JP7398709B2 - Conveyance control system and conveyance device - Google Patents

Conveyance control system and conveyance device Download PDF

Info

Publication number
JP7398709B2
JP7398709B2 JP2020166957A JP2020166957A JP7398709B2 JP 7398709 B2 JP7398709 B2 JP 7398709B2 JP 2020166957 A JP2020166957 A JP 2020166957A JP 2020166957 A JP2020166957 A JP 2020166957A JP 7398709 B2 JP7398709 B2 JP 7398709B2
Authority
JP
Japan
Prior art keywords
range
conveyance
light
conveyed
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020166957A
Other languages
Japanese (ja)
Other versions
JP2022059301A (en
Inventor
祐二 神戸
毅 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Tokyo Weld Co Ltd
Original Assignee
Daiichi Co Ltd
Tokyo Weld Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd, Tokyo Weld Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2020166957A priority Critical patent/JP7398709B2/en
Priority to KR1020210114656A priority patent/KR20220044403A/en
Priority to CN202111080082.1A priority patent/CN114261698A/en
Priority to TW110134862A priority patent/TW202214512A/en
Publication of JP2022059301A publication Critical patent/JP2022059301A/en
Application granted granted Critical
Publication of JP7398709B2 publication Critical patent/JP7398709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/04Load carriers other than helical or spiral channels or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/32Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/03Vibrating conveyors
    • B65G2812/0304Driving means or auxiliary devices

Description

本発明は搬送制御システム及び搬送装置に係り、特に、振動式搬送装置において用いられる場合にとりわけ好適であり、搬送路上を移動する搬送物を種々の供給先に供給する場合に特に効果的な搬送制御技術に関する。 TECHNICAL FIELD The present invention relates to a conveyance control system and a conveyance device, and is particularly suitable for use in a vibrating conveyance device. Regarding control technology.

一般に、表面実装型電子部品などの微細な搬送物を搬送する搬送装置では、ボウル型パーツフィーダと呼ばれる螺旋状の搬送路を備える回転振動搬送機によって微細な搬送物をトラックに沿って上昇させ、やがてリニア型パーツフィーダと呼ばれる直線状の搬送路を備える直線振動搬送機によって搬送物の姿勢を揃えながら、供給先である部品検査装置、部品実装装置、移載ロボットなどに供給するように構成される。 Generally, in a conveyor device that conveys fine objects such as surface-mounted electronic components, the fine objects are raised along a track by a rotary vibration conveyor equipped with a spiral conveyance path called a bowl-type parts feeder. Eventually, a linear vibrating conveyor equipped with a linear conveyance path called a linear parts feeder was configured to align the posture of the conveyed object and feed it to the destinations such as component inspection equipment, component mounting equipment, and transfer robots. Ru.

上記のような搬送装置では、近年、搬送物が微細化され、砂粒ほどの電子部品を大量に供給することが要求されるようになってきている。また、このような微細な電子部品の中には、数十ミクロン程度の極めて薄いものがあり、このような薄い搬送物を大量に搬送しようとすると、搬送物同士が重なり易いため、整列されにくいことから、効率的に搬送することが難しいという問題がある。従前の比較的大きな薄形の搬送物に対応した搬送システムとしては、以下の特許文献1及び2に示されたものが知られている。 In recent years, in the above-mentioned conveying apparatus, the objects to be conveyed have become finer, and it has become necessary to supply a large amount of electronic components as small as a grain of sand. In addition, some of these minute electronic components are extremely thin, on the order of tens of microns, and when trying to transport large quantities of such thin objects, they tend to overlap, making it difficult to line them up. Therefore, there is a problem in that it is difficult to convey it efficiently. 2. Description of the Related Art As conventional conveyance systems that can accommodate relatively large and thin objects to be conveyed, those shown in Patent Documents 1 and 2 below are known.

特開平8-113350号公報Japanese Patent Application Publication No. 8-113350 特開2001-158524号公報Japanese Patent Application Publication No. 2001-158524

ところで、上記従来の特許文献1や2に記載された装置では、搬送物が比較的大きく、薄さも近年の搬送物よりも厚いため、機械的な重なり防止手段を用いたり、噴気口の位置や形状を搬送物の厚みに整合させることで対応していた。しかし、近年の上記搬送物のように微細化されたものでは、機械的な処理では対応が困難であるために搬送物に詰まりが発生したり、搬送物の重なり状態をセンサによって検知することが困難になったりするという問題がある。 By the way, in the conventional devices described in Patent Documents 1 and 2, the objects to be conveyed are relatively large and thinner than those of recent years, so mechanical overlap prevention means are used or the position of the blowhole and This was done by matching the shape to the thickness of the transported item. However, in recent years, it is difficult to deal with microscopic items such as the above-mentioned items to be transported using mechanical processing, which may cause clogging of the items to be transported or the ability to detect overlapped items using sensors. The problem is that it can become difficult.

また、従来においては、供給先に向けて搬送物を送り出す末端部において搬送路上にカバーを設けることにより、搬送物の形状に合わせた通過断面を備えた暗渠構造を形成し、搬送物が重なり合ったり、異姿勢の搬送物が供給されないようにする場合がある。しかし、このような場合においても、搬送物が微細化するとともに薄型化することによって暗渠構造に搬送物が詰まりやすくなり、安定した搬送状態の維持が難しいという問題がある。 In addition, conventionally, by providing a cover on the conveyance path at the end where the conveyed articles are sent out toward the supply destination, a underdrain structure with a passage cross section that matches the shape of the conveyed articles is formed, and the conveyed articles do not overlap. , it may be necessary to prevent objects in a different orientation from being fed. However, even in such a case, there is a problem in that as the transported objects become finer and thinner, the underdrain structure becomes more likely to be clogged with the transported objects, making it difficult to maintain a stable state of transport.

前述の問題は、特に、振動式搬送装置の場合には、搬送物が振動によって搬送路上を上下動しながら移動していくことから、搬送路上での搬送物の詰まりの防止や重なりの検出が極めて難しいという実情がある。 The above-mentioned problem is particularly important in the case of vibrating conveyance devices, in which the conveyed objects move up and down on the conveyance path due to vibrations, so it is difficult to prevent objects from clogging on the conveyance path and to detect overlapping objects. The reality is that it is extremely difficult.

そこで、本発明は上記問題点を解決するものであり、その課題は、搬送物の詰まりなどの搬送不良や前後の搬送物の重なり状態の検出不良を回避することのできる搬送制御システム及びこれを用いた搬送装置を提供することにある。 SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its object is to provide a conveyance control system that can avoid conveyance defects such as clogging of conveyed objects and failures in detecting overlapping states of conveyed objects before and after, and a conveyance control system that can avoid such defects. The object of the present invention is to provide a conveying device using the present invention.

斯かる実情に鑑み、本発明に係る搬送制御システムは、撮像手段(130CM)の撮影により搬送物(CA)が搬送される搬送路(121)上の計測エリア(ME)の画像を繰り返し取得する画像取得手段(MPU,DTU,RAM)と、前記計測エリア(ME)内における前記搬送路(121)上の前記搬送物(CA)の占有領域が一体に連続する範囲、或いは、当該占有領域が所定値未満の間隔で連続する範囲である連続占有範囲(121CT)を検出し、一つの前記搬送物(CA)に相当する単位占有範囲(121U)を基準として、前記連続占有範囲(121CT)の大きさを判定する搬送物占有範囲判別手段(MPU,RAM)と、前記連続占有範囲(121CT)が前記単位占有範囲(121U)を基準とする不正判定の条件を満たした場合に、前記連続占有範囲(121CT)内に配置される少なくとも一つの前記搬送物(CA)の搬送状態を制御する搬送物制御手段(OP)と、を具備する。 In view of such circumstances, the conveyance control system according to the present invention repeatedly acquires images of the measurement area (ME) on the conveyance path (121) along which the conveyed object (CA) is conveyed by taking pictures with the imaging means (130CM). A range in which the image acquisition means (MPU, DTU, RAM) and the occupied area of the conveyance object (CA) on the conveyance path (121) in the measurement area (ME) are continuous, or the occupied area is A continuous occupied range (121CT), which is a continuous range with an interval less than a predetermined value, is detected, and the continuous occupied range (121CT) is determined based on a unit occupied range (121U) corresponding to one conveyed object (CA). When the conveyed object occupied range determination means (MPU, RAM) for determining the size and the continuous occupied range (121CT) satisfies the conditions for fraud determination based on the unit occupied range (121U), the continuous occupied range A conveyance object control means (OP) that controls the conveyance state of at least one conveyance object (CA) arranged within the range (121CT).

本発明によれば、搬送路上の搬送物による連続占有範囲の大きさを単位占有範囲を基準として判定し、例えば、連続占有範囲の大きさが単位占有範囲を越える場合には、搬送路上において2以上の搬送物が相互に重なり合っている可能性が高く、また、連続占有範囲内に、相互の間隔が所定値未満である複数の占有領域が含まれ、その全体の大きさが単位占有範囲を越える場合には、その後に前後の搬送物が重なり合う蓋然性が高いこととなる。このため、上記の搬送物の重なり状態の可能性が高い場合や重なり合う蓋然性が高い場合には、その連続占有範囲内に配置される少なくとも一つの搬送物を制御することによって、重なり合った搬送物或いは重なり合う蓋然性の高い搬送物を搬送路上から除去することが可能になる。また、搬送物占有範囲判別手段は、搬送路上の搬送物の連続占有範囲の大きさを単位占有範囲を基準として判定すればよいので、従来技術のように搬送物同士の重なり合いそのものを検出する必要がないことから、微細な搬送物であっても薄い搬送物であっても容易かつ確実に搬送物の重なり合いの可能性や蓋然性を判別できる。特に、振動式搬送装置であれば搬送路上で搬送物が上下動しながら搬送されていくが、搬送路上の搬送物による占有範囲そのものは上記上下動には影響されにくいため、搬送物の振動による検出精度の低下を回避できる。 According to the present invention, the size of the continuous occupation range by the conveyed object on the conveyance path is determined based on the unit occupation range, and for example, if the size of the continuous occupation range exceeds the unit occupation range, two There is a high possibility that the above conveyance items overlap each other, and the continuous occupied range includes multiple occupied areas whose mutual spacing is less than a predetermined value, and the total size of the occupied areas exceeds the unit occupied range. If the distance is exceeded, there is a high probability that the objects to be transported before and after will overlap. Therefore, if there is a high possibility that the conveyed objects overlap or there is a high probability that they will overlap, the overlapping conveyed objects or It becomes possible to remove transported objects that are highly likely to overlap from the transport path. In addition, since the conveyance object occupancy range determination means only needs to determine the size of the continuous occupation range of conveyance objects on the conveyance path using the unit occupation range as a reference, there is no need to detect the overlap itself between the conveyance objects as in the conventional technology. Since there is no overlap, it is possible to easily and reliably determine the possibility or probability of overlapping conveyed objects, even if the conveyed objects are minute or thin. In particular, in the case of a vibrating conveyance device, the conveyed object is conveyed while moving up and down on the conveyance path, but the area occupied by the conveyed object on the conveyance path itself is not easily affected by the vertical movement, so the vibration of the conveyed object Decrease in detection accuracy can be avoided.

本発明において、前記搬送物占有範囲判別手段(MPU,RAM)は、2以上の前記搬送物(CA)が前記搬送路(121)上で他の方位よりも重なり易い特定の方向に見たときの占有範囲を判定することが好ましい。これによれば、搬送物の搬送路上での重なりをより容易かつ確実に検出できる。この場合に、前記画像取得手段(MPU,DTU,RAM)の撮影方向が前記特定の方向であることが望ましい。これによれば、占有範囲の判定のための画像処理が容易になるとともに、判別精度を向上することができる。上記特定の方位とは、例えば、搬送路の搬送面上において搬送物の縦、横、高さのうちの高さ寸法が最も小さな値を備える場合の高さ方向を言う場合がある。 In the present invention, the conveyance object occupancy range determination means (MPU, RAM) determines when two or more conveyance objects (CA) are viewed in a specific direction on the conveyance path (121) where they are more likely to overlap than other directions. It is preferable to determine the occupied range of . According to this, overlapping of transported objects on the transport path can be detected more easily and reliably. In this case, it is desirable that the photographing direction of the image acquisition means (MPU, DTU, RAM) is the specific direction. According to this, image processing for determining the occupied range becomes easy, and the determination accuracy can be improved. The above-mentioned specific direction may refer to, for example, the height direction when the height dimension of the length, width, and height of the conveyed object has the smallest value on the conveyance surface of the conveyance path.

本発明において、前記搬送物制御手段(MPU,RAM)は、前記連続占有範囲(121CT)内の搬送方向前方にある部分に前記単位占有範囲(121U)を想定したときの当該単位占有範囲(121U)よりも搬送方向後方にある部分に排除力を与えることが好ましい。これによれば、重なった搬送物若しくは相互に近接した搬送物のうちの前方部分にある搬送物をそのままとし、後方部分にある搬送物に排除力を与えることによって、搬送の向きを利用して相互に重なった搬送物同士を離反させやすくなるため、重なり状態の解消を容易かつ確実に実行できる。 In the present invention, the conveyance object control means (MPU, RAM) is configured to control the unit occupation range (121U) when the unit occupation range (121U) is assumed to be in the forward part of the conveyance direction within the continuous occupation range (121CT). ) It is preferable to apply the expulsion force to a portion located further rearward in the conveyance direction than the other portion. According to this method, out of overlapped objects or objects that are close to each other, the objects in the front part are left as they are, and a displacement force is applied to the objects in the rear part, thereby making use of the direction of transport. Since the conveyed objects that overlap each other can be easily separated from each other, the overlapping state can be easily and reliably resolved.

本発明において、前記計測エリア(ME)は、前記搬送路(121)の末端部(121e)に設定されることが好ましい。これによれば、搬送物の重なり状態や近接状態が搬送路の最下流にある末端部で検出され、解消されることから、搬送物の供給先への整列状態を確保できるとともに、供給先への移載箇所における詰まりを防止できる。この場合において、前記画像取得手段(MPU,DTU,RAM)は、前記撮像手段(130CM)により、前記計測エリア(ME)とともに、前記末端部(121e)から前記搬送物(CA)が供給される供給先(20)の受入部(21a)を含む範囲を撮影した画像を取得し、前記画像を処理することにより前記受入部(21a)における前記搬送物(CA)の受入れの可否を検出する搬送物受入可否検出手段(MPU,RAM)をさらに具備することが好ましい。これによれば、末端部を含む画像から供給先の受入部における搬送物の受入れの可否を検出することができるので、別途の撮像手段を用いることなしに、供給先の制御や供給先に対する供給停止等の対応を行うことができる。 In the present invention, it is preferable that the measurement area (ME) is set at the end (121e) of the transport path (121). According to this, the overlapping state or proximity state of conveyed objects is detected and resolved at the most downstream end of the conveyance path, so it is possible to ensure that the conveyed objects are aligned to the supply destination, and also to It is possible to prevent clogging at transfer points. In this case, the image acquisition means (MPU, DTU, RAM) is supplied with the conveyed object (CA) from the end portion (121e) together with the measurement area (ME) by the imaging means (130CM). Conveyance in which an image of a range including the receiving section (21a) of the supply destination (20) is acquired, and by processing the image, it is detected whether or not the conveyed object (CA) can be accepted at the receiving section (21a). It is preferable to further include object acceptance/rejection detection means (MPU, RAM). According to this, it is possible to detect whether or not the conveyed object can be accepted at the receiving section of the supply destination from an image including the end part, so it is possible to control the supply destination and supply the goods to the supply destination without using a separate imaging means. Measures such as suspension can be taken.

本発明において、前記搬送物占有範囲判別手段(MPU,RAM)は、不正判定の条件を満たす前記連続占有範囲(121CT)が必ず占有するように設定された、搬送方向(F)に固定された検出領域(Ls)を前記計測エリア(ME)内に備えることが好ましい。これによれば、搬送物占有範囲判別手段が、計測エリア内において搬送方向に固定された検出領域を連続占有範囲が占有(すべて包含)するときに不正判定を行うことにより、不正判定を行う際の計測エリア内の検出位置が搬送方向に固定されるため、搬送物が常に略一定の位置に到達している時点を判定タイミングとすることができるから、搬送物の制御タイミング等の管理が容易化される。 In the present invention, the conveyance object occupation range determination means (MPU, RAM) is fixed in the conveyance direction (F), which is set so that the continuous occupation range (121CT) that satisfies the conditions for fraud determination is always occupied. Preferably, a detection region (Ls) is provided within the measurement area (ME). According to this, when the conveyance object occupation range determination means makes a fraud determination when a continuous occupation range occupies (all encompasses) a detection area fixed in the conveyance direction within a measurement area, Since the detection position within the measurement area is fixed in the transport direction, the judgment timing can be set at the time when the transported object always reaches a substantially constant position, making it easy to manage the control timing of the transported object, etc. be converted into

本発明において、前記画像取得手段(MPU,DTU,RAM)は、前記撮像手段(130CM)により既定の撮影間隔(Ts)で連続して撮影するとともに、前記計測エリア(ME)は、前記搬送物(CA)の搬送速度(Vs)と撮影間隔(Ts)との関係により前記搬送路(121)を通過する全ての前記搬送物(CA)が常に含まれるように予め設定された範囲を有することが好ましい。これによれば、搬送物の到来タイミングが撮影タイミングとは一致していない場合であっても、全ての搬送物がいずれかの画像の計測エリア内に必ず配置されるため、設定エリア内の各画像を処理して搬送物を検出すれば、全ての搬送物の検出が可能である。このようにすると、従来技術のように個々の搬送物の位置を検知するためのトリガ信号を生成する必要がなくなるため、搬送物を検知するセンサが不要になり、検出ユニットを簡易に構成できる。したがって、搬送物が繋がって搬送されてくる場合などにおいて個々の搬送物の検知漏れを考慮する必要がないために事前に搬送物間に間隙を形成する必要がなくなるなどの理由により、搬送物の高速搬送や高密度搬送が容易になるとともに検出システムの全体構成を簡易に構成することができる。また、連続して撮影される複数の撮影画像のうちの予め設定された計測エリア内の画像データのみを処理すれば足りるので、前記搬送物を判定するための画像計測処理を高速かつ高精度に行うことができる。なお、この構成は、上記条件を満たす限り、一般的な動画撮影によって行われても構わない。 In the present invention, the image acquisition means (MPU, DTU, RAM) continuously photographs at a predetermined photographing interval (Ts) using the image pickup means (130CM), and the measurement area (ME) is configured to capture images of the conveyed object. (CA) has a range set in advance such that all of the conveyed objects (CA) passing through the conveyance path (121) are always included according to the relationship between the conveyance speed (Vs) of the (CA) and the photographing interval (Ts). is preferred. According to this, even if the arrival timing of the conveyed object does not match the photographing timing, all the conveyed objects are always placed within the measurement area of one of the images, so each object within the set area If images are processed to detect conveyed objects, all conveyed objects can be detected. In this way, there is no need to generate a trigger signal for detecting the position of each transported object as in the prior art, so a sensor for detecting the transported object is no longer necessary, and the detection unit can be configured simply. Therefore, there is no need to take into account the failure of detection of individual conveyed objects when conveyed objects are connected, and there is no need to create gaps between conveyed objects in advance. High-speed conveyance and high-density conveyance are facilitated, and the overall configuration of the detection system can be configured easily. In addition, since it is sufficient to process only the image data within a preset measurement area among the plurality of consecutively photographed images, the image measurement processing for determining the conveyed object can be performed at high speed and with high precision. It can be carried out. Note that this configuration may be performed by general video shooting as long as the above conditions are satisfied.

上記の場合において、前記計測エリア(ME)の前記搬送路(121)に沿った搬送方向(F)の長さLDは、前記搬送物の1個分の前記搬送方向(F)の長さをL、前記撮影周期をTs、前記搬送速度をVsとすれば、n=1-10の自然数としたとき、β=Ts・Vsのとき、
LD≧L+n・β=L+n・Ts・Vs
が成立する値を有することが好ましい。これによれば、全ての搬送物がいずれかの画像データにおいて常に搬送方向の領域内に配置された状態で連続占有範囲が検出され、単位占有範囲を越えるか否かが判定されるため、どのような搬送物であっても確実に判定することができる。ここで、nは3-7の範囲内であることがさらに望ましい。
In the above case, the length LD of the measurement area (ME) in the transport direction (F) along the transport path (121) is the length LD of the measurement area (ME) in the transport direction (F) for one transported object. L, if the photographing period is Ts, and the conveyance speed is Vs, then when n = a natural number of 1-10, when β = Ts・Vs,
LD≧L+n・β=L+n・Ts・Vs
It is preferable to have a value that satisfies the following. According to this, the continuous occupied range is detected with all conveyed objects always placed within the area in the conveying direction in any image data, and it is determined whether or not the unit occupied range is exceeded. Even such conveyed objects can be reliably determined. Here, it is more desirable that n be within the range of 3-7.

この場合においてはさらに、不正判定の条件を満たす前記連続占有範囲(121CT)が必ず占有する、前記搬送方向(F)に固定された検出領域(Ls)が、前記計測エリア(ME)内に設けられている場合には、全ての前記不正判定の条件を満たす前記連続占有範囲(121CT)が前記検出領域(Ls)を占有する際に必ず撮像されるように、前記搬送速度(Vs)に応じた前記撮影間隔(Ts)が設定されることが好ましい。具体的には、上記検出領域において搬送方向(F)の長さ(Lct)の前記連続占有範囲(121CT)が同長さ(L)の前記単位占有範囲を基準として不正判定とされる場合には、検出領域の同長さ(Ls)を用いて、当該連続占有範囲(121CT)の搬送方向(F)の長さがLct=Ls+ΔLt(ΔLt>0)であるとすると、ΔLt≧β=Ts・Vsが成立すれば、必ず、上記連続占有範囲が上記領域内に配置される画像が取得できるので、全ての搬送物による連続占有範囲がいずれかの撮影画像により検出できる。 In this case, furthermore, a detection area (Ls) fixed in the transport direction (F), which is always occupied by the continuous occupied range (121CT) that satisfies the conditions for fraud determination, is provided within the measurement area (ME). If the detection area (Ls) is occupied by the continuous occupied range (121CT) that satisfies all of the fraud determination conditions, the image is captured according to the conveyance speed (Vs). It is preferable that the photographing interval (Ts) is set. Specifically, in the case where the continuous occupied range (121CT) of the length (Lct) in the transport direction (F) in the detection area is determined to be fraudulent based on the unit occupied range of the same length (L), Using the same length (Ls) of the detection area, and assuming that the length of the continuous occupied range (121CT) in the transport direction (F) is Lct=Ls+ΔLt (ΔLt>0), ΔLt≧β=Ts - If Vs is established, an image in which the continuous occupied range is located within the area can be obtained without fail, so the continuous occupied range by all conveyed objects can be detected from any of the captured images.

本発明において、前記計測エリア(ME)内において前記搬送路(121)の搬送面(121a、121b)に形成された透光領域(121c)と、前記透光領域(121c)を通して前記搬送面(121a,121b)の背面側より前記撮像手段(130CM)の側に向けた光を照射する背面側照明手段(140BL)と、をさらに具備し、前記搬送物占有範囲判別手段(MPU,RAM)は、前記計測エリア(ME)内の画像データに対して、前記透光領域(121c)の前記搬送物(CA)による遮光部分若しくは非遮光部分(透光部分)の範囲を示す情報を用いることによって、前記計測エリア(ME)内における前記連続占有範囲(121CT)の大きさを検出することが好ましい。これによれば、画像取得手段により取得した計測エリアの画像データにおいて、背面側照明手段によって撮像手段の側に光を照射する透光領域を通して、透光領域の搬送物による遮光部分若しくは非遮光部分の範囲を示す情報を抽出し、この情報を用いて、前記計測エリア内における前記連続占有範囲の大きさを検出することにより、上記画像の処理を容易化及び確実化できるため、搬送物の占有範囲の判別処理の迅速化及び高精度化を図ることができる。すなわち、単位占有範囲以下の大きさを備える連続占有範囲は検出領域の全体を占有せず、不正判定の条件を満たす連続占有範囲は検出領域の全体を占有するので、連続占有範囲が検出領域全体を占有する大きさか否かによって判定が行われる。 In the present invention, a light-transmitting region (121c) formed on the transport surface (121a, 121b) of the transport path (121) in the measurement area (ME), and a light-transmitting region (121c) formed on the transport surface (121a, 121b) through the light-transmitting region (121c) 121a, 121b), and a rear side illumination means (140BL) for irradiating light from the rear side toward the imaging means (130CM), and the conveyance object occupation range determination means (MPU, RAM) , by using information indicating the range of the light-blocking part or the non-light-blocking part (light-transmitting part) by the conveyed object (CA) in the light-transmitting area (121c) with respect to the image data in the measurement area (ME). , it is preferable to detect the size of the continuous occupied range (121CT) within the measurement area (ME). According to this, in the image data of the measurement area acquired by the image acquisition means, light is irradiated onto the imaging means side by the backside illumination means through the light-transmitting area, and the light-shielding part or the non-shading part by the conveyed object in the light-transmitting area By extracting information indicating the range of the conveyed object and using this information to detect the size of the continuous occupied range within the measurement area, processing of the image can be facilitated and ensured. It is possible to speed up and increase the precision of range discrimination processing. In other words, a continuous occupied range whose size is less than or equal to the unit occupied range does not occupy the entire detection area, and a continuous occupied range that satisfies the conditions for fraud determination occupies the entire detection area. Judgment is made based on whether it is large enough to occupy the area.

この場合において、前記透光領域(121c)は、前記搬送路(121)上における前記搬送物(CA)の幅よりも幅狭に構成されることが好ましい。この発明によれば、画像取得手段により取得した計測エリアの画像データにおいて、背面側照明手段によって撮像手段の側に光を透過させる透光領域が、搬送物の幅よりも幅狭に限定されることにより、背面側照明の光量が抑制されるため、撮像手段によって撮像される画像情報から搬送物の表面態様をより良好に抽出可能に構成し得るようになる。なお、搬送路上の搬送物の姿勢により上記の搬送物の幅が変動する場合には、上記の透光領域は、最も大きな幅よりも幅狭に形成されていればよい。ただし、上記の透光領域は、搬送路上で搬送物がとり得る姿勢に対応する全ての幅よりも幅狭に構成されていることがより望ましい。 In this case, it is preferable that the light-transmitting area (121c) is configured to be narrower than the width of the conveyed object (CA) on the conveyance path (121). According to this invention, in the image data of the measurement area acquired by the image acquisition means, the light-transmitting area through which light is transmitted to the imaging means side by the back side illumination means is limited to a width narrower than the width of the conveyed object. As a result, the amount of light from the rear side illumination is suppressed, so that the surface aspect of the conveyed object can be extracted better from the image information captured by the imaging means. In addition, when the width of the conveyed object changes depending on the attitude of the conveyed object on the conveyance path, the above-mentioned light-transmitting area may be formed narrower than the largest width. However, it is more desirable that the light-transmitting area is configured to be narrower than all the widths corresponding to the postures that the conveyed object can take on the conveyance path.

本発明において、前記透光領域(121c)は、前記搬送物(CA)の長さよりも搬送方向に延長された形状のスリット状に構成される場合がある。この場合には、搬送方向に延長されたスリット形状の透光領域の一部を搬送物が遮ることによって、透光領域の搬送物による遮光部分若しくは非遮光部分の範囲に基づいて、搬送物の位置範囲をさらに容易かつ確実に特定することが可能になる。この場合において、前記透光領域(121c)は、前記計測エリア(ME)の前記搬送方向の全範囲にわたって形成されることが好ましい。これによれば、計測エリアの搬送方向のいずれの箇所においても遮光部分若しくは非遮光部分を把握することができるため、搬送物の有無や位置範囲をさらに特定しやすくなる。 In the present invention, the light-transmitting area (121c) may be configured in a slit shape that is longer than the length of the conveyed object (CA) in the conveying direction. In this case, by blocking a part of the slit-shaped light-transmitting region extending in the transport direction, the transported object is It becomes possible to specify the position range more easily and reliably. In this case, it is preferable that the light-transmitting region (121c) is formed over the entire range of the measurement area (ME) in the transport direction. According to this, it is possible to know whether a light-shielded portion or a non-light-shielded portion is present at any point in the conveyance direction of the measurement area, making it easier to specify the presence or absence of the conveyed object and the position range.

さらに、前記透光領域(121c)は、前記計測エリア(ME)内に配列された複数の透光領域部(121g-121i)の群からなる場合もある。この場合には、複数の透光領域部のうちのいずれが搬送物によって遮光されるかをみることで、前記搬送物(CA)の位置範囲を容易かつ確実に特定することが可能になる。特に、上記透光領域部は、前記搬送方向に配列されていることが好ましく、また、幅方向に配列されていてもよく、双方向に配列されていてもよい。この場合において、前記透光領域部は、前記計測エリア(ME)の前記搬送方向の全範囲にわたって配列されていることが好ましい。これによれば、計測エリアの搬送方向のいずれの箇所においても遮光部分若しくは非遮光部分を把握することができるため、搬送物の有無や位置範囲をさらに特定しやすくなる。これらの場合において、前記透光領域部(121f-121i)は、前記搬送物(CA)の長さよりも搬送方向に短いことが望ましい。搬送物よりも小さな複数の透光領域部が搬送方向に配列されていることにより、透光領域がさらに限定されるので、撮像手段によって撮像される表面の画像情報をさらに容易に抽出可能に構成し得る。 Further, the light-transmitting region (121c) may be composed of a group of a plurality of light-transmitting region portions (121g-121i) arranged within the measurement area (ME). In this case, by checking which of the plurality of light-transmitting areas is blocked by the transported object, it becomes possible to easily and reliably specify the positional range of the transported object (CA). In particular, the light-transmitting areas are preferably arranged in the transport direction, and may be arranged in the width direction or bidirectionally. In this case, it is preferable that the light-transmitting regions are arranged over the entire range of the measurement area (ME) in the transport direction. According to this, it is possible to know whether a light-shielded portion or a non-light-shielded portion is present at any point in the conveyance direction of the measurement area, making it easier to specify the presence or absence of the conveyed object and the position range. In these cases, it is desirable that the light-transmitting area portion (121f-121i) be shorter in the conveying direction than the length of the conveyed object (CA). By arranging a plurality of light-transmitting regions smaller than the conveyed object in the conveyance direction, the light-transmitting region is further limited, so that image information of the surface imaged by the imaging means can be extracted more easily. It is possible.

この場合において、前記透光領域(121c)の複数の前記透光領域部(21f、121g-121i)は、前記単位占有範囲の搬送方向の長さ範囲内に包含されるように形成された第1の前記透光領域部(121h)及び第2の前記透光領域部(121i)と、前記単位占有範囲(121U)が前記第1の透光領域部(121h)及び前記第2の透光領域部(121i)を遮光したときに遮光されない部分を備える第3の前記透光領域部(121g)と、を備えることが好ましい。これにより、第1の透光領域部と第2の透光領域部が共に遮光されたときに第3の透光領域部の上記遮光されない部分(或いはそのうちの少なくとも一部)が遮光されているか否かによって、連続占有範囲が単位占有範囲を越えるか否かを判定することができる。このとき、第3の透光領域部の非遮光部分(或いはそのうちの少なくとも一部)の大きさや当該非遮光部分の検出精度により、連続占有範囲の単位占有範囲を越えたか否かの判別精度を定めることができる。 In this case, the plurality of light-transmitting area portions (21f, 121g-121i) of the light-transmitting area (121c) are formed so as to be included within the length range of the unit occupation range in the transport direction. The first light-transmitting area portion (121h) and the second light-transmitting area portion (121i), and the unit occupied range (121U) are the first light-transmitting area portion (121h) and the second light-transmitting area portion (121i). It is preferable to include a third light-transmitting region (121g) having a portion that is not light-shielded when the region (121i) is light-shielded. With this, when both the first light-transmitting area and the second light-transmitting area are light-shielded, the portion of the third light-transmitting region that is not light-shielded (or at least a part of it) is light-shielded. Depending on whether or not the continuous occupied range exceeds the unit occupied range, it can be determined whether or not the continuous occupied range exceeds the unit occupied range. At this time, the accuracy of determining whether or not the unit occupation range of the continuous occupation range has been exceeded is determined based on the size of the non-light-shielding part (or at least a part of it) of the third light-transmitting area and the detection accuracy of the non-light-shielding part. can be determined.

本発明において、前記搬送路(121)は前記搬送物(CA)の搬送方向(F)に沿った方向に往復する態様で振動することによって前記搬送物(CA)を搬送するものであり、前記撮像手段(130CM)が静止している場合には、撮影時における前記搬送路(121)の振動による前記撮影画像(GPX)内の前記搬送路(121)に対する位置変動をなくすように前記撮影画像(GPX)内の前記計測エリア(ME)の位置を補正することが好ましい。これによれば、搬送体の振動による撮影画像の画像処理領域における搬送路に対する位置ずれを解消することができるため、当該位置ずれによる画像処理位置のずれが防止され、搬送路上の一定位置で搬送物占有範囲判別処理を実施することができる。したがって、上記位置ずれによる搬送物の制御不正などを回避でき、搬送物の制御を確実で正確な態様で実施できる。 In the present invention, the conveyance path (121) conveys the conveyed object (CA) by vibrating in a reciprocating manner in a direction along the conveying direction (F) of the conveyed object (CA), and When the imaging means (130CM) is stationary, the photographed image is adjusted so as to eliminate positional fluctuations in the photographed image (GPX) with respect to the conveyance path (121) due to vibrations of the conveyance path (121) during photographing. It is preferable to correct the position of the measurement area (ME) within (GPX). According to this, it is possible to eliminate the positional deviation of the image processing area of the photographed image with respect to the transport path due to the vibration of the transport body, so that the image processing position is prevented from shifting due to the positional deviation, and the image is transported at a constant position on the transport path. It is possible to perform object occupation range determination processing. Therefore, it is possible to avoid improper control of the conveyed object due to the above-mentioned positional deviation, and it is possible to control the conveyed object in a reliable and accurate manner.

この場合において、前記搬送物占有範囲判別手段(MPU,RAM)は、前記撮影画像(GPX,GPY)内に撮像された前記搬送路(121)上の特定箇所(121y)の位置を前記画像計測処理により検出し、当該位置に応じて、前記計測エリア(ME)の位置を補正することが望ましい。搬送路の振動による各エリアの搬送路に対する位置ずれ量を、予め設定された搬送路の振動幅及び振動周期の値を用いて撮影時ごとに算出し、当該位置ずれ量に応じて撮影画像内の計測エリアの位置を補正してもよいが、撮影画像内の搬送路上の特定箇所の位置を画像処理により検出することで、撮影画像内に表れた実際の搬送体の振動態様に対応した補正を行うことができるため、各エリアの位置を確実かつ高精度に設定することができる。搬送路上の特定箇所としては、画像内に撮影される種々の部分(搬送路上に表示された位置表示マーク)を用いることができる。 In this case, the conveyance object occupation range determination means (MPU, RAM) determines the position of a specific point (121y) on the conveyance path (121) captured in the captured image (GPX, GPY) by the image measurement. It is desirable that the position of the measurement area (ME) is corrected according to the detected position through processing. The amount of positional deviation of each area with respect to the transport path due to the vibration of the transport path is calculated each time a photograph is taken using the preset values of the vibration width and vibration cycle of the transport path, and the amount of positional deviation in the photographed image is calculated according to the amount of positional deviation. The position of the measurement area may be corrected, but by detecting the position of a specific point on the conveyance path in the photographed image through image processing, it is possible to make corrections that correspond to the vibration mode of the actual conveyor that appears in the photographed image. This allows the position of each area to be set reliably and with high precision. Various parts photographed within the image (position display marks displayed on the transport path) can be used as the specific locations on the transport path.

次に、本発明に係る搬送装置は、前記搬送路(121)を備えた搬送機構(12,CL12)と、上記搬送制御システム(CM1,CM2,DTU,DP1、DP2,SP1,SP2)とを具備することを特徴とする。 Next, the transport device according to the present invention includes a transport mechanism (12, CL12) including the transport path (121) and the transport control system (CM1, CM2, DTU, DP1, DP2, SP1, SP2). It is characterized by comprising:

本発明において、前記搬送機構(12,CL12)は、前記搬送路(121)を振動させる加振手段(125)と、前記加振手段(125)の駆動態様を制御する加振制御手段(CL12)と、を有することが好ましい。加振制御手段の制御の対象となる駆動態様としては、加振手段の駆動の停止、加振手段の駆動周波数や駆動電圧の変更などが挙げられる。これにより、搬送物の搬送態様(搬送速度、搬送姿勢の安定性など)を調整することができる。 In the present invention, the conveyance mechanism (12, CL12) includes a vibration excitation means (125) that vibrates the conveyance path (121), and an excitation control means (CL12) that controls a driving mode of the vibration means (125). ). Examples of the drive mode to be controlled by the vibration control means include stopping the driving of the vibration means, changing the driving frequency and driving voltage of the vibration means, and the like. Thereby, the transport mode (transport speed, stability of transport posture, etc.) of the transported object can be adjusted.

本発明によれば、搬送物の撮影画像を処理することにより搬送物による連続占有範囲の大きさを単位占有範囲を基準として判別することにより、搬送物の詰まりなどの搬送不良や前後の搬送物の重なり状態の検出不良を回避することができるという優れた効果を奏し得る。 According to the present invention, by processing a photographed image of the conveyed object and determining the size of the continuous occupied range by the conveyed object based on the unit occupied range, it is possible to prevent conveyance defects such as clogging of the conveyed object, An excellent effect can be achieved in that detection failures in overlapping states can be avoided.

本発明に係る搬送制御システムを備えた搬送装置(振動式搬送装置)の実施形態の平面図である。1 is a plan view of an embodiment of a conveyance device (vibrating conveyance device) including a conveyance control system according to the present invention. 同実施形態の正面図である。It is a front view of the same embodiment. 同実施形態の斜視図である。It is a perspective view of the same embodiment. 同実施形態の搬送路の末端部及びその周囲近傍を示す拡大斜視図(a)及び搬送路の末端部をさらに拡大して示す拡大斜視図(b)である。They are an enlarged perspective view (a) showing an end portion of a conveyance path and the vicinity thereof in the same embodiment, and an enlarged perspective view (b) showing a further enlarged view of the end portion of the conveyance path. 同実施形態の搬送路の末端部の側面図(a)及び当該側面図(a)内の領域Bを拡大して示す拡大側面図(b)である。They are a side view (a) of the end part of the conveyance path of the same embodiment, and an enlarged side view (b) showing an enlarged area B in the side view (a). 同実施形態の搬送路の末端部、及び、供給先の検査装置のインデックステーブルの受入部の構造を示す平面図(a)、並びに、搬送路の末端部、及び、供給先の検査装置のインデックステーブルの受入部の構造を示す縦断面図(b)である。A plan view (a) showing the structure of the receiving part of the index table of the end of the conveyance path and the inspection device of the supply destination in the same embodiment, and the end of the conveyance path and the index of the inspection device of the supply destination. It is a longitudinal cross-sectional view (b) which shows the structure of the receiving part of a table. 同実施形態の搬送路の末端部、及び、供給先の検査装置のインデックステーブルの受入部における個別の搬送物に対応する際の第1実施例の様子を示す説明図(a)及び重なり状態の搬送物に対応する際の第1実施例の様子を示す説明図(b)である。Explanatory diagram (a) showing the state of the first embodiment when handling individual conveyance items at the end of the conveyance path of the same embodiment and the receiving section of the index table of the inspection device of the supply destination, and the overlapping state. FIG. 6 is an explanatory diagram (b) showing the state of the first embodiment when dealing with conveyed objects. 同実施形態の搬送路の末端部、及び、供給先の検査装置のインデックステーブルの受入部における個別の搬送物に対応する際の第2実施例の様子を示す説明図(a)及び重なり状態の搬送物に対応する際の第2実施例の様子を示す説明図(b)である。Explanatory diagram (a) showing the state of the second embodiment when handling individual conveyance items at the end of the conveyance path of the same embodiment and the receiving section of the index table of the inspection device of the supply destination, and the overlapping state. FIG. 6 is an explanatory diagram (b) showing the state of the second embodiment when dealing with conveyed objects. 同実施形態の搬送路の末端部、及び、供給先の検査装置のインデックステーブルの受入部における重なった搬送物の搬送状態と処理態様を示す説明図(a)-(e)である。FIGS. 7A to 8E are explanatory diagrams illustrating the conveyance state and processing mode of overlapping conveyed objects at the end of the conveyance path and at the receiving part of the index table of the destination inspection device in the same embodiment; FIGS. 同実施形態の全体構成を示す概略構成ブロック図である。FIG. 2 is a schematic block diagram showing the overall configuration of the embodiment. 同実施形態の動作プログラムの全体の概略の制御手順を示す概略フローチャートである。2 is a schematic flowchart showing a general control procedure of the entire operating program of the same embodiment.

次に、添付図面を参照して本発明に係る搬送制御システム及び搬送装置の実施形態について詳細に説明する。最初に、図10を参照して、本発明に係る搬送装置の実施形態の基本構成について説明する。図10は、搬送装置10の駆動制御系と、搬送装置10の搬送制御システムの構成とを模式的に示す概略構成図である。 Next, embodiments of a conveyance control system and a conveyance device according to the present invention will be described in detail with reference to the accompanying drawings. First, with reference to FIG. 10, the basic configuration of an embodiment of a conveying device according to the present invention will be described. FIG. 10 is a schematic diagram schematically showing the configuration of the drive control system of the transport device 10 and the transport control system of the transport device 10. As shown in FIG.

搬送装置10は、搬送機構として、螺旋状の搬送路111を有するボウル型の搬送体110を備えたパーツフィーダ11と、このパーツフィーダ11の上記搬送路111の出口から搬送物を受け取るように構成された入口を備えた直線状の搬送路121を有する搬送体120を備えたリニアフィーダ12とを具備する振動式搬送装置である。本実施形態の搬送制御システムでは、リニアフィーダ12の搬送体120の搬送路121上の搬送物CAを撮影画像GPXに基づいて検出し、その検出された画像部分を対象として、検査、判定する。ここで、本実施形態の搬送制御システムは、本発明に係る構成を備える搬送制御システムの対応部分だけでなく、当該対応部分以外に、搬送物の姿勢を判別して整列させるためなどの種々の検査部、判別部、選別部、反転部などを含み得る。なお、本発明において、振動式搬送装置に限られない構成については、搬送物CAが搬送路に沿って搬送される各種の搬送装置に用いることができる。また、振動式搬送装置であっても、上記パーツフィーダ11とリニアフィーダ12の組み合せに限定されるものではなく、循環式パーツフィーダなどの他の形式の搬送装置に用いることが可能である。さらに、上記の組み合せにあっても、リニアフィーダ12の搬送路121上の搬送物CAを検査、判別、選別、反転等するものに限らず、パーツフィーダ11の搬送路111上の搬送物CAを検査等するものであっても構わない。 The conveyance device 10 includes a parts feeder 11 equipped with a bowl-shaped conveyance body 110 having a spiral conveyance path 111 as a conveyance mechanism, and is configured to receive a conveyed object from the exit of the conveyance path 111 of the parts feeder 11. This is a vibrating conveyance device comprising a linear feeder 12 including a conveyance body 120 having a linear conveyance path 121 with an inlet. In the conveyance control system of this embodiment, the conveyance object CA on the conveyance path 121 of the conveyance body 120 of the linear feeder 12 is detected based on the photographed image GPX, and the detected image portion is inspected and determined. Here, the conveyance control system of this embodiment not only has the corresponding part of the conveyance control system having the configuration according to the present invention, but also has various functions other than the corresponding part, such as for determining the posture of conveyed objects and arranging them. It may include an inspection section, a discrimination section, a sorting section, an inversion section, and the like. Note that, in the present invention, the configuration is not limited to the vibration type conveyance device, but can be used for various conveyance devices in which the conveyed object CA is conveyed along a conveyance path. Moreover, even if it is a vibrating conveyance device, it is not limited to the combination of the parts feeder 11 and the linear feeder 12, and can be used in other types of conveyance devices such as a circulating parts feeder. Furthermore, even in the above combination, the conveyed objects CA on the conveying path 111 of the parts feeder 11 are not limited to inspection, discrimination, sorting, reversing, etc. of the conveyed objects CA on the conveying path 121 of the linear feeder 12. It does not matter if it is something to be inspected, etc.

パーツフィーダ11はコントローラCL11によって駆動、制御される。また、リニアフィーダ12はコントローラCL12によって駆動、制御される。これらのコントローラCL11、CL12はパーツフィーダ11やリニアフィーダ12の加振手段(電磁駆動体や圧電駆動体などを含む。)を交流駆動し、搬送体110,120を搬送路111,121上の搬送物CAが所定の搬送方向Fに移動する態様となるように振動させる。また、コントローラCL11、CL12は、搬送制御システムの主体となる画像処理機能を有する検査処理ユニットDTUに入出力回路(I/O)を介して接続されている。 The parts feeder 11 is driven and controlled by a controller CL11. Furthermore, the linear feeder 12 is driven and controlled by a controller CL12. These controllers CL11 and CL12 drive the vibration means (including electromagnetic drive bodies, piezoelectric drive bodies, etc.) of the parts feeder 11 and the linear feeder 12 with alternating current, and transport the conveyance bodies 110 and 120 on the conveyance paths 111 and 121. The object CA is vibrated so as to move in a predetermined transport direction F. Further, the controllers CL11 and CL12 are connected via an input/output circuit (I/O) to an inspection processing unit DTU having an image processing function, which is the main body of the transport control system.

また、コントローラCL11,CL12は、下記の動作プログラムを実行する後述する演算処理装置MPUに対して、マウスなどの後述する操作入力装置SP1,SP2などを介して所定の操作入力(デバッグ操作)が行われると、上記の動作プログラムに従って搬送装置10の駆動を停止する。このとき、上記の動作プログラムに従って、例えば、検査処理ユニットDTUにおける画像計測処理も停止される。このデバッグ操作及び当該操作に応じた各所の動作については後に詳述する。 In addition, the controllers CL11 and CL12 perform predetermined operation inputs (debugging operations) via operation input devices SP1 and SP2, which will be described later, such as a mouse, to an arithmetic processing unit MPU, which will be described later, and which executes the following operation program. When this happens, the drive of the conveyance device 10 is stopped according to the above-mentioned operation program. At this time, for example, the image measurement process in the inspection processing unit DTU is also stopped according to the above operation program. This debugging operation and various operations corresponding to the debugging operation will be described in detail later.

検査処理ユニットDTUは、パーソナルコンピュータ等の演算処理装置MPU(マイクロプロセシングユニット)を中核構成とし、図示例では、上記演算処理装置MPUは、中央処理ユニットCPU1,CPU2、キャッシュメモリCCM、メモリコントローラMCL、チップセットCHSなどから構成される。また、この検査処理ユニットDTUには、撮像手段CMであるカメラCM1,CM2にそれぞれ接続された画像処理を行うための画像処理回路GP1,GP2が設けられている。これらの画像処理回路GP1,GP2はそれぞれ画像処理メモリGM1,GM2に接続されている。画像処理回路GP1,GP2の出力は上記演算処理装置MPUにも接続され、カメラCM1,CM2から取り込んだ撮影画像GPXの画像データを処理し、適宜の処理画像(例えば後述する画像エリアGPY内の画像データ)を演算処理装置MPUに転送する。主記憶装置MMには予め搬送制御システムの動作プログラムが格納されている。検査処理ユニットDTUが起動されると、演算処理装置MPUにより上記動作プログラムが読み出されて実行される。また、この主記憶装置MMには、演算処理装置MPUにより、後述する画像計測処理を実行した対象となる撮影画像GPX若しくは画像エリアGPYの画像データが保存される。 The inspection processing unit DTU has an arithmetic processing unit MPU (microprocessing unit) such as a personal computer as its core configuration, and in the illustrated example, the arithmetic processing unit MPU includes central processing units CPU1, CPU2, cache memory CCM, memory controller MCL, It consists of chipset CHS etc. The inspection processing unit DTU is also provided with image processing circuits GP1 and GP2 for performing image processing, which are connected to cameras CM1 and CM2, which are imaging means CM, respectively. These image processing circuits GP1 and GP2 are connected to image processing memories GM1 and GM2, respectively. The outputs of the image processing circuits GP1 and GP2 are also connected to the arithmetic processing unit MPU, which processes the image data of the photographed images GPX taken in from the cameras CM1 and CM2, and generates an appropriate processed image (for example, an image in the image area GPY described later). data) to the arithmetic processing unit MPU. The main storage device MM stores in advance an operating program for the transport control system. When the inspection processing unit DTU is activated, the operation program is read out and executed by the arithmetic processing unit MPU. The main storage device MM also stores image data of a photographed image GPX or an image area GPY on which image measurement processing, which will be described later, is performed by the arithmetic processing unit MPU.

また、検査処理ユニットDTUは、入出力回路(I/O)を介して液晶モニタ等の表示装置DP1,DP2や操作入力装置SP1,SP2に接続される。表示装置DP1,DP2は、上記演算処理装置MPUによって処理された撮影画像GPX若しくは画像エリアGPYの画像データ、画像計測処理の結果、すなわち、後述する搬送物占有範囲判別処理の他に、各場所における搬送物検出処理や搬送物判別処理の結果などが、所定の表示態様で表示される。なお、この表示機能は、実際に搬送物が搬送されている場合に限らず、後述するように、過去のデータを読みだして再生している場合にも機能する。また、表示装置DP1,DP2の画面を見ながら操作入力装置SP1,SP2を操作することにより、各種の操作指令、設定値などの処理条件を上記演算処理装置MPUに入力することができる。 Further, the inspection processing unit DTU is connected to display devices DP1 and DP2 such as liquid crystal monitors and operation input devices SP1 and SP2 via an input/output circuit (I/O). The display devices DP1 and DP2 display the image data of the photographed image GPX or the image area GPY processed by the arithmetic processing unit MPU, the results of the image measurement process, that is, the image data at each location in addition to the conveyance object occupation range determination process described later. The results of the conveyance object detection process, conveyance object discrimination process, etc. are displayed in a predetermined display format. Note that this display function functions not only when an object is actually being transported, but also when past data is being read and reproduced, as will be described later. Further, by operating the operation input devices SP1, SP2 while looking at the screens of the display devices DP1, DP2, various operation commands, processing conditions such as set values can be input to the arithmetic processing unit MPU.

なお、本実施形態では、図10に模式的に示すように、二つのカメラCM1,CM2、二つの画像処理回路GP1,GP2、二つの画像処理メモリGM1,GM2、二つの表示装置DP1,DP2,二つの操作入力装置SP1,SP2などを備えるが、これは一例であり、単一の各構成を備えていてもよく、三つ以上の各構成を備えていてもよい。本実施形態においては、上記のカメラCM1,CM2の他に別途追加設置されたものとして、特定のカメラ装置130CMを設けている。以下では、当該カメラ装置130CMによる撮影画像の画像処理による搬送物占有範囲判別処理についてのみ説明する。 In this embodiment, as schematically shown in FIG. 10, two cameras CM1, CM2, two image processing circuits GP1, GP2, two image processing memories GM1, GM2, two display devices DP1, DP2, Although two operation input devices SP1, SP2, etc. are provided, this is just an example, and a single configuration or three or more configurations may be provided. In this embodiment, a specific camera device 130CM is additionally installed in addition to the cameras CM1 and CM2 described above. In the following, only the conveyance object occupation range determination process based on image processing of images taken by the camera device 130CM will be described.

図1-図5は、図10に示す本実施形態の搬送機構の一例を詳細に示す図である。本実施形態では、リニアフィーダ12の搬送路121の末端部121eが、搬送物CAの供給先である検査装置20の支持部20aに支持された状態で、ステップ回転可能に構成されたインデックステーブル21の一部によって構成される受入部21aに搬送物CAを供給するように構成される。インデックステーブル21は、図4に示すように、その外周に沿って配列された複数の収容部21dを備えている。複数の収容部21dは、それぞれが単一の搬送物CAを収容可能となるように凹状に構成される。各収容部21dは、上記搬送路121の末端部121eの端部に対応する位置に配置されたとき、検査装置20における搬送物CAの受入部21aを構成する。なお、図示を省略するが、各収容部21dには、搬送物CAを吸引して収納保持する真空吸引経路が設けられる。また、検査装置20では、上記受入部21aに対して末端部121eから搬送物CAが供給されると、インデックステーブル21が回動して次の収容部21dが受入部21aとなるべき位置に移動し、次の搬送物CAを待つように動作するといったステップ動作を繰り返す。なお、供給先の一例である検査装置20は、受入部21aに関係する部分を除いて図示を省略している。供給先としては、検査装置20の他に、基板実装装置、他の箇所へ移載するためのピックアンドプレースユニットなどの種々の装置を想定することができる。 1 to 5 are diagrams showing in detail an example of the transport mechanism of this embodiment shown in FIG. 10. In this embodiment, the index table 21 is configured to be rotatable in steps while the end portion 121e of the conveyance path 121 of the linear feeder 12 is supported by the support portion 20a of the inspection device 20 to which the conveyed object CA is supplied. The conveyance object CA is configured to be supplied to the receiving section 21a constituted by a part of. As shown in FIG. 4, the index table 21 includes a plurality of accommodating portions 21d arranged along its outer periphery. The plurality of accommodating parts 21d are each configured to have a concave shape so as to be able to accommodate a single conveyed object CA. When each accommodating section 21d is arranged at a position corresponding to the end portion 121e of the conveying path 121, it constitutes a receiving section 21a for the conveyed object CA in the inspection device 20. Although not shown in the drawings, each storage section 21d is provided with a vacuum suction path for sucking and storing the conveyed object CA. Further, in the inspection device 20, when the conveyed object CA is supplied from the end portion 121e to the receiving portion 21a, the index table 21 rotates and moves to the position where the next receiving portion 21d should become the receiving portion 21a. Then, the step operation of waiting for the next conveyed object CA is repeated. Note that the inspection device 20, which is an example of a supply destination, is not shown except for parts related to the receiving section 21a. In addition to the inspection device 20, various devices such as a board mounting device and a pick-and-place unit for transferring to another location can be assumed as the supply destination.

本実施形態の搬送機構では、防振台等よりなる基台上に固定された支持台131と、この支持台131に固定された支持アーム132と、この支持アーム132によって支持されるカメラ取付部133とを有し、このカメラ取付部133にカメラ装置130CMが撮影の向きを下方へ向けた姿勢で取り付けられている。このカメラ装置130CMは、その下方に配置された、上記搬送路121の末端部121eと、検査装置20の受入部21aとを同時に撮影可能な撮影範囲を備える。カメラ装置130CMは、搬送機構の振動の影響を直接的に受けることがないように防振台等を介して固定される。一方、末端部121e及び受入部21aの下方位置には、図2に示すように、防振台等よりなる基台上に固定された支持台141と、この支持台141に固定された支持アーム142と、この支持アーム142によって支持される照明取付部143とを有しこの照明取付部143に背面側照明装置140BLが取り付けられている。この背面側照明装置140BLは、上記搬送路121の末端部121eと、検査装置20の受入部21aとを同時に照明可能な照明範囲を備える。背面側照明装置140BLも、搬送機構の振動の影響を直接的に受けることがないように防振台等を介して固定される。なお、カメラ装置130CMと背面側照明装置140BLの配置は特に限定されるものではなく、例えば、これらを上下逆に設置しても構わない。 The transport mechanism of this embodiment includes a support stand 131 fixed on a base made of a vibration isolator or the like, a support arm 132 fixed to this support stand 131, and a camera mounting section supported by this support arm 132. 133, and a camera device 130CM is attached to this camera attachment portion 133 with the photographing direction facing downward. This camera device 130CM is provided with a photographing range arranged below which can simultaneously photograph the end portion 121e of the conveyance path 121 and the receiving portion 21a of the inspection device 20. The camera device 130CM is fixed via a vibration isolation table or the like so that it is not directly affected by vibrations of the transport mechanism. On the other hand, below the end portion 121e and the receiving portion 21a, as shown in FIG. 142, and a lighting mounting part 143 supported by this support arm 142, and a back side lighting device 140BL is mounted to this lighting mounting part 143. This rear illumination device 140BL has an illumination range that can simultaneously illuminate the end portion 121e of the conveyance path 121 and the receiving portion 21a of the inspection device 20. The rear illumination device 140BL is also fixed via a vibration isolator or the like so that it is not directly affected by the vibrations of the transport mechanism. Note that the arrangement of the camera device 130CM and the backside lighting device 140BL is not particularly limited, and for example, they may be installed upside down.

図4は、上記搬送路121の末端部121eと、検査装置20の受入部21aとからなる搬送物CAの受け渡し領域を示す拡大斜視図(a)及びそのさらに拡大した部分を示す斜視図(b)である。また、図5は、供給先の側からリニアフィーダ12の末端部121eを見た様子を示す側面図(a)及びその中心領域Bを拡大した拡大側面図(b)である。搬送路121の末端部121eは、搬送面121bを構成する下面ブロック121Xと、搬送面121aを構成する側面ブロック121Yとによって構成される。この場合、搬送路121の末端部121eに多くの場合に取付られるカバーブロックは存在せず、このため、末端部121eに暗渠構造が構成されていない。これは、搬送路121を暗渠構造にすると、微細な搬送物や薄形の搬送物の場合には、末端部に搬送物CAの詰まりが発生しやすく、特に、本実施形態のような振動式搬送機構の場合には、常時詰まりが発生するからである。このカバーブロック並びに暗渠構造が存在しない点は、末端部121eの撮像を行ったり背面照明を行ったりする場合には好都合である。 FIG. 4 is an enlarged perspective view (a) showing a delivery area for the conveyed object CA, which is composed of the end portion 121e of the conveyance path 121 and the receiving portion 21a of the inspection device 20, and a perspective view (b) showing a further enlarged portion thereof. ). Further, FIG. 5 is a side view (a) showing the end portion 121e of the linear feeder 12 as viewed from the supply destination side, and an enlarged side view (b) showing the central region B thereof. The end portion 121e of the conveyance path 121 is composed of a lower block 121X that constitutes a conveyance surface 121b, and a side block 121Y that constitutes a conveyance surface 121a. In this case, there is no cover block, which is often attached to the end portion 121e of the conveyance path 121, and therefore no underdrain structure is formed at the end portion 121e. This is because if the conveyance path 121 is made into an underdrain structure, the conveyed object CA is likely to become clogged at the end part in the case of fine conveyed objects or thin conveyed objects. This is because in the case of a transport mechanism, clogging always occurs. The absence of this cover block and underdrain structure is advantageous when imaging the end portion 121e or performing back illumination.

搬送路121は、急峻な傾斜角度を有する搬送面121aと、この搬送面121aとほぼ直交し、緩やかな傾斜角度を有する搬送面121bとを備える。搬送物CAは、図4(b)及び図5(b)に示すように、微細で薄形に構成される。このような搬送物CA(CA0,CA1,CA2)の例としては、例えば、表面実装型の電子部品が挙げられる。寸法としては、厚みtが60μm程度、長さLが1.0mm程度、幅Wが0.5mm程度のものが例示される。このような薄形の搬送物CAは、厚み方向を図示上下方向に沿うようにし、搬送面121b上に底面を向けた姿勢で搬送される。図示例では、搬送面121bの幅は、搬送物CAの幅Wより僅かに小さく、また、搬送面121bの搬送面121aとは反対側の縁部は、隙間Gに臨むように構成される。搬送面121bの縁部は、隙間Gを介して、搬送方向とは逆に搬送物CAを搬送し、搬送路111や121の上流部に戻す回収路122を構成する回収ブロック122Xの縁部(受面部122a)と対向配置される。搬送路121を構成する下面ブロック121X及び側面ブロック121Yと、回収路122を構成する回収ブロック122Xとは、振動の向きや位相が異なることから、相互に離間していなければならないため、上記隙間Gが設けられる。ただし、本実施形態では、この隙間Gが上記背面側照明装置140BLの照明光BLaを上記カメラ装置130CMに透過させる透光領域121cを構成する複数の透光領域部のうちの一つの透光領域部121gを構成している。また、搬送路121の搬送面121bは、図5(b)に示すように、水平面に対して僅かな角度αで、搬送面121aの側に傾斜し、これによって、搬送物CAが搬送路121内に保持されるようにしている。なお、上記回収路122には、図4に示すように、上記隙間Gに隣接し、搬送面121bとほぼ同じ高さの受面部122aと、この受面部122aに対して段差部を介して隣接し、回収路122の回収方向に傾斜した周縁部122bと、この周縁部122bのさらに回収方向に隣接し、搬送路121の上流側に並列する部分にまで延在する合流部122cとを備える。合流部122cに集められた搬送物CAは、回収路122によってリニアフィーダ12の搬送路121の上流部分やパーツフィーダ11に戻される。 The conveyance path 121 includes a conveyance surface 121a having a steep inclination angle, and a conveyance surface 121b substantially perpendicular to the conveyance surface 121a and having a gentle inclination angle. The conveyed object CA is fine and thin, as shown in FIGS. 4(b) and 5(b). Examples of such conveyed objects CA (CA0, CA1, CA2) include surface-mounted electronic components. Examples of dimensions include a thickness t of about 60 μm, a length L of about 1.0 mm, and a width W of about 0.5 mm. Such a thin conveyed object CA is conveyed with its thickness direction along the vertical direction in the figure, and with its bottom surface facing the conveyance surface 121b. In the illustrated example, the width of the conveying surface 121b is slightly smaller than the width W of the conveyed object CA, and the edge of the conveying surface 121b on the opposite side from the conveying surface 121a is configured to face the gap G. The edge of the conveyance surface 121b is the edge of the collection block 122X ( It is arranged opposite to the receiving surface part 122a). The bottom block 121X and the side block 121Y forming the conveyance path 121 and the recovery block 122X forming the recovery path 122 have different vibration directions and phases, so they must be spaced apart from each other. is provided. However, in this embodiment, this gap G is one of the plurality of light-transmitting regions forming the light-transmitting region 121c that transmits the illumination light BLa of the back side illumination device 140BL to the camera device 130CM. 121g. Furthermore, as shown in FIG. 5(b), the conveyance surface 121b of the conveyance path 121 is inclined toward the conveyance surface 121a at a slight angle α with respect to the horizontal plane, so that the conveyance object CA is It is kept inside. As shown in FIG. 4, the recovery path 122 includes a receiving surface portion 122a adjacent to the gap G and having approximately the same height as the conveying surface 121b, and a receiving surface portion 122a adjacent to the receiving surface portion 122a via a step portion. The recovery path 122 includes a peripheral edge 122b that is inclined in the recovery direction, and a merging portion 122c that is further adjacent to the peripheral edge 122b in the recovery direction and extends to a portion that is parallel to the upstream side of the conveyance path 121. The conveyed objects CA collected at the confluence section 122c are returned to the upstream portion of the conveyance path 121 of the linear feeder 12 and the parts feeder 11 by the collection path 122.

搬送面121aには、末端部121eにおいて、搬送物CAを上記隙間Gを介して回収路122の受面部122aに向けて排除するための重なり解除用の噴気口OPが形成される。この噴気口OPは、上記側面ブロック121Yを貫通する気流通路と図示しない電磁バルブなどの開閉弁を介して、コンプレッサや圧縮ボンベなどの気流源に接続されている。また、上記噴気口OPよりも供給先に近い末端側には、搬送物CAが供給先に供給されないようにするための供給停止用の噴気口SPが形成される。この噴気口SPも、上記噴気口OPとは別に、気流通路と開閉弁を介して気流源に接続されている。噴気口OP,SPの末端側の開口縁には、搬送物CAの引っ掛かりを防止するための面取や丸め加工が施された変形角部OPa,SPaが設けられる。なお、側面ブロック121Yの末端側の側縁には、切り欠き状の標識部121yが形成される。この標識部121yは、後述するように、カメラ装置130CMによって撮影された画像において、搬送路121の振動による搬送方向Fの位置を検出するための目印である。 On the conveying surface 121a, a blowhole OP for eliminating overlap is formed at the end portion 121e to remove the conveyed object CA through the gap G toward the receiving surface portion 122a of the recovery path 122. The jet nozzle OP is connected to an airflow source such as a compressor or a compression cylinder via an airflow passage passing through the side block 121Y and an on-off valve such as a solenoid valve (not shown). Further, on the end side closer to the supply destination than the above-mentioned blowhole OP, a supply stop SP is formed to prevent the conveyed object CA from being supplied to the supply destination. This jet nozzle SP is also connected to an airflow source via an airflow passage and an on-off valve, separately from the jet nozzle OP. Deformed corner portions OPa and SPa are provided at the opening edges on the distal side of the blowholes OP and SP, which are chamfered and rounded to prevent the conveyed object CA from being caught. Note that a notch-shaped marker portion 121y is formed on the end side edge of the side block 121Y. This marker portion 121y is a mark for detecting the position in the conveyance direction F due to the vibration of the conveyance path 121 in the image photographed by the camera device 130CM, as will be described later.

図6は、末端部121e及び受入部21aを拡大して示す平面図(a)及び縦断面図(b)である。支持部20aは、その内部において回転可能に構成されるインデックステーブル21の上方を覆う上板20a1と、インデックステーブル21の下方に配置される下板20a3とを備える。上板20a1には受入部21aに対応する部分に窓部20a2が形成され、受入部21aが上記カメラ装置130CMの側から撮影可能に構成される。また、下板20a3には透光領域部21fが形成され、上記背面側照明装置140BLの照明光BLaが透光領域部21fを通して上記カメラ装置130CMによって撮影可能となるように構成される。ここで、前述の撮影画像GPX若しくは画像エリアGPYが図6(a)に示す平面図で示される画像となる。 FIG. 6 is a plan view (a) and a vertical cross-sectional view (b) showing an enlarged view of the distal end portion 121e and the receiving portion 21a. The support portion 20a includes an upper plate 20a1 that covers the upper side of the index table 21 that is configured to be rotatable inside the support portion 20a, and a lower plate 20a3 that is disposed below the index table 21. A window portion 20a2 is formed in the upper plate 20a1 at a portion corresponding to the receiving portion 21a, and the receiving portion 21a is configured to be photographable from the camera device 130CM side. Further, a light-transmitting area portion 21f is formed on the lower plate 20a3, and is configured such that the illumination light BLa of the rear side illumination device 140BL can be photographed by the camera device 130CM through the light-transmitting area portion 21f. Here, the above-mentioned photographed image GPX or image area GPY becomes an image shown in the plan view shown in FIG. 6(a).

リニアフィーダ12の搬送路121の末端部121eでは、搬送面121aと搬送面121bによって搬送路121が構成され、搬送面121bは上記隙間Gを介して回収路122の受面部122aに隣接している。隙間Gは透光領域部121gを構成し、上記透光領域部21fと同様に、背面側照明装置140BLの照明光BLaを透過し、これが上記カメラ装置130CMによって撮影可能となるように構成される。搬送面121bには、末端から上流側へ複数の透光領域部121h、121iが形成される。これらの透光領域部121h、121iも、上記と同様に、背面側照明装置140BLの照明光BLaを透過し、これが上記カメラ装置130CMによって撮影可能となるように構成される。 At the end portion 121e of the conveyance path 121 of the linear feeder 12, the conveyance path 121 is constituted by a conveyance surface 121a and a conveyance surface 121b, and the conveyance surface 121b is adjacent to the receiving surface portion 122a of the recovery path 122 through the gap G. . The gap G constitutes a light-transmitting area 121g, and like the light-transmitting area 21f, the gap G is configured to transmit the illumination light BLa of the back side illumination device 140BL so that it can be photographed by the camera device 130CM. . A plurality of light-transmitting regions 121h and 121i are formed on the conveyance surface 121b from the end to the upstream side. These light-transmitting areas 121h and 121i are also configured to transmit the illumination light BLa from the backside illumination device 140BL and to be able to be photographed by the camera device 130CM in the same manner as described above.

次に、本実施形態における上述の搬送制御システムを用いた搬送装置10における搬送物CAの基本的な搬送物占有範囲判別処理の実施例について説明する。図6(a)の平面図に示される上記画像では、搬送路121(末端部121e)を含む計測エリアMEが設定され、この計測エリアME内において、上記透光領域部21f、121g、121h、121iを含む透光領域121cが設けられる。この計測エリアMEでは、透光領域部21f、121g、121h、121iに対応する画像部分21fy、121gy、121gz、121gv、121hy、121iyを画像処理することにより、末端部121e及び受入部21fにおける搬送物CAの有無(或いは、その占有範囲)を検出することができるようになっている。 Next, an example of a basic conveyance object occupation range determination process of the conveyance object CA in the conveyance apparatus 10 using the above-mentioned conveyance control system in this embodiment will be described. In the image shown in the plan view of FIG. 6(a), a measurement area ME including the conveyance path 121 (end portion 121e) is set, and within this measurement area ME, the light-transmitting area portions 21f, 121g, 121h, A light-transmitting region 121c including 121i is provided. In this measurement area ME, by image processing the image portions 21fy, 121gy, 121gz, 121gv, 121hy, and 121iy corresponding to the light-transmitting areas 21f, 121g, 121h, and 121i, the transported objects at the end portion 121e and the receiving portion 21f are processed. The presence or absence of CA (or its occupied range) can be detected.

実施例を構成するための前提として、検査処理ユニットDTUの処理内容、並びに、図6(a)に示す計測エリアMEの設定について説明する。本実施形態では、前述のように取得された画像GPXやGPYに対して、設定エリアME内の画像処理によって搬送物占有範囲判別処理を行う必要があるため、計測エリアME内の画像データにより、搬送路上における搬送物CAの占有状態が検出されなければならない。したがって、搬送路121上を通過する全ての搬送物CAが、上記画像GPX、GPYのいずれかの上記計測エリアME内に撮影されている必要がある。これにより、設定エリアMEは、搬送物CAの搬送速度Vsと撮影間隔Tsに関係する制約として、少なくとも以下の条件を満たしていなければならない。 As a premise for configuring the embodiment, the processing contents of the inspection processing unit DTU and the setting of the measurement area ME shown in FIG. 6(a) will be explained. In this embodiment, it is necessary to perform the conveyance object occupation range determination processing on the images GPX and GPY acquired as described above by image processing within the setting area ME. The occupancy state of the conveyed object CA on the conveyance path must be detected. Therefore, all conveyed objects CA passing on the conveyance path 121 must be photographed within the measurement area ME of either of the images GPX and GPY. As a result, the setting area ME must satisfy at least the following conditions as constraints related to the conveyance speed Vs of the conveyed object CA and the photographing interval Ts.

本実施形態では、カメラ装置130CMは、予め設定された既定の撮影周期で連続して撮影を実行し、カメラCM1,CM2の画像と同様に、当該撮影周期ごとに撮影画像GPX若しくは上記画像エリアGPY内の画像データが画像処理装置GP1,GP2を介して上記演算処理装置MPUに転送される。演算処理装置MPUでは、転送された上記画像データのうち、演算処理用メモリRAMを用いて、計測エリアME内の画像データを上述のように処理し、搬送物占有範囲判別処理を行う。ただし、本実施形態では、別途トリガセンサを設けたり、搬送物CAの画像データ中から搬送物CAの所定の形状パターンを所定の領域内でサーチし、当該形状パターンが検出されたときに内部トリガを発生させたりするのではなく、既定の撮影周期を示す外部トリガを導入したり、演算処理装置MPUから一定周期のトリガ信号をカメラ装置130CMに出力したりするなどの方法で、既定の撮影周期で連続して撮影を実行している。このため、搬送路121上を搬送されてくる全ての搬送物CAを漏れなく判定しようとすれば、全ての搬送物CAが、いずれかの撮影画像GPX又は画像エリアGPYにおいて、計測エリアME内に含まれるようにする必要がある。 In the present embodiment, the camera device 130CM continuously executes photography at a preset default photography cycle, and similarly to the images of the cameras CM1 and CM2, the camera device 130CM captures the captured image GPX or the above-mentioned image area GPY for each photography cycle. The image data within is transferred to the arithmetic processing unit MPU via the image processing units GP1 and GP2. The arithmetic processing unit MPU processes the image data within the measurement area ME as described above using the arithmetic processing memory RAM among the transferred image data, and performs the transport object occupation range determination process. However, in this embodiment, a trigger sensor is provided separately, or a predetermined shape pattern of the conveyance object CA is searched within a predetermined area from the image data of the conveyance object CA, and when the shape pattern is detected, an internal trigger is activated. Instead of generating the default shooting cycle, the default shooting cycle can be set by introducing an external trigger that indicates the default shooting cycle, or by outputting a trigger signal with a constant cycle from the arithmetic processing unit MPU to the camera device 130CM. Shooting is being performed continuously. For this reason, if we try to determine all the conveyed objects CA conveyed on the conveyance path 121 without exception, all the conveyed objects CA will fall within the measurement area ME in any of the captured images GPX or image areas GPY. need to be included.

そこで、撮影周期をTs[sec]、搬送物CAの搬送方向Fの長さをL[mm]、搬送物CAの搬送速度をVs[mm/sec]とした場合、全ての搬送物CAの画像が必ずいずれかの画像データの上記計測エリアME内に含まれるようにするためには、計測エリアMEの搬送方向Fの範囲LDを以下の式(1)のように設定する。
LD≧L+β=L+Ts・Vs…(1)
例えば、搬送物CAの搬送方向Fの長さLが0.6[mm]、搬送速度Vsが50[mm/sec]、撮影周期Tsが1[msec]であるとすれば、L=0.6[mm]、β=0.05[mm]であり、L≧0.65[mm]となる。また、撮影周期Tsを0.5[msec]とすれば、L=0.6[mm]、β=0.025とすることで、L≧0.625[mm]となる。
Therefore, if the imaging period is Ts [sec], the length of the conveyance direction F of the conveyance object CA is L [mm], and the conveyance speed of the conveyance object CA is Vs [mm/sec], all images of the conveyance object CA are In order to ensure that LD is included in the measurement area ME of any image data, the range LD of the measurement area ME in the transport direction F is set as shown in the following equation (1).
LD≧L+β=L+Ts・Vs…(1)
For example, if the length L of the conveyance direction F of the conveyed object CA is 0.6 [mm], the conveyance speed Vs is 50 [mm/sec], and the photographing period Ts is 1 [msec], then L=0. 6 [mm], β=0.05 [mm], and L≧0.65 [mm]. Further, if the imaging period Ts is 0.5 [msec], L=0.6 [mm] and β=0.025, so that L≧0.625 [mm].

実際には、搬送物CAの搬送速度には、個体ごとに、場所により、或いは、経時的に、ばらつきが存在するため、搬送物CAの全体若しくは一部が2回以上、好ましくは3回以上の画像データに撮影されるように設定することが望ましい。一般的には、n(nは自然数)回以上の画像データに撮影されるようにするには、
LD≧L+n・β=L+n・Ts・Vs…(2)
が成立するようにLDを設定する。本実施形態の場合には、nを3-7の範囲になるように設定している。これは、nが小さくなると搬送速度のばらつきによる搬送物CAの撮影漏れが生ずる虞が高くなり、逆にnが大きくなると画像処理の負荷が増大するからである。一般的には、自然数nは1-10の範囲内であることが好ましい。なお、本実施形態では画像処理時間は一般的に150-300μsec程度である。また、撮影間隔Tsは500-840[μsec]程度である。
In reality, there are variations in the conveyance speed of the conveyed object CA depending on the individual, depending on the location, or over time. It is desirable to set the image data to be captured. Generally, in order to capture image data more than n times (n is a natural number),
LD≧L+n・β=L+n・Ts・Vs…(2)
LD is set so that the following holds true. In this embodiment, n is set in the range of 3-7. This is because as n becomes smaller, there is a higher possibility that the conveyed object CA will not be photographed due to variations in the conveyance speed, and conversely, as n becomes larger, the load on image processing increases. Generally, the natural number n is preferably within the range of 1-10. In this embodiment, the image processing time is generally about 150-300 μsec. Further, the photographing interval Ts is about 500-840 [μsec].

また、本実施形態の場合には、上述のように搬送物CAが計測エリアMEに到達することを検知するトリガ信号を用いないので、或る撮影画像GPX又は画像エリアGPYの計測エリアME内に搬送物CAがそもそも全く配置されていない場合も生じ得る。そこで、計測エリアME内の画像計測処理に際しては、搬送物CAの画像が計測エリアME内に含まれているか否かを検出する。そして、この搬送物検出処理で所定の条件で搬送物が検出されたとき、すなわち、搬送物CAの全体が計測エリアME内に含まれているときに、上記搬送物占有範囲判別処理を実施し、そうでなければ、搬送物占有範囲判別処理は実施しないようにしてもよい。ただし、本実施形態では搬送路121の末端部121eで画像計測処理を実施しているため、搬送物CAは高密度で搬送されてくる場合が多いことから、上記のようにしなくても構わない。なお、計測エリアME内において複数回同じ搬送物CAが検出される場合には、1回(例えば、初回)のみ搬送物占有範囲判別処理を実施し、他の回は搬送物占有範囲判別処理を省略してもよい。ただし、後述の各実施例では、連続占有範囲121CTの検出が計測エリアME内のさらに限定された領域、すなわち、透光領域121cが配置されている検出領域でのみ行われるため、複数の画像の計測エリアMEにおいて連続占有範囲121CTが撮影されている場合でも、搬送物占有範囲判別処理の回数は制限される。 In addition, in the case of this embodiment, since the trigger signal for detecting that the conveyed object CA reaches the measurement area ME as described above is not used, a certain captured image GPX or image area GPY within the measurement area ME is There may also be a case where the conveyed object CA is not placed at all in the first place. Therefore, in the image measurement process in the measurement area ME, it is detected whether the image of the conveyed object CA is included in the measurement area ME. Then, when the transported object is detected under predetermined conditions in this transported object detection process, that is, when the entire transported object CA is included within the measurement area ME, the transported object occupied range determination process is performed. , otherwise, the conveyance object occupation range determination process may not be performed. However, in this embodiment, since image measurement processing is performed at the end portion 121e of the conveyance path 121, the conveyed objects CA are often conveyed at high density, so it is not necessary to do the above. . Note that when the same transported object CA is detected multiple times within the measurement area ME, the transported object occupied range determination processing is performed only once (for example, the first time), and the transported object occupied range determination processing is performed at other times. May be omitted. However, in each of the embodiments described later, the detection of the continuous occupied range 121CT is performed only in a more limited area within the measurement area ME, that is, the detection area where the light-transmitting area 121c is arranged. Even when the continuous occupied range 121CT is photographed in the measurement area ME, the number of times the transported object occupied range determination process is performed is limited.

本実施形態では、上記搬送物占有範囲判別処理において実行される具体的な内容として、2つの実施例を以下に説明する。第1実施例では、計測エリアME内の上記画像部分21fy、121gy、121gz、121hy、121iyを画像処理の対象とし、その判別態様を図7(a)及び(b)に示してある。この場合には、4つの透光領域部に対応する画像部分121gy、121gz、121hy、121iyが搬送物CAにより同時に全て遮光されると、複数の搬送物CAが相互に重なっていたり、或いは、相互に密接した状態で搬送されていたりしていると判定するようにしている。これは、搬送物CAの搬送方向Fの長さLと幅方向の幅Wとに対応して、三つの透光領域部121gyと121hと121iが、単一の搬送物CAによって同時に遮光される単位占有範囲121U内に形成されているとともに、もう一つの透光領域部121gzが上記の単位占有範囲121Uから後方へはみ出すように形成されているため、図7(a)に示すように、単独の搬送物CAが通過するとき、上記の四つの透光領域部121gy、121gz、121h、121iは同時に全て遮光されることがないからである。すなわち、図示例の場合、上記四つの透光領域部が搬送方向Fの長さLsの検出領域にわたって配列されており、この長さLsは、搬送物CAの搬送方向Fの長さ、すなわち、単位占有範囲121Uの長さLより長いからである。一方、二つ以上の搬送物CAが重なり合ったり密接したりした状態で搬送されていると、図7(b)に示すように、四つの透光領域部121gy、121gz、121hy、121iyが同時に全て遮光される。これは、相互に重なり合った搬送物CA1とCA2が構成する連続占有範囲121CTの搬送方向Fの長さLctが、上記検出領域の長さLsより長いからである。このように、この例では、四つの透光領域部121gy、121gz、121hy、121iyが同時に全て遮光されるか否かにより、搬送物CAによる連続占有範囲121CTの大きさが上記の単位占有範囲121Uを超えているか否かを検出することができるように構成される。連続占有範囲121CTの大きさが単位占有範囲121Uを越えていると、不正判定がなされる。 In this embodiment, two examples will be described below as specific contents executed in the conveyance object occupation range determination process. In the first embodiment, the image portions 21fy, 121gy, 121gz, 121hy, and 121iy in the measurement area ME are subjected to image processing, and the discrimination manner thereof is shown in FIGS. 7(a) and 7(b). In this case, if the image portions 121gy, 121gz, 121hy, and 121iy corresponding to the four light-transmitting areas are all shielded from light at the same time by the conveyed objects CA, a plurality of conveyed objects CA may overlap each other or The system determines that the vehicle is being transported in close contact with other people. This means that three light-transmitting areas 121gy, 121h, and 121i are simultaneously shielded from light by a single conveyed object CA, corresponding to the length L in the conveying direction F and the width W in the width direction of the conveyed object CA. It is formed within the unit occupied range 121U, and the other light-transmitting area 121gz is formed so as to protrude rearward from the unit occupied range 121U. This is because when the transported object CA passes through, the four light-transmitting areas 121gy, 121gz, 121h, and 121i are not all shielded from light at the same time. That is, in the case of the illustrated example, the four light-transmitting regions are arranged over a detection area having a length Ls in the transport direction F, and this length Ls is the length of the transport object CA in the transport direction F, that is, This is because it is longer than the length L of the unit occupied range 121U. On the other hand, when two or more conveyed objects CA are conveyed while overlapping or in close contact with each other, as shown in FIG. Light is blocked. This is because the length Lct in the transport direction F of the continuous occupied range 121CT constituted by the mutually overlapping transport objects CA1 and CA2 is longer than the length Ls of the detection area. As described above, in this example, the size of the continuous occupied range 121CT by the conveyed object CA changes to the unit occupied range 121U, depending on whether or not the four light-transmitting areas 121gy, 121gz, 121hy, and 121iy are all shielded from light at the same time. It is configured to be able to detect whether or not the If the size of the continuous occupied range 121CT exceeds the unit occupied range 121U, a determination of fraud is made.

なお、この第1実施例では、画像処理により、上記四つの透光領域部に対応する画像部分121gy、121gz、121h、121iが全て遮光されていることが確認されたときのみ、少なくとも二つの搬送物CAが重なっているか、或いは、少なくとも二つの搬送物CAが密着して搬送されていることが検出されたとし、不正判定を行うようにしている。このため、画像取得手段に相当する検査処理ユニットDTUによって取得された画像のいずれかに、上記四つの透光領域部が全て遮光されている様子が撮影されていなければならない。換言すれば、不正判定されるべき連続占有範囲121CTが上記四つの透光領域部からなる長さLsの検出領域を占有し、遮光している間に画像が撮影されなければならない。したがって、上記四つの透光領域部に対応する画像部分の全体の搬送方向Fの範囲をLs=L+ΔL(ΔL>0)とすると、不正判定される連続占有範囲121CTの搬送方向Fの長さLct=Ls+ΔLt(ΔLt>0)において、ΔLt≧β=Ts・Vsが成立する必要がある。 In this first embodiment, only when it is confirmed through image processing that the image portions 121gy, 121gz, 121h, and 121i corresponding to the four light-transmitting areas are all shielded from light, at least two transport It is assumed that it is detected that objects CA overlap or that at least two objects CA are being transported in close contact with each other, and a fraud determination is made. For this reason, any of the images acquired by the inspection processing unit DTU, which corresponds to the image acquisition means, must capture a state in which all of the four light-transmitting areas are shielded from light. In other words, the continuous occupied range 121CT to be determined to be fraudulent occupies the detection area of length Ls consisting of the four light-transmitting areas, and an image must be taken while the detection area is shielded from light. Therefore, if the entire range in the transport direction F of the image portion corresponding to the four transparent areas is Ls=L+ΔL (ΔL>0), the length Lct in the transport direction F of the continuous occupied range 121CT that is determined to be fraudulent =Ls+ΔLt (ΔLt>0), it is necessary that ΔLt≧β=Ts·Vs hold true.

次に、第2実施例では、単一の透光領域部121g内に設定された画像部分121gvのみを上記計測エリアMEとして検査し、この画像部分121gvの全体が同時に搬送物CAにより遮光されるか否かにより、搬送物CAによる連続占有範囲121CTが上記の単位占有範囲121Uを超えているか否かを検出する。上記画像部分121gvは、上記隙間Gによって構成される透光領域部121gのうち、搬送方向Fに沿った長さLs=L+ΔLの範囲となるように設定される。このとき、連続占有範囲121CTの搬送方向Fの長さLctは、上述と同様に、Lct=Ls+ΔLtにおいて、ΔLt≧β=Ts・Vsが成立する必要がある。 Next, in the second embodiment, only the image portion 121gv set within the single light-transmitting area 121g is inspected as the measurement area ME, and the entire image portion 121gv is simultaneously shielded from light by the conveyed object CA. Depending on whether or not, it is detected whether the continuous occupation range 121CT by the transported object CA exceeds the unit occupation range 121U. The image portion 121gv is set to have a length Ls=L+ΔL along the transport direction F in the light-transmitting region 121g formed by the gap G. At this time, the length Lct of the continuous occupied range 121CT in the transport direction F needs to satisfy ΔLt≧β=Ts·Vs where Lct=Ls+ΔLt, as described above.

上記第1実施例と第2実施例のいずれにおいても、透光領域部が配列された検出領域の搬送方向Fの長さLsの一部が透光していることによって正常判定を得るためには、単位占有範囲121Uの搬送方向Fの長さLに対して検出領域の長さLsは、Ls>Lが成立している必要がある。一方、不正判定されるべき或る連続占有範囲121CTが与えられたとき、当該連続占有範囲121CTが不正判定すべきであることを確実に検出するには、そのΔLt=Lct-Lsの値に対して、ΔLt≧β=Ts・Vsが成立するような撮影間隔Tsが所定の搬送速度Vsに応じて与えられる必要がある。逆に言えば、所定の搬送速度Vsに対して撮影間隔Tsが設定されていた場合には、ΔLt≧β=Ts・Vsが成立するような連続占有範囲121CTであれば、確実に不正判定を行うことができることになる。したがって、以下のように整理される。
A.確実に正常判定がなされる範囲:Lct<Ls
B.確実に不正判定がなされる範囲:Lct≧Ls+β
C.正常判定と不正判定のいずれかになる範囲:Ls≦Lct<Ls+β
以上の結果、判定精度(分解能)は、β=Ts・Vsとなる。なお、上記Cの領域では、後述するように、正面側照明(環境照明も含む)によって得られる反射光に基づく画像成分(搬送物CAの表面態様)を画像処理することによって、判定を行うようにしてもよい。
In both the first embodiment and the second embodiment, in order to obtain a normality determination by transmitting light through a part of the length Ls in the transport direction of the detection area in which the light-transmitting area portions are arranged. In this case, the length Ls of the detection area must satisfy Ls>L with respect to the length L of the unit occupied range 121U in the transport direction F. On the other hand, when a certain continuous occupancy range 121CT that should be determined to be fraudulent is given, in order to reliably detect that the continuous occupancy range 121CT should be determined to be fraudulent, the value of ΔLt = Lct - Ls must be Therefore, it is necessary to provide a photographing interval Ts such that ΔLt≧β=Ts·Vs is established in accordance with a predetermined transport speed Vs. Conversely, if the imaging interval Ts is set for a predetermined transport speed Vs, if the continuous occupation range 121CT satisfies ΔLt≧β=Ts・Vs, it is possible to reliably detect fraud. It will be possible to do it. Therefore, it is organized as follows.
A. Range where normality judgment is reliably made: Lct<Ls
B. Range where fraud is definitely determined: Lct≧Ls+β
C. Range where either normal judgment or incorrect judgment occurs: Ls≦Lct<Ls+β
As a result of the above, the determination accuracy (resolution) is β=Ts·Vs. In addition, in the above region C, as will be described later, the determination is performed by image processing the image component (surface aspect of the conveyed object CA) based on the reflected light obtained by the front side illumination (including environmental illumination). You can also do this.

上記のいずれの実施例でも、一体の連続占有範囲121CTの大きさ(図示例では搬送方向Fの長さ)が単位占有範囲121Uを越えるか否かを判定の基準としているので、不正判定は、複数の搬送物CAが相互に重なり合っている場合のみならず、複数の搬送物CAが密着して搬送されてくる場合においても行われる。これは、複数の搬送物CAが互いに重なり合っていなくても、互いに密着した状態で搬送されていると、早晩、これらの搬送物CAが相互に重なり合う可能性が高くなるためである。この意味では、単に複数の搬送物CAが密着している場合だけでなく、複数の搬送物CAの間の搬送方向Fの隙間が所定値以下である場合にも、上記不正判定を行うようにしても構わない。これは、上記連続占有範囲121CTを、搬送物の占有範囲が連続する範囲だけでなく、当該占有範囲が所定値未満の間隔で配列される場合でも、これらの配列された複数の搬送物CAによる占有領域を含む一体の占有範囲として判別処理を行うようにすればよい。なお、これとは逆に、一体の連続占有範囲121CTのうち、単位占有範囲121Uの自然数倍に該当する範囲である場合を不正判定から外すことにより、搬送物CAが重なっている場合のみを不正判定とし、搬送物CAが密着して搬送されているだけの場合を不正としないように設定してもよい。 In any of the above embodiments, the criterion for determination is whether or not the size of the continuous occupied range 121CT (in the illustrated example, the length in the transport direction F) exceeds the unit occupied range 121U. This is performed not only when a plurality of conveyance objects CA overlap each other, but also when a plurality of conveyance objects CA are conveyed in close contact with each other. This is because even if a plurality of conveyance objects CA do not overlap each other, if they are conveyed in close contact with each other, there is a high possibility that these conveyance objects CA will sooner or later overlap each other. In this sense, the above fraud determination is performed not only when multiple conveyed objects CA are in close contact with each other, but also when the gap in the conveying direction F between multiple conveyed objects CA is less than a predetermined value. I don't mind. This means that the continuous occupied range 121CT is determined not only by continuous occupied ranges of conveyed objects, but also by a plurality of arranged conveyed objects CA, even when the occupied ranges are arranged at intervals less than a predetermined value. The determination process may be performed as an integral occupied range including the occupied area. In addition, on the contrary, by excluding from the fraud determination the range that corresponds to a natural number multiple of the unit occupancy range 121U in the continuous occupancy range 121CT, only the case where the conveyed objects CA overlap is detected. It may be set so that a case where the conveyed object CA is conveyed in close contact with each other is not judged as fraudulent.

本実施形態における搬送物CAは、略立方体形状(例えば、立方体の8つの角部を丸めた形状)を有する電子部品(例えば、チップ抵抗、チップインダクタ、チップコンデンサなど)であることが多いが、特に限定されるものではない。ただし、本実施形態は、前述のようにカバーブロックや暗渠構造を用いないことから、微細で薄い搬送物CAに対して特に効果的である。本実施形態では、搬送路121上における搬送物CAの占有範囲を画像処理によって求め、一体の占有範囲である連続占有範囲121CTの大きさを一つの搬送物CAの占有範囲である単位占有範囲121Uを基準として比較し、連続占有範囲121CTの大きさが単位占有範囲121Uを越えたときには、何等かの処置を施す必要のある不正判定を出す。 The conveyed object CA in this embodiment is often an electronic component (e.g., a chip resistor, a chip inductor, a chip capacitor, etc.) having a substantially cubic shape (e.g., a cube with eight rounded corners). It is not particularly limited. However, since this embodiment does not use a cover block or an underdrain structure as described above, it is particularly effective for fine and thin conveyed objects CA. In this embodiment, the occupied range of the transported object CA on the transport path 121 is determined by image processing, and the size of the continuous occupied range 121CT, which is the integrated occupied range, is determined by the unit occupied range 121U, which is the occupied range of one transported object CA. When the size of the continuous occupied range 121CT exceeds the unit occupied range 121U, a determination of fraud is made that requires some kind of action.

なお、計測エリアMEの搬送方向Fの範囲については、上記各実施例における連続占有範囲121CTの検出方法により、上記長さLsの検出領域を必ず包含している必要がある。ここで、当該検出領域を実質的な計測エリアMEと考えることもできる。また、検出領域内の画像処理の必要な透光領域部のみを計測エリアMEと考えることもできる。したがって、計測エリアMEの搬送方向Fの長さLDは、上記検出領域の搬送方向Fの長さLsよりも大きくなる。一方、計測エリアMEの搬送方向Fの範囲は、検出領域に配置される際の正常判定されるべき連続占有範囲121CT(単位占有範囲121Uと同じ大きさ)を包含するが、図6に示すように、不正判定されるべき連続占有範囲121CT(単位占有範囲121Uを越える大きさ)の全てを包含している必要はない。単位占有範囲121Uを基準として連続占有範囲121CTの大きさが判別できればよい。また、上記実施例では、計測エリアMEの全体を画像処理しているのではなく、上記検出領域内の上記透光領域部に対応する画像部分のみを処理すれば足りるので、画像処理の負担が軽減され、処理の高速化を図ることができる。さらに、上記検出領域は固定されているので、搬送物占有範囲判別処理がなされるときの搬送物CAの検出位置もほぼ一定となることから、判別結果に応じて各種の制御を行う場合でも、それらのタイミングを揃えることが容易になる。 Note that the range of the measurement area ME in the transport direction F must necessarily include the detection area of the length Ls, according to the detection method of the continuous occupied range 121CT in each of the above embodiments. Here, the detection area can also be considered as a substantial measurement area ME. Further, only the light-transmitting area portion within the detection area that requires image processing can be considered as the measurement area ME. Therefore, the length LD of the measurement area ME in the transport direction F is larger than the length Ls of the detection area in the transport direction F. On the other hand, the range of the measurement area ME in the transport direction F includes the continuous occupied range 121CT (same size as the unit occupied range 121U) that should be determined to be normal when placed in the detection area, but as shown in FIG. However, it is not necessary to include the entire continuous occupied range 121CT (a size exceeding the unit occupied range 121U) that should be determined to be fraudulent. It is sufficient if the size of the continuous occupied range 121CT can be determined based on the unit occupied range 121U. Furthermore, in the above embodiment, the image processing is not performed on the entire measurement area ME, but only the image portion corresponding to the transparent area within the detection area needs to be processed, which reduces the burden of image processing. It is possible to speed up the processing. Furthermore, since the detection area is fixed, the detection position of the conveyed object CA when carrying object occupancy range determination processing is performed is also approximately constant, so even when performing various controls according to the determination result, It becomes easier to align those timings.

次に、上記いずれかの実施例により搬送制御を行った場合の判定の様子と搬送物CAに対する制御態様について説明する。図9は、カメラ装置130CMで撮影された撮影画像GPX又はこれから得られる画像エリアGPY内の画像データに基づいて、所定の態様で搬送されてくる相互に重なり合った二つの搬送物CA1、CA2に対する制御及び処理の態様を説明するための手順説明図(a)-(e)である。なお、前後の搬送物CAが相互に密着して搬送されてくる場合も図示の場合と同様に処理される。また、所定値未満の間隔で連なって搬送されてくる場合も基本的には図示の場合と同様に処理することができる。図9(a)に示すように、この図示例では、搬送物CA1の後部に搬送物CA2の前部が乗り上げた重なり状態で搬送路121上を搬送されてくる。図示例では、搬送物CA1が計測エリアME内にあり、その先端部が検出領域の一部に達し、搬送方向Fに沿って延在する透光領域部121gの一部が遮光されている。このとき、受入部21aでは、以前に供給された搬送物CA0が配置されており、透光領域部21fが遮光されている。その後、図9(b)に示すように搬送物CA1及びCA2が搬送路121上をさらに進み、透光領域部121iが遮光されるとともに、透光領域部121gの遮光された一部領域も搬送方向Fの前方に移動し、その遮光範囲も増大していく。この時点では搬送物CA0は受入部21a内に存在し続けているが、既定の周期でインデックステーブル21がステップ回転することにより、移動を開始する。このため、図9(c)に示すように、搬送物CA1及びCA2が末端に近づく前に、受入部21aは空になり、透光領域部21fは非遮光状態となる。これにより、受入部21aが搬送物を受入れ可能な状態であることが検出される。なお、この時点で搬送物CA0が受入部21aに配置されたままである場合には、噴気口SPから気流を吹き付けることにより、搬送物CA1、CA2を搬送路121上から回収路122の受面部122a上へ排除する。この噴気口SPによる排除状態は、受入部21aが受け入れ可能な状態(透光領域部21fが非遮光状態になった状態)に移行するまで継続する。 Next, a description will be given of the manner of determination and the manner of controlling the conveyed object CA when conveyance control is performed using any of the embodiments described above. FIG. 9 shows control for two mutually overlapping conveyance objects CA1 and CA2 conveyed in a predetermined manner based on the photographed image GPX photographed by the camera device 130CM or the image data in the image area GPY obtained from the photographed image GPX. and procedure explanatory diagrams (a) to (e) for explaining aspects of processing. Note that the same processing as in the illustrated case is also performed when the preceding and following conveyed objects CA are conveyed in close contact with each other. Furthermore, even if the objects are conveyed consecutively at intervals less than a predetermined value, the processing can basically be performed in the same manner as in the illustrated case. As shown in FIG. 9A, in this illustrated example, the object CA2 is conveyed on the conveyance path 121 in an overlapping state in which the front part of the object CA2 rides on the rear part of the object CA1. In the illustrated example, the conveyance object CA1 is within the measurement area ME, its leading end reaches a part of the detection area, and a part of the light-transmitting region 121g extending along the conveyance direction F is shielded from light. At this time, in the receiving part 21a, the previously supplied conveyance object CA0 is placed, and the light-transmitting area part 21f is shielded from light. After that, as shown in FIG. 9(b), the conveyed objects CA1 and CA2 further advance on the conveyance path 121, and the light-transmitting area 121i is shielded from light, and the light-shielded part of the light-transmitting area 121g is also conveyed. It moves forward in direction F, and its light shielding range also increases. At this point, the conveyed object CA0 continues to exist in the receiving section 21a, but it starts moving as the index table 21 rotates in steps at a predetermined period. Therefore, as shown in FIG. 9(c), before the conveyed objects CA1 and CA2 approach the ends, the receiving section 21a becomes empty and the light-transmitting area section 21f becomes a non-light-shielding state. Thereby, it is detected that the receiving section 21a is in a state where it can receive the transported object. Note that if the conveyed objects CA0 are still placed in the receiving section 21a at this point, the conveyed objects CA1 and CA2 are moved from the conveying path 121 to the receiving surface section 122a of the recovery path 122 by blowing airflow from the jet port SP. Eliminate upwards. This exclusion state by the jet nozzle SP continues until the receiving portion 21a transitions to a state where it can be accepted (a state in which the light-transmitting region portion 21f is in a non-light-shielding state).

その後、図9(d)に示す位置では、搬送物CA1及びCA2は、上記各実施例に示す方法で判定される。図示例では、連続占有範囲121CTの大きさは、単位占有範囲121Uを越えているため、不正判定がなされる。これにより、図9(e)に示すように、連続占有範囲121CT内の後方部分にある搬送物CA2が噴気口OPから吹き付けられる気流により、搬送路121から回収路122へ排除される。このとき、噴気口OPは、搬送物CA1の直後位置に開口するとともに、直ちに気流を吹き付けるため、搬送物CA2の前部若しくは中央部に排除力を与えるように吹付タイミングを設定することが好ましい。このようにすると、図示のように、搬送物CA2は、前部が後部よりも先に搬送路121上から離れる態様、若しくは、その当初の搬送姿勢を保ったままで搬送方向Fと直交する幅方向に移動する。したがって、図示の点線のような姿勢で排除されることはない。このとき、搬送物CA1は搬送路121上を搬送方向Fに移動し続けており、気流を受けた搬送物CA2は幅方向に移動するので、図9(e)に示す時点で、搬送物CA1は、搬送物CA2から離れていくこととなるため、搬送物CA2の移動に巻き込まれる虞が少なくなる。一方、搬送物CA2が図示点線のような姿勢で排除されると、搬送物CA1に抵触する虞が高まるので、搬送物CA1の受入部21aへの供給に支障が生ずる可能性がある。 Thereafter, at the position shown in FIG. 9(d), the conveyed objects CA1 and CA2 are determined by the method shown in each of the above embodiments. In the illustrated example, since the size of the continuous occupied range 121CT exceeds the unit occupied range 121U, an incorrect determination is made. As a result, as shown in FIG. 9(e), the conveyed object CA2 located in the rear part of the continuous occupation range 121CT is removed from the conveyance path 121 to the recovery path 122 by the airflow blown from the blowhole OP. At this time, since the blowhole OP opens immediately after the conveyance object CA1 and immediately sprays the airflow, it is preferable to set the spray timing so as to apply a displacing force to the front or center of the conveyance object CA2. In this way, as shown in the figure, the conveyed object CA2 is moved in such a manner that the front part leaves the conveyance path 121 before the rear part, or in the width direction perpendicular to the conveyance direction F while maintaining its original conveyance posture. Move to. Therefore, it will not be excluded in the posture shown by the dotted line in the figure. At this time, the conveyed object CA1 continues to move on the conveying path 121 in the conveying direction F, and the conveyed object CA2 that has received the airflow moves in the width direction. Since the transport object CA2 moves away from the transport object CA2, the risk of being caught in the movement of the transport object CA2 is reduced. On the other hand, if the conveyed object CA2 is removed in a posture as shown by the dotted line in the figure, there is an increased possibility that the conveyed object CA2 will collide with the conveyed object CA1, which may cause a problem in the supply of the conveyed object CA1 to the receiving section 21a.

本発明の搬送物占有範囲判別処理では、前述のように、計測エリアME内の画像データにより、透過領域121cが搬送物CAの占有によって遮光されているか否かを検出することにより搬送物の占有範囲を判定する場合に限らず、例えば、搬送路121上の反射光のみに基づいて撮像された画像の処理によって、搬送物CAによる占有範囲を判定するようにしてもよい。例えば、画像中の搬送物CAの位置範囲をパターニング処理等によって検出し、これに基づいて上記占有範囲の判定を行うようにしても構わない。 In the transport object occupancy range determination processing of the present invention, as described above, the occupancy of the transport object is determined by detecting whether or not the transparent area 121c is blocked by the transport object CA based on the image data in the measurement area ME. In addition to determining the range, for example, the area occupied by the conveyance object CA may be determined by processing an image captured based only on the reflected light on the conveyance path 121. For example, the positional range of the conveyed object CA in the image may be detected by patterning processing or the like, and the occupied range may be determined based on this.

本実施形態では、振動式の搬送装置10により、振動する搬送路121上を搬送されていく搬送物CAを検査対象とする一方で、カメラ装置130CM(CM1,CM2)は振動しない場所(基台100上)に設置されているため、撮影画像GPX又は画像エリアGPYの画像データにおいて、搬送方向Fの前後に往復する態様で所定の振幅で振動する搬送路121は、当該画像データの撮影時の振動位相の変化に応じて、変位した位置に配置される。したがって、搬送物CAの外観を搬送路121を基準とする固定された位置で検出、判定しようとすると、画像内の計測エリアMEの位置を、撮影タイミングに合わせて搬送体120の振動と同期して同振幅で移動させる必要がある。例えば、搬送体120には、振幅が0.1mm、振動周波数が300Hzといった振動が与えられている。 In this embodiment, the object CA to be inspected is conveyed on the vibrating conveyance path 121 by the vibrating conveyance device 10, while the camera device 130CM (CM1, CM2) is placed in a non-vibrating place (base 100 above), the transport path 121 that vibrates with a predetermined amplitude in a manner that reciprocates back and forth in the transport direction F in the photographed image GPX or the image data of the image area GPY is It is placed at a displaced position in response to a change in the vibration phase. Therefore, when trying to detect and judge the appearance of the conveyed object CA at a fixed position based on the conveyance path 121, the position of the measurement area ME in the image is synchronized with the vibration of the conveyance body 120 in accordance with the photographing timing. It is necessary to move it with the same amplitude. For example, the carrier 120 is given vibrations with an amplitude of 0.1 mm and a vibration frequency of 300 Hz.

このため、本実施形態では、計測エリアMEの位置を、撮影画像GPX又は画像エリアGPYの撮影時点における搬送体120の振動位置に合わせるために、搬送体120に設定された位置補正用マークを基準として補正することができる。この位置補正用マークは位置検出が容易かつ確実なものであれば特に限定されないが、画像中で確実にブロブとして認識でき、かつ、その重心位置を安定して検出できる単色(同一グレースケール)のマークとすることで、その位置の検出精度を高めることができる。なお、位置補正用マークは、意図的に設けたものではなく、搬送装置に本来的に存在し、画像処理によって検出可能な部分、例えば、搬送体120に形成された稜線や角部、ボルトヘッド、噴気口などであってもよい。ただし、搬送物CAによって隠れない場所にあるものが好ましい。図示例では、上記位置補正用マークは、上記標識部121yとされる。この標識部121yは、搬送体120の末端側の端縁に形成された凹部で構成されるが、端縁に限らず、また、孔部、穴部、突起などの任意の識別可能な構造であればよい。本実施形態では、背面側照明装置140BLの照明光BLaによって標記部121yの輪郭形状が明確に画像上に反映されるため、標識部121yの位置によって位置補正を容易かつ確実に行うことができる。 Therefore, in this embodiment, in order to align the position of the measurement area ME with the vibration position of the carrier 120 at the time of capturing the captured image GPX or the image area GPY, the position correction mark set on the carrier 120 is used as a reference. It can be corrected as follows. This position correction mark is not particularly limited as long as the position can be detected easily and reliably, but it must be a single color (same gray scale) that can be reliably recognized as a blob in the image and that can stably detect the position of its center of gravity. By using a mark, the detection accuracy of the position can be improved. Note that the position correction mark is not intentionally provided, but is a part that inherently exists in the transport device and can be detected by image processing, such as a ridge line or corner formed on the transport body 120, or a bolt head. , a blowhole, etc. However, it is preferable that it be located in a place where it will not be hidden by the conveyed object CA. In the illustrated example, the position correction mark is the marker portion 121y. The marker portion 121y is composed of a recess formed on the distal edge of the carrier 120, but is not limited to the edge, and may also be any identifiable structure such as a hole, a hole, or a protrusion. Good to have. In this embodiment, the contour shape of the marking part 121y is clearly reflected on the image by the illumination light BLa of the backside illumination device 140BL, so that the position can be easily and reliably corrected depending on the position of the marking part 121y.

本実施形態においては、上記の位置補正のため、搬送路121に対する計測エリアMEの位置は、撮影時の振動の位相タイミングとは無関係に、常に搬送路121に対して同じ位置となる。したがって、不正判定の搬送物CA1、CA2のうちの搬送物CA2を排除するための排除エアを排除用の噴気口OPから吹き付ける位置、並びに、供給先の不正状態において搬送物CAの供給を停止するためのエアを排除用の噴気口SPから吹き付ける位置に対して、計測エリアMEが常に一定の位置関係となるように設定されるため、搬送物占有範囲判別処理による判定結果や受入部21aの受入可能か否かの結果に応じて搬送物CAに排除力を作用させる場合に、常に近似したタイミングで作用を生じさせることができる。 In this embodiment, due to the above position correction, the position of the measurement area ME with respect to the transport path 121 is always the same position with respect to the transport path 121, regardless of the phase timing of vibration during imaging. Therefore, the supply of the conveyed object CA is stopped at the position where the removal air for eliminating the conveyed object CA2 out of the conveyed objects CA1 and CA2 determined to be fraudulent is blown from the removal jet OP, and when the supply destination is in an illegal state. Since the measurement area ME is always set to have a constant positional relationship with respect to the position where the air for removal is blown from the exhaust nozzle SP, the determination result by the conveyance object occupancy range determination process and the acceptance of the receiving section 21a When applying a displacing force to the conveyed object CA depending on the result of whether it is possible or not, the effect can always be applied at approximately similar timing.

なお、上記噴気口OPからの気流の吹付タイミングは、特定の画像において不正判定がなされた場合、当該画像の撮影時を基準として所定時間経過後に開始されるように、タイマー設定可能に構成されることが好ましい。この場合、一般的には、タイマー設定は、判定タイミングや判定される画像の取得タイミングを基準として吹付タイミングを設定すればよい。ただし、当該画像における計測エリアME内の搬送物CA1の搬送方向Fの位置(上記位置補正後の位置)に応じて、上記吹付タイミングが自動的に修正されるように構成することが望ましい。このようにすると、噴気口OPからの気流が搬送物CA1には作用せず、搬送物CA2にのみ作用するように設定することが容易かつ確実にできる。また、上記と同様に、上記噴気口SPからの気流の吹付開始のタイミングも、搬送物CA1の搬送方向Fの位置(上記位置補正後の位置)に応じて、自動的に修正されるように構成することが望ましい。 The timing of blowing the airflow from the blowhole OP can be set on a timer so that if a specific image is judged to be fraudulent, the timing starts after a predetermined period of time has elapsed from when the image was taken. It is preferable. In this case, in general, the timer setting may be performed by setting the spraying timing based on the determination timing or the acquisition timing of the image to be determined. However, it is desirable to configure the spraying timing to be automatically corrected according to the position in the transport direction F of the object CA1 within the measurement area ME in the image (the position after the position correction). In this way, it is possible to easily and reliably set the airflow from the jet nozzle OP to not act on the conveyed object CA1 but only on the conveyed object CA2. Further, in the same way as above, the timing of the start of blowing the airflow from the jet nozzle SP is automatically corrected according to the position of the conveyed object CA1 in the conveying direction F (the position after the position correction). It is desirable to configure

本実施形態では、カメラ装置130CMによって搬送面121b上の搬送物CAの画像を取得し、この画像の計測エリアME内の処理によって、搬送物CAの連続占有範囲121CTの大きさを単位占有範囲121Uを基準として判定している。このとき、搬送物CAは、搬送面121b上において搬送面121bと直交する方向に相互に重なり易い姿勢で搬送されていくので、搬送物CAの相互の重なり状態を画像上の占有範囲によって判定しやすくなっている。特に、カメラ装置130CMの撮像方向を上記の重なり易い方向に合わせることによって、画像処理もさらに容易になり、判別精度も向上できる。 In this embodiment, an image of the conveyance object CA on the conveyance surface 121b is acquired by the camera device 130CM, and by processing this image in the measurement area ME, the size of the continuous occupation range 121CT of the conveyance object CA is determined by the unit occupation range 121U. It is judged based on the criteria. At this time, the conveyed objects CA are conveyed on the conveying surface 121b in a direction perpendicular to the conveying surface 121b in a posture in which they tend to overlap each other, so the mutual overlapping state of the conveyed objects CA is determined based on the occupied range on the image. It's getting easier. In particular, by adjusting the imaging direction of the camera device 130CM to the above-mentioned direction in which images tend to overlap, image processing becomes easier and discrimination accuracy can also be improved.

また、本実施形態では、上記受入部21aの透光領域部21fの画像部分21fyを画像処理することにより、供給先の受入の可否を検出できるので、搬送物CAの供給停止などを的確に判断できる。特に、上記搬送物占有範囲判別処理に用いるものと同じ画像により検出できるため、撮像手段も簡易に構成でき、画像処理も並行して迅速に行うことができる。さらに、この受入部21aの受入れ可否の判定に際しては、背面側照明による効果も計測エリアME内の透光領域部と同様に得ることができる。 Furthermore, in this embodiment, by image processing the image portion 21fy of the light-transmitting area 21f of the receiving section 21a, it is possible to detect whether or not the supply destination can accept the object. can. In particular, since the detection can be performed using the same image as that used in the above-mentioned conveyance object occupation range determination process, the imaging means can be easily configured, and image processing can be performed in parallel and quickly. Furthermore, when determining whether or not the receiving portion 21a can accept, the effect of back side illumination can be obtained in the same way as the light-transmitting area in the measurement area ME.

本実施形態では、背面側照明装置140BLの照明光BLaによって透光領域部21f、121g、121h、121iの遮光状態を明瞭に検出することができるので、計測エリアMEのコントラストの低下などの影響を受けにくくすることができ、画像処理負担の抑制や検出精度の向上を図ることができる。ただし、カメラ装置130CMによる撮影画像は、背面側照明(透過光)に限らず、正面側照明(反射光)によるものであってもよく、背面側照明(透過光)と正面側照明(反射光)の両者を合わせて利用するものであってもよい。この場合、透光領域121c(透光領域部)の範囲が限定されていることが好ましく、これによって、撮像範囲のシルエット(輪郭情報)だけでなく、表面態様をも画像処理によって抽出し易くなる。例えば、本実施形態では、搬送物CAの幅方向の外形を認識する必要がないため、透光領域121cを搬送物CAの幅よりも狭幅にすることで、効果を低下させずに透光領域121cの面積を限定できる。特に、上記透光領域部121gのように搬送方向Fに延在するスリット状に構成することが搬送物CAの搬送方向Fの位置を特定する上で好ましく、この場合に、計測エリアME内で連続して延在することがさらに望ましい。このとき、画像中に撮影されているものの表面態様の抽出により、不正判定時において搬送物CAの重なり状態をさらに詳細に判別して排除力の与え方を変更したり、或いは、表面態様に基づいて重なり状態ではないことを確認したら、不正判定を回避したりすることも可能である。透光領域の限定に関しては、例えば、透光領域121cを、上記透光領域部121g,121h,121iのように、複数の分散した透光領域部が配列されている態様とすることも好ましい。 In this embodiment, the light-blocking state of the light-transmitting areas 21f, 121g, 121h, and 121i can be clearly detected by the illumination light BLa of the back side illumination device 140BL, so that the influence of a decrease in the contrast of the measurement area ME can be avoided. This makes it possible to reduce the burden on image processing and improve detection accuracy. However, the image taken by the camera device 130CM is not limited to the back side illumination (transmitted light), but may be based on the front side illumination (reflected light). ) may be used in combination. In this case, it is preferable that the range of the light-transmitting region 121c (light-transmitting region portion) is limited, thereby making it easier to extract not only the silhouette (contour information) of the imaging range but also the surface aspect by image processing. . For example, in this embodiment, there is no need to recognize the outer shape of the conveyed object CA in the width direction, so by making the light-transmitting area 121c narrower than the width of the conveyed object CA, the light-transmitting area 121c is made narrower than the width of the conveyed object CA. The area of the region 121c can be limited. In particular, it is preferable to form a slit shape extending in the transport direction F like the light-transmitting area 121g in order to identify the position of the transport object CA in the transport direction F. In this case, within the measurement area ME, More preferably, it extends continuously. At this time, by extracting the surface aspect of the object photographed in the image, it is possible to determine in more detail the overlapping state of the conveyed objects CA at the time of fraud determination and change the method of applying the exclusion force, or to change the method of applying the exclusion force based on the surface aspect. If it is confirmed that there is no overlap, it is possible to avoid a fraudulent determination. Regarding the limitation of the light-transmitting region, for example, it is also preferable that the light-transmitting region 121c has a configuration in which a plurality of dispersed light-transmitting region portions are arranged like the above-mentioned light-transmitting region portions 121g, 121h, and 121i.

本実施形態では、搬送物CAの種類、寸法、不正判定条件、搬送物CAの基準画像データ、連続占有範囲の認定条件、単位占有範囲の数値など、画像処理の二値化時における明度の閾値などの各種の設定値などといった、搬送物CAの判別処理に用いられる各種のデータが主記憶装置MMなどに記憶され、各処理にあたっては適宜に読み出されて使用される。また、カメラ装置130CM(CM1,CM2)の撮影タイミングを定めるための設定値、撮影画像GPX又は画像エリアGPYを取り込む際の画像取込条件の設定値、搬送路121の振動による各設定エリアの位置補正の態様を定める設定値、各種の設定画面や表示画面の態様を定める設定値、選別用や供給停止用の気流等の制御の態様、例えば、気流の吹き付けタイミングや圧力値などの設定値、などについても同様に取り扱われる。 In this embodiment, the brightness threshold during binarization of image processing, such as the type and dimensions of the conveyed object CA, fraud judgment conditions, reference image data of the conveyed object CA, recognition conditions for continuous occupied range, numerical value of unit occupied range, etc. Various types of data used in the process of determining the conveyed object CA, such as various setting values, are stored in the main storage device MM, etc., and are read out and used as appropriate in each process. Further, setting values for determining the shooting timing of the camera device 130CM (CM1, CM2), setting values for image capturing conditions when capturing the captured image GPX or image area GPY, and the position of each setting area due to vibration of the conveyance path 121 are also provided. Setting values that determine the mode of correction, setting values that determine the mode of various setting screens and display screens, mode of control of airflow for sorting and supply stoppage, etc., for example, setting values such as airflow blowing timing and pressure value, etc. will be treated in the same way.

本実施形態では、上記主記憶装置MM内に保存されている過去の撮影画像GPX又は画像エリアGPYを時系列にて連続して格納した画像ファイルを選択して読み出し、表示させることができる。そして、選択された画像ファイルに対する各種の操作処理を実行するための手段も用意される。 In the present embodiment, it is possible to select, read out, and display an image file in which past captured images GPX or image areas GPY stored in the main storage device MM are stored consecutively in chronological order. Also provided are means for executing various operations on the selected image file.

主記憶装置MM内に保存される画像ファイルは、運転モードにおいて取り込まれる複数の撮影画像GPX又は画像エリアGPYの画像データを、演算処理装置MPUにより自動的に記録したものである。この画像ファイルの保存は、主記憶装置MMに空き容量が存在する場合には全ての画像データについて実施することができるが、主記憶装置MMに空き容量が存在しない場合でも、最新の既定期間分(例えば1時間分など)、或いは、最新の既定枚数分(例えば1000枚分など)の画像ファイルについては常に保存されるようにしておくことが好ましい。 The image file stored in the main storage device MM is one in which image data of a plurality of captured images GPX or image area GPY captured in the driving mode is automatically recorded by the arithmetic processing unit MPU. This image file can be saved for all image data if there is free space in the main memory device MM, but even if there is no free space in the main memory device MM, it is possible to save the image file for the latest predetermined period. It is preferable to always save the latest image files (for example, one hour's worth) or the latest predetermined number of image files (for example, 1000 images, etc.).

上記のように過去に記録した撮影画像GPX又は画像エリアGPYを表示した状態で、この画像データに対して、適宜の操作により、上記搬送物検出処理及び上記搬送物判別処理(一般的には上記搬送処理)からなる画像計測処理を再度実行することができる。表示態様の制御機能の一つとして、同一ファイル内に格納された複数の撮影画像GPX又は画像エリアGPYについては、適宜の操作により、前後に撮影された他の画像データに一つずつ切り替えることができる。また、同一画像ファイル内の複数の撮影画像GPX又は画像エリアGPYを連続して表示しつつ、並行して、表示された画像データに対する画像計測処理を実行させることもできる。 With the photographed image GPX or image area GPY recorded in the past displayed as described above, this image data is subjected to the above-mentioned conveyance object detection process and the above-mentioned conveyance object discrimination process (generally, the above-mentioned The image measurement process consisting of the transport process) can be executed again. As one of the display mode control functions, for multiple captured images GPX or image areas GPY stored in the same file, it is possible to switch one by one to other image data captured before or after using appropriate operations. can. Further, it is also possible to continuously display a plurality of captured images GPX or image areas GPY in the same image file and execute image measurement processing on the displayed image data in parallel.

次に、図11を参照して、本実施形態の全体の動作プログラムの流れについて説明する。図11は、上記検査処理ユニットDTUの演算処理装置MPUにより、動作プログラムに従って実行される処理の概略フローチャートである。この動作プログラムを起動すると、まず、上記の画像撮影及び画像計測処理が開始されるとともに、コントローラCL11、CL12により搬送装置10(パーツフィーダ11及びリニアフィーダ12)の駆動が開始される。そして、前述のデバッグ操作に応じたデバッグ設定がOFFであれば、撮影画像GPX又は画像エリアGPYに対して画像計測処理が実行され、最終の判定結果がOK判定であれば、デバッグ操作が行われない限り、そのまま次の撮影画像GPX又は画像エリアGPYの画像計測処理が実施される。例えば、搬送物CAの不正品と良品の判定による選別位置や不正姿勢と正規姿勢の判定による選別位置若しくは反転位置では、カメラCM1,CM2等により撮像された画像に基づいて、不正品と判定された搬送物CAや不正姿勢と判定された搬送物CAを噴気口の気流により制御し、搬送路121上から排除したり、姿勢を反転させたりする。また、上述の末端部121eにおける搬送物CAの占有範囲の判定による選別位置(計測エリアME)でも、カメラ装置130CMにより取得された画像に基づいて、前述のように不正判定の連続占有範囲121CTに対して排除力を作用させる。 Next, with reference to FIG. 11, the flow of the entire operating program of this embodiment will be described. FIG. 11 is a schematic flowchart of processing executed by the arithmetic processing unit MPU of the inspection processing unit DTU according to the operating program. When this operation program is started, first, the above-described image capturing and image measurement processing are started, and the controllers CL11 and CL12 start driving the conveyance device 10 (parts feeder 11 and linear feeder 12). Then, if the debug setting corresponding to the debug operation described above is OFF, image measurement processing is executed for the captured image GPX or image area GPY, and if the final judgment result is OK, the debug operation is performed. Unless otherwise specified, image measurement processing for the next photographed image GPX or image area GPY is carried out as is. For example, at the sorting position where the conveyed object CA is determined to be a fraudulent item and a non-defective item, the sorting position or reversal position where the conveyed object CA is determined to be an incorrect posture and a normal posture, the object CA is determined to be a fraudulent item based on images captured by cameras CM1, CM2, etc. The conveyed object CA that has been transferred or the conveyed object CA that has been determined to have an incorrect posture is controlled by the airflow of the blowhole, and is removed from the conveyance path 121 or its posture is reversed. Also, at the sorting position (measurement area ME) determined by the determination of the occupied range of the conveyed object CA in the end portion 121e described above, based on the image acquired by the camera device 130CM, the continuous occupied range 121CT of the fraudulent determination is determined as described above. Apply exclusion force against it.

このようにして、搬送路121上で搬送物CAが制御されることにより、下流側へは良品のみ、良姿勢のもののみが整列した状態で供給されていく。そして、末端部121eにおいては、搬送物CAの重なり状態やその蓋然性を判定し、最終的に供給不正が発生しないように、一つ一つの搬送物CAを受入部21aに供給することができる。この場合にも、その後、デバッグ操作が行われない限り、そのまま次の撮影画像GPX又は画像エリアGPYの判定が実施される。 By controlling the conveyance items CA on the conveyance path 121 in this manner, only good items and only items with good posture are supplied to the downstream side in an aligned state. Then, at the end portion 121e, it is possible to determine the overlapping state of the conveyed objects CA and the probability thereof, and to ultimately supply each conveyed object CA to the receiving section 21a so as to prevent incorrect supply from occurring. In this case as well, the determination of the next captured image GPX or image area GPY is carried out as is unless a debugging operation is performed thereafter.

上記の途中でデバッグ操作が行われ、デバッグ設定がONになると、上記ルーティンから抜け出して、搬送装置10の駆動が停止され、画像計測処理も停止される。そして、この状態において適宜の操作を行うと、前述のように画像ファイルを選択可能な状態となる。このとき、選択表示される画像ファイルは、直前の運転モードにおいて記録していた複数の撮影画像GPX又は画像エリアGPYを含む画像ファイルである。これをそのまま選択して適宜の操作をすると、再実行モードに移行する。このモードでは、上述のようにすでに実行された制御動作を記録した画像ファイルに基づいて、画像の表示や検出及び判定を再実行させることができる。すなわち、搬送装置10の搬送物CAの制御に不具合が生じた場合には、この不具合を解消するために、まず、過去の画像データに基づいて画像計測処理を再実行することによって、画像計測処理の問題箇所を探る。当該問題箇所が判明すれば、それに応じて検出や判定の設定内容(設定値)を変更、調整し、再び過去の画像データに対して画像計測処理を再実行することで調整、改善作業の結果を確認することができる。その後、適宜の復帰操作を行うと、デバッグ設定がOFFに戻され、画像計測処理が再開されるとともに、搬送装置10の駆動が再開される。また、表示装置の画面は運転モードの表示画面に戻る。 If a debug operation is performed during the above process and the debug setting is turned on, the process exits from the above routine, the drive of the transport device 10 is stopped, and the image measurement process is also stopped. If an appropriate operation is performed in this state, an image file can be selected as described above. At this time, the image file that is selected and displayed is an image file that includes a plurality of captured images GPX or an image area GPY that were recorded in the immediately previous driving mode. If you select this and perform the appropriate operations, you will be transferred to re-execution mode. In this mode, image display, detection, and determination can be re-executed based on an image file that records control operations that have already been executed as described above. That is, if a problem occurs in the control of the conveyed object CA of the conveyance device 10, in order to resolve this problem, the image measurement process is first re-executed based on past image data. Find the problem area. Once the problem area is identified, the detection and judgment settings (setting values) can be changed and adjusted accordingly, and the image measurement process can be re-executed on past image data to check the results of the adjustment and improvement work. can be confirmed. Thereafter, when an appropriate return operation is performed, the debug setting is returned to OFF, the image measurement process is restarted, and the driving of the transport device 10 is restarted. Further, the screen of the display device returns to the operation mode display screen.

以上説明した本実施形態では、上述の種々の効果に加えて、カメラ装置130CMが既定の撮影間隔で連続して撮影するとともに、搬送物の搬送速度Vsと撮影間隔Tsとの関係により搬送路121を通過する全ての搬送物CAが常に含まれるように予め設定された搬送方向Fの範囲LDを有する計測エリアME内の画像データに対して画像計測処理を施すことにより、いずれかの撮影画像において計測エリアME内に配置された搬送物CAを検出し、判定することができるため、従来技術のように個々の搬送物の位置を検知するためのトリガ信号を生成する必要がなくなる。また、この画像に含まれる搬送物CAの上記占有範囲、すなわち、連続占有範囲121CTを単位占有範囲121Uを基準として判定することにより、搬送物CAの重なり状態若しくはその蓋然性に関する情報を確実に抽出することができる。したがって、搬送物の高速搬送や高密度搬送が行われていても、搬送物CAの供給先への供給不正を防止し、効率的に供給することが可能になる。また、搬送物CAの搬送路121上における連続占有範囲を検出し、これを単位占有範囲と比較するだけで足りるので、前記搬送物CAの重なり状態やその蓋然性を判定するための画像計測処理を高速かつ高精度に行うことができる。 In the present embodiment described above, in addition to the various effects described above, the camera device 130CM continuously photographs at predetermined photographing intervals, and the conveyance path 121 is By performing image measurement processing on the image data in the measurement area ME, which has a range LD in the transport direction F that is set in advance so that all the transported objects CA passing through are always included, in any of the photographed images. Since the transported object CA placed within the measurement area ME can be detected and determined, there is no need to generate a trigger signal for detecting the position of each transported object as in the prior art. Furthermore, by determining the above-mentioned occupied range of the conveyed object CA included in this image, that is, the continuous occupied range 121CT, with reference to the unit occupied range 121U, information regarding the overlapping state of the conveyed objects CA or its probability is reliably extracted. be able to. Therefore, even if the conveyance object CA is transported at high speed or at high density, it is possible to prevent improper supply of the conveyance object CA to the supply destination and to efficiently supply the conveyance object CA. In addition, since it is sufficient to detect the continuous occupied range of the transported objects CA on the transport path 121 and compare this with the unit occupied range, image measurement processing for determining the overlapping state of the transported objects CA and its probability is performed. It can be performed at high speed and with high precision.

本実施形態では、搬送路121を構成する搬送面121bに、図6に示す透光領域121cを設けている。この透光領域121cは、搬送面121bを貫通し、背面側に開口する透孔や隙間Gによって構成される。この透孔や隙間Gの背面側には、背面側照明装置140BLが向けられる。透孔や隙間及び背面側照明装置140BLは、上述の背面側照明手段を構成する。なお、背面側照明手段としては、透光領域121cを通して撮像手段に向かう透過光が存在すればよく、図示例のような専用の照明装置ではなくとも、実内照明等により、直接若しくは間接的に照明される環境照明が確保されていればよい。 In this embodiment, a light-transmitting area 121c shown in FIG. 6 is provided on the conveyance surface 121b that constitutes the conveyance path 121. This light-transmitting region 121c is constituted by a through hole or a gap G that penetrates the conveyance surface 121b and opens to the back side. The back side lighting device 140BL is directed to the back side of this through hole or gap G. The through hole, the gap, and the backside lighting device 140BL constitute the above-mentioned backside lighting means. Note that the rear side illumination means only needs to have transmitted light directed toward the imaging means through the transparent region 121c, and does not need to be a dedicated illumination device like the illustrated example, but can be directly or indirectly illuminated by internal illumination or the like. It is only necessary that the ambient lighting is secured.

背面側照明手段において、図視例では、上記透孔やすき間Gによって構成されるが、搬送面121bに沿って透光性を有する素材、例えば、ガラス、クォーツ、サファイア、アクリル樹脂などを配置し、これにより、搬送面121bと面一に形成されるものであってもよい。このようにすると、搬送面121aに透孔121dによる段差部分が形成されることがないため、搬送物CAの搬送を妨げることがない。また、上述の噴気口OP,SPは、図6(a)及び(b)に示すように、開口部の搬送方向Fの前方側の縁部に面取状や丸め状の変形角部OPa,SPaが設けられているので、搬送物CAが噴気口OP,SPの開口縁に引っ掛かり、滞留したり、姿勢が乱されたりすることが防止される。 In the illustrated example, the backside illumination means is composed of the above-mentioned through holes and gaps G, but a translucent material such as glass, quartz, sapphire, acrylic resin, etc. is arranged along the conveying surface 121b. , thereby, it may be formed flush with the conveying surface 121b. In this way, a stepped portion due to the through hole 121d is not formed on the conveyance surface 121a, so that the conveyance of the conveyed object CA is not hindered. Further, as shown in FIGS. 6(a) and 6(b), the above-mentioned blowholes OP, SP have chamfered or rounded deformed corners OPa, Since the SPa is provided, the transported object CA is prevented from being caught on the opening edges of the blowholes OP and SP, and from being stagnated or having its posture disturbed.

透光領域121cから上記背面側照明装置140BLの透過光がカメラ装置130CM(CM1,CM2)に向けて出射するものの、透光領域121cの範囲は限定されているので、カメラ装置130CMによって搬送路121上の搬送物CAを撮影すると、カメラ装置130CMの背後の環境照明(太陽光、工場の室内照明光など)によって、搬送面121a,121bと搬送物CAの表面の態様が、撮影された画像中に表れる。この場合、カメラ装置130CMの背後から搬送路121及び搬送物CAを照明する正面側照明装置を設置してもよい。正面側照明装置は、前述のように環境照明によって十分な照明効果が得られる場合には、特段、設置することがなくてもよい。この照明側照明装置は種々の方向から照明を行うように構成してもよい。 Although the transmitted light of the back illumination device 140BL is emitted from the light-transmitting region 121c toward the camera device 130CM (CM1, CM2), the range of the light-transmitting region 121c is limited, so that the camera device 130CM can illuminate the transport path 121. When the above conveyance object CA is photographed, the aspects of the conveyance surfaces 121a and 121b and the surface of the conveyance object CA are changed in the photographed image due to the environmental illumination (sunlight, factory indoor lighting, etc.) behind the camera device 130CM. It appears in In this case, a front side illumination device may be installed to illuminate the conveyance path 121 and the conveyed object CA from behind the camera device 130CM. The front side illumination device does not need to be particularly installed if a sufficient illumination effect can be obtained from the environmental illumination as described above. This illumination-side illumination device may be configured to provide illumination from various directions.

なお、本発明の搬送制御システム及び搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、背面側照明(透過光)により取得された透光領域121cの画像部分の処理によって搬送物CAの占有範囲を検出しているが、通常の正面側照明(反射光)によって取得された画像の処理によって搬送物の占有範囲を検出するようにしてもよい。 Note that the conveyance control system and conveyance device of the present invention are not limited to the illustrated examples described above, and it goes without saying that various changes can be made without departing from the gist of the present invention. For example, in the above embodiment, the area occupied by the conveyed object CA is detected by processing the image portion of the transparent area 121c acquired by the rear side illumination (transmitted light), but the area occupied by the conveyed object CA is The occupied range of the conveyed object may be detected by processing the image acquired by.

また、上記実施形態では、連続占有範囲121CTの搬送方向Fの長さを、単位占有範囲121Uの搬送方向Fの長さと比較して、不正判定を行っているが、本発明では、連続占有範囲121CTの幅を、単位占有範囲121Uの幅と比較してもよく、或いは、連続占有範囲121CTの面積を、単位占有範囲121Uの面積と比較しても構わない。 Further, in the above embodiment, the length of the continuous occupied range 121CT in the conveying direction F is compared with the length of the unit occupied range 121U in the conveying direction F to determine fraud, but in the present invention, the continuous occupied range The width of 121CT may be compared with the width of unit occupancy range 121U, or the area of continuous occupancy range 121CT may be compared with the area of unit occupancy range 121U.

さらに、上記実施形態では、検査処理ユニットDTUの基本構成として、搬送物CAの到来タイミングとは無関係に既定の時間間隔Tsで撮影を行うようにしているが、搬送物CAの到来を検出する信号に基づくトリガ信号によりカメラ装置130CM(CM1、CM2)を作動させて画像を撮影するようにしても構わない。 Furthermore, in the embodiment described above, the basic configuration of the inspection processing unit DTU is to perform imaging at a predetermined time interval Ts regardless of the arrival timing of the transported object CA, but a signal for detecting the arrival of the transported object CA is The camera device 130CM (CM1, CM2) may be activated to take an image using a trigger signal based on the above.

その上、上記実施形態では、連続占有範囲121CTの大きさを単位占有範囲121Uを基準として判定する際に、搬送方向Fの長さLctを同じく搬送方向Fの長さLやLsと比較している。しかし、搬送物CAの重なり状態や密着状態は、単に占有範囲の搬送方向Fの長さだけでなく、幅方向にも生ずる可能性があるため、各範囲の幅を比較対象としてもよく、長さと幅の双方、或いは、各範囲の面積そのものを比較対象としてもよい。 Moreover, in the embodiment described above, when determining the size of the continuous occupied range 121CT based on the unit occupied range 121U, the length Lct of the conveying direction F is also compared with the lengths L and Ls of the conveying direction F. There is. However, since the overlapping state or close contact state of conveyed objects CA may occur not only in the length of the occupied range in the conveying direction F but also in the width direction, the width of each range may be used as a comparison target. Both the width and width, or the area of each range itself may be compared.

10…搬送装置、11…パーツフィーダ、110…搬送体、111…搬送路、12…リニアフィーダ、120…搬送体、121…搬送路、121a,121b…搬送面、121c…透光領域、121e…(搬送路の)末端部、121g-121j…透光領域部、122…回収路、122a…受面部、122b…周縁部、122c…合流部、121CT…連続占有範囲、121U…単位占有範囲、L…搬送物(単位占有範囲)の長さ、Ls…検出領域の搬送方向の長さ、Lct…連続占有範囲の搬送方向の長さ、W…搬送物の幅、130CM(CM1,CM2)…カメラ装置、140BL…背面側照明装置、OP…噴気口(重なり解除用)、SP…噴気口(供給停止用)、CA、CA1-CA3…搬送物、CL11,CL12…コントローラ、DTU…検査処理ユニット、DP1,DP2…表示装置、GP1,GP2…画像処理装置、GM1,GM2…画像処理メモリ、GPX…撮影画像、GPY…画像エリア、MPU…演算処理装置、MM…主記憶装置、ME…計測エリア、SP1,SP2…操作入力装置、RAM…演算処理用メモリ、20…(供給先の)検査装置、20a…支持部、20a1…上板、20a2…窓部、20a3…下板、21…インデックステーブル、21a…受入部、21d…収容部、21f…透光領域部 DESCRIPTION OF SYMBOLS 10... Conveyance device, 11... Parts feeder, 110... Conveyance body, 111... Conveyance path, 12... Linear feeder, 120... Conveyance body, 121... Conveyance path, 121a, 121b... Conveyance surface, 121c... Transparent area, 121e... Terminal part (of the conveyance path), 121g-121j...Transparent area part, 122...Recovery path, 122a...Receiving surface part, 122b...Peripheral part, 122c...Confluence part, 121CT...Continuous occupation range, 121U...Unit occupation range, L ...Length of the conveyed object (unit occupied range), Ls...Length of the detection area in the conveying direction, Lct...Length of the continuous occupied range in the conveying direction, W...Width of the conveyed object, 130CM (CM1, CM2)...Camera Device, 140BL...Back side illumination device, OP...Full port (for canceling overlap), SP...Full port (for stopping supply), CA, CA1-CA3...Transferred object, CL11, CL12...Controller, DTU...Inspection processing unit, DP1, DP2...Display device, GP1, GP2...Image processing device, GM1, GM2...Image processing memory, GPX...Photographed image, GPY...Image area, MPU...Arithmetic processing unit, MM...Main storage device, ME...Measurement area, SP1, SP2...operation input device, RAM...memory for arithmetic processing, 20...inspection device (supplied), 20a...support section, 20a1...upper plate, 20a2...window section, 20a3...lower plate, 21...index table, 21a...Accepting part, 21d...Accommodating part, 21f...Translucent area part

Claims (16)

撮像手段(CM)の撮影により搬送物(CA)が搬送される搬送路(121)上の計測エリア(ME)の画像を繰り返し取得する画像取得手段(MPU,DTU,RAM)と、
前記計測エリア(ME)内における前記搬送路(121)上の前記搬送物(CA)の占有領域が一体に連続する範囲、或いは、当該占有領域が所定値未満の間隔で連続する範囲である連続占有範囲(121CT)を検出し、一つの前記搬送物(CA)に相当する単位占有範囲(121U)を基準として、前記連続占有範囲(121CT)の大きさを判定する搬送物占有範囲判別手段(MPU,RAM)と、
前記連続占有範囲(121CT)が前記単位占有範囲(121U)を基準とする不正判定の条件を満たした場合に、前記連続占有範囲(121CT)内に配置される少なくとも一つの前記搬送物(CA)の搬送状態を制御する搬送物制御手段(OP)と、
を具備し、
前記搬送物制御手段(MPU,RAM)は、前記連続占有範囲(121CT)内の搬送方向前方にある部分に前記単位占有範囲(121U)を想定したときの当該単位占有範囲(121U)よりも搬送方向後方にある部分に排除力を与える、
搬送制御システム。
an image acquisition unit (MPU, DTU, RAM) that repeatedly acquires images of the measurement area (ME) on the conveyance path (121) along which the conveyed object (CA) is conveyed by photographing with the imaging means (CM);
A range in which the occupied areas of the conveyed object (CA) on the conveyance path (121) in the measurement area (ME) are continuous, or a continuous range in which the occupied areas are continuous at intervals less than a predetermined value. Conveyanced object occupancy range determining means (121CT) for detecting the occupancy range (121CT) and determining the size of the continuous occupation range (121CT) with reference to the unit occupancy range (121U) corresponding to one of the conveyed objects (CA); MPU, RAM) and
When the continuous occupation range (121CT) satisfies the conditions for fraud determination based on the unit occupation range (121U), at least one conveyed object (CA) placed within the continuous occupation range (121CT) Conveyed object control means (OP) that controls the conveyance state of the
Equipped with
When the unit occupancy range (121U) is assumed to be in the forward part of the continuous occupancy range (121CT) in the transport direction, the conveyance object control means (MPU, RAM) is configured to transport more than the unit occupancy range (121U). Gives an expelling force to the part at the rear of the direction,
Conveyance control system.
撮像手段(CM)の撮影により搬送物(CA)が搬送される搬送路(121)上の計測エリア(ME)の画像を繰り返し取得する画像取得手段(MPU,DTU,RAM)と、
前記計測エリア(ME)内における前記搬送路(121)上の前記搬送物(CA)の占有領域が一体に連続する範囲、或いは、当該占有領域が所定値未満の間隔で連続する範囲である連続占有範囲(121CT)を検出し、一つの前記搬送物(CA)に相当する単位占有範囲(121U)を基準として、前記連続占有範囲(121CT)の大きさを判定する搬送物占有範囲判別手段(MPU,RAM)と、
前記連続占有範囲(121CT)が前記単位占有範囲(121U)を基準とする不正判定の条件を満たした場合に、前記連続占有範囲(121CT)内に配置される少なくとも一つの前記搬送物(CA)の搬送状態を制御する搬送物制御手段(OP)と、
を具備し、
前記計測エリア(ME)は、前記搬送路(121)の末端部(121e)に設定される、
搬送制御システム。
an image acquisition unit (MPU, DTU, RAM) that repeatedly acquires images of the measurement area (ME) on the conveyance path (121) along which the conveyed object (CA) is conveyed by photographing with the imaging means (CM);
A range in which the occupied areas of the conveyed object (CA) on the conveyance path (121) in the measurement area (ME) are continuous, or a continuous range in which the occupied areas are continuous at intervals less than a predetermined value. Conveyanced object occupancy range determining means (121CT) for detecting the occupancy range (121CT) and determining the size of the continuous occupation range (121CT) with reference to the unit occupancy range (121U) corresponding to one of the conveyed objects (CA); MPU, RAM) and
When the continuous occupation range (121CT) satisfies the conditions for fraud determination based on the unit occupation range (121U), at least one conveyed object (CA) placed within the continuous occupation range (121CT) Conveyed object control means (OP) that controls the conveyance state of the
Equipped with
The measurement area (ME) is set at the end (121e) of the transport path (121).
Conveyance control system.
前記画像取得手段(MPU,DTU,RAM)は、前記撮像手段(130CM)により、前記計測エリア(ME)とともに、前記末端部(121e)から前記搬送物(CA)が供給される供給先(20)の受入部(21a)を含む範囲を撮影した画像を取得し、前記画像を処理することにより前記受入部(21a)における前記搬送物(CA)の受入れの可否を検出する搬送物受入可否検出手段(MPU,RAM)をさらに具備する、
請求項2に記載の搬送制御システム。
The image acquisition means (MPU, DTU, RAM) uses the imaging means (130CM) to detect the supply destination (20) to which the conveyed object (CA) is supplied from the end portion (121e) together with the measurement area (ME). Detection of whether or not the conveyed object (CA) can be accepted in the receiving section (21a) by acquiring an image of a range including the receiving section (21a) of ) and processing the image. further comprising means (MPU, RAM);
The conveyance control system according to claim 2.
前記搬送物占有範囲判別手段(MPU,RAM)は、2以上の前記搬送物(CA)が前記搬送路(121)上で他の方位よりも重なり易い特定の方向に見たときの占有範囲を判定する、
請求項1-3のいずれか一項に記載の搬送制御システム。
The conveyed object occupancy range determination means (MPU, RAM) determines the occupied range when two or more conveyed objects (CA) are viewed in a specific direction on the conveyance path (121) in which they are more likely to overlap than in other directions. judge,
The conveyance control system according to any one of claims 1 to 3.
前記画像取得手段(MPU,DTU,RAM)の撮影方向が前記特定の方向である、
請求項4に記載の搬送制御システム。
the photographing direction of the image acquisition means (MPU, DTU, RAM) is the specific direction;
The conveyance control system according to claim 4.
前記搬送物占有範囲判別手段(MPU,RAM)は、不正判定の条件を満たす前記連続占有範囲(121CT)が必ず占有するように設定された、搬送方向(F)に固定された検出領域(Ls)を前記計測エリア(ME)内に備える、
請求項1-5のいずれか一項に記載の搬送制御システム。
The conveyance object occupation range determination means (MPU, RAM) detects a detection area (Ls) fixed in the conveyance direction (F), which is set to be always occupied by the continuous occupation range (121CT) that satisfies the conditions for fraud determination. ) in the measurement area (ME),
The conveyance control system according to any one of claims 1 to 5.
前記画像取得手段(MPU,DTU,RAM)は、前記撮像手段(130CM)により既定の撮影間隔(Ts)で連続して撮影するとともに、
前記計測エリア(ME)は、前記搬送物(CA)の搬送速度(Vs)と撮影間隔(Ts)との関係により前記搬送路(121)を通過する全ての前記搬送物(CA)が常に含まれるように予め設定された範囲を有する、
請求項1-6のいずれか一項に記載の搬送制御システム。
The image acquisition means (MPU, DTU, RAM) continuously photographs at a predetermined photographing interval (Ts) using the image pickup means (130CM), and
The measurement area (ME) always includes all the conveyed objects (CA) passing through the conveyance path (121) due to the relationship between the conveyance speed (Vs) and the photographing interval (Ts) of the conveyed objects (CA). has a preset range to
The conveyance control system according to any one of claims 1 to 6.
不正判定の条件を満たす前記連続占有範囲(121CT)が必ず占有する、前記搬送方向(F)に固定された検出領域(Ls)が、前記計測エリア(ME)内に設けられ、
全ての前記不正判定の条件を満たす前記連続占有範囲(121CT)が前記検出領域(Ls)を占有する際に必ず撮像されるように、前記搬送速度(Vs)に応じた前記撮影間隔(Ts)が設定される、
請求項7に記載の搬送制御システム。
A detection area (Ls) fixed in the transport direction (F), which is always occupied by the continuous occupied range (121CT) that satisfies the conditions for fraud determination, is provided within the measurement area (ME),
The imaging interval (Ts) is set according to the transport speed (Vs) so that an image is always captured when the continuous occupied range (121CT) that satisfies all of the fraud determination conditions occupies the detection area (Ls). is set,
The conveyance control system according to claim 7.
撮像手段(CM)の撮影により搬送物(CA)が搬送される搬送路(121)上の計測エリア(ME)の画像を繰り返し取得する画像取得手段(MPU,DTU,RAM)と、
前記計測エリア(ME)内における前記搬送路(121)上の前記搬送物(CA)の占有領域が一体に連続する範囲、或いは、当該占有領域が所定値未満の間隔で連続する範囲である連続占有範囲(121CT)を検出し、一つの前記搬送物(CA)に相当する単位占有範囲(121U)を基準として、前記連続占有範囲(121CT)の大きさを判定する搬送物占有範囲判別手段(MPU,RAM)と、
前記連続占有範囲(121CT)が前記単位占有範囲(121U)を基準とする不正判定の条件を満たした場合に、前記連続占有範囲(121CT)内に配置される少なくとも一つの前記搬送物(CA)の搬送状態を制御する搬送物制御手段(OP)と、
を具備し、
前記計測エリア(ME)内において前記搬送路(121)の搬送面(121a、121b)に形成された透光領域(121c)と、
前記透光領域(121c)を通して前記搬送面(121a,121b)の背面側より前記撮像手段(130CM)の側に向けた光を照射する背面側照明手段(140BL)と、
をさらに具備し、
前記搬送物占有範囲判別手段(MPU,RAM)は、前記計測エリア(ME)内の画像データに対して、前記透光領域(121c)の前記搬送物(CA)による遮光部分若しくは非遮光部分の範囲を示す情報を用いることによって、前記計測エリア(ME)内における前記連続占有範囲(121CT)の大きさを検出し
前記透光領域(121c)は、前記搬送物(CA)の長さよりも搬送方向(F)に延長された形状のスリット状に構成される、
搬送制御システム。
an image acquisition unit (MPU, DTU, RAM) that repeatedly acquires images of the measurement area (ME) on the conveyance path (121) along which the conveyed object (CA) is conveyed by photographing with the imaging means (CM);
A range in which the occupied areas of the conveyed object (CA) on the conveyance path (121) in the measurement area (ME) are continuous, or a continuous range in which the occupied areas are continuous at intervals less than a predetermined value. Conveyanced object occupancy range determining means (121CT) for detecting the occupancy range (121CT) and determining the size of the continuous occupation range (121CT) with reference to the unit occupancy range (121U) corresponding to one of the conveyed objects (CA); MPU, RAM) and
When the continuous occupation range (121CT) satisfies the conditions for fraud determination based on the unit occupation range (121U), at least one conveyed object (CA) placed within the continuous occupation range (121CT) Conveyed object control means (OP) that controls the conveyance state of the
Equipped with
a light-transmitting area (121c) formed on the transport surface (121a, 121b) of the transport path (121) within the measurement area (ME);
a back side illumination unit (140BL) that irradiates light from the back side of the transport surface (121a, 121b) toward the imaging unit (130CM) through the light-transmitting area (121c);
further comprising;
The conveyance object occupation range determining means (MPU, RAM) determines, with respect to the image data in the measurement area (ME), a light-shielded portion or a non-shade portion of the light-transmitting area (121c) by the conveyance object (CA). detecting the size of the continuous occupied range (121CT) within the measurement area (ME) by using information indicating the range ;
The light-transmitting area (121c) is configured in the shape of a slit that is longer than the length of the conveyed object (CA) in the conveying direction (F).
Conveyance control system.
前記透光領域(121c)は、前記計測エリア(ME)内に配列された複数の透光領域部(121g-121i)の群からなる、
請求項9に記載の搬送制御システム。
The light-transmitting region (121c) is made up of a group of a plurality of light-transmitting region portions (121g-121i) arranged within the measurement area (ME).
The conveyance control system according to claim 9.
撮像手段(CM)の撮影により搬送物(CA)が搬送される搬送路(121)上の計測エリア(ME)の画像を繰り返し取得する画像取得手段(MPU,DTU,RAM)と、
前記計測エリア(ME)内における前記搬送路(121)上の前記搬送物(CA)の占有領域が一体に連続する範囲、或いは、当該占有領域が所定値未満の間隔で連続する範囲である連続占有範囲(121CT)を検出し、一つの前記搬送物(CA)に相当する単位占有範囲(121U)を基準として、前記連続占有範囲(121CT)の大きさを判定する搬送物占有範囲判別手段(MPU,RAM)と、
前記連続占有範囲(121CT)が前記単位占有範囲(121U)を基準とする不正判定の条件を満たした場合に、前記連続占有範囲(121CT)内に配置される少なくとも一つの前記搬送物(CA)の搬送状態を制御する搬送物制御手段(OP)と、
を具備し、
前記計測エリア(ME)内において前記搬送路(121)の搬送面(121a、121b)に形成された透光領域(121c)と、
前記透光領域(121c)を通して前記搬送面(121a,121b)の背面側より前記撮像手段(130CM)の側に向けた光を照射する背面側照明手段(140BL)と、
をさらに具備し、
前記搬送物占有範囲判別手段(MPU,RAM)は、前記計測エリア(ME)内の画像データに対して、前記透光領域(121c)の前記搬送物(CA)による遮光部分若しくは非遮光部分の範囲を示す情報を用いることによって、前記計測エリア(ME)内における前記連続占有範囲(121CT)の大きさを検出し
前記透光領域(121c)は、前記計測エリア(ME)内に配列された複数の透光領域部(121g-121i)の群からなる、
搬送制御システム。
an image acquisition unit (MPU, DTU, RAM) that repeatedly acquires images of the measurement area (ME) on the conveyance path (121) along which the conveyed object (CA) is conveyed by photographing with the imaging means (CM);
A range in which the occupied areas of the conveyed object (CA) on the conveyance path (121) in the measurement area (ME) are continuous, or a continuous range in which the occupied areas are continuous at intervals less than a predetermined value. Conveyanced object occupancy range determining means (121CT) for detecting the occupancy range (121CT) and determining the size of the continuous occupation range (121CT) with reference to the unit occupancy range (121U) corresponding to one of the conveyed objects (CA); MPU, RAM) and
When the continuous occupation range (121CT) satisfies the conditions for fraud determination based on the unit occupation range (121U), at least one conveyed object (CA) placed within the continuous occupation range (121CT) Conveyed object control means (OP) that controls the conveyance state of the
Equipped with
a light-transmitting area (121c) formed on the transport surface (121a, 121b) of the transport path (121) within the measurement area (ME);
a back side illumination unit (140BL) that irradiates light from the back side of the transport surface (121a, 121b) toward the imaging unit (130CM) through the light-transmitting area (121c);
further comprising;
The conveyance object occupation range determining means (MPU, RAM) determines, with respect to the image data in the measurement area (ME), a light-shielded portion or a non-shade portion of the light-transmitting area (121c) by the conveyance object (CA). detecting the size of the continuous occupied range (121CT) within the measurement area (ME) by using information indicating the range ;
The light-transmitting region (121c) is made up of a group of a plurality of light-transmitting region portions (121g-121i) arranged within the measurement area (ME).
Conveyance control system.
前記透光領域(121c)の複数の前記透光領域部(121g-121i)は、前記単位占有範囲の搬送方向の長さ範囲内に包含されるように形成された第1の透光領域部(121h)及び第2の透光領域部(121i)と、前記単位占有範囲(121U)が前記第1の透光領域部(121h)及び前記第2の透光領域部(121i)を遮光したときに遮光されない部分を備える第3の透光領域部(121g)と、を備える、
請求項10又は11に記載の搬送制御システム。
The plurality of light-transmitting region portions (121g-121i) of the light-transmitting region (121c) are a first light -transmitting region portion formed so as to be included within the length range of the unit occupation range in the transport direction. (121h) and a second light-transmitting area (121i), and the unit occupied range (121U) blocks light from the first light-transmitting area (121h) and the second light-transmitting area (121i). A third light-transmitting area portion (121g) that includes a portion that is sometimes not blocked,
The conveyance control system according to claim 10 or 11 .
前記搬送路(121)は前記搬送物(CA)の搬送方向(F)に沿った方向に往復する態様で振動することによって前記搬送物(CA)を搬送するものであり、
前記撮像手段(130CM)は静止し、
撮影時における前記搬送路(121)の振動による前記撮像手段(CM)による撮影画像(GPX)内の前記搬送路(121)に対する位置変動をなくすように前記撮影画像(GPX)内の前記計測エリア(ME)の位置を補正する、
請求項1-12のいずれか一項に記載の搬送制御システム。
The conveying path (121) conveys the conveyed object (CA) by vibrating in a reciprocating manner in a direction along the conveying direction (F) of the conveyed object (CA),
the imaging means (130CM) is stationary;
The measurement area in the photographed image (GPX) is arranged so as to eliminate positional fluctuations with respect to the conveyance path (121) in the photographed image (GPX) by the imaging means (CM) due to vibrations of the conveyance path (121) during photographing. Correct the position of (ME),
The conveyance control system according to any one of claims 1 to 12 .
前記搬送物占有範囲判別手段(MPU,RAM)は、前記撮影画像(GPX)内に撮像された前記搬送路(121)上の特定箇所(121y)の位置を画像計測処理により検出し、当該位置に応じて、前記計測エリア(ME)の位置を補正する、
請求項13に記載の搬送制御システム。
The conveyance object occupation range determination means (MPU, RAM) detects the position of a specific point (121y) on the conveyance path (121) captured in the photographed image (GPX) by image measurement processing, and correcting the position of the measurement area (ME) according to the position;
The conveyance control system according to claim 13 .
前記搬送路(121)を備えた搬送機構(12,CL12)と、請求項1-14のいずれか一項に記載の搬送制御システム(CM1,CM2,DTU,DP1、DP2,SP1,SP2)と、
を具備する搬送装置。
A transport mechanism (12, CL12) including the transport path (121), and a transport control system (CM1, CM2, DTU, DP1, DP2, SP1, SP2) according to any one of claims 1 to 14. ,
A conveyance device comprising:
前記搬送機構(12,CL12)は、前記搬送路(121)を振動させる加振手段(125)と、前記加振手段(125)の駆動態様を制御する加振制御手段(CL12)と、を有する、
請求項15に記載の搬送装置。
The conveyance mechanism (12, CL12) includes a vibrating means (125) for vibrating the conveying path (121), and a vibrating control means (CL12) for controlling a driving mode of the vibrating means (125). have,
The conveying device according to claim 15.
JP2020166957A 2020-10-01 2020-10-01 Conveyance control system and conveyance device Active JP7398709B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020166957A JP7398709B2 (en) 2020-10-01 2020-10-01 Conveyance control system and conveyance device
KR1020210114656A KR20220044403A (en) 2020-10-01 2021-08-30 Conveying control system and conveying apparatus
CN202111080082.1A CN114261698A (en) 2020-10-01 2021-09-15 Conveying control system and conveying device
TW110134862A TW202214512A (en) 2020-10-01 2021-09-17 Conveying control system and conveying device Capable of avoiding poor conveyance and detection of overlapping of front and rear conveying objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020166957A JP7398709B2 (en) 2020-10-01 2020-10-01 Conveyance control system and conveyance device

Publications (2)

Publication Number Publication Date
JP2022059301A JP2022059301A (en) 2022-04-13
JP7398709B2 true JP7398709B2 (en) 2023-12-15

Family

ID=80824607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020166957A Active JP7398709B2 (en) 2020-10-01 2020-10-01 Conveyance control system and conveyance device

Country Status (4)

Country Link
JP (1) JP7398709B2 (en)
KR (1) KR20220044403A (en)
CN (1) CN114261698A (en)
TW (1) TW202214512A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000854A (en) 2011-06-20 2013-01-07 Yaskawa Electric Corp Picking system
JP2017121995A (en) 2016-01-08 2017-07-13 株式会社ダイシン Conveyance object discrimination control system and conveyance device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113350A (en) 1994-10-18 1996-05-07 Shinko Electric Co Ltd Orderly feeding device for ring shaped parts
JP4501192B2 (en) 1999-12-01 2010-07-14 シンフォニアテクノロジー株式会社 Thin plate parts overlap removal device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000854A (en) 2011-06-20 2013-01-07 Yaskawa Electric Corp Picking system
JP2017121995A (en) 2016-01-08 2017-07-13 株式会社ダイシン Conveyance object discrimination control system and conveyance device

Also Published As

Publication number Publication date
KR20220044403A (en) 2022-04-08
CN114261698A (en) 2022-04-01
JP2022059301A (en) 2022-04-13
TW202214512A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
TWI616388B (en) Conveying object identification control system and conveying device
KR101762037B1 (en) Test system for conveyed objects and conveying apparatus
KR102034266B1 (en) Tablet printing apparatus and tablet manufacturing method
JP4881123B2 (en) Mounting machine and method for cleaning parts thereof
JP2008251898A (en) Mounting machine, its mounting method, and method for moving substrate imaging means of mounting machine
US20020033884A1 (en) Machine vision-based sorter verification
JP2019169010A (en) Conveyed object determination device and conveyance system using the same
JP7398709B2 (en) Conveyance control system and conveyance device
KR20030069781A (en) Device For Inspecting Appearance of Parts
KR102633645B1 (en) Conveying control system and conveying apparatus
JP4785245B2 (en) Micro object inspection system
JP7343186B2 (en) Conveyed object detection processing system and conveyance device
JPH06246236A (en) Parts feeder
TWI669261B (en) Powder conveying device
JP2000157935A (en) Method of inspecting parts and device therefor
JP7302881B2 (en) Conveyor system
JPH06246237A (en) Parts feeder
CN111937506B (en) Component mounting system, component mounting apparatus, and component mounting method
KR20230098025A (en) Tablet printing device and tablet printing method
JPH10197231A (en) Appearance inspection device
CN108370662A (en) The displacement error detection device and element fixing apparatus of mounting head
JPH088591A (en) Part mounting device
CN111954454A (en) Component mounting device
JP2005101211A (en) Component recognition apparatus and surface-mounting machine mounted therewith, and component testing apparatus
KR20220074733A (en) Posture control method for conveying objects and conveying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230928

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7398709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150