JP7399324B2 - 調整装置、調整システム、および、調整方法 - Google Patents
調整装置、調整システム、および、調整方法 Download PDFInfo
- Publication number
- JP7399324B2 JP7399324B2 JP2022579202A JP2022579202A JP7399324B2 JP 7399324 B2 JP7399324 B2 JP 7399324B2 JP 2022579202 A JP2022579202 A JP 2022579202A JP 2022579202 A JP2022579202 A JP 2022579202A JP 7399324 B2 JP7399324 B2 JP 7399324B2
- Authority
- JP
- Japan
- Prior art keywords
- occupant
- condition
- information
- estimation
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 95
- 238000012790 confirmation Methods 0.000 claims description 126
- 230000006399 behavior Effects 0.000 claims description 116
- 230000002159 abnormal effect Effects 0.000 claims description 115
- 238000010801 machine learning Methods 0.000 claims description 58
- 230000009471 action Effects 0.000 claims description 13
- 206010000117 Abnormal behaviour Diseases 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 41
- 230000008569 process Effects 0.000 description 35
- 230000004044 response Effects 0.000 description 30
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 14
- 230000005856 abnormality Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 206010062519 Poor quality sleep Diseases 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000036760 body temperature Effects 0.000 description 6
- 230000008451 emotion Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 206010041349 Somnolence Diseases 0.000 description 3
- 230000036626 alertness Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000008921 facial expression Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001469893 Oxyzygonectes dovii Species 0.000 description 1
- 206010041308 Soliloquy Diseases 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096791—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/18—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K28/00—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
- B60K28/02—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
- B60K28/06—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
- G06V20/597—Recognising the driver's state or behaviour, e.g. attention or drowsiness
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/06—Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/21—Voice
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/22—Psychological state; Stress level or workload
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/221—Physiology, e.g. weight, heartbeat, health or special needs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/223—Posture, e.g. hand, foot, or seat position, turned or inclined
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Veterinary Medicine (AREA)
- Business, Economics & Management (AREA)
- Social Psychology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Chemical & Material Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Educational Technology (AREA)
- Developmental Disabilities (AREA)
- Psychology (AREA)
- Emergency Management (AREA)
- Combustion & Propulsion (AREA)
- Atmospheric Sciences (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Description
ところで、乗員の状態がどのような場合に正常状態であるか異常状態であるかは、乗員の個人特性等によって異なる。そのため、乗員の状態を推定する種々の推定方法の中には、ある乗員を推定対象とした場合に、例えば、その乗員が異常状態であると推定されやすい方法と推定されにくい方法とが存在し得る。その結果、推定方法によっては、異常状態の過検知または未検知となることがある。
一方、例えば、推定した乗員の状態について、乗員が実際にその推定した状態であるか否かを乗員に確認する技術が知られている。
例えば、特許文献1には、フレームアウト判定、姿勢崩れ判定、向き崩れ判定、揺れ判定、または、白目判定のいずれかにより、ドライバが運転不能状態になったことの判定を実施し、ドライバが運転不能状態であると判定した場合にドライバに対して運転不能状態であるか否かを確認する技術が開示されている。
実施の形態1.
実施の形態1に係る調整装置は、車両に搭載される。調整装置は、複数の乗員状態推定装置と接続され、調整装置と複数の乗員状態推定装置とで調整システムを構成する。複数の乗員状態推定装置も、車両に搭載される。
乗員状態推定装置は、車室内に存在している乗員の状態を推定する。具体的には、乗員状態推定装置は、車両の乗員に関する情報(以下「乗員関連情報」という。)を用いて、乗員の状態が「正常状態」であるか「異常状態」であるかを推定する。実施の形態1では、車両の乗員はドライバとし、乗員状態推定装置は、例えば、ドライバが適切に運転可能な「正常状態」であるか、ドライバが運転に支障をきたす「異常状態」であるかを推定するものとする。「正常状態」とは、より詳細には、例えば、乗員が運転に集中できている状態、乗員が覚醒している状態、乗員が疲弊していない状態、または、イライラしていない状態をいう。「異常状態」とは、乗員が上述したような「正常状態」ではない状態である。
車両操作情報は、例えば、ハンドル操作量、アクセル操作量、ブレーキ操作量、ボタン操作の有無、または、ウィンカー操作の有無に関する情報を含む。
車両状態情報は、例えば、車速、車両の加速度、または、車両の位置情報を含む。
車両周辺情報は、例えば、車両周辺を撮像した撮像画像(以下「車外撮像画像」という。)、車両外の物体との距離情報、または、車両の周辺に存在する他車両に関する情報を含む。
また、例えば、乗員状態推定装置は、車両に搭載されている、車両の周囲を撮像するカメラ(以下「車外撮像カメラ」という。)、距離センサもしくはLiDAR、または、他車両から車車間通信、または、車両の外部に設置されたいわゆるインフラ(infrastructure)との通信によって車両周辺情報を取得する。そして、乗員状態推定装置は、車両周辺情報に対して既知の画像認識技術等を用いて判定した、前方車両との車間距離、または、白線と車両との位置関係と、状態推定用条件との比較によって、乗員が正常状態であるか異常状態であるかを推定する。なお、白線と車両との位置関係とは、例えば、車線に対して車両がどこを走行しているかを示す位置関係である。
例えば、乗員状態推定装置は、乗員の体温と状態推定用条件にて設定されている閾値との比較によって、乗員の状態を推定する。例えば、乗員状態推定装置は、乗員の体温が閾値以上であれば異常状態と推定し、乗員の体温が閾値未満であれば正常状態と推定する。
また、例えば、乗員状態推定装置は、乗員の開眼度と状態推定用条件にて設定されている閾値との比較によって、乗員の状態を推定する。例えば、乗員状態推定装置は、乗員の開眼度が閾値未満であれば異常状態と推定し、乗員の開眼度が閾値以上であれば正常状態と推定する。
状態推定用条件には、例えば、何等かの条件が設定されていてもよい。例えば、状態推定用条件には、乗員の怒りの感情を認識した場合に異常状態と推定するとの条件が設定されていてもよい。この場合、例えば、乗員状態推定装置は、車内撮像画像に基づいて乗員の怒りの感情を認識した場合、異常状態と推定し、乗員の怒りの感情を認識しない場合、正常状態と推定する。
複数の乗員状態推定装置は、それぞれ、上述したような方法で、乗員の状態を推定する。
このように、ある乗員とその他のある乗員とでは、眠気のあらわれ方が異なるため、乗員状態推定装置が、乗員関連情報に対して一律に設定された状態判定用条件を用いて乗員の状態を推定するようになっていると、例えば、眠気を感じている状態、言い換えれば、異常状態の過検知または未検知に繋がるという問題がある。
図1に示すように、調整装置1と複数の乗員状態推定装置(2-1~2-n)とで調整システム100が構成される。
図1では、複数の乗員状態推定装置(2-1~2-n)をそれぞれ別個の装置としているが、複数の乗員状態推定装置(2-1~2-n)が1つの装置に備えられてもよい。以下の実施の形態1において、複数の乗員状態推定装置(2-1~2-n)を、まとめて乗員状態推定装置2ともいう。
推定情報収集部11は、収集した複数の推定結果を判定部12に出力する。
このとき、推定情報収集部11は、収集した複数の推定結果を、当該推定結果を収集した時刻と対応付けて、記憶部(図示省略)に記憶する。例えば、推定情報収集部11は、推定結果に推定時刻が付与されていない場合、推定結果を収集した時刻を推定時刻として付与する。推定情報収集部11は、予め設定された期間(以下「推定結果蓄積期間」という。)の推定結果が記憶部に記憶されるようにする。
具体的には、判定部12は、推定情報収集部11が収集した複数の推定結果のうちのいずれか1つが異常状態を示し、その他の推定結果の中に正常状態を示す推定結果が存在する場合、乗員の状態を確認する必要があると判定する。より詳細には、判定部12は、推定情報収集部11が収集した複数の推定結果のうちの少なくとも1つが異常状態を示し、その他の推定結果の中に正常状態を示す推定結果が存在する場合であって、かつ、異常状態を示している推定結果の中に予め設定された期間(以下「判定用期間」という。)継続して異常状態を示している推定結果が存在する場合、乗員の状態を確認する必要があると判定する。
判定部12は、記憶部に記憶されている推定結果から、判定用期間継続して異常状態が示されているか否かを判定することができる。なお、実施の形態1において、上記推定結果蓄積期間は、判定用期間よりも長い期間とする。例えば、判定用期間は、固定値としてもよいし、変動値としてもよい。例えば、判定部12は、乗員によって判定用期間の長さを変更してもよい。例えば、乗員が乗車時に判定用期間を設定し、判定部12は、乗員によって設定された判定用期間を用いて上記判定処理を行う。
また、判定部12は、推定情報収集部11が収集した複数の推定結果の全てが異常状態を示している場合、および、推定情報収集部11が収集した複数の推定結果の全てが正常状態を示している場合は、乗員の状態を確認する必要はないと判定する。
運転支援装置3は、車両に搭載される。運転支援装置3は、判定部12から出力された総合結果情報を取得すると、総合結果情報に基づいて、乗員が完全に異常状態となり車両を退避させる必要が生じる前に、前方に緊急退避が行えるスペースがあるか否かを確認しておくことができる。
なお、運転支援装置3は、乗員状態推定装置2が推定した乗員の状態の推定結果に基づいて、運転支援を行う。具体的には、運転支援装置3は、例えば、乗員の状態の推定結果に基づいて、全ての推定結果のうち、予め決められた数以上の推定結果が異常状態を示している場合、乗員に対して警報を出力する。また、運転支援装置3は、例えば、全ての推定結果が異常状態を示している場合、車両を緊急停止させる。なお、図1では、乗員状態推定装置2から運転支援装置3へ推定結果が出力されることを示す矢印の図示は省略している。
実施の形態1では、上述のとおり、判定部12は、運転支援装置3に対して総合結果情報を出力する機能を有するものとするが、これは一例に過ぎない。判定部12が運転支援装置3に対して総合結果情報を出力する機能を有することは必須ではない。
まず、状態確認部13の挙動判定用情報収集部131は、挙動判定用情報収集装置4から挙動情報を収集する。
挙動判定用情報収集装置4は、例えば、車内撮像カメラ、車両に搭載されているマイク、または、車両に搭載されているカーナビゲーション装置であり、挙動判定用情報は、例えば、車内撮像カメラが撮像した車内撮像画像、マイクが収集した発話音声、または、カーナビゲーション装置に備えられているボタン等の機器の操作情報である。
なお、上述した挙動判定用情報収集装置4の具体例は一例に過ぎない。挙動判定用情報収集装置4は、乗員の挙動を判定可能な情報を収集する種々の装置を含む。
例えば、乗員に対して応答を求めることで乗員の挙動判定用情報を収集する場合、挙動判定用情報収集部131は、挙動判定用情報収集装置4等の装置に対し、乗員に対する問合せを行わせる情報(以下「問合せ情報」という。)を出力して、挙動判定用情報を収集する。具体的には、例えば、挙動判定用情報収集部131は、カーナビゲーション装置に対し、当該カーナビゲーション装置が備えるスピーカから「元気ですか」という音声を出力させる問合せ情報を出力する。挙動判定用情報収集部131は、問合せ情報出力後、乗員がカーナビゲーション装置からの問合せに対して応答した発話音声を、挙動判定用情報として収集する。また、例えば、挙動判定用情報収集部131は、カーナビゲーション装置に対し、当該カーナビゲーション装置が備える表示部に「体調に問題がなければOKボタンを押してください」とのメッセージとOKボタンとを表示させる問合せ情報を出力する。挙動判定用情報収集部131は、問合せ情報出力後、カーナビゲーション装置からの問合せに対して応答した、OKボタンの操作情報を、挙動判定用情報として収集する。
設定部132は、まず、挙動判定用情報収集部131が収集した挙動判定用情報に基づき、乗員の挙動を判定する。実施の形態1において、乗員の挙動とは、例えば、乗員の顔の動き、および、乗員の動作を含む。乗員の顔の動きは、例えば、表情、うなずき、視線の方向、開眼度、または、顔の向きを含む。乗員の動作は、例えば、挙動判定用情報収集装置4等の装置からの問合せに対する応答、発話、または、覚醒を維持するための動作である。装置からの問合せに対する応答は、例えば、発話による応答、または、車両に搭載されている機器を操作することによる応答を含む。発話とは、例えば、カーナビゲーション装置等の装置への発話、同乗者との会話、独り言、または、つぶやきを含む。覚醒を維持するための動作とは、例えば、乗員が自分の体をつねる動作、または、乗員が自分の頬を叩く動作である。
設定部132は、例えば、判定した乗員の挙動と、予め設定されている、乗員が正常状態と認められる条件(以下「正常条件」という。)とによって、乗員の状態を設定する。設定部132は、乗員の挙動が正常条件を満たす場合、乗員の状態は正常状態と設定する。一方、設定部132は、乗員の挙動が正常条件を満たさない場合、乗員の状態は異常状態と設定する。
(1)挙動が、挙動判定用情報収集部131が出力した問合せ情報に対応する応答、言い換えれば、装置から出力された問合せに対する応答であること
(2)挙動が、挙動判定用情報収集部131が出力した問合せ情報に対応する応答ではなくても、同乗者との会話であること(挙動が、装置から出力された問合せに対する応答ではなくても、同乗者の発話に対する応答であること)
(3)挙動が、装置から出力された問合せに対する応答または同乗者の発話に対する応答であり、かつ、予め設定された時間以内の応答であること
(4)挙動が、装置から出力された問合せに対する応答または同乗者の発話に対する応答であり、かつ、声質に変化がないこと
(5)挙動が、予め設定されている、異常状態とみなす行動(例えば、乗員が自分の体をつねる動作、または、乗員が自分の頬を叩く動作、独り言、または、つぶやき)でないこと
(6)挙動が、発話であり、発話内容に、予め設定されている、異常に関する単語(例えば、「しんどい」または「眠い」)が含まれていないこと
以上のように、状態確認部13は、「乗員状態確認処理」を行う。以下の実施の形態1では、「乗員状態確認処理」において、状態確認部13が設定した乗員の状態を「設定乗員状態」ともいう。
具体的には、調整用情報出力部14は、各乗員状態推定装置2に対して、各乗員状態推定装置2が推定した乗員の状態の推定結果と、設定乗員状態とを対応付けた調整用情報を出力する。各乗員状態推定装置2が推定した乗員の状態の推定結果とは、状態確認部13から出力された、各乗員状態推定装置2による乗員の状態の推定結果である。
例えば、調整用情報出力部14は、乗員状態推定装置2-1に対しては、乗員状態推定装置2-1が推定した乗員の状態の推定結果と、設定乗員とを対応付けた調整用情報を出力し、乗員状態推定装置2-2に対しては、乗員状態推定装置2-2が推定した乗員の状態の推定結果と、設定乗員状態とを対応付けた調整用情報を出力する。
例えば、調整用情報出力部14は、推定結果が設定乗員状態と異なる乗員状態推定装置2に対してのみ、調整用情報を出力するようにしてもよい。推定結果が設定乗員状態と異なる乗員状態推定装置2は、推定結果に付与されている乗員状態推定装置2を特定可能な情報に基づいて特定できる。
例えば、乗員状態推定装置2は、乗員の開眼度に基づいて乗員は正常状態であると推定していたところ、調整装置1から、当該正常状態を示す推定結果と、異常状態を示す設定乗員状態が含まれる調整用情報を取得したとする。この場合、乗員状態推定装置2は、乗員の開眼度に基づいて乗員の状態を推定する際に用いる閾値を、異常状態を推定しやすくなるよう調整する。
図2は、実施の形態1に係る調整装置1の動作を説明するためのフローチャートである。車両が走行している間、図2のフローチャートで示す動作が繰り返される。
推定情報収集部11は、収集した複数の推定結果を判定部12に出力する。
判定部12は、図2のステップST1にて推定情報収集部11が収集した複数の推定結果のうちのいずれか1つが異常状態を示すか否かを判定する(ステップST201)。
ステップST201にて、判定部12が、複数の推定結果のうち1つも異常状態を示す推定結果がない、言い換えれば、複数の推定結果の全てが正常状態を示すと判定した場合(ステップST201の“NO”の場合)、調整装置1は、図2のフローチャートで示す動作を終了する。
ステップST202にて、判定部12が、全ての推定結果が異常状態を示すと判定した場合(ステップST202の“YES”の場合)、調整装置1は、図2のフローチャートで示す動作を終了する。
ステップST203にて、判定部12が、判定用期間継続して異常状態を示している推定結果が存在しないと判定した場合(ステップST203の“NO”の場合)、調整装置1は、図2のフローチャートで示す動作を終了する。
また、判定部12は、総合結果情報を生成し、生成した総合結果情報を、運転支援装置3に出力する。
図4は、状態確認部13が、乗員に対して応答を求めることで収集した挙動判定用情報に基づいて乗員の状態を設定する場合の「乗員状態確認処理」の詳細を説明するためのフローチャートであり、図5は、状態確認部13が、乗員に対して応答を求めることなく収集した挙動判定用情報に基づいて乗員の状態を設定する場合の「乗員状態確認処理」の詳細を説明するためのフローチャートである。
状態確認部13は、図4に示す「乗員状態確認処理」または図5に示す「乗員状態確認処理」を行う。
状態確認部13の挙動判定用情報収集部131は、挙動判定用情報収集装置4等の装置に対し、乗員に対し問合せ情報を出力して(ステップST301)、挙動判定用情報収集装置4から挙動判定用情報を収集する(ステップST302)。
ここで、正常条件は、例えば、上述した(1)~(4)の正常条件のいずれかである。設定部132は、例えば、これらの(1)~(4)の正常条件を組み合わせて、正常条件を満たすか否かを判定してもよい。
一方、判定した乗員の挙動が正常条件を満たさない場合(ステップST303の“NO”の場合)、設定部132は、乗員の状態は異常状態と設定する(ステップST305)。
状態確認部13の挙動判定用情報収集部131は、挙動判定用情報収集装置4から挙動判定用情報を収集する(ステップST311)。
ここで、正常条件は、例えば、上述した(5)~(6)の正常条件のいずれかである。設定部132は、例えば、これらの(5)~(6)の正常条件を組み合わせて、正常条件を満たすか否かを判定してもよい。
一方、判定した乗員の挙動が正常条件を満たさない場合(ステップST312の“NO”の場合)、設定部132は、乗員の状態は異常状態と設定する(ステップST314)。
これにより、調整装置1は、乗員に応じて、乗員状態推定装置2における乗員の状態の推定方法を調整することができる。
実施の形態1において、推定情報収集部11と、判定部12と、状態確認部13と、調整用情報出力部14の機能は、処理回路601により実現される。すなわち、調整装置1は、乗員状態推定装置2によって推定された乗員の状態の推定結果に基づいて、乗員状態推定装置2における乗員の状態の推定方法の調整を行うための処理回路601を備える。
処理回路601は、図6Aに示すように専用のハードウェアであっても、図6Bに示すようにメモリ605に格納されるプログラムを実行するCPU(Central Processing Unit)604であってもよい。
また、図示しない記憶部は、メモリ605を使用する。なお、これは一例であって、記憶部は、HDD、SSD(Solid State Drive)、または、DVD等によって構成されてもよい。
また、調整装置1は、乗員状態推定装置2、運転支援装置3、または、挙動判定用情報収集装置4等の装置と、有線通信または無線通信を行う入力インタフェース装置602および出力インタフェース装置603を備える。
この場合、乗員状態推定装置2は、例えば、乗員の体調が良好な「正常状態」であるか、体調不良または酩酊状態等の「異常状態」であるかを推定する。
実施の形態1では、調整装置は、判定処理において、収集した複数の推定結果のうちの少なくとも1つが異常状態を示し、その他の推定結果の中に正常状態を示す推定結果が存在する場合であって、かつ、異常状態を示している推定結果の中に判定用期間継続して異常状態を示している推定結果が存在する場合、乗員の状態を確認する必要があると判定していた。
実施の形態2では、状況に応じて判定用期間を短縮する実施の形態について説明する。
実施の形態2に係る調整装置1aの構成について、実施の形態1にて図1を用いて説明した調整装置1と同様の構成には、同じ符号を付して重複した説明を省略する。
実施の形態2に係る調整装置1aは、実施の形態1に係る調整装置1とは、参考情報収集部15を備えるようにした点が異なる。また、実施の形態2に係る調整装置1aにおける判定部12aの具体的な動作が、実施の形態1に係る調整装置1における判定部12の具体的な動作とは異なる。
実施の形態2において、調整装置1aと乗員状態推定装置2とで調整システム100aが構成される。
参考情報収集装置5は、調整装置1aによる「判定処理」において、推定結果が示す異常状態の継続時間を判定するための判定用期間を短縮する必要があるかを判定する参考となる情報(以下「参考情報」という。)を収集する。
例えば異常状態が確からしい場合、判定用期間、異常状態であることを待つことなく、速やかに乗員の状態を確認することで、調整用情報を出力するまでの時間を短くすることができる。調整用情報を出力するまでの時間を短くすることができれば、結果的に、乗員状態推定装置2における乗員の状態の推定方法の調整をはやく行うことができる。
すなわち、参考情報は、乗員状態推定装置2における乗員の状態の推定方法の調整をはやく行うことができるかを判定するために参考とする、推定結果が示す異常状態であることの確からしさを推定するための情報である。
また、例えば、乗員が異常状態である場合に行いがちな動作(以下「異常時動作」という。)がある。例えば、乗員は、覚醒していない状態であるとき、覚醒するために体をつねる等、覚醒を維持するための動作を行う。
従って、乗員の異常状態の確からしさは、車両内の環境、または、乗員が異常時動作を行っているか否か、から推定することができる。
そこで、実施の形態2において、参考情報は、車両内の環境を判定するための情報(以下「車内環境判定用情報」という。)、または、乗員の異常時動作を判定するための情報(以下「異常時動作判定用情報」という。)とする。
車内環境判定用情報としては、具体的には、例えば、車両内の空気中の物質濃度、車両内の温度、車両内の湿度、または、連続運転時間を示す情報が挙げられる。車両内の空気中の物質濃度とは、例えば、酸素濃度または二酸化炭素濃度である。
異常時動作判定用情報としては、具体的には、例えば、車内撮像画像、ハンドル操作量、ハンドルに係る圧力、座席の座圧、または、シートベルトの着用情報が挙げられる。
参考情報収集装置5は、車内環境情報収集装置51と乗員動作情報収集装置52を含む。車内環境情報収集装置51は、車内環境判定用情報を収集する。車内環境情報収集装置51は、例えば、車両に搭載されている濃度測定器、温度センサ、湿度センサ、または、ナビゲーション装置である。
乗員動作情報収集装置52は、異常時動作判定用情報を収集する。乗員動作情報収集装置52は、例えば、車両に搭載されている車内カメラ、操舵角センサ、ハンドルに設けられた圧力センサ、座圧センサ、または、シートベルトセンサである。
なお、参考情報収集装置5は、挙動判定用情報収集装置4と共通の装置としてもよい。
なお、参考情報収集部15が、車内環境判定用情報と異常時動作判定用情報の両方を収集することは必須ではない。参考情報収集部15は、車内環境判定用情報または異常時動作判定用情報のいずれか一方のみを収集するようにしてもよい。
参考情報収集装置5が挙動判定用情報収集装置4と共通の装置である場合、参考情報収集部15は、挙動判定用情報収集装置4から車内環境判定用情報または異常時動作判定用情報を収集する。
参考情報収集部15は、収集した参考情報、言い換えれば、車内環境判定用情報または異常時動作判定用情報を、判定部12aに出力する。
例えば、判定部12aは、車内環境判定用情報に基づき、車両内の環境が乗員に対して異常をきたす環境であるかによって、判定用期間を短縮する。判定部12aは、車両内の環境が乗員に対して異常をきたす環境であると判定した場合、判定用期間を短縮する。例えば、判定部12aは、車両に対して低周波振動が継続して発生していると判定した場合、判定用期間を短縮する。また、例えば、判定部12aは、車両内の酸素濃度が予め設定された閾値よりも低い場合、判定用期間を短縮する。また、例えば、判定部12aは、車両内の湿度が予め設定された閾値よりも高い場合、判定用期間を短縮する。
判定部12aは、車両内の環境が乗員に対して異常をきたす環境である度合い、または、乗員が行っている異常時動作の内容によって、短縮する期間を変えるようにしてもよい。車両内の環境が乗員に対して異常をきたす環境である度合いがどれぐらいである場合に、どれぐらい判定用期間を短縮するか、および、乗員が行っている異常時動作の内容がどのような内容である場合にどれぐらい判定用期間を短縮するかは、予め決められているものとする。
車両内の環境が乗員に対して異常をきたす環境である度合い、または、乗員が行っている異常時動作の内容によって、短縮する期間を変えることで、調整装置1aは、短縮する期間を変えない場合と比べ、異常状態がより確からしい場合に、より速やかに乗員の状態を確認し、調整用情報を出力するまでの時間をより短くすることができる。その結果、調整装置1aは、乗員状態推定装置2における乗員の状態の推定方法の調整をよりはやく行うことができる。
図8は、実施の形態2に係る調整装置1aの動作を説明するためのフローチャートである。
図8のステップST1、ステップST3~ステップST4の具体的な動作は、それぞれ、実施の形態1にて説明済みの、実施の形態1に係る調整装置1による図2のステップST1、ステップST3~ステップST4の具体的な動作と同様であるため、重複した説明を省略する。
図9において、ステップST211~ステップST212、ステップST216~ステップST217の具体的な動作は、それぞれ、実施の形態1にて説明済みの、図3のステップST201~ステップST204の具体的な動作と同様であるため、重複した説明を省略する。
ステップST213にて、車両内の環境が良好であると判定した場合、言い換えれば、車両内の環境が乗員に対して異常をきたす環境ではないと判定した場合(ステップST213の“YES”の場合)、判定部12aは、参考情報、より詳細には、異常時動作判定用情報に基づき、乗員が覚醒を維持するための動作を行っているか否かを判定する(ステップST214)。
ステップST214にて、乗員が覚醒を維持するための動作を行っていないと判定した場合(ステップST214の“NO”の場合)、判定部12aの動作は、ステップST216の動作に進む。
実施の形態2において、推定情報収集部11と、判定部12aと、状態確認部13と、調整用情報出力部14と、参考情報収集部15の機能は、処理回路601により実現される。すなわち、調整装置1aは、乗員状態推定装置2によって推定された乗員の状態の推定結果に基づいて、乗員状態推定装置2における乗員の状態の推定方法の調整を行うための処理回路601を備える。
処理回路601は、メモリ605に記憶されたプログラムを読み出して実行することにより、推定情報収集部11と、判定部12aと、状態確認部13と、調整用情報出力部14と、参考情報収集部15の機能を実行する。すなわち、調整装置1aは、処理回路601により実行されるときに、上述の図8のステップST1~ステップST4が結果的に実行されることになるプログラムを格納するためのメモリ605を備える。また、メモリ605に記憶されたプログラムは、推定情報収集部11と、判定部12aと、状態確認部13と、調整用情報出力部14と、参考情報収集部15の手順または方法をコンピュータに実行させるものであるとも言える。
調整装置1aは、乗員状態推定装置2、運転支援装置3、挙動判定用情報収集装置4、または、参考情報収集装置等の装置と、有線通信または無線通信を行う入力インタフェース装置602および出力インタフェース装置603を備える。
実施の形態1では、調整装置は、「判定処理」において、異常状態を示している推定結果の中に判定用期間継続して異常状態を示している推定結果が存在する場合、乗員の状態を確認する必要があると判定していた。
実施の形態3では、乗員の状態を確認する必要があるか否かを、機械学習における学習済みのモデル(以下「機械学習モデル」という。)に基づいて判定する実施の形態について説明する。
実施の形態3に係る調整装置1bの構成について、実施の形態1にて図1を用いて説明した調整装置1と同様の構成には、同じ符号を付して重複した説明を省略する。
実施の形態3に係る調整装置1bは、実施の形態1に係る調整装置1とは、学習装置6を搭載し、モデル記憶部16を備えるようにした点が異なる。また、実施の形態3に係る調整装置1bにおける判定部12bの具体的な動作が、実施の形態1に係る調整装置1における判定部12の具体的な動作とは異なる。
実施の形態3において、調整装置1bと乗員状態推定装置2とで調整システム100bが構成される。
機械学習モデルは、乗員の状態の推定結果を入力とし、乗員の状態を確認する必要があるか否かを示す情報(以下「確認要否情報」という。)を出力する機械学習モデルである。確認要否情報は、例えば、「1(確認要)」または「0(確認不要)」であらわされる。
機械学習モデルは、学習装置6によって、いわゆる教師あり学習にて生成され、モデル記憶部16に記憶されている。
判定部12bは、確認要との確認要否情報を得た場合、乗員の状態を確認する必要があると判定する。一方、判定部12bは、確認不要との確認要否情報を得た場合、乗員の状態を確認する必要がないと判定する。
学習装置6は、学習用データ生成部61およびモデル生成部62を備える。
学習用データ生成部61は、機械学習モデルを生成するための学習用データを生成する。具体的には、学習用データ生成部61は、乗員の状態の推定結果と確認要否情報とを含む学習用データを生成する。確認要否情報は教師ラベルである。
なお、学習用データ生成部61は、対応付けられた推定結果および設定乗員状態が、予め設定された数記憶されている場合に、学習用データを生成する。
学習用データ生成部61は、生成した学習用データを、モデル生成部62に出力する。
モデル生成部62は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、乗員の状態を確認する必要があるか否かを学習する。ここで、教師あり学習とは、入力と結果(教師ラベル)のデータの組を学習装置に与えることで、それらの学習用データにある特徴を学習し、入力から結果を推論する手法をいう。ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および、複数のニューロンからなる出力層で構成される。中間層は、1層、または、2層以上でもよい。
例えば、図11に示すような3層のニューラルネットワークであれば、複数の入力が入力層(X1-X3)に入力されると、その値に重みW1(w11-w16)を掛けて中間層(Y1-Y2)に入力され、その結果にさらに重みW2(w21-w26)を掛けて出力層(Z1-Z3)から出力される。この出力結果は、重みW1とW2の値によって変わる。
モデル生成部62は、生成した機械学習モデルをモデル記憶部16に記憶させる。
なお、ここでは、モデル記憶部16は、調整装置1bに備えられているが、これは一例に過ぎない。モデル記憶部16は、調整装置1bの外部の、調整装置1bが参照可能な場所に備えられていてもよい。
図12は、実施の形態3に係る調整装置1bの動作を説明するためのフローチャートである。
なお、図12のフローチャートにて説明する調整装置1bの動作は、学習装置6によって機械学習モデルが生成され、当該機械学習モデルがモデル記憶部16に記憶されていることを前提としている。機械学習モデルが生成されていない場合、調整装置1bは、実施の形態1にて図2のフローチャートを用いて説明した調整装置1の動作と同様の動作を行う。
図12のステップST1、ステップST3~ステップST4の具体的な動作は、それぞれ、実施の形態1にて説明済みの、実施の形態1に係る調整装置1による図2のステップST1、ステップST3~ステップST4の具体的な動作と同様であるため、重複した説明を省略する。
図13において、ステップST221~ステップST222、ステップST224の具体的な動作は、それぞれ、実施の形態1にて説明済みの、図3のステップST201~ステップST202、ステップST204の具体的な動作と同様であるため、重複した説明を省略する。
判定部12bは、確認要との確認要否情報を得た場合(ステップST223の“YES”の場合)、乗員の状態を確認する必要があると判定する。そして、判定部12bの動作は、ステップST224に進む。
一方、判定部12bは、確認不要との確認要否情報を得た場合(ステップST223の“NO”の場合)、乗員の状態を確認する必要がないと判定する。そして、調整装置1bは、図12のフローチャートで示す動作を終了する。
これにより、調整装置1bは、乗員の状態を確認するか否かの判定を行う際に、判定用期間待つ必要がないため、実施の形態1に係る調整装置1と比べ、「判定処理」にかかる時間を短縮することができる。その結果、調整装置1bは、実施の形態1に係る調整装置1と比べ、言い換えれば、乗員の状態を確認するか否かの判定を行う際に判定用期間待つ場合と比べ、乗員状態推定装置2における乗員の状態の推定方法の調整をはやく行うことができる。
図14は、実施の形態3に係る学習装置6の動作を説明するためのフローチャートである。車両が走行している間、図14のフローチャートで示す動作が繰り返される。
学習用データ生成部61は、生成した学習用データを、モデル生成部62に出力する。
モデル生成部62は、生成した機械学習モデルをモデル記憶部16に記憶させる。
また、調整装置1bは、車両が走行している間、精度を向上させた機械学習モデルに基づいて判定処理を行うことで、乗員の状態を確認する必要があるか否かの判定の精度を向上させることができる。
実施の形態3において、推定情報収集部11と、判定部12bと、状態確認部13と、調整用情報出力部14の機能は、処理回路601により実現される。すなわち、調整装置1bは、乗員状態推定装置2によって推定された乗員の状態の推定結果に基づいて、乗員状態推定装置2における乗員の状態の推定方法の調整を行うための処理回路601を備える。
処理回路601は、メモリ605に記憶されたプログラムを読み出して実行することにより、推定情報収集部11と、判定部12bと、状態確認部13と、調整用情報出力部14の機能を実行する。すなわち、調整装置1bは、処理回路601により実行されるときに、上述の図12のステップST1~ステップST4が結果的に実行されることになるプログラムを格納するためのメモリ605を備える。また、メモリ605に記憶されたプログラムは、推定情報収集部11と、判定部12bと、状態確認部13と、調整用情報出力部14の手順または方法をコンピュータに実行させるものであるとも言える。
また、モデル記憶部16は、メモリ605を使用する。なお、これは一例であって、モデル記憶部16は、HDD、SSD、または、DVD等によって構成されてもよい。
調整装置1bは、乗員状態推定装置2、運転支援装置3、または、挙動判定用情報収集装置4等の装置と、有線通信または無線通信を行う入力インタフェース装置602および出力インタフェース装置603を備える。
実施の形態3において、学習用データ生成部61と、モデル生成部62の機能は、処理回路1501により実現される。すなわち、学習装置6は、乗員状態推定装置2によって推定された乗員の状態の推定結果に基づいて、乗員状態推定装置2における乗員の状態の推定方法の調整を行うための処理回路1501を備える。
処理回路1501は、図15Aに示すように専用のハードウェアであっても、図15Bに示すようにメモリ1505に格納されるプログラムを実行するCPU1504であってもよい。
また、図示しない記憶部は、メモリ1505を使用する。なお、これは一例であって、記憶部は、HDD、SSD、または、DVD等によって構成されてもよい。
また、学習装置6は、調整装置1b等の装置と、有線通信または無線通信を行う入力インタフェース装置1502および出力インタフェース装置1503を備える。
乗員状態推定装置2がサーバに搭載されてもよい。
図16は、実施の形態3を実施の形態2に係る調整装置に適用した場合の調整装置1cの構成例を示す図である。
図16に示す調整装置1cの構成について、実施の形態2にて図7を用いて説明した調整装置1aと同様の構成には、同じ符号を付して重複した説明を省略する。
調整装置1cは、実施の形態2に係る調整装置1aとは、学習装置6を搭載し、モデル記憶部16を備えるようにした点が異なる。また、調整装置1cにおける判定部12cの具体的な動作が、実施の形態2に係る調整装置1aにおける判定部12aの具体的な動作とは異なる。
調整装置1cと乗員状態推定装置2とで調整システム100cが構成される。
この場合、機械学習モデルは、乗員の状態の推定結果と参考情報とを入力とし、確認要否情報を出力する機械学習モデルである。
機械学習モデルは、学習装置6によって生成され、モデル記憶部16に記憶されている。
判定部12cは、確認要との確認要否情報を得た場合、乗員の状態を確認する必要があると判定する。一方、判定部12cは、確認不要との確認要否情報を得た場合、乗員の状態を確認する必要がないと判定する。
学習用データ生成部61は、記憶部に対応付けて記憶されている、推定情報収集部11が乗員状態推定装置2から収集した乗員の状態の推定結果と、参考情報収集部15が収集した参考情報と、判定部12cが設定した確認要否情報とを取得し、取得した推定結果と参考情報と確認要否情報とが対応付けられた学習用データを生成する。
なお、学習用データ生成部61は、対応付けられた推定結果と参考情報と設定乗員状態とが予め設定された数記憶されている場合に、学習用データを生成する。
学習用データ生成部61は、生成した学習用データを、モデル生成部62に出力する。
モデル生成部62は、複数の推定結果、参考情報、および、確認要否情報の組み合わせに基づいて生成される学習用データに従って、いわゆる教師あり学習により、ニューラルネットワークで構成された機械学習モデルを学習させる。
モデル生成部62は、生成した機械学習モデルをモデル記憶部16に記憶させる。
調整装置1cでは、ステップST2bにおいて、判定部12cが、推定情報収集部11が収集した複数の推定結果と、参考情報収集部15が収集した参考情報と、機械学習モデルとに基づいて、「判定処理」を行う。
具体的には、判定部12cは、推定情報収集部11が収集した推定結果と、参考情報収集部15が収集した参考情報を機械学習モデルの入力として、機械学習モデルから出力される確認要否情報を得る。
判定部12cは、確認要との確認要否情報を得た場合、乗員の状態を確認する必要があると判定する。一方、判定部12cは、確認不要との確認要否情報を得た場合、乗員の状態を確認する必要がないと判定する。
但し、学習用データ生成部61は、ステップST61において、推定結果と参考情報と確認要否情報とが対応付けられた学習用データを生成する。
推定情報収集部11と、判定部12cと、状態確認部13と、調整用情報出力部14と参考情報収集部15の機能は、処理回路601により実現される。すなわち、調整装置1cは、乗員状態推定装置2によって推定された乗員の状態の推定結果に基づいて、乗員状態推定装置2における乗員の状態の推定方法の調整を行うための処理回路601を備える。
処理回路601は、メモリ605に記憶されたプログラムを読み出して実行することにより、判定部12cと、状態確認部13と、調整用情報出力部14と参考情報収集部15の機能を実行する。すなわち、調整装置1cは、処理回路601により実行されるときに、上述の図12のステップST1~ステップST4が結果的に実行されることになるプログラムを格納するためのメモリ605を備える。また、メモリ605に記憶されたプログラムは、判定部12cと、状態確認部13と、調整用情報出力部14と参考情報収集部15の手順または方法をコンピュータに実行させるものであるとも言える。
また、モデル記憶部16は、メモリ605を使用する。なお、これは一例であって、モデル記憶部16は、HDD、SSD、または、DVD等によって構成されてもよい。
調整装置1cは、乗員状態推定装置2、運転支援装置3、挙動判定用情報収集装置4、または、参考情報収集装置5等の装置と、有線通信または無線通信を行う入力インタフェース装置602および出力インタフェース装置603を備える。
これにより、調整装置1cは、乗員の状態を確認するか否かの判定を行う際に判定用期間待つ場合と比べ、より精度高く乗員の状態の確認が必要か否かを判定することができる。
Claims (4)
- 乗員の状態を推定する乗員状態推定装置における前記乗員の状態の推定方法を調整する調整装置であって、
複数の前記乗員状態推定装置によってそれぞれ推定された、前記乗員の状態の推定結果を収集する推定情報収集部と、
車両内の環境を判定するための車内環境判定用情報、および、前記乗員が異常状態である場合に行いがちな動作を判定するための異常時動作判定用情報のうちの少なくとも一方を参考情報として収集する参考情報収集部と、
前記推定情報収集部が収集した前記推定結果と、前記参考情報収集部が収集した前記参考情報と、前記推定結果および前記参考情報を入力とし前記乗員の状態を確認する必要があるか否かを示す確認要否情報を出力する機械学習モデルとに基づいて、前記乗員の状態を確認する必要があるか否かを判定する判定部と、
前記判定部が、前記乗員の状態を確認する必要があると判定した場合、前記乗員の挙動を判定するための挙動判定用情報に基づき前記乗員の挙動を判定して前記乗員の状態を設定する状態確認部と、
前記乗員状態推定装置に対して、前記乗員の状態を前記状態確認部が設定した前記乗員の状態と推定するよう、前記乗員の状態の推定に用いる状態推定用条件を調整させる調整用情報を出力する調整用情報出力部
とを備えた調整装置。 - 前記推定情報収集部が収集した前記推定結果と前記参考情報収集部が収集した前記参考情報と前記判定部が判定した前記乗員の状態を確認するか否かの結果とに基づいて、前記推定結果と前記参考情報と前記確認要否情報とを含む学習用データを生成する学習用データ生成部と、
前記学習用データ生成部が生成した学習用データに基づいて、前記機械学習モデルを生成するモデル生成部とを備え、
前記判定部は、前記機械学習モデルが生成されていない場合は、前記推定情報収集部が収集した前記推定結果のうちの少なくとも1つが異常状態を示し、その他の前記推定結果の中に正常状態を示す前記推定結果が存在するか否かによって、前記乗員の状態を確認する必要があるか否かを判定し、
前記モデル生成部によって前記機械学習モデルが生成された後は、前記推定結果と前記参考情報と前記機械学習モデルとに基づいて、前記乗員の状態を確認する必要があるか否かを判定する
ことを特徴とする請求項1記載の調整装置。 - 請求項1または請求項2記載の調整装置と、
前記調整用情報出力部が出力した調整用情報に基づいて、前記乗員の状態の推定に用いる前記状態推定用条件を調整する前記乗員状態推定装置
とを備えた調整システム。 - 乗員の状態を推定する乗員状態推定装置における前記乗員の状態の推定方法を調整する調整方法であって、
推定情報収集部が、複数の前記乗員状態推定装置によってそれぞれ推定された、前記乗員の状態の推定結果を収集するステップと、
参考情報収集部が、車両内の環境を判定するための車内環境判定用情報、および、前記乗員が異常状態である場合に行いがちな動作を判定するための異常時動作判定用情報のうちの少なくとも一方を参考情報として収集するステップと、
判定部が、前記推定情報収集部が収集した前記推定結果と、前記参考情報収集部が収集した前記参考情報と、前記推定結果および前記参考情報を入力とし前記乗員の状態を確認する必要があるか否かを示す確認要否情報を出力する機械学習モデルとに基づいて、前記乗員の状態を確認する必要があるか否かを判定するステップと、
状態確認部が、前記判定部が、前記乗員の状態を確認する必要があると判定した場合、前記乗員の挙動を判定するための挙動判定用情報に基づき前記乗員の挙動を判定して前記乗員の状態を設定するステップと、
調整用情報出力部が、前記乗員状態推定装置に対して、前記乗員の状態を前記状態確認部が設定した前記乗員の状態と推定するよう、前記乗員の状態の推定に用いる状態推定用条件を調整させる調整用情報を出力するステップ
とを備えた調整方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/003813 WO2022168187A1 (ja) | 2021-02-03 | 2021-02-03 | 調整装置、調整システム、および、調整方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2022168187A1 JPWO2022168187A1 (ja) | 2022-08-11 |
JPWO2022168187A5 JPWO2022168187A5 (ja) | 2023-04-19 |
JP7399324B2 true JP7399324B2 (ja) | 2023-12-15 |
Family
ID=82741228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022579202A Active JP7399324B2 (ja) | 2021-02-03 | 2021-02-03 | 調整装置、調整システム、および、調整方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230404456A1 (ja) |
JP (1) | JP7399324B2 (ja) |
DE (1) | DE112021006996T5 (ja) |
WO (1) | WO2022168187A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230095845A1 (en) * | 2021-09-27 | 2023-03-30 | Toyota Motor North America, Inc. | Transport modifications for impaired occupants |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007269268A (ja) | 2006-03-31 | 2007-10-18 | Denso Corp | 自動車用ユーザーもてなしシステム |
WO2010032491A1 (ja) | 2008-09-19 | 2010-03-25 | パナソニック株式会社 | 注意散漫検出装置、注意散漫検出方法およびコンピュータプログラム |
JP2012245091A (ja) | 2011-05-26 | 2012-12-13 | Panasonic Corp | 眠気推定装置及び眠気推定方法 |
JP2016045714A (ja) | 2014-08-22 | 2016-04-04 | 株式会社デンソー | 車載制御装置 |
JP2016221997A (ja) | 2015-05-27 | 2016-12-28 | 株式会社デンソー | 車両制御装置 |
JP2018189900A (ja) | 2017-05-11 | 2018-11-29 | 日立オートモティブシステムズ株式会社 | 車両制御装置、車両制御方法および車両制御システム |
JP2019131096A (ja) | 2018-02-01 | 2019-08-08 | 三菱電機株式会社 | 車両制御支援システムおよび車両制御支援装置 |
JP2020154976A (ja) | 2019-03-22 | 2020-09-24 | 株式会社Jvcケンウッド | 車内環境警告装置及び車内環境警告方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09301011A (ja) * | 1996-05-20 | 1997-11-25 | Honda Motor Co Ltd | 車両用運転状況監視装置 |
US20110224875A1 (en) * | 2010-03-10 | 2011-09-15 | Cuddihy Mark A | Biometric Application of a Polymer-based Pressure Sensor |
US20140309813A1 (en) * | 2013-04-15 | 2014-10-16 | Flextronics Ap, Llc | Guest vehicle user reporting |
US10409382B2 (en) * | 2014-04-03 | 2019-09-10 | Honda Motor Co., Ltd. | Smart tutorial for gesture control system |
US10466657B2 (en) * | 2014-04-03 | 2019-11-05 | Honda Motor Co., Ltd. | Systems and methods for global adaptation of an implicit gesture control system |
JP6512140B2 (ja) * | 2016-03-09 | 2019-05-15 | トヨタ自動車株式会社 | 自動運転システム |
JP6323511B2 (ja) * | 2016-08-26 | 2018-05-16 | マツダ株式会社 | 運転者体調検知装置及び方法 |
WO2018100619A1 (ja) * | 2016-11-29 | 2018-06-07 | 本田技研工業株式会社 | 車両制御システム、車両制御方法、および車両制御プログラム |
US10192171B2 (en) * | 2016-12-16 | 2019-01-29 | Autonomous Fusion, Inc. | Method and system using machine learning to determine an automotive driver's emotional state |
US11702066B2 (en) * | 2017-03-01 | 2023-07-18 | Qualcomm Incorporated | Systems and methods for operating a vehicle based on sensor data |
EP3719601A4 (en) * | 2017-11-28 | 2021-09-01 | Kabushiki Kaisha Yaskawa Denki | FAULT DETERMINATION SYSTEM, ENGINE CONTROL DEVICE, AND FAULT DETERMINATION DEVICE |
US20190225232A1 (en) * | 2018-01-23 | 2019-07-25 | Uber Technologies, Inc. | Passenger Experience and Biometric Monitoring in an Autonomous Vehicle |
CN113056390A (zh) * | 2018-06-26 | 2021-06-29 | 伊泰·卡茨 | 情境驾驶员监控系统 |
JP2020157832A (ja) * | 2019-03-25 | 2020-10-01 | 本田技研工業株式会社 | 車両の制御システム、車両における報知方法、及びプログラム |
KR102696262B1 (ko) * | 2019-08-30 | 2024-08-21 | 엘지전자 주식회사 | 화자인식 기반 차량 제어 방법 및 지능형 차량 |
JP7459633B2 (ja) * | 2020-04-13 | 2024-04-02 | マツダ株式会社 | ドライバ異常判定装置 |
US11518408B2 (en) * | 2020-11-13 | 2022-12-06 | Toyota Research Institute, Inc. | Predictive impairment monitor system and method |
US20230347903A1 (en) * | 2020-12-31 | 2023-11-02 | Cipia Vision Ltd. | Sensor-based in-vehicle dynamic driver gaze tracking |
JP2022155397A (ja) * | 2021-03-30 | 2022-10-13 | 株式会社Subaru | 乗員状態検出システム |
-
2021
- 2021-02-03 JP JP2022579202A patent/JP7399324B2/ja active Active
- 2021-02-03 DE DE112021006996.9T patent/DE112021006996T5/de active Pending
- 2021-02-03 WO PCT/JP2021/003813 patent/WO2022168187A1/ja active Application Filing
- 2021-02-03 US US18/037,936 patent/US20230404456A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007269268A (ja) | 2006-03-31 | 2007-10-18 | Denso Corp | 自動車用ユーザーもてなしシステム |
WO2010032491A1 (ja) | 2008-09-19 | 2010-03-25 | パナソニック株式会社 | 注意散漫検出装置、注意散漫検出方法およびコンピュータプログラム |
JP2012245091A (ja) | 2011-05-26 | 2012-12-13 | Panasonic Corp | 眠気推定装置及び眠気推定方法 |
JP2016045714A (ja) | 2014-08-22 | 2016-04-04 | 株式会社デンソー | 車載制御装置 |
JP2016221997A (ja) | 2015-05-27 | 2016-12-28 | 株式会社デンソー | 車両制御装置 |
JP2018189900A (ja) | 2017-05-11 | 2018-11-29 | 日立オートモティブシステムズ株式会社 | 車両制御装置、車両制御方法および車両制御システム |
JP2019131096A (ja) | 2018-02-01 | 2019-08-08 | 三菱電機株式会社 | 車両制御支援システムおよび車両制御支援装置 |
JP2020154976A (ja) | 2019-03-22 | 2020-09-24 | 株式会社Jvcケンウッド | 車内環境警告装置及び車内環境警告方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022168187A1 (ja) | 2022-08-11 |
DE112021006996T5 (de) | 2023-11-30 |
US20230404456A1 (en) | 2023-12-21 |
WO2022168187A1 (ja) | 2022-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10908677B2 (en) | Vehicle system for providing driver feedback in response to an occupant's emotion | |
CN112424848B (zh) | 警告装置以及驾驶倾向分析方法 | |
US10192171B2 (en) | Method and system using machine learning to determine an automotive driver's emotional state | |
US11042766B2 (en) | Artificial intelligence apparatus and method for determining inattention of driver | |
US9539944B2 (en) | Systems and methods of improving driver experience | |
US20170291544A1 (en) | Adaptive alert system for autonomous vehicle | |
JP2022552860A (ja) | 予測及び先取り制御に基づく乗用車の乗員状態調整システム | |
JP7329755B2 (ja) | 支援方法およびそれを利用した支援システム、支援装置 | |
EP3889740B1 (en) | Affective-cognitive load based digital assistant | |
US20200339131A1 (en) | Safety mechanism for assuring driver engagement during autonomous drive | |
US11096613B2 (en) | Systems and methods for reducing anxiety in an occupant of a vehicle | |
JP7399324B2 (ja) | 調整装置、調整システム、および、調整方法 | |
JP4360308B2 (ja) | 車載音響制御システム及びaiエージェント | |
KR20220014674A (ko) | 차량용 감정 인식 기반 서비스 제공 장치 및 그 제어 방법 | |
US11450209B2 (en) | Vehicle and method for controlling thereof | |
CN116806197A (zh) | 自动化的机动车和用于控制自动化的机动车的方法 | |
WO2021176633A1 (ja) | 運転者状態推定装置および運転者状態推定方法 | |
JP2021111046A (ja) | 記録制御装置及び記録制御プログラム | |
JP7515698B2 (ja) | 送迎サービス支援装置及び送迎サービス支援方法 | |
WO2023218546A1 (ja) | 覚醒度低下推定装置、学習装置、および、覚醒度低下推定方法 | |
WO2022097185A1 (ja) | 眠気検知装置および眠気検知方法 | |
WO2022172393A1 (ja) | 音声認識装置および音声認識方法 | |
US20240208482A1 (en) | Driving support device | |
US20230103202A1 (en) | Voice assistant error detection system | |
WO2023122283A1 (en) | Voice assistant optimization dependent on vehicle occupancy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230202 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7399324 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |