JP7399813B2 - フォトマスク - Google Patents

フォトマスク Download PDF

Info

Publication number
JP7399813B2
JP7399813B2 JP2020125367A JP2020125367A JP7399813B2 JP 7399813 B2 JP7399813 B2 JP 7399813B2 JP 2020125367 A JP2020125367 A JP 2020125367A JP 2020125367 A JP2020125367 A JP 2020125367A JP 7399813 B2 JP7399813 B2 JP 7399813B2
Authority
JP
Japan
Prior art keywords
transmittance
photomask
area
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125367A
Other languages
English (en)
Other versions
JP2022021652A (ja
Inventor
昌典 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Electronics Co Ltd
Original Assignee
SK Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Electronics Co Ltd filed Critical SK Electronics Co Ltd
Priority to JP2020125367A priority Critical patent/JP7399813B2/ja
Publication of JP2022021652A publication Critical patent/JP2022021652A/ja
Application granted granted Critical
Publication of JP7399813B2 publication Critical patent/JP7399813B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、フォトマスクに関する。
従来より、フラットパネルディスプレイ等の大型の基板(例えば、一辺が数十cm~1、2mサイズ)にパターンを転写するために、複数の投影光学系を備えたマルチ走査型露光装置を用いてパターンを露光する、所謂つなぎ露光又は継ぎ露光と呼ばれる技術が知られている。複数の照射光学系に対して、マスクと基板とを同期して移動(走査)し、複数の投影光学系を介して投影された像をつなぎ合わせて、大面積の転写を可能とする。
隣接する照明領域間において、転写パターンをつなぎ合わせるため、各照明領域は、走査方向に対して傾斜した形状(例えば台形形状、円弧形状)を有し、走査方向に隣接する投影光学系を介して形成される投影領域の端部で二重露光となるよう各照明領域が配置されている。
特開2016-24257号公報 特開2013-238670号公報
投影領域の二重露光となる領域(つなぎ領域)の積算露光量は、他の領域の積算露光量と完全には一致せず、この領域で露光ムラが発生することがある。基板上で露光ムラが生じた場合、例えば転写されたパターン寸法に変動が生じ、ディスプレイ装置の精細な画像に悪影響を与える等のリスクが高まる。
露光ムラを低減するため、特許文献1は、二重露光となる照明領域の照射量をフィルタにより調整する方法が開示されており、特許文献2は、照射領域の形状を調整する方法が開示されている。
いずれの方法も光学系の高度な制御が必要となり、また露光装置の調整だけでは露光ムラの改善が困難な場合がある。転写パターンの仕上がり精度への要求が厳しくなると、更なる露光ムラの低減が要望される。
本発明は、露光ムラを低減することができるフォトマスクの提供を課題とする。
本発明に係るフォトマスクは、
透過性基板に、基準領域と、前記基準領域に隣接する少なくとも1つの透過率補正領域とを有し、
前記透過率補正領域は、転写領域の全長に亘って延在し、
前記透過率補正領域と前記基準領域の光透過率が異なることを特徴とする。
また、本発明に係るフォトマスクは、
前記透過率補正領域を複数備え、複数の前記透過率補正領域が同一方向に延在していることを特徴とする。
このようなフォトマスクの構成とすることで、露光装置の二重露光になるよう配置された各照明領域の照度分布の微小変動部分による露光ムラを、フォトマスクの透過率により低減することができる。
また、本発明に係るフォトマスクは、
前記透過率補正領域と前記基準領域のうち透過率が低い領域には半透過膜が形成され、
前記半透過膜の透過率は、前記透過性基板の透過率より低いことを特徴とする。
また、本発明に係るフォトマスクは、
前記半透過膜が部分的に形成され、前記半透過膜の占有率により光透過率を制御することを特徴とする。
また、本発明に係るフォトマスクは、
前記フォトマスクは、遮光性パターンを備え、
前記遮光性パターンは、遮光性膜とエッチングストッパ膜との積層構造又は遮光性膜とエッチングストッパ膜と前記半透過膜との積層構造の少なくとも一方を含むことを特徴とする。
また、本発明に係るフォトマスクは、
前記フォトマスクは、遮光性パターンを備え、
前記遮光性パターンは、遮光性膜と前記半透過膜との積層構造であることを特徴とする。
このようなフォトマスクの構成とすることで、半透過膜の占有率(被覆率)により透過率を制御することができる。
また、透過率を制御し、露光ムラが低減したフォトマスクに遮光性膜からなるパターンを形成することができ、転写パターンの寸法変動を低減することができる。
また、本発明に係るフォトマスクは、
前記透過率補正領域と前記基準領域のうちの透過率が低い領域において、前記透過性基板が遮光性膜により部分的に覆われ、前記遮光性膜の占有率により光透過率を制御することを特徴とする。
このようなフォトマスクの構成とすることで、遮光性膜により透過率を制御することが可能となる。フォトマスクの製造工程の簡略化にも寄与し得る。
また、本発明に係るフォトマスクの製造方法は、
露光装置の積算露光量分布を測定する工程と、
前記積算露光量分布から、前記フォトマスクの前記基準領域と前記透過率補正領域の位置を確定し、前記基準領域に対する前記透過率補正領域の相対的な透過率の補正値を算出する工程と、
前記補正値に基づいて、相対的に前記基準領域に対して前記透過率補正領域の透過率を補正する工程とを含むことを特徴とする。
このようなフォトマスクの製造方法とすることで、実際に使用する露光装置の状態に合わせて、露光ムラの低減を行うため、最適な積算露光量の補正が可能となる。
本発明にかかるフォトマスクによれば、露光ムラを低減することができる。
その結果、フォトマスクを用いて製造される製品の品質の向上に寄与し得る。
図1(a)は、露光装置200の概要を示す斜視図であり、図1(b)は、基板P上の点に投影された露光光の強度の時間変化を模式的に示すグラフである。 図2(a)は、基板P上に投射された投影領域の配置例を示す平面図であり、 図2(b)は、投影領域PRによる、基板Pの積算露光量を示すグラフであり、図2(c)は、重複投影領域PAOにおける積算露光量の不均一を補正するフォトマスク100の透過率の分布を示すグラフであり、図2(d)は、フォトマスク100の拡大平面図である。 図3(a)は、重複投影領域PAOを投影する重複照明領域に半透過領域を形成したフォトマスク100の平面図であり、図3(b)、(c)、(d)は、図3(a)の円で囲んだ領域の拡大平面図である。 図4は、半透過領域2の透過率を調整する方法を示すフォトマスク100の拡大平面図である。 図5は、透過領域4と半透過領域2と所定のパターン5を有するフォトマスク100の平面図である。 図6は、実施形態1にかかるフォトマスク100の主要製造工程の断面図を示す。 図7は、実施形態1にかかるフォトマスク100の主要製造工程の断面図を示す。 図8は、実施形態2にかかるフォトマスク100の主要製造工程の断面図及び平面図を示す。 図9は、実施形態2にかかるフォトマスク100の主要製造工程の断面図及び平面図を示す。 図10(a)は、実施形態3にかかるフォトマスク100の拡大平面図であり、図10(b)、(c)は、フォトマスク100の主要製造工程を示す断面図である。 図11(a)は、基板Pが露光される露光量の積算露光量のY方向の位置依存性を示すグラフであり、図11(b)は、重複投影領域PAOにおける積算露光量の不均一を補償するためのフォトマスク100の透過率のY方向分布を示すグラフであり、図11(c)、(d)は、実施形態5にかかるフォトマスク100の拡大平面図及び断面図である。 図12は、露光装置200の露光ムラを低減するフォトマスク100の平面図である。 図13(a)は、基板Pの露光光の強度分布を測定するための光学式検出器10の配置例を示す斜視図であり、図13(b)は、校正用フォトマスク100’の斜視図である。 図14(a)は、直線パターンからなる計測用パターン12を有する計測用フォトマスク100’’の平面図、図14(b)は、Y方向に整列した矩形のホールパターンからなる計測パターン12を有する計測用フォトマスク100’’の平面図、図14(c)、(d)は、基板P上に形成されたフォトレジスト膜13のパターンの拡大平面図でである。
以下、図面を参照して本発明の実施形態について説明する。但し、以下の実施形態は、いずれも本発明の要旨の認定において限定的な解釈を与えるものではない。また、同一又は同種の部材については同じ参照符号を付して、説明を省略することがある。
(露光装置)
図1(a)は、露光装置200の概要を示す斜視図である。露光装置200は、以下に述べるような構成であり、「マルチ走査型露光装置」(又は「マルチ投影型露光装置」)と呼ばれることがある。
フォトマスク100は図示されないマスクステージにより保持され、露光対象の基板Pは図示されない基板ステージにより、フォトマスク100と平行に保持されている。フォトマスク100及び基板Pは、それぞれマスクステージ及び基板ステージにより、同期して同じ方向に同じ速度で移動することができる。
以下、フォトマスク100及び基板Pの移動方向をX方向、X方向に垂直な方向をY方向とし、X方向とY方向に垂直な方句をZ方向とする。Z方向はフォトマスク100(及び基板P)の面に垂直である。
なお、マスクステージ及び基板ステージは、それぞれ移動機構を有し、X方向、Y方向、Z方向に移動可能であり、さらにZ方向に垂直な面で回転が可能である。マスクステージ及び基板ステージは、フォトマスク100及び基板Pに設けられているアライメントマークを読み取り、移動機構によりアライメントが可能となる。
特許文献1、2に開示されているように、露光装置200は、光源201から放射された光が分岐光学系202に入射し、複数の照明光学系203(2031~2037)に分岐される。
各照明光学系は、フォトマスク100上に、照明領域IL(IL1~IL7)を、均一な照度分布で照明する。照明領域ILは、各照明光学系に設けられたアパーチャーにより、走査方向に対して傾斜した形状(例えば台形形状、円弧形状等)を有する。
照明領域IL1、IL3、IL5、IL7と、照明領域IL2、IL4、IL6とは、Y方向に所定の間隔で整列している。照明領域IL2、IL4、IL6は、照明領域IL1、IL3、IL5、IL7に対して、所定の距離だけX方向に離隔している。照明領域IL1、IL3、IL5、IL7と、照明領域IL2、IL4、IL6とは、部分的にX方向に重なるように、千鳥状に(交互に)配置されている。
フォトマスク100の照明領域IL(IL1~IL7)に照射された光は、所定のパターンを有するフォトマスク100を通過し、それぞれ複数の投射光学系204(2041~2047)を介して基板Pの投影領域PR(PR1~PR7)に投影される。各投影領域PR(PR1~PR7)は、各照明領域IL(IL1~IL7)に対応する。
各投影領域PR(PR1~PR7)にはフォトマスク100に形成されたパターンを反映した光が投影され、基板P上に形成された感光性物質(例えばフォトレジスト、感光性樹脂等)が投影された光によって露光される。
基板Pの各投影領域PRにおいて光が投影されながら、フォトマスク100及び基板Pが同期移動するため、投影された光が重ね合わされ、大面積の感光性物質を露光することができる。
なお、照明領域IL及び投影領域PRの数は、上記に限定されず、適宜設定可能である。
図1(b)は、露光装置200により基板P上の点Y1、Y2、Y3に投影された露光光の強度の時間変化を模式的に示すグラフである。縦軸は露光光の強度(Dose)、横軸は時間である。点Y1、Y2、Y3は、投影領域PR1、PR2を横切る間、露光光が照射される。
なお、投影領域PRの形状は、2つの台形を組合わせた形状の例を示すが、それに限定されず、投影領域PRの形状は適宜設定され得る。
フォトマスク100及び基板Pが同期して移動するため、基板P上の点Y1は投影領域PR1のみを横切り、点Y3は投影領域PR2のみを横切るが、点Y2は投影領域PR1及び投影領域PR2を横切る。点Y1が投影領域PR1を横切る時間は点Y3が投影領域PR2を横切る時間と等しいが、点Y2が投影領域PR1を横切る時間は点Y1が投影領域PR1を横切る時間より短く、点Y2が投影領域PR2を横切る時間は点Y3が投影領域PR2を横切る時間より短い。理想的には、点Y2が投影領域PR1を横切る時間と投影領域PR2を横切る時間との合計が、点Y1が投影領域PR1を横切る時間が等しければ、各点Y1、Y2、Y3の積算露光量は同じになるが、後述するように実際には点Y2の積算露光量は、点Y1、Y3の積算露光量とは必ずしも一致しない。
(露光分布補正用マスク)
図2(a)に、基板P上に投射された投影領域PR(PR1、PR2、PR3)の配置例の平面図を示す。
フォトマスク100及び基板Pが移動することにより、相対的に投影領域PRは例えば図2(a)に示すX方向に移動(走査)する。交互に配置された投影領域PR1、PR3と投影領域PR2とは、一部の領域PAO(「重複投影領域PAO」と称する)において互いに重なり合い、その他の領域PASは、互いに重なり合わず、単独で基板P表面を投影する。重複投影領域PAOは、投影領域PR1、PR3と投影領域PR2とをつなぐ領域(継ぎ領域)である。
フォトマスク100に対して重複投影領域PAOの数を少なくするため、好適にはフォトマスク100の長手方向を走査方向(X方向)に一致させる。
図2(b)は、投影領域PR(PR1、PR2、PR3)が走査することにより、基板Pが露光される露光量の積算露光量(時間積分)の例を示す。横軸は、投影領域PRが走査するX方向に垂直なY方向の位置を示し、縦軸は積算露光量である。投影領域PRが単独で基板Pを走査する領域PAS(単投影領域、又はシングル投影領域と称する)では、積算露光量はY方向に均一であるが、投影領域PRが互いに重なりあう重複投影領域PAOにおいては、(図2(b)に示す例においては、)積算露光量はシングル投影領域PASの積算露光量と比較して高くなる傾向が見られるが、高くなったり、低くなったりした場合には問題が発生する。また、シングル投影領域PASの積算露光量と比較して低くなる場合もある。
なお、シングル投影領域PASの幅は、例えば数mm~数十mm、重複投影領域PAOの幅は、例えば数百μm~数mmであるが、これに限定するものではない。
図2(b)では、重複投影領域PAOにおける積算露光量は、シングル投影領域PASの積算露光量と比較して高くなる例を示すが、投影領域PR(又は照明領域IL)の間隔に依存して、重複投影領域PAOの積算露光量は変化し、後述するようにシングル投影領域PASの積算露光量と比較して低くなることもある。
また、重複投影領域PAOにおいて、積算露光量のピーク(極大値)が複数(2個)存在する例を示すが、積算露光量のピークが1個の場合もあり、また複数のピークの値が異なる場合や、極大値ではなく極小値を示す場合もある。図2(b)は、積算露光量の分布を限定するものではない。
図2(c)は、重複投影領域PAOにおける積算露光量の不均一を補正するフォトマスク100の透過率分布を示すグラフである。横軸はY方向の距離であり、縦軸は補正透過率である。
図2(a)に示す例においては、重複投影領域PAOの積算露光量が高くなるため、図2(c)に示すように重複投影領域PAOを投影するフォトマスク100の領域(例えば、「重複照明領域」と称する)の透過率を低下させることにより、重複投影領域PAOの積算露光量が低くなるよう調整し、基板PのY方向の均一性を向上させることができる。
すなわち、フォトマスク100において、基板P上の重複投影領域PAOを投影する領域(重複照明領域)の透過率を他の領域の透過率に対して低く(又は高く)設定することにより、重複投影領域PAOの露光量を低下(又は増大)させることができる。
例えば、投影領域PR1と投影領域PR2との重複投影領域を投影するフォトマスク100上の照明領域は、照明領域IL1と照明領域IL2との重複領域であり、照明領域IL1と照明領域IL2の重複照明領域のフォトマスク100の透過率を低下(又は増大)させると、投影領域PR1と投影領域PR2との重複投影領域の透過光の強度が低下(又は増大)する。
図2(d)はフォトマスク100の一部を示す拡大平面図である。図2(d)に示すように、フォトマスク100は、石英ガラス等の透過性基板1上に、透過性基板1の露光光透過率より低い透過率を有する半透過領域2が形成されており、半透過領域2は、重複投影領域PAOを投影する重複照明領域に形成されている。半透過領域2は、半透過膜3により構成され得る。
半透過領域2は、フォトマスク100の透過率を補正(調整)する透過率補正領域であり、従って半透過膜3は透過率を補正する透過率補正膜である。
透過率補正領域は、基本的には重複照明領域に相当する。しかし、図2(b)に示すように、積算露光量の分布は重複照明領域幾何学的形状のみにより確定せず、必ずしも、透過率補正領域は重複照明領域の形状と一致しない。
以下において、理解のため、透過率補正領域と重複照明領域とを対応させて説明することがあるが、後述するように、実際の積算露光量分布から透過率補正領域を決定する。
なお、透過性基板1は露光光に含まれる代表波長(例えばi線、h線、g線)に対して、例えば90~97%の透過率を有し、半透過膜3(透過率補正膜)は、例えばCr系金属化合物、Si系化合物、金属シリサイド化合物等の公知の材料からなり、スパッタ法、蒸着法等により形成され、半透過膜3の透過率は、透過性基板1の透過率より低く、例えば50%~99%である。
なお、透過性基板1が露出した領域を透過領域4と称す。
重複投影領域PAOの積算露光量がシングル投影領域PASの積算露光量のα倍(α>1)である場合、半透過領域2の光透過率を透過性基板1の1/α倍とすることで、重複投影領域PAOの積算露光量をシングル投影領域PASの積算露光量と一致させることができる。
図2(b)に示すように、重複投影領域PAOの積算露光量のY方向依存性分布は、必ずしも急峻に変化する矩形状ではなく、曲線形状である。
そのため、重複投影領域PAOの積算露光量の単位面積当たりの平均値と、シングル投影領域PASの積算露光量の単位面積当たりの平均値とからαを算出し、半透過領域2の光透過率を決定する。
α=<領域PAOの積算露光量>/<領域PASの積算露光量>
ここで<>は、単位面積当たりの平均値を意味する。図2に示す例は、α>1の場合を示し、α<1の例については後述する。
なお、半透過領域2の光透過率は、上記値(透過性基板1の1/α倍)に限定するものではなく、上記値を中心に適宜調整し得る。
このようにフォトマスク100は、少なくとも転写対象物である基板P上の感光性物質に、形成された転写パターンを投影する領域(転写領域と称す)において、フォトマスク100の走査方向(移動方向)に延在する半透過領域(透過率補正領域)が、転写領域の走査方向の全長に亘って形成されている。
その結果、転写対象物の露光ムラを低減でき、精細なパターンの転写が可能となる。
図3(a)は、フォトマスク100の平面図を示す。フォトマスク100は、重複投影領域PAOを投影する重複照明領域に半透過領域2を備えている。また、フォトマスク100は、周縁部にアライメントマークALが設けられている例を示すが、これに限定せず、周辺部に4か所以上配置されていてもよい。
図3(b)、(c)、(d)は、図3(a)の円で囲んだ領域の拡大平面図であり、半透過膜3のパターンの例を示す。図3(b)は、透過率を調整すべき重複照明領域に、透過性基板1の1/α倍の透過率を有する半透過膜3を1つの帯状に形成した例(標準配置)を示し、図3(c)は、重複照明領域における面積平均の透過率が、透過性基板1の1/α倍の透過率となるように、透過率を調整すべき重複照明領域に、複数の帯状の半透過膜3(例えば数十μm幅)を形成した例(平準化配置)を示し、図3(d)は、重複照明領域における面積平均の透過率が、透過性基板1の1/α倍の透過率となるように透過率を調整すべき重複照明領域に、矩形状(例えば数十μm角)の半透過膜3をランダムに配置した例(ランダム配置)を示す。
なお、平準化配置、ランダム配置の形状は上記に限定されない。
図3(b)で示す半透過膜3のパターンの場合、透過性基板1と半透過領域2との間で急峻な露光量の変化が生じることになる。一方、図3(c)は、重複照明領域の中央から周辺に向かうに従い照射強度が透過性基板1の透過率に近づくように設定されている。その結果、フォトマスク100の走査方向の透過率の変化量が緩和し、実際の積算露光量の変化に近づけることができる。その結果、透過性基板1と半透過領域2との境界部での露光ムラの発生をさらに防止する効果を得られる。
同様に、図3(d)に示すようなランダム配置を採用することで、透過性基板1と半透過領域2との間での露光量の変化を緩和する。図3(c)に示すパターンと同様に透過性基板1と半透過領域2と境界部での露光ムラの発生をさらに防止する効果を得られる。
従って、図3(c)及び図3(d)に示す平準化配置及びランダム配置の半透過領域3の幅は、例えば図3(b)に示す均一な単一の帯状の半透過膜3からなる標準配置の両側部に、領域PAOの積算露光量の分布(端部での広がり)に相当する幅又はそれより広く設定される。
半透過領域2の透過率は、例えば形成する半透過膜3の膜厚、組成等により調整可能である。透過領域4の透過率に対して、露光光に含まれる代表波長に対して、例えば、50%~99%の透過率を有する。
しかし、例えば70%以上の高い透過率を有する半透過膜3を安定して形成することが困難な場合、半透過膜3の占有率(被覆率)を調整することで透過率を調整(補正)することができる。
図4は、半透過領域2の透過率を調整する方法を示し、図4(a)は半透過膜3の占有率が100%、図4(b)は半透過膜の占有率が50%(=1/2)、図4(c)は半透過膜の占有率が25%(=1/4)、図4(d)は半透過膜の占有率が12.5%(=1/8)の例を示す。
なお、半透過領域2における半透過膜3の占有率は、半透過領域2の面積に対する半透過膜3の形成面積の比率(=[半透過膜3の形成面積]/[半透過領域2の面積])により定義される。
例えば、半透過膜3の露光光に対する透過率が70%の場合、半透過領域2における半透過膜3の占有率が100%(図4(a))、50%(図4(b))、25%(図4(c))及び12.5%(図4(d))の半透過領域2の透過率は、それぞれ70%、85%、92.5%、96.25%となる。
半透過膜3自体の透過率の調整と半透過膜3占有率の調整により、必要な半透過領域2の透過率を得ることができる。
図5は、透過性基板1が露出した透過領域4と、半透過膜3が形成された半透過領域2と、所定のパターン5(マスクパターン5)を有するフォトマスク100の平面図である。
フォトマスク100には、半透過膜3からなる半透過領域2上に遮光性のパターン5が形成されている。
ここでパターン5は、転写対象である基板Pに電子回路、電子部品等を形成するためのパターンである。
なお、フォトマスク100はパターン5が遮光性のパターンのみからなるバイナリーマスクに限定するものではなく、遮光性膜からなるパターンと半透過膜とからなるパターンを有する多階調ハーフトーンマスクや、遮光性膜からなるパターンと半透過性の位相シフト膜とからなるパターンを有する位相シフトであっても良い。
また、図5におけるパターン5及び半透過領域2の寸法の相対関係は、視認性のために調整したものであり、必ずしも実際のフォトマスク100の寸法比率を反映したものではない。
(実施形態1)
以下、実施形態1にかかるフォトマスク100の製造方法について説明する。
図6、7は、遮光性膜6からなるパターン5を有するフォトマスク100の主要製造工程の断面図を示す。
図6(a)に示すように、石英ガラス等の透過性基板1上にフォトマスク100の透過率を補正するための透過率補正膜として、例えば酸化金属膜物や窒化膜等の金属化合物、Si系化合物、金属シリサイド化合物等の公知の材料からなる半透過膜3をスパッタ法、蒸着法等により(例えば膜厚1[nm]~10[nm])成膜する。膜の組成、膜厚は、重複照明領域の透過率を補正するために必要とされる透過率が得られるよう適宜選択する。
好適には、半透過膜3は、露光光に含まれる代表波長に対する透過率が、透過性基板1の透過率より低く、また遮光性膜6の透過率より高く、透過性基板1の透過率に対して、50%~99%を有し、さらに好適には70%~99%の高い透過率を有する膜、例えば、高透過率特性の酸化金属膜(Cr系、Zn系、Sn系)を使用する。
透過率の調整のため適宜図4に示す構成を採用してもよい。
なお、露光光の波長及び透過率は上記値に限定するものではない。
次に図6(b)に示すように、塗布法等により第1のフォトレジスト膜7を形成し、その後、描画及び現像工程により、第1のフォトレジスト膜7をパターニングする。
第1のフォトレジスト膜7のパターンは、図5の半透過領域2に相当する。すなわち、第1のフォトレジスト膜7のパターンは、図5の半透過領域2を規定する。
次に、第1のフォトレジスト膜7をエッチングマスクに半透過膜3を、ウェットエッチング法又はドライエッチング法によりエッチングし、パターニングする。
なお、第1のフォトレジスト膜7のパターンは、アライメントマークを含んでもよい。
例えば、フォトマスク100の周縁部、例えば4角にアライメントマークを含んでもよい。
また、アライメントマークを基準として、上層に積層した遮光性膜等をパターニングする際は、アライメントマークの位置を描画装置が検出し、設計データに基づくパターンを描画していく。このとき、後に詳述するように、アライメントマークが形成されている半透過膜3の透過率が高い場合にはアライメントマークの位置検出誤差が生じる場合があり、対策が必要となる。
次に、図6(c)に示すように、第1のフォトレジスト膜7をアッシング法又はレジスト剥離液に浸漬することにより除去し、エッチングストッパ膜9をスパッタ法、蒸着法等により(例えば膜厚1[nm]~20[nm])形成する。
その後エッチングストッパ膜9の上層に、例えば金属化合物、Si系化合物、金属シリサイド化合物等の公知の材料からなる遮光性膜6(上層膜6)をスパッタ法、蒸着法等により(例えば膜厚50[nm]~100[nm])成膜する。
遮光性膜6の露光光に含まれる代表波長に対する透過率は、例えば材質(組成)及び膜厚を調整することで、例えば光学濃度(OD値)が2.0以上、好ましくは、2.7以上を満たすように設定する。
ここで、エッチングストッパ膜9は、遮光性膜6及び半透過膜3とエッチング特性が異なる(耐性を持つ)材料から構成され、公知の材料を使用することができる。
なお、フォトマスク100に半透過膜3からなるアライメントマークが形成されている場合、成膜時にアライメントマークが形成された箇所をシールド板等により遮蔽した状態で、エッチングストッパ膜9及び遮光性膜6を成膜し、アライメントマーク上にエッチングストッパ膜9及び遮光性膜6が形成されることを防止してもよい。
なお、上述のように、アライメントマークが形成されている半透過膜3の透過率が高い場合には、描画装置がアライメントマークの位置を検出することが困難となり、アライメントマークの位置検出誤差が生じる場合がある。
そのような場合には、あらかじめ透過性基板1上に半透過膜3を形成したのち、パターン形成領域外から透過性基板1の周縁までの領域に透過率を低下させるための透過率調整膜を積層してもよい。透過率調整膜は半透過膜に限らず遮光性膜であってもよい。ただし、パターン領域内についてはシールド板等により遮蔽した状態で成膜し、パターン領域内での透過率調整膜の形成を防止するようにする。
次に、図6(d)に示すように、塗布法等により第2のフォトレジスト膜8を形成し、その後描画及び現像工程により、第2のフォトレジスト膜8をパターニングする。
第2のフォトレジスト膜8のパターンは、図5のパターン5に相当する。すなわち、第2のフォトレジスト膜8のパターンが、パターン5を規定する。
次に、図7(a)に示すように、第2のフォトレジスト膜8のパターンをエッチングマスクにして、ウェットエッチング法又はドライエッチング法により、遮光性膜6を選択的にエッチングし、パターニングする。
遮光性膜6と、下層のエッチングストッパ膜9とは異なる材料から構成されているため、公知のエッチャント(薬液又はガス)を用いて、エッチングストッパ膜9をエッチングせず、遮光性膜6を選択的にエッチングすることができる。
なお、半透過膜3は、エッチングストッパ膜9に覆われているため、本工程においてエッチングされない。
次に、図7(b)に示すように、第2のフォトレジスト膜8のパターンをエッチングマスクにして、ウェットエッチング法又はドライエッチング法により、エッチングストッパ膜9を選択的にエッチングし、パターニングする。
エッチングストッパ膜9は、遮光性膜6及び半透過膜3と異なる材料から構成されているため、公知のエッチャント(薬液又はガス)を用いて、遮光性膜6及び半透過膜3をエッチングせず、エッチングストッパ膜9を選択的にエッチングすることができる。
次に、図7(c)に示すように、第2のフォトレジスト膜8をアッシング法又はレジスト剥離液に浸漬することにより除去して、フォトマスク100を得る。
遮光性膜6の下層には、エッチングストッパ膜9又は半透過膜3が存在するが、膜厚を薄く設定することで、精度を含めて、マスク品質に影響することはない。
(実施形態2)
以下、実施形態2にかかるフォトマスク100の製造方法について説明する。
図8、図9は、遮光性膜6からなるパターン5を有するフォトマスク100の主要製造工程の断面図及び平面図を示す。図8(a)、(b)、(d)、図9(a)、(c)は図5のA-A線に相当する図8(c)及び図9(b)のA-A線における断面図であり、図8(c)、図9(b)は平面図である。
以下、図8、図9を参照し、フォトマスク100の製造方法について説明する。
図8(a)に示すように、石英ガラス等の透過性基板1上にフォトマスク100の透過率を補正するための透過率補正膜として、半透過膜3をスパッタ法、蒸着法等により(例えば膜厚5[nm]~20[nm])成膜する。
次に、半透過膜3上に、遮光性膜6(上層膜)をスパッタ法、蒸着法等により(例えば膜厚50[nm]~100[nm])成膜する。
なお、遮光性膜6は、半透過膜3とエッチング特性が異なる材料から構成される。例えば半透過膜3としてCr系化合物、遮光性膜6としてCr以外の金属系化合物、例えばTi系化合物やNi系化合物を選択することができるが、これに限定するものではなく、適宜公知の材料を組合わせればよい。
なお、予め準備された透過性基板1上に半透過膜3を形成したフォトマスクブランクスや、透過性基板1上に半透過膜3及び遮光性膜6を形成したフォトマスクブランクスを使用してもよい。
次に図8(b)、(c)に示すように、塗布法等により第1のフォトレジスト膜7’を形成し、その後描画及び現像工程により、第1のフォトレジスト膜7’をパターニングする。
図8(c)に示すように、第1のフォトレジスト膜7’のパターンは、図5に示す半透過領域2とパターン5とを足し合わせた(組合わせた)パターンである。
次に図8(d)に示すように、第1のフォトレジスト膜7’をエッチングマスクにして、まず、上層に形成された遮光性膜6を、ウェットエッチング法又はドライエッチング法により選択的にエッチングし、パターニングする。次に、下層に形成された半透過膜3を、ウェットエッチング法又はドライエッチング法により、選択的にエッチングし、パターニングする。その後、アッシング法又はレジスト剥離液に浸漬することにより、第1のフォトレジスト膜7’を除去する。
公知のエッチャント(薬液又はガス)を適宜選択することにより、半透過膜3及び遮光性膜6のそれぞれに対して選択エッチングが可能である。
図8(d)に示す工程においては、第1のフォトレジスト膜7’をエッチングマスクにして、遮光性膜6と半透過膜3とを同時にエッチングするエッチャントを用いて、遮光性膜6と半透過膜3とをエッチングしてもよい。遮光性膜6のサイドエッチ量が増大し、遮光性膜6のパターン幅の変動量が増大するものの、製造工程が簡略化されるという利点がある。
次に図9(a)、(b)に示すように、塗布法等により第2のフォトレジスト膜8’を形成し、その後描画及び現像工程により、第2のフォトレジスト膜8’をパターニングする。
図9(b)に示すように、第2のフォトレジスト膜8’のパターンは、図5のパターン5に相当する。すなわち、第2のフォトレジスト膜8’のパターンが、パターン5を規定する。
次に図9(c)に示すように、第2のフォトレジスト膜8’をエッチングマスクにして、上層に形成された遮光性膜6を、ウェットエッチング法又はドライエッチング法により選択的にエッチングし、パターニングする。半透過膜3はエッチングされずに残置する。
その後、アッシング法又はレジスト剥離液に浸漬することにより、第2のフォトレジスト膜8’を除去して、フォトマスク100を得る。
図9(c)において、遮光性膜6と半透過膜3とが積層されている領域は、遮光性を有し、パターン5として機能する。一方、半透過膜3の単層領域は、半透過領域2として機能し、フォトマスク100の透過率を補正し、露光ムラを低減することができる。
なお、第1のフォトレジスト膜7’のパターン及び第2のフォトレジスト膜8’のパターンは、フォトマスク100の周縁部にアライメントパターンを適宜含んでもよい。
遮光性膜6(及び/又は半透過膜3)から構成されるアライメントを得ることができる。
(実施形態3)
上記実施形態においては、半透過領域2を半透過膜3により形成したが、遮光性膜6を用いて形成することも可能である。
図10(a)は、半透過領域2を、矩形の遮光性膜6(例えば、1辺の長さが10~2μmの矩形状)を千鳥状に配列したパターンにより形成した例を示す平面図であり、図10(b)、(c)は、フォトマスク100の主要製造工程を示すA-A断面図である。
例えば図4に示す配置と同様に、遮光性膜6の占有率(被覆率)を調整することにより、半透過領域2において平均的な透過率を調整することが可能となる。
以下、実施形態3にかかるフォトマスク100の製造工程について説明する。
図10(b)に示すように、透過性基板1上に遮光性膜6を形成し、その後塗布法等により第1のフォトレジスト膜7’’を形成する。その後描画及び現像工程により、第1のフォトレジスト膜7’’をパターニングする。
なお、予め透過性基板1上に遮光性膜6が形成されたフォトマスクブランクスを用いてもよい。
第1のフォトレジスト膜7’’のパターンは、透過性基板1を部分的に遮光性膜6により覆う千鳥パターンにより半透過領域2に相当する領域(透過率補正領域)を構成し、透過性基板1を完全に遮光性膜6を覆うパターンによりパターン5に相当する領域を構成する。なお、半透過領域2とパターン5とが重なる領域は、パターン5の領域である。
図4に示す構成と同様に、遮光性膜6の占有率(被覆率)により、半透過領域2の透過率を調整できる。
次に図10(c)に示すように、第1のフォトレジスト膜7’’のパターンをエッチングマスクに遮光性膜6をエッチングし、その後第1のフォトレジスト膜7’’をアッシング法又はレジスト剥離液に浸漬することにより除去して、フォトマスク100を得る。
なお、半透過領域2において形成する遮光性膜6のパターンは、上記千鳥状パターン(チェック状パターン)に限定するものではなく、例えば格子状に形成してもよく、透過性基板1が露出した透過領域4と遮光性膜6との面積比率を調整することができれば、パターンの形状は任意に設定できる。
(実施形態4)
上記各実施形態は、透過性基板1に半透過領域2を形成する方法として、半透過膜3を成膜しているが、透過性基板1にイオン注入を施し、透過率を低下させることにより半透過領域2を形成してもよい。
本実施形態においては、図6(b)に示す第1のフォトレジスト膜7のパターンを実質的に反転させ、半透過領域2を開口し、他の領域をマスクしたフォトレジスト膜のパターンを透過性基板1の直上に形成し、フォトレジスト膜をマスクに透過性基板1に注入して透過率を補正する。イオンが注入された注入層は、透過率が低下する。
注入する元素として、例えばAs、Sb、Ge、Ga、Ti、W等を使用することができる。注入量は、例えば1×1014~1×1018[/cm]等、必要とされる光透過率に合わせて、適宜選択する。イオン注入装置の他、FIB装置により元素を注入してもよい。
イオン注入により半透過領域2を形成するため、半透過領域2に特別な膜が形成されない。そのため、以降の製造工程は、従来のマスク製造工程を実行可能である。
なお、本実施形態においては、フォトマスク100の透過性基板1には予めアライメントマークを形成しておく必要がある。
また、従来のマスク製造工程に従いフォトマスク100のパターンとアライメントマーク形成後に第1のフォトレジスト膜7を形成し、半透過領域2に対応する領域にイオン注入してもよい。
(実施形態5)
上記実施形態は、重複投影領域PAOの積算露光量がシングル投影領域PASの積算露光量より大きい(α>1)場合について説明した。しかし、重複投影領域PAOの積算露光量は、照明領域IL(IL1~IL7)の間隔や形状に依存して変化するため、αの値は、1より小さくなることがあり得る。
図11(a)は、図2(b)と同様に、基板Pが露光される露光量の積算露光量のY方向の位置依存性を示し、重複投影領域PAOの積算露光量がシングル投影領域PASの積算露光量より小さくなる例を示す。
図11(b)は、図2(c)と同様に、重複投影領域PAOにおける積算露光量の不均一を補正するためのフォトマスク100の透過率のY方向分布の例を示す。
図11(a)に示す例においては、重複投影領域PAOの積算露光量が周囲の積算露光量と比較して低くなるため、図11(b)に示すように重複投影領域PAOを投影するフォトマスク100の重複照明領域の透過率を、周囲の透過率と比較して増大させる必要がある。
本実施形態においては、図2(d)に示す例とは異なり、図11(c)に示すように、重複投影領域PAOに対応するフォトマスク100上の領域を透過性領域4とし、それ以外のシングル投影領域PASに対応するフォトマスク100上の領域を半透過領域2とし、透過率を低減させればよい。この場合、シングル投影領域PASを基準として、相対的に重複投影領域PAOの透過率を増大させることにより、透過性基板1が露出した重複投影領域PAOを透過率補正領域として機能させている。
そのため、図11(d)に示すように、シングル投影領域PASに対応するフォトマスク100上の照明領域に半透過膜3を形成する。
なお、半透過膜3のパターニングは、上記実施形態1、2、3のいずれを採用してもよい。実施形態1、2、3において、透過性領域4と半透過領域2の位置を入れ替えればよい。実施形態4においては、半透過領域2を開口したフォトレジスト膜のパターンを使用する。
このように、重複投影領域PAOに対応するフォトマスク100上の領域の透過率を低減するだけでなく、シングル投影領域PASに対応するフォトマスク100上の領域の透過率を低減することにより、積算露光量の均一化を行うことも可能である。フォトマスク100上に透過率補正領域を設けることにより、柔軟に露光装置200の露光ムラを低減することができる。
従って、各照明領域IL(IL1~IL7)の間隔にばらつきが生じ、複数の重複投影領域PAOの幅や積算露光量にばらつきがある場合でも、シングル投影領域PASに対して相対的に光透過率の異なる透過率補正領域をフォトマスク100の転写領域(全投影領域)の走査方向の全長に亘って形成することにより、重複投影領域PAOとシングル投影領域PASの積算露光量の均一化を図ることができる。
図12は、露光装置200の露光ムラを低減するために、フォトマスク100の転写領域の透過率の補正を行う透過率補正領域の配置を示す平面図である。
図12に示すように、本発明にかかるフォトマスク100は、シングル投影領域PASを透過率の基準領域101として、基準領域101に隣接して配置された1以上の重複投影領域PAOにそれぞれ対応した透過率補正領域(102a、102b、102c)を備えている。
シングル投影領域PASと各重複投影領域PAOの積算露光量との比率に基づいて、基準領域101の透過率に対して相対的に透過率を設定することにより、積算露光量の均一化を図ることができる。また、各透過率補正領域(102a、102b、102c)の透過率は同一であっても、異なっていてもよい。
さらに、基準領域101の透過率に対して透過率補正領域(102a、102b、102c)の透過率を相対的に高く設定することも、低く設定することも可能である。
このようにフォトマスク100に透過率補正領域を設けることにより、より精緻な透過率の補正が可能となり、一層正確なパターンを基板Pに投影することができる。
(露光量の計測)
フォトマスク100の半透過領域2を形成するには、基板Pに投影される重複投影領域PAOの位置と積算露光量を計測する必要がある。
また、基板Pに投影される重複投影領域PAOと、それに対応するフォトマスク100上の位置関係を明確にする必要がある。
以下に重複投影領域PAOとフォトマスク100上の座標との対応を明確にするとともに、積算露光量を計測する方法について説明する。
図13(a)に示すように基板P上に光学式検出器10、例えばCCD又はCMOSセンサ等の光センサが配列されたイメージセンサ(一次元又は2次元検出器)を設置(載置)する。光学式検出器10として、例えば市販のリニアイメージセンサを使用することが可能である。
なお、基板Pでの積算露光量の計測には、好適には実際の製品に使用する基板Pを用いるが、それと同じ形状(幅、奥行き、厚み)を備えたダミー基板を使用してもよい。
光学式検出器10が、例えば一次元のリニアイメージセンサの場合、複数の光センサが一列に整列しており、光センサの列がY方向(走査方向に垂直方向)に整列するように基板Pに設置する。
光学式検出器10は、各光センサの位置(配置箇所)と、各光センサが検知した光の強度をコンピュータ等の演算処理装置に時々刻々出力する。演算処理装置は、各光センサから出力された各測定時刻の光の強度を積算(時間積分)することで積算露光量を算出する。
なお、図13(a)に示すように光学式検出器10を複数設置してもよい。
基板P上に光学式検出器10を設置した場合、光学系の走査方向と光センサの列の方向を正確に合わせることは困難であり、光学式検出器10内の各光センサの配置方向及び位置と光学系の走査方向及び基板P上の位置との正確な相対位置関係を取得するため、図13(b)に示すように、遮光性の基準パターン11を備えた、校正用フォトマスク100’を準備する。フォトマスク100’は周縁部にアライメントマークを備えおり、露光装置200のマスクステージにおいてアライメントされ保持される。
基準パターン11は、Y方向に一列に整列した、例えば矩形状(5μm×2μm等)の複数の部分パターン(11a、11b、11c・・・11x)から構成されている。
さらに複数の基準パターン11が、X方向に離隔して配置され、従って、矩形状の部分パターン(11a、11b、11c・・・11x)が千鳥状に配置されている。
部分パターン(11a、11b、11c・・・11x)の位置(座標)が、データとして記憶装置に保存されている。
校正用フォトマスク100’と基板Pとを同期して移動し、校正用フォトマスク100’に備えられている基準パターン11の像を基板Pに投影する。
基板Pに設置された光学式検出器10により校正用フォトマスク100’を介して投影された光のY方向の強度分布(輝度分布)が測定できる。なお、強度分布は基板P上のフォトレジスト膜を露光する露光分布に相当する。
演算処理装置は、各光センサが測定した光強度の出力値を積算し、記憶装置に各光センサに対応させて積算光強度(積算露光量)として保存する。
基準パターン11の部分パターン(11a、11b、11c・・・11x)により露光光が遮光されるため、光学式検出器10は、部分パターン(11a、11b、11c・・・11x)に対応した光の強度分布を検知することができる。
演算処理装置は光学式検出器10の出力と記憶装置に保存された、部分パターン(11a、11b、11c・・・11x)の位置から、校正用フォトマスク100’上の位置と基準パターン11の部分パターン(11a、11b、11c・・・11x)との相関を算出できる。
また演算処理装置は、各光センサの積算光強度(積算露光量)を保存しているため、得られた校正用フォトマスク100’の位置と光センサの位置の相関関係から、校正用フォトマスク100’上のY方向の積算光強度分布(積算露光量分布)を計測でき、重複投影領域PAOの位置を検知することができる。
なお、画像処理技術により、各光センサの間の位置での光強度を補間により算出することで、さらに空間分解能を向上させてもよい。
また、校正用フォトマスク100’に対して基板Pの位置をX方向(走査方向)に所定の距離移動させたのち、再度校正用フォトマスク100’と基板Pとを同期して移動させながら露光処理を行ってもよい。
校正用フォトマスク100’に形成された基準パターン11は、千鳥状に部分パターン(11a、11b、11c・・・11x)を配置しているため、異なる部分パターン(11a、11b、11c・・・11x)の位置座標に対して、露光量分布のデータを取得できる。その結果測定誤差を低減することができ、一層正確な重複投影領域PAOの位置を決定することができる。
校正用フォトマスク100’の測定結果は、上記フォトマスク100の基準領域及び透過率補正領域の設計に利用する。
なお、一般にリニアイメージセンサ(一次元検出器)の方が二次元検出器より空間分解能が優れているため、図ではリニアイメージセンサの例について説明したが、光検出器を2次元配列した二次元検出器を用いてもよい。二次元のイメージセンサの場合、直交する2軸に沿った格子点上に光センサが配置されているため、一方の軸をY方向(走査方向に垂直方向)に整列するように基板Pに設置する。
このようにして積算露光量分布から、マスク100上の透過率補正領域及びそれに隣接する基準領域の位置座標を確定し、さらに基準領域に対する透過率補正領域の相対的な透過率の補正値を確定することができる。
その後、この計測結果を基に、半透過膜3の透過率、組成、膜厚、占有率又は遮光性膜3の占有率等を確定し、フォトマスク100を製造することができる。
なお、透過率補正領域の相対的な透過率の補正値が、基準領域の透過率より高くなる場合、基準領域の透過率を、半透過膜3を形成するか又は部分的に遮光性膜を覆うことにより、低下させ、相対的に基準領域の透過率を高めればよい。
また、実際にフォトマスク100を使用する露光装置200の積算露光量を実測するため、露光装置の状態に合わせて、露光ムラの低減を行うため、最適な積算露光量の補正が可能となる。また、露光装置200に対してフォトマスク100をカスタマイズすることも可能である。
さらに、基準領域及び透過率補正領域の位置を算出する精度は、顧客仕様に合わせて決めることができる。
また、光学式検出器10を基板Pに設置することなく重複投影領域PAOの位置を求めることも可能である。
図14(a)、(b)は、計測用パターン12を備えた計測用フォトマスク100’’の拡大平面図であり、図14(c)、(d)は、基板P上に形成されたフォトレジスト膜13であり、計測用パターン12を用いてパターニングされた後のフォトレジスト膜13の拡大平面図である。
図14(a)は、Y方向(走査方向に垂直な方向)に延在する直線パターンからなる計測用パターン12の例を示し、図14(b)は、Y方向に整列した矩形のホールパターンからなる計測用パターン12の例を示す。
計測用フォトマスク100’’は周縁部にアライメントマークを備えており、露光装置200のマスクステージにおいてアライメントされ保持される。
計測用パターン12は、図14(a)に示すように、複数のラインパターンから構成されており、ラインパターンは、例えば10~1μmの幅を有する複数のラインパターンを基板P上に投影するように構成されている。ラインパターンの幅は同一であっても、異なっていてもよい。
図14(c)に示すように、基板Pに形成されたフォトレジスト膜13を、ラインパターンからなる計測用パターン12を備えた計測用フォトマスク100’’を用いて、基板Pと計測用フォトマスク100’’とを同期して移動させながら露光装置200により露光し、現像することによりフォトレジスト膜13をパターニングする。パターニングされたフォトレジスト膜13の幅(X方向の長さ)を、Y方向に等間隔に(図14(c)中矢印で示す箇所において)測定し、フォトレジスト膜13の幅のY方向依存性を求める。
予めフォトレジスト膜13の幅と積算露光量との相関関係を別途測定しておくことにより、フォトレジスト膜13の幅のY方向依存性からY方向の積算露光量分布を得ることができる。また、幅の異なる計測用パターン12を用いて転写したフォトレジスト膜13の幅のY方向依存性を基にY方向の積算露光量分布を算出することにより、さらに正確な積算露光量分布のデータを得ることも可能である。
なお、フォトレジスト膜13の幅は測長用電子顕微鏡により自動測定が可能であり、容易に測定可能である。
また、フォトレジスト膜13のテーパー形状は積算露光量に依存するため、フォトレジスト膜13のテーパー形状のY方向依存性からY方向の積算露光量分布を求めることも可能である。測長用電子顕微鏡によりフォトレジスト膜13のトップ(上面部)の幅とボトム(底部)の幅を測定し、その差分により、フォトレジスト膜13のテーパー形状を算出することができる。すなわち、フォトレジスト膜13のトップの幅とボトムの幅の差分と積算露光量との相関関係を別途測定しておくことにより、フォトレジスト膜13の(テーパー形状を反映する)トップとボトムの幅の差分のY方向依存性からY方向の積算露光量分布を求めてもよい。なお、フォトレジスト膜13のトップの幅とボトムの幅は、フォトレジスト膜13の平面SEM画像のコントラストの変化から、測長用電子顕微鏡により自動測長可能であり、容易に測定可能である。
また、図14(b)に示すような、ホールタイプの計測用パターン12を用いてもよい。基板P上に例えば10~1μmサイズのホールを投影できるように構成されている。
図14(d)に示すように、基板P上に形成されたフォトレジスト膜13を、ホールタイプの計測用パターン12を用いて露光し、転写されたホール径を測長し、Y方向のホール径依存性を求める。
予めフォトレジスト膜13のホール径と積算露光量との相関関係を別途測定しておくことにより、Y方向のホール径依存性からY方向の積算露光量分布を求めることができる。
なお、計測用パターン12のホールは千鳥状に配置されているため、ホール径のY方向の測定間隔を小さくすることができる。
このように計測用パターン12を備えた計測用フォトマスク100’’を用いて、基板Pに形成したフォトレジスト膜をパターニングし、パターニングされたフォトレジスト膜の形状を測定することにより、基板P上のY方向の積算露光量分布を求めることができる。
測長用電子顕微鏡により、寸法測定の間隔は任意に設定できるため、光学式検出器10に比べ空間分解能に優れている。
計測用フォトマスク100’’の測定結果を、上記フォトマスク100に適用する。
なお、計測用パターン12は、上記形状に限定するものではなく、適宜設定することができる。
本発明は、露光装置の露光ムラの影響を低減するフォトマスクを提供することが可能となり、露光されたパターンのサイズのばらつきを低減することが可能となる。特に、大型ディスプレイ等の大面積基板の製造工程において、露光ムラの低減効果が顕著であり、産業上の利用可能性は大きい。
200 露光装置
201 光源
202 分岐光学系
203、2031~2037 照明光学系
204、2041~2047 投射光学系
IL、IL1~IL7 照明領域
PR、PR1~PR7 投影領域
PAO 重複投影領域
PAS シングル投影領域(単投影領域)
P 基板
100 フォトマスク
1 透過性基板
2 半透過領域
3 半透過膜
4 透過領域
5 パターン、マスクパターン
6 遮光性膜(上層膜)
7 第1のフォトレジスト膜
7’ 第1のフォトレジスト膜
7’’ 第1のフォトレジスト膜
8 第2のフォトレジスト膜
8’ 第2のフォトレジスト膜
9 エッチングストッパ膜
10 光学式検出器
101 基準領域
102a、102b、102c 透過率補正領域
100’ 校正用フォトマスク
11 基準パターン
11a~11x 部分パターン
100’’ 計測用フォトマスク
12 計測用パターン
13 フォトレジスト膜

Claims (8)

  1. マルチ投影型露光装置用のフォトマスクであり、
    透過性基板に、前記マルチ投影型露光装置の単投影領域に対応し、積算露光量の基準となる複数の基準領域と、
    前記マルチ投影型露光装置の重複投影領域に対応した重複照明領域とを備え、
    前記重複照明領域は、2つの隣接する前記基準領域の間に位置し、
    前記重複照明領域は、少なくとも1つの透過率補正領域を有し、
    前記透過率補正領域は、転写領域におけるフォトマスクの走査方向全長に亘って延在し、
    前記透過率補正領域と前記基準領域の光透過率が異なることを特徴とするフォトマスク。
  2. 前記重複照明領域は、
    前記透過率補正領域を複数備え、複数の前記透過率補正領域が同一方向に延在していることを特徴とする請求項1記載のフォトマスク。
  3. 前記透過率補正領域と前記基準領域のうち透過率が低い領域には半透過膜が形成され、
    前記半透過膜の透過率は、前記透過性基板の透過率より低いことを特徴とする請求項1又は2記載のフォトマスク。
  4. 前記半透過膜が部分的に形成され、前記半透過膜の占有率により光透過率を制御することを特徴とする請求項3記載のフォトマスク。
  5. 前記フォトマスクは、遮光性パターンを備え、
    前記遮光性パターンは、遮光性膜とエッチングストッパ膜との積層構造又は遮光性膜とエッチングストッパ膜と前記半透過膜との積層構造の少なくとも一方を含むことを特徴とする請求項3又は4記載のフォトマスク。
  6. 前記フォトマスクは、遮光性パターンを備え、
    前記遮光性パターンは、遮光性膜と前記半透過膜との積層構造であることを特徴とする請求項3又は4記載のフォトマスク。
  7. 前記透過率補正領域と前記基準領域のうちの透過率が低い領域において、前記透過性基板が遮光性膜により部分的に覆われ、前記遮光性膜の占有率により光透過率を制御することを特徴とする請求項1又は2記載のフォトマスク。
  8. 前記マルチ投影型露光装置の積算露光量分布を測定する工程と、
    前記積算露光量分布から、前記フォトマスクの前記基準領域と前記透過率補正領域の位置を確定し、前記基準領域に対する前記透過率補正領域の相対的な透過率の補正値を算出する工程と、
    前記補正値に基づいて、相対的に前記基準領域に対して前記透過率補正領域の透過率を補正する工程とを含むことを特徴とする請求項1乃至7のいずれか1項記載のフォトマスクの製造方法。
JP2020125367A 2020-07-22 2020-07-22 フォトマスク Active JP7399813B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125367A JP7399813B2 (ja) 2020-07-22 2020-07-22 フォトマスク

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125367A JP7399813B2 (ja) 2020-07-22 2020-07-22 フォトマスク

Publications (2)

Publication Number Publication Date
JP2022021652A JP2022021652A (ja) 2022-02-03
JP7399813B2 true JP7399813B2 (ja) 2023-12-18

Family

ID=80220580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125367A Active JP7399813B2 (ja) 2020-07-22 2020-07-22 フォトマスク

Country Status (1)

Country Link
JP (1) JP7399813B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206668A (ja) 1999-01-12 2000-07-28 Toshiba Corp パタ―ン露光マスクおよびパタ―ン露光方法
JP2000298353A (ja) 1999-02-12 2000-10-24 Nikon Corp 走査露光方法および走査型露光装置
US20070031764A1 (en) 2005-08-03 2007-02-08 Meng-Chi Liou Exposure process
JP2008256810A (ja) 2007-04-03 2008-10-23 Nsk Ltd 露光方法及び露光装置
JP2009080312A (ja) 2007-09-26 2009-04-16 Hitachi Ltd フォトマスク及び表示パネルの製造方法
JP2010271572A (ja) 2009-05-22 2010-12-02 Hoya Corp 多階調フォトマスクの製造方法、多階調フォトマスク、及びパターン転写方法
JP2014102292A (ja) 2012-11-16 2014-06-05 Canon Inc フォトマスク、分割露光方法、および半導体デバイスの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206668A (ja) 1999-01-12 2000-07-28 Toshiba Corp パタ―ン露光マスクおよびパタ―ン露光方法
JP2000298353A (ja) 1999-02-12 2000-10-24 Nikon Corp 走査露光方法および走査型露光装置
US20070031764A1 (en) 2005-08-03 2007-02-08 Meng-Chi Liou Exposure process
JP2008256810A (ja) 2007-04-03 2008-10-23 Nsk Ltd 露光方法及び露光装置
JP2009080312A (ja) 2007-09-26 2009-04-16 Hitachi Ltd フォトマスク及び表示パネルの製造方法
JP2010271572A (ja) 2009-05-22 2010-12-02 Hoya Corp 多階調フォトマスクの製造方法、多階調フォトマスク、及びパターン転写方法
JP2014102292A (ja) 2012-11-16 2014-06-05 Canon Inc フォトマスク、分割露光方法、および半導体デバイスの製造方法

Also Published As

Publication number Publication date
JP2022021652A (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
KR100714480B1 (ko) 포토마스크의 테스트 패턴 이미지로부터 인쇄된 테스트피쳐들을 이용하는 포토리소그래피 공정에 있어서 초점변화를 측정하는 시스템 및 방법
KR102198599B1 (ko) 마스크, 계측 방법, 노광 방법, 및 물품 제조 방법
US7655369B2 (en) Reticle set, method for designing a reticle set, exposure monitoring method, inspection method for reticle set and manufacturing method for a semiconductor device
JP3197484B2 (ja) フォトマスク及びその製造方法
KR19990083312A (ko) 전사장치
WO2012013638A1 (en) Lithographic targets for uniformity control
KR20120092662A (ko) 광학 특성 계측 방법, 노광 방법 및 디바이스 제조 방법
CN112230515A (zh) 一种优化光刻聚焦的方法
JP2914315B2 (ja) 走査型縮小投影露光装置及びディストーション測定方法
US20070009816A1 (en) Method and system for photolithography
JP7399813B2 (ja) フォトマスク
KR100742968B1 (ko) 마스크 제작 방법 및 마스크 바이어스 최적화 방법
US6812155B2 (en) Pattern formation method
JP2003318090A (ja) 投影光学系の敏感度計測方法、及びそれを有する投影露光装置
JPH10275769A (ja) 露光方法
JP7214452B2 (ja) フォトマスクの製造方法
JP2003178968A (ja) 収差計測方法及び投影露光装置
JP7220066B2 (ja) フォトマスクの描画装置
US11181825B2 (en) Exposure apparatus and method of manufacturing article
JP3529967B2 (ja) アライメントマーク付きフォトマスク用ブランクスの製造方法
JPH08181051A (ja) ディストーション計測方法
TW202238279A (zh) 曝光裝置、曝光方法及物品之製造方法
JPH08304999A (ja) 位相シフトマスク及びそれを用いた焦点位置検出方法
JPH0629172A (ja) 計測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7399813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150