEM: simulation and representation
Yao et al. In situ liquid SEM imaging analysis revealing particle dispersity in aqueous solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150