JPWO2016121471A1 - Charged particle beam equipment that creates analytical images from secondary particle images - Google Patents

Charged particle beam equipment that creates analytical images from secondary particle images Download PDF

Info

Publication number
JPWO2016121471A1
JPWO2016121471A1 JP2016571906A JP2016571906A JPWO2016121471A1 JP WO2016121471 A1 JPWO2016121471 A1 JP WO2016121471A1 JP 2016571906 A JP2016571906 A JP 2016571906A JP 2016571906 A JP2016571906 A JP 2016571906A JP WO2016121471 A1 JPWO2016121471 A1 JP WO2016121471A1
Authority
JP
Japan
Prior art keywords
image
section
cross
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016571906A
Other languages
Japanese (ja)
Inventor
邦昭 福地
邦昭 福地
東 淳三
淳三 東
増田 祥
祥 増田
富松 聡
聡 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2016121471A1 publication Critical patent/JPWO2016121471A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の目的は、分析画像の取得時間を大幅に低減することに関する。本発明は、加工面の二次粒子像と分析画像の相関に基づき、所望の加工面の二次粒子像(111−114)から分析画像を擬似的に形成することに関する。好ましくは、実際に取得された分析画像(121−122)と、擬似的に形成された分析画像(131−132)に基づき、三次元像を再構築する。本発明によれば、加工面ごとに分析画像を取得すること無く、三次元再構成に必要な多数の分析画像を短時間で取得できるため、解析効率が向上する。また、試料への電子ビームによるダメージを低減でき、解析の信頼性も向上する。An object of the present invention relates to greatly reducing the acquisition time of an analysis image. The present invention relates to the pseudo formation of an analysis image from a secondary particle image (111-114) of a desired processed surface based on the correlation between the secondary particle image of the processed surface and the analyzed image. Preferably, a three-dimensional image is reconstructed based on the analysis image (121-122) actually acquired and the analysis image (131-132) formed in a pseudo manner. According to the present invention, since a large number of analysis images necessary for three-dimensional reconstruction can be acquired in a short time without acquiring an analysis image for each processing surface, the analysis efficiency is improved. In addition, damage to the sample due to the electron beam can be reduced, and the reliability of the analysis is improved.

Description

本発明は、エネルギービームによる断面加工と、断面の観察および分析とを繰り返し実施する荷電粒子線装置に関する。好適には、分析画像を三次元再構築する荷電粒子線装置に関する。  The present invention relates to a charged particle beam apparatus that repeatedly performs cross-section processing using an energy beam and observation and analysis of a cross-section. Preferably, the present invention relates to a charged particle beam apparatus that reconstructs an analysis image three-dimensionally.

三次元再構築と呼ばれる、二次元の画像データを積層して三次元のデータを構築する手法がある。三次元再構築は、対象物の内部構造を感覚的に理解できる有効なツールであり、3Dプリンターを用いれば、三次元のデータから立体模型を作ることもできる。  There is a technique called three-dimensional reconstruction, in which three-dimensional data is constructed by stacking two-dimensional image data. Three-dimensional reconstruction is an effective tool that can be used to intuitively understand the internal structure of an object. If a 3D printer is used, a three-dimensional model can be created from three-dimensional data.

三次元再構築の一つとして、集束イオンビーム(FIB)による試料表面の削剥と、走査型電子顕微鏡(SEM)による画像取得を交互に行い、三次元再構成するFIB/SEMトモグラフィーと呼ばれる方法がある。  As one of the three-dimensional reconstructions, there is a method called FIB / SEM tomography that performs three-dimensional reconstruction by alternately removing the sample surface with a focused ion beam (FIB) and acquiring an image with a scanning electron microscope (SEM). is there.

例えば、特開平9−115861号公報(特許文献1)や特開2013−19900号公報(特許文献2)においては、FIB装置とSEMを備えた加工観察装置において、FIB照射による加工面ごとにX線分析(EDX)などにより分析画像を取得し、これらの分析画像から三次元再構築している。  For example, in Japanese Patent Application Laid-Open No. 9-115861 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2013-19900 (Patent Document 2), in a processing observation apparatus provided with an FIB apparatus and an SEM, X is determined for each processing surface by FIB irradiation. Analysis images are acquired by line analysis (EDX) or the like, and three-dimensional reconstruction is performed from these analysis images.

特開平9−115861号公報Japanese Patent Laid-Open No. 9-115861 特開2013−19900号公報JP2013-19900A

本願発明者が、分析画像からの三次元再構築の効率向上について鋭意検討した結果、次の知見を得るに至った。  The inventor of the present application diligently studied to improve the efficiency of three-dimensional reconstruction from an analysis image, and as a result, the following knowledge was obtained.

EDXなどによる分析画像の取得には、1画像につき少なくとも5分程度、解像度を上げると20分以上かかる場合もあるため、多数の分析画像を取得する必要がある分析画像からの三次元再構築には、膨大な時間を要していた。  Acquisition of analysis images by EDX or the like may take at least 5 minutes per image, and it may take 20 minutes or more when the resolution is increased. For this reason, 3D reconstruction from analysis images that require acquisition of a large number of analysis images Took a lot of time.

本発明の目的は、分析画像の取得時間を大幅に低減することに関する。  An object of the present invention relates to greatly reducing the acquisition time of an analysis image.

本発明は、加工面の二次粒子像と分析画像の相関に基づき、所望の加工面の二次粒子像から分析画像を擬似的に形成することに関する。好ましくは、実際に取得された分析画像と、擬似的に形成された分析画像に基づき、三次元再構築する。  The present invention relates to forming an analysis image in a pseudo manner from a secondary particle image on a desired processed surface based on the correlation between the secondary particle image on the processed surface and the analyzed image. Preferably, the three-dimensional reconstruction is performed based on the actually acquired analysis image and the pseudo-formed analysis image.

本発明によれば、加工面ごとに分析画像を取得すること無く、三次元再構成に必要な多数の分析画像を短時間で取得できるため、解析効率が向上する。また、試料への電子ビームによるダメージを低減でき、解析の信頼性も向上する。  According to the present invention, since a large number of analysis images necessary for three-dimensional reconstruction can be acquired in a short time without acquiring an analysis image for each processing surface, the analysis efficiency is improved. In addition, damage to the sample due to the electron beam can be reduced, and the reliability of the analysis is improved.

分析画像を擬似的に形成する三次元再構築の原理説明図Illustration of the principle of three-dimensional reconstruction that artificially forms an analysis image 実施例1にかかるFIB−SEMの概略構成図Schematic configuration diagram of FIB-SEM according to Example 1 実施例1にかかる三次元再構築アルゴリズムの説明図Explanatory drawing of the three-dimensional reconstruction algorithm concerning Example 1. FIG. 実施例2にかかるFIB−SEMの概略構成図Schematic configuration diagram of FIB-SEM according to Example 2 実施例3にかかる三次元再構築アルゴリズムの説明図Explanatory drawing of the three-dimensional reconstruction algorithm concerning Example 3. 実施例4にかかる三次元再構築アルゴリズムのフロー図Fig. 4 is a flowchart of a three-dimensional reconstruction algorithm according to the fourth embodiment. 実施例5にかかる三次元再構築アルゴリズムのフロー図Flow diagram of three-dimensional reconstruction algorithm according to embodiment 5 実施例6にかかる三次元再構築アルゴリズムのフロー図Flow diagram of three-dimensional reconstruction algorithm according to embodiment 6 実施例7にかかる三次元再構築アルゴリズムのフロー図Flow diagram of three-dimensional reconstruction algorithm according to the seventh embodiment

図1は、分析画像を擬似的に形成する三次元再構築の原理説明図である。  FIG. 1 is an explanatory diagram of the principle of three-dimensional reconstruction for forming an analysis image in a pseudo manner.

この三次元再構築は、固体デバイスの積層構造などに対し、FIBなどのエネルギービームによる加工と、SEMなどによる加工面の観察および分析とを繰り返し実施する荷電粒子線装置において、加工面の二次粒子像と分析画像の相関に基づき、所望の加工面の二次粒子像から分析画像を形成するアルゴリズムを組み込むことにより、ある加工面に対して二次粒子像を取得することにより、この加工面の分析画像を実際に取得することなく擬似的に作成し、擬似的な分析画像を用いて三次元像を再構築するものである。  This three-dimensional reconstruction is performed in a charged particle beam apparatus that repeatedly performs processing using an energy beam such as FIB and observation and analysis of a processed surface using an SEM on a stacked structure of a solid-state device. Based on the correlation between the particle image and the analysis image, this processing surface can be obtained by acquiring a secondary particle image for a certain processing surface by incorporating an algorithm for forming an analysis image from the secondary particle image of the desired processing surface. The analysis image is generated in a pseudo manner without actually acquiring the image, and a three-dimensional image is reconstructed using the pseudo analysis image.

エネルギービームの照射により試料に断面を形成した後、この加工面をSEMにより観察してBSE(反射電子)像などの二次粒子像111を取得する。また、この加工面について、EDXマッピング(エネルギー分散形X線分析)像などの分析画像121も取得する。その後、再度のエネルギービーム照射により次の加工面を形成する。そして、この加工面をSEMにより観察して二次粒子像112を取得する。この加工面においては、分析画像は取得せずに、二次粒子像112から擬似的分析画像131(補間像)を作成する。更に、エネルギービーム照射により次の加工断面を形成する。この加工面においても、二次粒子像113は取得するが、分析画像は取得せずに、二次粒子像113から擬似的分析画像132(補間像)を作成する。更に、エネルギービーム照射により次の加工断面を形成する。この加工面においては、二次粒子像114を取得し、その後、分析画像122も取得する。以下、同様に、加工面の形成、二次粒子像の取得、および分析画像の取得、または擬似的分析画像(補間像)の作成の作業を繰り返し実施する。そして、分析画像121、擬似的分析画像131(補間像)、擬似的分析画像132(補間像)、および分析画像122などを用いて、三次元再構築像を取得する。  After a cross section is formed on the sample by irradiation with an energy beam, the processed surface is observed with an SEM to obtain a secondary particle image 111 such as a BSE (reflected electron) image. Further, an analysis image 121 such as an EDX mapping (energy dispersive X-ray analysis) image is also acquired for this processed surface. Thereafter, the next processed surface is formed by the energy beam irradiation again. Then, this processed surface is observed with an SEM to obtain a secondary particle image 112. On this processed surface, a pseudo analysis image 131 (interpolated image) is created from the secondary particle image 112 without acquiring an analysis image. Further, the next processed cross section is formed by energy beam irradiation. Even on this processed surface, the secondary particle image 113 is acquired, but the analysis image is not acquired, and a pseudo analysis image 132 (interpolated image) is created from the secondary particle image 113. Further, the next processed cross section is formed by energy beam irradiation. On this processed surface, the secondary particle image 114 is acquired, and then the analysis image 122 is also acquired. Hereinafter, similarly, the process of forming a processed surface, acquiring a secondary particle image, acquiring an analysis image, or creating a pseudo analysis image (interpolated image) is repeatedly performed. Then, a three-dimensional reconstructed image is acquired using the analysis image 121, the pseudo analysis image 131 (interpolation image), the pseudo analysis image 132 (interpolation image), the analysis image 122, and the like.

この三次元再構築の特徴の一つは、ある加工面において取得した二次粒子像と分析画像の相関から、所望の加工面において取得した二次粒子像を基に、分析画像を擬似的に作成することである。更に、これら分析画像および擬似的分析画像(補間像)を用いて三次元再構築することも、特徴の一つである。  One of the features of this three-dimensional reconstruction is that the analysis image is simulated based on the secondary particle image acquired on the desired processing surface based on the correlation between the secondary particle image acquired on a certain processing surface and the analysis image. Is to create. Further, it is one of the features that three-dimensional reconstruction is performed using these analysis images and pseudo analysis images (interpolated images).

なお、各加工面における分析画像の取得の有無や、回数は限定されるものではなく、任意に選択できる。また、二次粒子像はBSE像に限定されるものではなく、例えば、SE(二次電子)像などを用いてもよい。また、三次元再構築するための分析画像も、EDXマッピング像に限定されるものではなく、例えば、WDX(波長分散形X線分析)像やEBSP(電子線後方散乱回折)像などを用いてもよい。  In addition, the presence or absence and the number of times of acquisition of the analysis image on each processed surface are not limited and can be arbitrarily selected. Further, the secondary particle image is not limited to the BSE image, and for example, an SE (secondary electron) image may be used. Also, the analysis image for three-dimensional reconstruction is not limited to the EDX mapping image. For example, a WDX (wavelength dispersive X-ray analysis) image or an EBSP (electron beam backscatter diffraction) image is used. Also good.

実施例では、エネルギービームを照射するエネルギービーム光学系と、電子ビームを照射する電子ビーム光学系と、試料を載置する試料ステージと、試料から発生する二次粒子を検出する二次粒子検出器と、試料から発生する分析情報を検出する分析器と、を備え、エネルギービームの照射により試料に第1の断面を形成し、当該第1の断面への電子ビームの照射により試料から発生した二次粒子および分析情報を検出し、エネルギービームの照射により第2の断面を形成し、当該第2の断面への電子ビームの照射により試料から発生した二次粒子を検出し、第1の断面にかかる二次粒子像および分析画像の相関に基づき、第2の断面にかかる二次粒子像から第2の断面の分析画像を擬似的に作成する荷電粒子線装置を開示する。  In an embodiment, an energy beam optical system for irradiating an energy beam, an electron beam optical system for irradiating an electron beam, a sample stage for placing a sample, and a secondary particle detector for detecting secondary particles generated from the sample And an analyzer for detecting analysis information generated from the sample, the first cross section is formed in the sample by irradiation with the energy beam, and the second generated from the sample by irradiation of the electron beam to the first cross section. Secondary particles and analysis information are detected, a second cross section is formed by irradiation of an energy beam, secondary particles generated from the sample are detected by irradiation of an electron beam to the second cross section, and the first cross section is detected. Disclosed is a charged particle beam device that artificially creates an analysis image of the second cross section from the secondary particle image of the second cross section based on the correlation between the secondary particle image and the analysis image.

また、実施例では、少なくとも、第1の断面にかかる分析画像と、第2の断面にかかる擬似的な分析画像を用いて、3次元再構築する荷電粒子線装置を開示する。  In addition, the embodiment discloses a charged particle beam apparatus that performs three-dimensional reconstruction using at least an analysis image related to the first cross section and a pseudo analysis image related to the second cross section.

また、実施例では、二次粒子検出器が、反射電子検出器である荷電粒子線装置を開示する。  In the embodiment, a charged particle beam device in which the secondary particle detector is a backscattered electron detector is disclosed.

また、実施例では、二次粒子検出器が、二次電子検出器である荷電粒子線装置を開示する。  Moreover, in an Example, the charged particle beam apparatus whose secondary particle detector is a secondary electron detector is disclosed.

また、実施例では、分析器が、EDX用検出器である荷電粒子線装置を開示する。  Moreover, in an Example, the analyzer discloses the charged particle beam apparatus which is a detector for EDX.

また、実施例では、分析器が、WDX用検出器である荷電粒子線装置を開示する。  Moreover, in an Example, an analyzer discloses the charged particle beam apparatus which is a detector for WDX.

また、実施例では、分析器が、EBSP用検出器である荷電粒子線装置を開示する。  Moreover, in an Example, an analyzer discloses the charged particle beam apparatus which is a detector for EBSP.

また、実施例では、第2の断面へ電子ビームを照射するときの加速電圧を、第1の断面へ電子ビームを照射するときの加速電圧より下げる荷電粒子線装置を開示する。  In the embodiment, a charged particle beam device is disclosed in which the acceleration voltage when irradiating an electron beam onto the second cross section is lower than the acceleration voltage when irradiating the electron beam onto the first cross section.

また、実施例では、第2の断面へ電子ビームを照射するときに、試料にリターディング電圧を印加することにより、第1の断面へ電子ビームを照射するときとは異なる観察条件とする荷電粒子線装置を開示する。  Further, in the embodiment, when irradiating the electron beam to the second cross section, a charged particle having an observation condition different from that when the electron beam is applied to the first cross section by applying a retarding voltage to the sample. A wire device is disclosed.

また、実施例では、第1の断面にかかる分析画像に基づき、第2の断面にかかるエネルギービームの加工条件を変更する荷電粒子線装置を開示する。  In addition, the embodiment discloses a charged particle beam apparatus that changes the processing conditions of the energy beam applied to the second cross section based on the analysis image related to the first cross section.

また、実施例では、第1の断面にかかる二次粒子像および第2の断面にかかる二次粒子像に基づき、エネルギービームの加工条件を変更し、当該エネルギービームの照射により第3の断面を形成する荷電粒子線装置を開示する。  In the embodiment, the processing conditions of the energy beam are changed based on the secondary particle image relating to the first cross section and the secondary particle image relating to the second cross section, and the third cross section is formed by irradiation of the energy beam. Disclosed is a charged particle beam device to be formed.

また、実施例では、エネルギービームの照射により形成された第3の断面にかかる分析情報を分析器により取得するか否かにつき、第1の断面にかかる二次粒子像および第2の断面にかかる二次粒子像に基づき判断する荷電粒子線装置を開示する。  In the embodiment, the secondary particle image and the second cross section relating to the first cross section are determined whether or not the analyzer acquires the analysis information relating to the third cross section formed by the irradiation of the energy beam. Disclosed is a charged particle beam device that makes a determination based on a secondary particle image.

また、実施例では、第1の断面にかかる二次粒子像に基づき、第1の断面にかかる分析画像の取得条件を変更する荷電粒子線装置を開示する。  In addition, the embodiment discloses a charged particle beam device that changes the acquisition condition of the analysis image related to the first cross section based on the secondary particle image related to the first cross section.

以下、上記およびその他の本発明の新規な特徴と効果について図面を参酌して説明する。なお、図面は、発明の理解のために用いるものであり、権利範囲を限定するものではない。  The above and other novel features and effects of the present invention will be described below with reference to the drawings. The drawings are used for understanding the invention and do not limit the scope of rights.

図2は、本実施例にかかるFIB−SEMの概略構成図である。  FIG. 2 is a schematic configuration diagram of the FIB-SEM according to the present embodiment.

本実施例にかかるFIB−SEMは、その内部に試料ステージ5が配置されるチャンバー6に対して、集束イオンビームを照射するFIBカラム1が垂直に、電子ビームを照射するSEMカラム2が斜めに配置されている。FIBカラム1とSEMカラム2の配置は逆でもよい。また、チャンバー6には、BSE検出器3およびEDX検出器4も設けられている。チャンバー6の内部は、図示していない排気装置により、真空状態に保持されている。  In the FIB-SEM according to the present embodiment, the FIB column 1 that irradiates the focused ion beam is perpendicular to the chamber 6 in which the sample stage 5 is disposed, and the SEM column 2 that irradiates the electron beam is oblique. Has been placed. The arrangement of the FIB column 1 and the SEM column 2 may be reversed. The chamber 6 is also provided with a BSE detector 3 and an EDX detector 4. The inside of the chamber 6 is kept in a vacuum state by an exhaust device (not shown).

FIBカラム1から集束イオンビームを照射することにより、試料ステージ5に載置された試料を加工し、観察用の断面を形成する。また、この断面にSEMカラム2から電子ビームを照射し、BSE検出器3によりBSEを検出することによりSEM観察を実施する。BSE検出器の代わりに、SEを検出する二次電子検出器を用いてもよい。また、この断面への電子ビーム照射によりEDX分析器4にてEDX分析する。EDX分析器の代わりに、WDX用検出器やEBSP用検出器など、物質の組成、性質、構造または状態などを測定する分析器を用いてもよい。  By irradiating the focused ion beam from the FIB column 1, the sample placed on the sample stage 5 is processed to form a cross section for observation. Further, SEM observation is performed by irradiating the cross section with an electron beam from the SEM column 2 and detecting BSE by the BSE detector 3. A secondary electron detector that detects SE may be used instead of the BSE detector. Further, EDX analysis is performed by the EDX analyzer 4 by irradiating the cross section with an electron beam. Instead of an EDX analyzer, an analyzer that measures the composition, properties, structure, or state of a substance, such as a WDX detector or an EBSP detector, may be used.

FIBカラム1、SEMカラム2、BSE検出器3、およびEDX検出器4は、それぞれFIBカラム制御部11、SEMカラム制御部21、検出器制御部31、およびEDX検出器制御部41に接続されており、各制御部により制御されている。これら各制御部は、装置全体制御部7に接続されており、加工観察の条件やタイミングを制御する。  FIB column 1, SEM column 2, BSE detector 3, and EDX detector 4 are connected to FIB column controller 11, SEM column controller 21, detector controller 31, and EDX detector controller 41, respectively. It is controlled by each control unit. Each of these control units is connected to the overall apparatus control unit 7 and controls processing observation conditions and timing.

装置全体制御部7は、ユーザからの指示などが入力される入力部、二次粒子像、分析画像および三次元再構築像などを表示する出力部、分析画像作成や三次元再構築などを実行する計算部、および各種アルゴリズムや計算結果などを記憶する記憶部を有する。装置全体制御部7においては、BSE観察とEDX分析の切替制御を実施している。装置全体制御部7は、試料のある加工面に対して取得したBSE像とEDXマッピング像の相関から、別の加工面で取得したBSE像に基づいて擬似的にEDXマッピング像を作成し、これらEDXマッピング像および擬似的EDXマッピング像から三次元再構築像を作成できる。  The overall apparatus control unit 7 executes an input unit for receiving an instruction from the user, an output unit for displaying secondary particle images, analysis images, 3D reconstruction images, and the like, analysis image creation, 3D reconstruction, etc. And a storage unit for storing various algorithms and calculation results. The overall apparatus control unit 7 performs switching control between BSE observation and EDX analysis. The overall apparatus control unit 7 creates a pseudo EDX mapping image based on the BSE image acquired on another processing surface from the correlation between the BSE image acquired on the processing surface with the sample and the EDX mapping image. A three-dimensional reconstruction image can be created from the EDX mapping image and the pseudo EDX mapping image.

図2は、本実施例にかかる三次元再構築アルゴリズムの説明図である。  FIG. 2 is an explanatory diagram of the three-dimensional reconstruction algorithm according to the present embodiment.

試料の加工面が、第1〜第4の4面であり、第1加工面および第4加工面において、BSE像およびEDXマッピング像を取得し、第2加工面および第3加工面ではBSE像のみ取得した場合について説明する。  The processed surfaces of the sample are the first to fourth four surfaces, the BSE image and the EDX mapping image are acquired on the first processed surface and the fourth processed surface, and the BSE image is acquired on the second processed surface and the third processed surface. Only the case of acquiring will be described.

本実施例の三次元再構築アルゴリズムでは、第1の加工面にかかるEDXマッピング像(第1Map像)から、注目元素の信号のあるピクセル座標を抽出する。第1Map像(対象)の全座標ではなくサンプリングにより抽出してもよい。そして、この座標に対応する第1BSE像の輝度、例えば平均輝度を算出する。次に、算出した輝度に相当する輝度の座標のみ第2BSE像から抽出する。この場合、算出する輝度は、ある程度の範囲を持たせてもよい。全体輝度がばらついている場合は、輝度プロファイルの規格を使ってもよい。この第2BSE像から抽出された座標情報(像)に基づいて作成されたEDXマッピング像を、第2擬似的EDXマッピング像(第2補間像)として保存する。  In the three-dimensional reconstruction algorithm of the present embodiment, pixel coordinates having a signal of the element of interest are extracted from the EDX mapping image (first Map image) on the first processed surface. You may extract by sampling instead of all the coordinates of a 1st Map image (object). And the brightness | luminance of the 1st BSE image corresponding to this coordinate, for example, average brightness | luminance, is calculated. Next, only luminance coordinates corresponding to the calculated luminance are extracted from the second BSE image. In this case, the calculated luminance may have a certain range. If the overall luminance varies, the luminance profile standard may be used. An EDX mapping image created based on the coordinate information (image) extracted from the second BSE image is stored as a second pseudo EDX mapping image (second interpolation image).

同様な手順により第3BSE像から第3補間像を作成する。なお、この第3補間像の作成にあたっては、第1BSE像と第1Map像の相関情報ではなく、第4BSE像と第4Map像の相関情報から事後的に作成してもよい。第4BSE像と第4Map像の相関情報を基に第3BSE像から第3補間像を作成する手順は、上述の第1BSE像と第1Map像の相関を基に第2BSE像から第2補間像を作成した手順と同じである。  A third interpolation image is created from the third BSE image by a similar procedure. Note that the third interpolation image may be created afterwards from the correlation information between the fourth BSE image and the fourth Map image instead of the correlation information between the first BSE image and the first Map image. The procedure for creating the third interpolation image from the third BSE image based on the correlation information between the fourth BSE image and the fourth Map image is the step of creating the second interpolation image from the second BSE image based on the correlation between the first BSE image and the first Map image. It is the same as the created procedure.

このようにして取得や作成されたEDXマッピング像や擬似的EDXマッピング像(第1Map像、第2補間像、第3補間像および第4Map像)から三次元像を再構築する。  A three-dimensional image is reconstructed from the EDX mapping image or pseudo EDX mapping image (first map image, second interpolation image, third interpolation image, and fourth map image) acquired or created in this way.

本実施例によれば、取得に長時間を要するEDXマッピング像(分析画像)を加工面ごとに取得する必要が無く、分析画像の三次元再構築像を従来に比べて短い時間で取得できるようになり、解析効率の向上が図れる。また、電子ビーム照射によるダメージを低減でき、解析の信頼性を向上できる。  According to the present embodiment, it is not necessary to acquire an EDX mapping image (analysis image) that requires a long time for acquisition for each processing surface, and a three-dimensional reconstructed image of the analysis image can be acquired in a shorter time than in the past. Thus, the analysis efficiency can be improved. In addition, damage due to electron beam irradiation can be reduced, and analysis reliability can be improved.

本実施例は、FIBカラムとSEMカラムが垂直配置されたFIB−SEMにおける例である。以下、実施例1との相違点を中心に説明する。  The present embodiment is an example in the FIB-SEM in which the FIB column and the SEM column are vertically arranged. Hereinafter, the difference from the first embodiment will be mainly described.

図4は、本実施例にかかるFIB−SEMの概略構成図である。  FIG. 4 is a schematic configuration diagram of the FIB-SEM according to the present embodiment.

本実施例にかかるFIB−SEMは、チャンバー6に対してFIBカラム1が垂直に、SEMカラム2が水平に配置されている。つまり、FIBカラム1に対して直角方向にSEMカラム2が配置されている。なお、FIBカラム1とSEMカラム2の配置は逆でもよい。この配置構成によれば、FIBカラム1から照射された集束イオンビームにより加工された加工面に対し、試料ステージ5を動かすことなく、SEMカラム2から電子ビームを垂直に入射できる。  In the FIB-SEM according to this example, the FIB column 1 is arranged vertically with respect to the chamber 6 and the SEM column 2 is arranged horizontally. That is, the SEM column 2 is arranged in a direction perpendicular to the FIB column 1. The arrangement of the FIB column 1 and the SEM column 2 may be reversed. According to this arrangement configuration, the electron beam can be vertically incident from the SEM column 2 without moving the sample stage 5 with respect to the processing surface processed by the focused ion beam irradiated from the FIB column 1.

本実施例によれば、加工面に対して電子ビームを斜め方向から入射させた場合に比べ高精度な観察や分析が可能である。試料ステージ5の駆動に伴うドリフトも回避できるため、高精度な三次元再構築像を取得できる。  According to the present embodiment, observation and analysis can be performed with higher accuracy than when the electron beam is incident on the processing surface from an oblique direction. Since drift associated with the driving of the sample stage 5 can be avoided, a highly accurate three-dimensional reconstructed image can be acquired.

本実施例は、形状情報から分析画像を作成する例である。以下、実施例1および2との相違点を中心に説明する。  In this embodiment, an analysis image is created from shape information. Hereinafter, the difference from the first and second embodiments will be mainly described.

図5は、本実施例にかかる三次元再構築アルゴリズムの説明図である。  FIG. 5 is an explanatory diagram of the three-dimensional reconstruction algorithm according to the present embodiment.

実施例1と同様、試料の加工面が、第1〜第4の4面であり、第1加工面および第4加工面において、BSE像およびEDXマッピング像を取得し、第2加工面および第3加工面ではBSE像のみ取得した場合について説明する。  Similar to Example 1, the processed surfaces of the sample are the first to fourth four surfaces, and the BSE image and the EDX mapping image are obtained on the first processed surface and the fourth processed surface, and the second processed surface and the second processed surface are obtained. A case where only the BSE image is acquired on the three processed surfaces will be described.

本実施例の三次元再構築アルゴリズムでは、第1Map像から注目元素の形状情報と、該当するピクセル座標を抽出する。代表となるピクセル座標を抽出してもよい。次に、抽出したピクセル座標と形状情報から、第1BSE像上の抽出したピクセル座標の近傍位置に抽出した形状情報と類似する形状があるか判定する。類似の形状がある場合には、これを注目元素のBSE像と推定する。次に、第2BSE像上における、上述の抽出されたピクセル座標の近傍位置から、上述の推定された形状情報と類似の形状を抽出する。この第2BSE像から抽出された形状情報(像)に基づいて作成されたEDXマッピング像を、第2補間像として保存する。  In the three-dimensional reconstruction algorithm of the present embodiment, the shape information of the element of interest and the corresponding pixel coordinates are extracted from the first Map image. Representative pixel coordinates may be extracted. Next, it is determined from the extracted pixel coordinates and shape information whether there is a shape similar to the extracted shape information in the vicinity of the extracted pixel coordinates on the first BSE image. If there is a similar shape, this is estimated as a BSE image of the element of interest. Next, a shape similar to the estimated shape information is extracted from the vicinity of the extracted pixel coordinates on the second BSE image. An EDX mapping image created based on the shape information (image) extracted from the second BSE image is stored as a second interpolation image.

同様な手順により第3BSE像から第3補間像を作成する。なお、この第3補間像の作成にあたっては、実施例1と同様、第1BSE像と第1Map像の相関情報ではなく、第4BSE像と第4Map像の相関情報から事後的に作成してもよい。  A third interpolation image is created from the third BSE image by a similar procedure. The third interpolation image may be created afterwards from the correlation information between the fourth BSE image and the fourth Map image instead of the correlation information between the first BSE image and the first Map image, as in the first embodiment. .

このようにして取得や作成されたEDXマッピング像や擬似的EDXマッピング像(第1Map像、第2補間像、第3補間像および第4Map像)から三次元像を再構築する。  A three-dimensional image is reconstructed from the EDX mapping image or pseudo EDX mapping image (first map image, second interpolation image, third interpolation image, and fourth map image) acquired or created in this way.

本実施例によれば、実施例1と同様、取得に長時間を要する分析画像を加工面ごとに取得する必要が無く、分析画像の三次元再構築像を従来に比べて短い時間で取得できるようになり、解析効率の向上が図れる。また、電子ビーム照射によるダメージを低減でき、解析の信頼性を向上できる。  According to the present embodiment, similarly to the first embodiment, there is no need to acquire an analysis image that requires a long time for each processing surface, and a three-dimensional reconstructed image of the analysis image can be acquired in a shorter time than in the past. As a result, the analysis efficiency can be improved. In addition, damage due to electron beam irradiation can be reduced, and analysis reliability can be improved.

本実施例は、1つの加工面における二次粒子像と分析画像の相関から、次の加工面における二次粒子像より擬似的に分析画像を作成する三次元再構築において、より精度の高い三次元像を再構築するために観察条件を最適化するものである。以下、実施例1〜3との相違点を中心に説明する。  In the present embodiment, the correlation between the secondary particle image on one processing surface and the analysis image is used, and in the three-dimensional reconstruction in which an analysis image is created in a pseudo manner from the secondary particle image on the next processing surface, the tertiary image with higher accuracy The observation conditions are optimized to reconstruct the original image. Hereinafter, it demonstrates centering on difference with Examples 1-3.

図6は、本実施例にかかる三次元再構築アルゴリズムのフロー図である。  FIG. 6 is a flowchart of the three-dimensional reconstruction algorithm according to the present embodiment.

本実施例の三次元再構築アルゴリズムでは、イオンビーム照射により第1の断面加工を実施する。次に、第1の加工断面への電子ビーム照射により二次粒子像(BSE像)および分析画像(EDXマッピング像)を取得する。第1の断面観察時における電子ビーム照射は、EDXマッピング像を取得するために、電子ビームの引き出し電圧を高加速電圧にして実施する。次に、第2の断面加工と、第2の断面観察を実施する。第2の断面観察では二次粒子像(BSE像)のみ取得する。第2の断面観察時では、EDXマッピング像を取得する必要が無いため、電子ビームの加速電圧は低くする。低加速電子ビーム照射により、第2の断面観察では、深さ方向および面内方向ともに分解能が上がる。このため、第2の加工断面のBSE像から擬似的に作成した擬似的EDXマッピング像において高分解能な像を形成できる。  In the three-dimensional reconstruction algorithm of the present embodiment, the first cross-section processing is performed by ion beam irradiation. Next, a secondary particle image (BSE image) and an analysis image (EDX mapping image) are acquired by electron beam irradiation on the first processed cross section. The electron beam irradiation during the first cross-sectional observation is performed with the electron beam extraction voltage set to a high acceleration voltage in order to obtain an EDX mapping image. Next, the second cross-section processing and the second cross-section observation are performed. In the second cross-sectional observation, only secondary particle images (BSE images) are acquired. Since it is not necessary to acquire an EDX mapping image during the second cross-sectional observation, the acceleration voltage of the electron beam is lowered. By the low-acceleration electron beam irradiation, the resolution is improved in both the depth direction and the in-plane direction in the second cross-sectional observation. For this reason, a high-resolution image can be formed in the pseudo EDX mapping image created in a pseudo manner from the BSE image of the second processed cross section.

なお、第2の断面観察時の観察条件として、電子ビームの加速電圧を下げる代わりに、ホルダー側に接続された電圧印加機構によりリタ−ディング電圧を印加しても同様の効果を得られる。  Note that the same effect can be obtained by applying a retarding voltage by a voltage application mechanism connected to the holder side instead of lowering the acceleration voltage of the electron beam as an observation condition in the second cross-sectional observation.

本実施例によれば、高分解能な擬似的EDXマッピング像(分析画像)を作成でき、これら高分解能な分析画像から高精度な三次元像を再構築できる。  According to the present embodiment, a high-resolution pseudo EDX mapping image (analysis image) can be created, and a highly accurate three-dimensional image can be reconstructed from these high-resolution analysis images.

本実施例は、1つの加工面における二次粒子像と分析画像の相関から、次の加工面における二次粒子像より擬似的に分析画像を作成する三次元再構築において、断面加工の加工条件を最適化するものである。以下、実施例1〜4との相違点を中心に説明する。  In this embodiment, the processing conditions for the cross-section processing in the three-dimensional reconstruction in which a pseudo-analysis image is created from the secondary particle image on the next processing surface based on the correlation between the secondary particle image on one processing surface and the analysis image. Is to optimize. Hereinafter, it demonstrates centering around difference with Examples 1-4.

図7は、本実施例にかかる三次元再構築アルゴリズムのフロー図である。  FIG. 7 is a flowchart of the three-dimensional reconstruction algorithm according to the present embodiment.

本実施例の三次元再構築アルゴリズムでは、イオンビーム照射により第1の断面加工を実施する。次に、第1の加工断面への電子ビーム照射により二次粒子像(BSE像)および分析画像(EDXマッピング像)を取得する。取得したEDXマッピング像からEDXマッピング像中の粒径を測定し、最小粒径(a)を判断する。次に、第2の断面加工にあたり、イオンビーム照射による加工量がa以下となるよう加工条件に変更する。これにより、加工量が大き過ぎることにより、二次粒子像および分析画像からの情報の欠落を抑制できる。  In the three-dimensional reconstruction algorithm of the present embodiment, the first cross-section processing is performed by ion beam irradiation. Next, a secondary particle image (BSE image) and an analysis image (EDX mapping image) are acquired by electron beam irradiation on the first processed cross section. The particle diameter in the EDX mapping image is measured from the acquired EDX mapping image, and the minimum particle diameter (a) is determined. Next, in the second cross-section processing, the processing conditions are changed so that the processing amount by ion beam irradiation is a or less. Thereby, the omission of information from the secondary particle image and the analysis image can be suppressed due to the processing amount being too large.

本実施例によれば、二次粒子像および分析画像に粒子の情報が確実に捕捉されるため、情報の確実性が高い三次元像を再構築できる。  According to the present embodiment, since the particle information is reliably captured in the secondary particle image and the analysis image, a three-dimensional image with high information certainty can be reconstructed.

本実施例は、組成変化を踏まえて断面加工の加工条件を最適化するものである。以下、実施例1〜5との相違点を中心に説明する。  In this embodiment, the processing conditions for cross-section processing are optimized based on the composition change. Hereinafter, it demonstrates centering around difference with Examples 1-5.

図8は、本実施例にかかる三次元再構築アルゴリズムのフロー図である。  FIG. 8 is a flowchart of the three-dimensional reconstruction algorithm according to the present embodiment.

本実施例の三次元再構築アルゴリズムでは、イオンビーム照射により第1の断面加工を実施する。次に、第1の加工断面への電子ビーム照射により二次粒子像(BSE像)および分析画像(EDXマッピング像)を取得する。この時のBSE像をBSE像(1)とする。次に、第2の断面加工と、第2の断面観察を実施し、BSE像を取得する。この時のBSE像をBSE像(2)とする。そして、第3の断面加工を実施する前に、BSE像(1)の輝度とBSE像(2)の輝度を比較する。BSE像(1)の輝度に対するBSE像(2)の輝度の比率がある規定値αを超えている場合は、材料の加工面方向の組成変化が急峻と推測されるため、第三の断面加工時の加工量が小さくなるように加工条件を変更する。また、第3の断面観察では、当初予定を変更し、EDXマッピング像を取得する。これにより、第3の加工断面の観測において、組成変化の急峻にかかる情報が捕捉される確実性を高められる。  In the three-dimensional reconstruction algorithm of the present embodiment, the first cross-section processing is performed by ion beam irradiation. Next, a secondary particle image (BSE image) and an analysis image (EDX mapping image) are acquired by electron beam irradiation on the first processed cross section. The BSE image at this time is referred to as a BSE image (1). Next, second section processing and second section observation are performed to obtain a BSE image. The BSE image at this time is referred to as a BSE image (2). Then, the brightness of the BSE image (1) and the brightness of the BSE image (2) are compared before performing the third cross-section processing. When the ratio of the luminance of the BSE image (2) to the luminance of the BSE image (1) exceeds a predetermined value α, the composition change in the direction of the processed surface of the material is estimated to be steep, so the third cross-section processing Change the processing conditions so that the amount of processing at that time becomes smaller. In the third cross-sectional observation, the initial schedule is changed and an EDX mapping image is acquired. Thereby, in the observation of the third processed cross section, it is possible to improve the certainty that the information related to the steep composition change is captured.

本実施例によれば、二次粒子像および分析画像に組成の情報が捕捉され易くなるため、情報の確実性が高い三次元像を再構築できる。  According to the present embodiment, composition information is easily captured in the secondary particle image and the analysis image, so that a three-dimensional image with high reliability of information can be reconstructed.

本実施例は、1つの加工面における二次粒子像と分析画像の相関から、次の加工面における二次粒子像より擬似的に分析画像を形成する三次元再構築において、分析画像の取得条件を最適化するものである。以下、実施例1〜6との相違点を中心に説明する。  In this embodiment, the correlation between the secondary particle image and the analysis image on one processing surface is used to obtain the analysis image acquisition conditions in the three-dimensional reconstruction in which the analysis image is pseudo-formed from the secondary particle image on the next processing surface. Is to optimize. Hereinafter, it demonstrates centering around difference with Examples 1-6.

図9は、本実施例にかかる三次元再構築アルゴリズムのフロー図である。  FIG. 9 is a flowchart of the three-dimensional reconstruction algorithm according to the present embodiment.

本実施例の三次元再構築アルゴリズムでは、イオンビーム照射により第1の断面加工を実施する。次に、第1の加工断面への電子ビーム照射により二次粒子像(BSE像)を取得する。そして、取得したBSE像からBSE像中の粒子径を測定する。この時の最小粒子径が規定値βより小さい場合は、同じ加工断面のEDXマッピング像の取得における取得条件を見直す。例えば、高分解能取得モードとして取得する。これにより、BSE像とEDX像の相関について、より高い情報が得られる。  In the three-dimensional reconstruction algorithm of the present embodiment, the first cross-section processing is performed by ion beam irradiation. Next, a secondary particle image (BSE image) is obtained by electron beam irradiation on the first processed cross section. And the particle diameter in a BSE image is measured from the acquired BSE image. If the minimum particle size at this time is smaller than the specified value β, the acquisition conditions for acquiring the EDX mapping image of the same processed cross section are reviewed. For example, the high-resolution acquisition mode is acquired. Thereby, higher information about the correlation between the BSE image and the EDX image can be obtained.

本実施例によれば、二次粒子像と分析画像の相関が高まるため、高精度な三次元像を再構築できる。
According to the present embodiment, since the correlation between the secondary particle image and the analysis image is increased, a highly accurate three-dimensional image can be reconstructed.

1…FIBカラム
2…SEMカラム
3…BSE検出器
4…EDX分析器
5…試料ステージ
6…チャンバー
7…装置全体制御部
11…FIBカラム制御部
21…SEMカラム制御部
31…検出器制御部
41…EDX分析器制御部
111、112、113、114…二次粒子像
121、122…分析画像
131、132…擬似的分析画像
DESCRIPTION OF SYMBOLS 1 ... FIB column 2 ... SEM column 3 ... BSE detector 4 ... EDX analyzer 5 ... Sample stage 6 ... Chamber 7 ... Entire apparatus control part 11 ... FIB column control part 21 ... SEM column control part 31 ... Detector control part 41 ... EDX analyzer control unit 111, 112, 113, 114 ... secondary particle image 121, 122 ... analysis image 131, 132 ... pseudo analysis image

Claims (13)

エネルギービームを照射するエネルギービーム光学系と、
電子ビームを照射する電子ビーム光学系と、
試料を載置する試料ステージと、
試料から発生する二次粒子を検出する二次粒子検出器と、
試料から発生する分析情報を検出する分析器と、を備える荷電粒子線装置において、
エネルギービームの照射により試料に第1の断面を形成し、当該第1の断面への電子ビームの照射により試料から発生した二次粒子および分析情報を検出し、エネルギービームの照射により第2の断面を形成し、当該第2の断面への電子ビームの照射により試料から発生した二次粒子を検出し、前記第1の断面にかかる二次粒子像および分析画像の相関に基づき、前記第2の断面にかかる二次粒子像から前記第2の断面の分析画像を擬似的に作成することを特徴とする荷電粒子線装置。
An energy beam optical system for irradiating the energy beam;
An electron beam optical system for irradiating an electron beam;
A sample stage on which the sample is placed;
A secondary particle detector for detecting secondary particles generated from the sample;
In a charged particle beam apparatus comprising an analyzer for detecting analysis information generated from a sample,
A first cross section is formed on the sample by irradiation with an energy beam, secondary particles generated from the sample and analysis information are detected by irradiation of the electron beam on the first cross section, and a second cross section is detected by irradiation of the energy beam. And detecting the secondary particles generated from the sample by irradiation of the electron beam to the second cross section, and based on the correlation between the secondary particle image and the analysis image of the first cross section, A charged particle beam apparatus characterized in that an analysis image of the second cross section is created in a pseudo manner from a secondary particle image on a cross section.
請求項1に記載の荷電粒子線装置において、
少なくとも、前記第1の断面にかかる分析画像と、前記第2の断面にかかる擬似的な分析画像を用いて、3次元再構築することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus characterized in that three-dimensional reconstruction is performed using at least an analysis image related to the first cross section and a pseudo analysis image related to the second cross section.
請求項1に記載の荷電粒子線装置において、
前記二次粒子検出器が、反射電子検出器であることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the secondary particle detector is a backscattered electron detector.
請求項1に記載の荷電粒子線装置において、
前記二次粒子検出器が、二次電子検出器であることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the secondary particle detector is a secondary electron detector.
請求項1に記載の荷電粒子線装置において、
前記分析器が、EDX用検出器であることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the analyzer is an EDX detector.
請求項1に記載の荷電粒子線装置において、
前記分析器が、WDX用検出器であることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the analyzer is a detector for WDX.
請求項1に記載の荷電粒子線装置において、
前記分析器が、EBSP用検出器であることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the analyzer is a detector for EBSP.
請求項1に記載の荷電粒子線装置において、
前記第2の断面へ電子ビームを照射するときの加速電圧を、前記第1の断面へ電子ビームを照射するときの加速電圧より下げることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus characterized by lowering the acceleration voltage when irradiating an electron beam to the said 2nd cross section from the acceleration voltage when irradiating an electron beam to the said 1st cross section.
請求項1に記載の荷電粒子線装置において、
前記第2の断面へ電子ビームを照射するときに、試料にリターディング電圧を印加することにより、前記第1の断面へ電子ビームを照射するときとは異なる観察条件とすることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
When the electron beam is radiated to the second cross section, a charging voltage is applied to the specimen, whereby the observation condition is different from that when the electron beam is radiated to the first cross section. Particle beam device.
請求項1に記載の荷電粒子線装置において、
前記第1の断面にかかる分析画像に基づき、前記第2の断面にかかるエネルギービームの加工条件を変更することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus, wherein processing conditions of an energy beam applied to the second cross section are changed based on an analysis image related to the first cross section.
請求項1に記載の荷電粒子線装置において、
前記第1の断面にかかる二次粒子像および前記第2の断面にかかる二次粒子像に基づき、エネルギービームの加工条件を変更し、当該エネルギービームの照射により第3の断面を形成することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
Based on the secondary particle image relating to the first cross section and the secondary particle image relating to the second cross section, the processing conditions of the energy beam are changed, and the third cross section is formed by irradiation of the energy beam. Characterized charged particle beam device.
請求項1に記載の荷電粒子線装置において、
エネルギービームの照射により形成された第3の断面にかかる分析情報を前記分析器により取得するか否かにつき、前記第1の断面にかかる二次粒子像および前記第2の断面にかかる二次粒子像に基づき判断することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The secondary particle image relating to the first cross section and the secondary particle relating to the second cross section are used to determine whether or not the analyzer acquires analysis information relating to the third cross section formed by energy beam irradiation. A charged particle beam apparatus characterized by making a determination based on an image.
請求項1に記載の荷電粒子線装置において、
前記第1の断面にかかる二次粒子像に基づき、前記第1の断面にかかる分析画像の取得条件を変更することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus characterized by changing an acquisition condition of an analysis image concerning the first section based on a secondary particle image concerning the first section.
JP2016571906A 2015-01-30 2016-01-12 Charged particle beam equipment that creates analytical images from secondary particle images Pending JPWO2016121471A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015016288 2015-01-30
JP2015016288 2015-01-30
PCT/JP2016/050597 WO2016121471A1 (en) 2015-01-30 2016-01-12 Charged particle beam apparatus for artificially creating analysis image from secondary-particle image

Publications (1)

Publication Number Publication Date
JPWO2016121471A1 true JPWO2016121471A1 (en) 2017-11-30

Family

ID=56543091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016571906A Pending JPWO2016121471A1 (en) 2015-01-30 2016-01-12 Charged particle beam equipment that creates analytical images from secondary particle images

Country Status (2)

Country Link
JP (1) JPWO2016121471A1 (en)
WO (1) WO2016121471A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905394B1 (en) * 2017-02-16 2018-02-27 Carl Zeiss Microscopy Gmbh Method for analyzing an object and a charged particle beam device for carrying out this method
JP6954848B2 (en) * 2018-01-24 2021-10-27 日本電子株式会社 Scanning electron microscope and measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135052A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Scanning electron microscope
JP2007250377A (en) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp Electron microscope and testpiece chamber fitted with electron microscope
JP2011204570A (en) * 2010-03-26 2011-10-13 Hitachi High-Technologies Corp Composite charged particle beam device
JP2014116292A (en) * 2012-11-15 2014-06-26 Hitachi High-Tech Science Corp Cross section processing observation method and device
JP2014192090A (en) * 2013-03-28 2014-10-06 Hitachi High-Tech Science Corp Focused ion beam apparatus, sample cross section observation method using the same, and computer program for sample cross section observation using focused ion beam
JP2014222674A (en) * 2014-08-01 2014-11-27 株式会社日立ハイテクサイエンス Electron microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665335B2 (en) * 2001-04-26 2011-04-06 株式会社島津製作所 Electron beam analyzer
JP2014082027A (en) * 2012-10-15 2014-05-08 Hitachi High-Technologies Corp Charged particle beam device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135052A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Scanning electron microscope
JP2007250377A (en) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp Electron microscope and testpiece chamber fitted with electron microscope
JP2011204570A (en) * 2010-03-26 2011-10-13 Hitachi High-Technologies Corp Composite charged particle beam device
JP2014116292A (en) * 2012-11-15 2014-06-26 Hitachi High-Tech Science Corp Cross section processing observation method and device
JP2014192090A (en) * 2013-03-28 2014-10-06 Hitachi High-Tech Science Corp Focused ion beam apparatus, sample cross section observation method using the same, and computer program for sample cross section observation using focused ion beam
JP2014222674A (en) * 2014-08-01 2014-11-27 株式会社日立ハイテクサイエンス Electron microscope

Also Published As

Publication number Publication date
WO2016121471A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6333462B2 (en) Image storage method and scanning microscope
EP2866245B1 (en) Method of examining a sample in a charged-particle microscope
US10096449B2 (en) Cross-section processing-and-observation method and cross-section processing-and-observation apparatus
US10242842B2 (en) Method for cross-section processing and observation and apparatus therefor
US8455820B2 (en) Composite charged particle beams apparatus
JP6932004B2 (en) 3D imaging in a charged particle microscope
TWI662583B (en) Section processing method, section processing device
EP3702766B1 (en) Crystal orientation map generation device, charged particle radiation device, crystal orientation map generation method, and program
JP6250294B2 (en) Focused ion beam device, sample cross-section observation method using the same, and computer program for sample cross-section observation using a focused ion beam
KR102301793B1 (en) Image creating metohd and imaging system for performing the same
WO2014055876A4 (en) High aspect ratio structure analysis
US9922798B2 (en) Sample processing method and charged particle beam device
JP5932428B2 (en) Scanning electron microscope
JP2013219031A5 (en) Inspection method and charged particle microscope
WO2016121471A1 (en) Charged particle beam apparatus for artificially creating analysis image from secondary-particle image
Burdet et al. Enhanced quantification for 3D SEM–EDS: using the full set of available X-ray lines
WO2018181408A1 (en) Automatic processing device
Ritter et al. A practical approach to test the scope of FIB-SEM 3D reconstruction
Rollett et al. Orientation mapping
TW201732280A (en) Method of imaging defects using an electron microscope
CN112635342B (en) Use of an electron beam scanning electron microscope for characterizing a sidewall that is blocked from view by an electron beam
Borisenko et al. Toward 3D structural information from quantitative electron exit wave analysis
Boughorbel et al. The Future SEM Sees 3 Dimensions... Bringing Deconvolution Techniques to the Electron Microscope.
Kammerud et al. 3D nanovision for the inspection of micro-electro-mechanical systems
Fleurkens Enhanced Multi-Modal 3D Analysis of Materials Using FIB-SEM Serial Sectioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170712

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225