JP7393523B2 - Rf給電プラズマ用途におけるシース形成、進化、およびパルスからパルスへの安定性を強化するための方法および装置 - Google Patents

Rf給電プラズマ用途におけるシース形成、進化、およびパルスからパルスへの安定性を強化するための方法および装置 Download PDF

Info

Publication number
JP7393523B2
JP7393523B2 JP2022508899A JP2022508899A JP7393523B2 JP 7393523 B2 JP7393523 B2 JP 7393523B2 JP 2022508899 A JP2022508899 A JP 2022508899A JP 2022508899 A JP2022508899 A JP 2022508899A JP 7393523 B2 JP7393523 B2 JP 7393523B2
Authority
JP
Japan
Prior art keywords
generator
power
power value
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022508899A
Other languages
English (en)
Other versions
JP2022552589A (ja
Inventor
リンネル・マルティネス
ジョナサン・スミカ
スコット・ホワイト
アーロン・バリー
Original Assignee
エムケーエス インストゥルメンツ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムケーエス インストゥルメンツ,インコーポレイテッド filed Critical エムケーエス インストゥルメンツ,インコーポレイテッド
Publication of JP2022552589A publication Critical patent/JP2022552589A/ja
Application granted granted Critical
Publication of JP7393523B2 publication Critical patent/JP7393523B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

関連出願の相互参照
この出願は、2019年8月13日に出願された米国仮出願第62/886,279号の利益を主張する。上記の出願の開示全体は、参照により本明細書に組み込まれる。
本開示は、RF発電機システムおよびRF発電機の制御に関する。
本明細書で提供される背景技術の説明は、本開示の文脈を一般的に提示することを目的としている。この背景技術のセクションに記載されている範囲で、本明細書に記名されている発明者の著作物、ならびに出願時に場合によっては先行技術として適格とならない可能性のある説明の側面は、本開示に対する先行技術として明示的にも黙示的にも認められていない。
プラズマ製造は、半導体製造で頻繁に使用される。プラズマ製造エッチングでは、イオンは電界によって加速され、基板の表面から材料をエッチングしたり、基板の表面に材料を堆積させたりする。1つの基本的な実施において、電界は、電力供給システムのそれぞれのRFまたはDC発電機によって生成される無線周波数(radio frequency: RF)または直流(Direct Current: DC)電力信号に基づいて生成される。プラズマエッチングを効果的に実行するには、発電機によって生成される電力信号を正確に制御する必要がある。
米国特許第7,602,127号 米国特許第8,110,991号 米国特許第8,395,322号 米国特許出願第13/834,786号 米国特許第10,546,724号 米国特許第8,576,13号 米国特許第9,041,471号 米国特許第8,952,765号 米国特許第10,049,857号 米国特許第10,217,609号
負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成するRF電源を含む無線周波数(RF)発電機。RF発電機は、複数の状態を含むようにパルスを制御するように構成されたコントローラを含む。第1の状態では、コントローラは、RF信号を第1の電力値で出力するようにRF発電機を制御し、RF信号の周波数を第1の周波数に制御して、RF発電機と負荷との間のインピーダンスを変化させるように構成されている。第2の状態では、コントローラは、4つのモードのうちの少なくとも1つで動作するように構成されている。第1のモードでは、コントローラは、RF発電機を制御して、第2の電力値でRF信号を出力し、RF発電機と負荷との間のインピーダンスに関係なく、RF信号の周波数を制御し、第1の電力値はバースト電力であり、第2の電力値は作動電力である。第2のモードでは、コントローラはRF発電機を制御して第2の電力値でRF信号を出力し、RF信号の周波数を制御してRF発電機と負荷の間のインピーダンスを変化させ、第1の電力値はバースト電力であり、第2の電力値は作動電力である。第3のモードでは、コントローラは、RF発電機を制御して、第2の電力値でRF信号を出力し、RF発電機と負荷との間のインピーダンスに関係なく、RF信号の周波数を制御し、第1の電力値は第2の電力値を超える。第4のモードでは、コントローラはRF発電機を制御して第2の電力値でRF信号を出力し、RF信号の周波数を制御してRF発電機と負荷の間のインピーダンスを変化させ、第1の電力値は第2の電力値を超える。
負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成するRF電源を含む無線周波数(RF)発電機システムであって、パルスは複数の状態を含む。コントローラはRF発電機を制御するように構成されている。複数のビンを含む第1の状態では、コントローラは、(a)各ビン内に複数の周波数を出力するようにRF発電機を制御するように構成されており、また、コントローラは、RF信号を少なくとも1つの第1の電力値で出力するようにRF発電機を制御するように構成されている。第2の状態では、コントローラは、第2の電力値でRF信号を出力するようにRF発電機を制御するようにモード(a)でさらに構成されている。
コントローラは、RF電源からのパルス出力を制御するように構成されている。RF電源は、負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成する。第1の状態では、コントローラは、RF信号を第1の電力値で出力するようにRF発電機を制御し、RF信号の周波数を第1の周波数に制御して、RF発電機と負荷との間のインピーダンスを変化させるように構成されている。第2の状態では、コントローラはさらに、RF発電機を制御して第2の電力値でRF信号を出力し、RF発電機と負荷との間のインピーダンスに関係なくRF信号の周波数を制御するようにモード(a)で構成されており、第1の電力値はバースト電力であり、第2の電力値は作動電力である。
負荷への電力供給を制御するための方法は、RF発電機を制御して、負荷に供給される電力を変化させるためにパルスによって変調されたRF出力信号を生成することを含む。この方法は、RF発電機を制御して、RF信号を第1の周波数で第1の電力値で出力して、RF発電機と負荷との間のインピーダンスを変化させる第1の状態を含む。この方法は、モード(a)で制御する第2の状態を含み、RF信号を第2の電力値で出力し、RF発電機と負荷との間のインピーダンスに関係なく、RF信号の周波数を制御し、第1の電力値はバースト電力であり、第2の電力値は作動電力である。
本開示の適用可能性のさらなる領域は、詳細な説明、特許請求の範囲および図面から明らかになるであろう。詳細な説明および特定の例は、例示のみを目的としており、開示の範囲を制限することを意図するものではない。
本開示に従って配置された複数の電源のための電力供給システムの概略ブロック図である。 RF信号およびRF信号を変調するパルスの波形を示す図である。 従来の構成の電力供給システムの時間に対するパルス、順方向電圧、および逆方向電圧のプロットを示す図である。 図3の波形に対応する、時間に対する順方向電力、逆方向電力、および供給電力のプロットを示す図である。 発電機の出力でのパルス中のインピーダンスのシース形成軌道を示すスミスチャートを示す図である。 図5のスミスチャートに対応する、時間に対する順方向電力、逆方向電力、および供給電力のプロットを示す図である。 バーストモードで動作する従来の構成の電力供給システムの時間に対するパルス、順方向電圧、および逆方向電圧のプロットを示す図である。 図7の波形に対応する時間に対する順方向電力、逆方向電力、および供給電力のプロットを示す図である。 スミスチャートの異なる位相の周りにおいてバーストモードで動作しているときのRF発電機によって出力される順方向電力を示すスミスチャートを示す図である。 本開示による動作モードを規定するために状態に分割されたパルスのオン時間を有するパルスを示す図である。 本開示の原理に従った電圧定在波比対周波数のプロットを示す図である。 本開示の原理に従った周波数に対するインピーダンスのスミスチャートを示す図である。 従来の構成の電力供給システムについて、順方向電圧、逆方向電圧、およびRF発電機の出力電圧対時間のプロットを示す図である。 本開示の原理に従って動作する電力供給システムの時間に対する順方向電圧、逆方向電圧、およびRF発電機出力電圧のプロットを示す図である。 本開示の原理に従って動作する電力供給システムの安定性マップを示す図である。 従来の方法で動作した場合のRF発電機による順方向電力、逆方向電力、および電圧出力のプロットを示す図である。 本開示の原理に従って動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図である。 ガンマブランキングの適用を含む、本開示の原理に従って動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図である。 PID復元の適用を含む、本開示の原理に従って動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図である。 ガンマブランキングおよびPID復元の適用を含む、本開示の原理に従って動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図である。 周波数ベースのインピーダンス調整を2つの異なる順次起動周波数に適用することを含む、本開示の原理に従って動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図である。 本開示の原理に従って第1の電力設定値で動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図であり、周波数ベースのインピーダンス調整を2つの異なる順次起動周波数に適用すること、PID復元、ガンマブランキング、および異なる周波数間の電力ランピングを含む。 本開示の原理に従って第2の電力設定値で動作するときのRF発電機によって出力される順方向電力、逆方向電力、および電圧のプロットを示す図であり、周波数ベースのインピーダンス調整を2つの異なる順次起動周波数に適用すること、PID復元、ガンマブランキング、および異なる周波数間の電力ランピングを含む。 本開示の原理に従って配置された電力供給システムについて、パルス開始から定常状態までの負荷で測定されたインピーダンス軌道を示すスミスチャートである。 本開示の原理に従って配置された電力供給システムについて、パルス開始から定常状態までの負荷で測定されたインピーダンス軌道を示すスミスチャートである。 様々な実施形態に従って配置された例示的な制御モジュールの機能ブロック図である。 本開示の原理に従って配置された制御システムの動作のフローチャートである。 本開示による動作モードを規定するために状態に分割されたパルスのオン期間を有するパルスの拡大図である。 様々な実施形態によるビンを使用する実装の周波数対時間の波形を示す図である。 パルスのバースト状態にわたる時間対周波数の波形を示す図である。 パルスのバースト状態の個々のビンの周波数を更新するための波形を示す図である。 様々な実施形態に従って配置された例示的な制御モジュールの機能ブロック図である。 本開示の原理に従って配置された制御システムの動作のフローチャートである。
図面では、参照番号を再利用して、類似および/または同一の要素を識別することができる。
電力システムは、DC発電機またはRF発電機、整合ネットワーク、および負荷(プロセスチャンバ、プラズマチャンバ、または固定もしくは可変インピーダンスを有する反応器など)を含み得る。発電機は、整合ネットワークまたはインピーダンス最適化コントローラまたは回路によって受信されるDCまたはRF電力信号を生成する。整合ネットワークまたはインピーダンス最適化コントローラまたは回路は、整合ネットワークの入力インピーダンスを、発電機と整合ネットワークの間の伝送ラインの特性インピーダンスに整合させる。インピーダンス整合は、整合ネットワークに転送される電力量(「順方向電力」)を最大化し、整合ネットワークから発電機に反射される電力量(「逆方向電力」)を最小化するのに役立つ。整合ネットワークの入力インピーダンスが送電線と発電機の特性インピーダンスと一致する場合、順方向電力を最大化し、逆方向電力を最小化することができる。
電源(power source)または電源(power supply)の分野では、通常、負荷に電力信号を適用するための2つのアプローチがある。第1の、より伝統的なアプローチは、負荷に連続電力信号を適用することである。連続モードまたは連続波モードでは、連続電力信号は通常、電源から負荷に連続的に出力される一定のDCまたは正弦波RF電力信号である。連続モードアプローチでは、電力信号は一定のDCまたは正弦波出力を想定し、負荷に適用される出力電力を変化させるために、電力信号の振幅および/または(RF電力信号の)周波数が変化され得る。
電力信号を負荷に適用するための第2のアプローチでは、連続的なRF信号を負荷に適用するのではなく、RF信号をパルス化する。パルスモードの動作では、変調された電力信号のエンベロープを規定するために、RF信号が変調信号によって変調される。RF信号は、たとえば、正弦波RF信号または他の時間変化する信号であり得る。負荷に供給される電力は、通常、変調信号を変化させることによって変化する。
一般的な電源構成では、負荷に適用される出力電力は、負荷に適用されるRF信号の順方向電力と反射電力、または電圧と電流とを測定するセンサを使用して決定される。これらの信号のいずれかのセットは、制御ループで分析される。分析は通常、負荷に適用される電力を変化させるために電源装置の出力を調整するために使用される電力値を決定する。負荷がプロセスチャンバまたはその他の非線形または時間変化する負荷である電力供給システムでは、負荷のインピーダンスの変化は、負荷に加えられる電力の対応する変化を引き起こし、これは、加えられる電力が部分的に負荷のインピーダンスの関数であるためである。
様々なデバイスの製造が、製造プロセスを制御するために負荷への電力の導入に依存しているシステムでは、電力は通常、2つの構成のいずれかで供給される。第1の構成では、電力は負荷に容量結合される。このようなシステムは、容量結合プラズマ(capacitively coupled plasma: CCP)システムと呼ばれる。第2の構成では、電力は負荷に誘導結合される。このようなシステムは通常、誘導結合プラズマ(inductively coupled plasma: ICP)システムと呼ばれる。プラズマへの電力結合は、マイクロ波周波数での波動結合を介して実現することもできる。このようなアプローチでは、通常、電子サイクロトロン共鳴(Electron Cyclotron Resonance: ECR)またはマイクロ波源を使用する。ヘリコンソースは、波動結合ソースの別の形式であり、通常、従来のICPおよびCCPシステムと同様のRF周波数で動作する。電力供給システムは、負荷の1つまたは複数の電極に印加される少なくとも1つのバイアス電力および/またはソース電力を含み得る。ソース電力は通常、プラズマを生成し、プラズマ密度を制御し、バイアス電力はシースの配合でイオンを変調する。バイアスとソースは、様々な設計上の考慮事項に従って、同じ電極を共有することも、別々の電極を使用することもできる。
電力供給システムがプロセスチャンバやプラズマチャンバなどの時変または非線形負荷を駆動する場合、バルクプラズマおよびプラズマシースによって吸収される電力は、ある範囲のイオンエネルギーでイオンの密度をもたらす。イオンエネルギーの特徴的な尺度の1つは、イオンエネルギー分布関数(ion energy distribution function: IEDF)である。イオンエネルギー分布関数(IEDF)はバイアス電力で制御できる。複数のRF電力信号が負荷に適用されるシステムのIEDFを制御する1つの方法は、振幅、周波数、および位相によって関連付けられる複数のRF信号を変化させることによって発生する。複数のRF電力信号の相対的な振幅、周波数、および位相は、フーリエ級数および関連する係数によっても関連付けられ得る。複数のRF電力信号間の周波数がロックされる可能性があり、複数のRF信号間の相対位相もロックされ得る。このようなシステムの例は、すべて本出願の譲受人に譲渡され、参照により本出願に組み込まれる、米国特許第7,602,127号、米国特許第8,110,991号、および米国特許第8,395,322号を参照して見出すことができる。
時間変動または非線形負荷は、様々なアプリケーションに存在する可能性がある。1つの用途では、プラズマ処理システムはまた、プラズマ生成および制御のための構成要素を含み得る。そのような構成要素の1つは、プラズマチャンバや反応器などのプロセスチャンバとして実装される非線形負荷である。例として、薄膜製造のためなどのプラズマ処理システムで利用される典型的なプラズマチャンバまたは反応器は、デュアル電力システムを利用することができる。1つの発電機(ソース)がプラズマの生成を制御し、発電機(バイアス)がイオンエネルギーを制御する。デュアル電力システムの例には、上記で参照された米国特許第7,602,127号、米国特許第8,110,991号および米国特許第8,395,322号に記述されたシステムが含まれる。上記の特許に記載されているデュアル電力システムは、イオン密度とそれに対応するイオンエネルギー分布関数(IEDF)とを制御する目的で電源動作を適応させるための閉ループ制御システムを必要とする。
プラズマを生成するために使用できるような、プロセスチャンバを制御するための複数のアプローチが存在する。たとえば、RF電力供給システムでは、同じまたはほぼ同じ周波数で動作する複数の駆動RF信号の位相および周波数を使用して、プラズマ生成を制御することができる。RF駆動プラズマ源の場合、プラズマシースダイナミクスに影響を与える周期波形と対応するイオンエネルギーは一般に知られており、周期波形の周波数と関連する位相相互作用によって制御される。RF電力供給システムの別のアプローチには、二重周波数制御が含まれる。つまり、異なる周波数で動作する2つのRF周波数源を使用してプラズマチャンバに電力を供給し、イオンと電子の密度を実質的に独立して制御する。
別のアプローチでは、広帯域RF電源を利用してプラズマチャンバを駆動する。広帯域アプローチには、特定の課題がある。1つの課題は、電力を電極に結合することである。第2の課題は、生成された波形の目的のIEDFの実際のシース電圧への伝達関数を、材料表面の相互作用をサポートするために広いプロセス空間に対して定式化する必要があることである。誘導結合プラズマシステムの1つの応答性アプローチでは、ソース電極に適用される電力を制御するとプラズマ密度が制御され、バイアス電極に適用される電力を制御するとイオンが変調されてIEDFが制御され、エッチング速度が制御される。ソース電極とバイアス電極制御を使用することにより、エッチング速度はイオン密度とエネルギーによって制御される。
集積回路とデバイスの製造が進化し続けるにつれて、製造プロセスを制御するための電力要件も進化する。たとえば、メモリデバイスの製造では、バイアス電力の要件が増え続けている。電力が増加すると、より高いエネルギーのイオンが生成され、表面の相互作用が速くなり、それによってイオンのエッチング速度と方向性が向上する。RFシステムでは、バイアス電力の増加は、プラズマチャンバ内に作成されたプラズマシースに結合されたバイアス電源の数の増加とともに、より低いバイアス周波数要件を伴うことがある。より低いバイアス周波数での電力の増加とバイアス電源の数の増加により、シース変調からの相互変調歪み(IMD)放射が発生する。IMD放射は、プラズマ生成が発生するソースによって供給される電力を大幅に削減できる。2013年3月15日に出願され、「別の周波数帯域で電力を監視することによるパルス同期(Pulse Synchronization by Monitoring Power in Another Frequency Band)」と題され、本出願の譲受人に割り当てられ、参照により本明細書に組み込まれる米国特許出願第13/834,786号は、別の周波数帯域で電力を監視することによるパルス同期の方法について説明している。参照される米国特許出願では、第2のRF発電機の脈動は、第2のRF発電機で第1のRF発電機の脈動を検出することに従って制御され、それによって2つのRF発電機間の脈動を同期させる。
図1は、RF発電機または電源システム10を示している。電源システム10は、一対の無線周波数(RF)発電機または電源12a、12b、整合ネットワーク18a、18b、および、プラズマチャンバ、プロセスチャンバなどであり得る非線形負荷などの負荷32を含む。様々な実施形態において、RF発電機12aは、ソースRF発電機または電源と呼ばれ、整合ネットワーク18aは、ソース整合ネットワークと呼ばれる。また、様々な実施形態において、RF発電機12bは、バイアスRF発電機または電源と呼ばれ、整合ネットワーク18bは、バイアス整合ネットワークと呼ばれる。構成要素は、文字の下付き文字またはプライム記号なしで参照番号を使用して、個別にまたは集合的に参照できることが理解されよう。
様々な実施形態では、ソースRF発電機12aは、整合ネットワーク18bからの制御信号30、発電機12b、またはバイアスRF発電機12bからの制御信号30'を受信する。より詳細に説明されるように、制御信号30または30'は、バイアスRF発電機12bの1つまたは複数の動作特性またはパラメータを示す電源12aへの入力信号を表す。様々な実施形態では、同期検出器34は、整合ネットワーク18bから負荷32へのRF信号出力を感知し、同期またはトリガ信号30を電源12aに出力する。様々な実施形態では、同期またはトリガ信号30'は、トリガ信号30ではなく、電源12bから電源12aに出力され得る。トリガ信号または同期信号30、30'の違いは、整合ネットワーク18bへの入力信号と整合ネットワーク18bからの出力信号との間の位相を変えることができる整合ネットワーク18bの効果に起因する可能性がある。信号30、30'は、様々な実施形態において、バイアス発電機12bによって引き起こされるプラズマチャンバ32のインピーダンスの周期的変動に対処するための予測応答性を可能にするバイアスRF発電機12bの動作に関する情報を含む。制御信号30または30'が存在しない場合、RF発電機12a、12bは自律的に作動する。
RF発電機12a、12bは、それぞれのRF電源または増幅器14a、14b、RFセンサ16a、16b、ならびにプロセッサ、コントローラ、または制御モジュール20a、20bを含む。RF電源14a、14bは、それぞれのセンサ16a、16bに出力されるそれぞれのRF電力信号22a、22bを生成する。センサ16a、16bは、RF電源14a、14bの出力を受け取り、それぞれのRF電力信号f1およびf2を生成する。センサ16a、16bはまた、負荷32から感知された様々なパラメータに従って変化する信号を出力する。センサ16a、16bは、それぞれのRF発電機12a、12b内に示されているが、RFセンサ16a、16bは、RF発電機12a、12bの外部に配置することができる。このような外部検知は、RF発電機の出力、RF発電機と負荷の間にあるインピーダンス整合デバイスの入力、またはインピーダンス整合デバイスの出力(インピーダンス整合デバイス内を含む)と負荷の間に発生する可能性がある。
センサ16a、16bは、負荷32の動作パラメータを検出し、信号XおよびYを出力する。センサ16a、16bは、電圧、電流、および/または方向性結合器センサを含み得る。センサ16a、16bは、それぞれの電力増幅器14a、14bおよび/またはRF発電機12a、12bから、ならびに、それぞれのセンサ16a、16bに接続されたそれぞれの整合ネットワーク18a、18bまたは負荷32から受信された逆方向または反射電力PREVから、(i)電圧Vおよび電流Iおよび/または(ii)順方向電力PFWD出力を検出することができる。電圧V、電流I、順方向電力PFWD、および逆方向電力PREVは、それぞれの電源14a、14bに関連する実際の電圧、電流、順方向電力、および逆方向電力のスケーリングおよび/またはフィルタリングされたバージョンであり得る。センサ16a、16bは、アナログおよび/またはデジタルセンサであり得る。デジタル実装では、センサ16a、16bは、対応するサンプリングレートを備えたアナログ-デジタル(A/D)コンバータおよび信号サンプリング構成要素を含み得る。信号XとYは、電圧Vと電流I、または順方向(またはソース)電力PFWD逆方向(または反射)電力PREVのいずれかを表すことができる。
センサ16a、16bは、センサ信号X、Yを生成し、これらは、それぞれのコントローラまたは電力制御モジュール20a、20bによって受信される。電力制御モジュール20a、20bは、それぞれのX、Y信号24a、26aおよび24b、26bを処理し、1つまたは複数のフィードバック制御信号28a、28bをそれぞれの電源14a、14bに生成する。電源14a、14bは、受信されたフィードバック制御信号に基づいて、RF電力信号22a、22bを調整する。様々な実施形態では、電力制御モジュール20a、20bは、それぞれの制御信号21a、21bを介して、それぞれ、整合ネットワーク18a、18bを制御することができる。電力制御モジュール20a、20bは、少なくとも、比例積分微分(proportional integral derivative: PDI)コントローラまたはそのサブセット、および/またはダイレクトデジタルシンセシス(direct digital synthesis: DDS)構成要素および/またはモジュールに関連して以下に説明される様々な構成要素のいずれかを含み得る。
様々な実施形態では、電力制御モジュール20a、20bは、PIDコントローラまたはそのサブセットであり、機能、プロセス、プロセッサ、またはサブモジュールを含み得る。フィードバック制御信号28a、28bは、駆動信号であり得、DCオフセットまたはレール電圧、電圧または電流の大きさ、周波数、および位相成分を含み得る。様々な実施形態において、フィードバック制御信号28a、28bは、1つまたは複数の制御ループへの入力として使用することができる。様々な実施形態において、複数の制御ループは、RF駆動用およびレール電圧用の比例積分微分(PID)制御ループを含み得る。様々な実施形態において、フィードバック制御信号28a、28bは、多入力多出力(Multiple Input Multiple Output: MIMO)制御方式で使用することができる。MIMO制御スキームの例は、2020年1月28日に発行された「パルス双方向無線周波数源/負荷(Pulsed Bidirectional Radio Frequency Source/Load)」と題され、本出願の譲受人に割り当てられ、参照により本明細書に組み込まれる米国特許第10,546,724号を参照して見出すことができる。
様々な実施形態において、電源システム10は、コントローラ20'を含み得る。コントローラ20'は、RF発電機12a、12bのいずれかまたは両方の外部に配置することができ、外部または共通コントローラ20'と呼ばれ得る。様々な実施形態では、コントローラ20'は、コントローラ20a、20bの一方または両方に関して、本明細書で説明される1つまたは複数の機能、プロセス、またはアルゴリズムを実装することができる。したがって、コントローラ20'は、コントローラ20'とRF発電機12a、12bとの間で、必要に応じて、データおよび制御信号の交換を可能にする、それぞれのリンク36、38の対を介してそれぞれのRF発電機12a、12bと通信する。様々な実施形態について、コントローラ20a、20b、20'は、RF発電機12a、12bとともに、分散的かつ協調的に分析および制御を提供することができる。他の様々な実施形態では、コントローラ20'は、RF発電機12a、12bの制御を提供することができ、それぞれのローカルコントローラ20a、20bの必要性を排除する。
様々な実施形態では、RF電源14a、センサ16a、コントローラ20a、および整合ネットワーク18aは、ソースRF電源14a、ソースセンサ16a、ソースコントローラ20a、およびソース整合ネットワーク18aと呼ばれることができる。同様に、様々な実施形態において、RF電源14b、センサ16b、コントローラ20b、および整合ネットワーク18bは、バイアスRF電源14b、バイアスセンサ16b、バイアスコントローラ20b、およびバイアス整合ネットワーク18bと呼ばれることができる。様々な実施形態において、そして上記のように、ソース項は、プラズマを生成するRF発電機を指し、バイアス項は、プラズマイオンエネルギー分布関数(IEDF)を調整するRF発電機を指す。様々な実施形態において、ソースおよびバイアスRF電源は、異なる周波数で動作する。様々な実施形態において、ソースRF電源は、バイアスRF電源よりも高い周波数で動作する。他の様々な実施形態では、ソースおよびバイアスRF電源は、同じ周波数または実質的に同じ周波数で動作する。
図2は、図1の負荷32などの負荷に電力を供給するためのパルス動作モードを説明するための電圧対時間のプロットを示している。図2では、RF信号40は、パルス42によって変調されている。パルス42の周期または領域44に示されているように、パルス42がオンのとき、RF発電機12は、RF信号40を出力する。逆に、パルス42の期間または領域46の間、パルス42はオフであり、RF発電機12aは、RF信号40を出力しない。パルス信号42は、一定のデューティサイクルまたは可変のデューティサイクルで繰り返すことができる。さらに、パルス信号42は、図2に示されるように方形波として具体化される必要はない。さらに、パルス42は、振幅および持続時間が変化する複数のオンおよびオフ領域を有することができる。複数の領域は、固定または可変の期間内に繰り返され得る。
図3は、プロセスチャンバまたはプラズマチャンバなどの、図1の負荷32に印加されるパルスRF信号の印加を表す例示的な波形を示す。図3では、パルス50は、オン期間または領域51およびオフ期間または領域53を有する方形波である。図3は順方向電圧と反射電圧も示しており、波形52は順方向電圧を示し、波形54は逆方向電圧を示している。図3に見られるように、パルス51の開始時に、反射電圧54は高く、順方向電圧52にほぼ等しく、負荷32に到達する電力がほとんどまたはまったくないことを示している。パルス波形50のオン領域51の後半では、逆方向電圧54が順方向電圧に比べて大幅に減少する。これは、発電機によって出力された電力の大部分が負荷に供給されていることを示している。図3に見られるように、逆方向電圧54は、パルス波形50のオン領域51のかなりの部分、約50%を支配し、パルス波形50のオン領域51の後半の間のみの負荷への電力供給電圧を示す。
図4は、反射電力または逆電力60と順電力58の電力対時間のプロットを示している。図4は、供給電力62の波形も示している。これは、一般に、順方向電力58と逆方向電力60の差として規定される。図4は、図3のパルスの最初の約50%の期間を示している。時間の経過とともに、逆電力60は64でピークに達し、ゼロに減少し、ほぼ位置66で減少し始める。逆電力60がゼロに減少すると、順電力58も減少し、その結果、供給される電力62は、順電力58と実質的に等しくなる。図4は、かなりの遅延があるゆっくりと形成されるシースの例示的な図である。
図5および図6は、プラズマシースが浮遊シースから定常状態のRF電力シースに進化するときのそれぞれのスミスチャートおよび電力対時間のプロットを示している。整合ネットワークはパルスの定常部分に合わせて調整され、シースの進化は、パルスの初期期間にわたって50オームのインピーダンスまたはその近くで移動および終了する軌道によって表される。図5は、RF発電機の出力で測定された電気的パラメータの検出に基づくスミスチャートである。図5では、軌道は最初にスミスチャートの外側近くの位置70から始まり、インピーダンスは位置70から位置72に進み、スミスチャートの外側近くから50オームのインピーダンスへの遷移を示す。したがって、図6は、位置70から位置72への遷移を示しており、50オームのインピーダンスを示している。
図6に示すように、位置70から位置72への移行では、順方向電力波形74は、パルス開始70の直後に位置77でピークに達し、逆方向電力波形76は、位置75でピークを示すが、順方向電力ピーク77よりも小さい電力である。波形78は、位置80の近くまたは位置80で実質的に一定の値に急速に増加するため、供給された電力を示す。図6は、遅延が最小の高速形成シースの例示的な図である。
負荷32などの負荷への電力の供給を改善するための1つのアプローチは、パルスの開始時にバースト電力で電力バーストを適用することを含む。電力バーストを適用する場合、パルスの開始時に、プラズマ内のシース形成を加速するために、RF電力の振幅は、RF発電機12のRF電源14によって比較的短時間増加される。電力バーストに続いて、RF発電機の振幅は、パルスのオン領域のバランスのために作動レベルまたは動作レベルに戻される。成功したバーストは、様々な側面で測定できる。一態様では、30~40μs以内のシース形成は成功したバーストと見なし得る。
図7は、図8のパルス、順方向電圧、逆方向電圧および電力と時間の波形を示している。図7において、波形90はパルスを示し、波形92は順方向電圧を示し、波形94は逆方向電圧を示す。図7に見られるように、図3の逆方向電圧54と同様に、逆方向電圧94は、パルスの開始時に高いが、図8に示すように、図4とは対照的に、供給される電力100は電力バースト内で急速に増加し始める。パルス開始に関して、逆方向電圧94は、図3の逆方向電圧54よりも早く減少するが、図8に見られるように、供給される電力100は、図4とは対照的に、電力バースト内で急速に増加し始める。パルス開始に関して、逆方向電圧94は、図3の逆方向電圧54よりも早く減少する。したがって、図7は、電力バーストを印加すると、図3よりも短い期間にわたって逆方向電圧94が増減し、より短い時間でシース形成を可能にすることを示している。
図8は、時間に対する電力を示している。図8に示すように、順方向電力96と逆方向電力98は、電力バースト102の後で比較的急速にピークに達するが、逆方向電力98は、図4と比較して比較的急速に減少し、それに対応して、供給電力100が比較的急速に増加する。図3および図4と図7および図8との間の非限定的な比較として、電力バースト中の電力を約25%増加させることにより、供給される電力は、電力バーストを適用しない場合よりも約1桁速くシース形成を可能にする値に達する。
電力バーストを適用すると、シース形成までの時間を大幅に短縮できるが、バースト中の電力の増加は、図1のRF発電機12に応力を与える可能性がある。電力バーストを適用するバーストモードの1つの利点は、整合ネットワーク18などの整合ネットワークが、バーストの直後に最適な整合を提供するように構成でき、それにより、整合ネットワーク18の好ましい解決策を達成するための時間を節約できることである。しかしながら、各電力バーストは追加の電力の適用をもたらし、追加の電力は追加の熱をもたらし、RF発電機12に潜在的なさらなる応力を引き起こす。さらに、図7および図8に示される電力バーストは、整合ネットワーク18で通常利用可能な自動調整整合機能を使用するので、発電機へのさらなる応力は、パルスの開始時の電力バースト中に50オームの一致を提供するように調整されていない整合ネットワーク18に起因する。したがって、電力バースト中に、整合ネットワークがより高いバースト電力で最適な一致を提供するように調整されていない場合、より高い電力が生成されているため、RF発電機12は追加の応力を経験する可能性がある。ただし、一部のデバイスメーカーは、RF発電機が図5に示すように、スミスチャートの周囲のすべての位相または位置で動作することを要求しており、バーストを適用すると、スミスチャートの大部分で動作する。
図9は、負荷32に印加される信号の位置(つまり、位相)に対する印加電力を示すスミスチャートの例を示している。見て分かるように、スミスチャート110では、スミスチャート上の位置はインピーダンスに対応しており、これが負荷に適用される電力を部分的に決定する。スミスチャート110にプロットされた各ポイントは、負荷に適用された電力に対応するが、電力の大きさは図9には示されていない。しかしながら、当業者は、プロットされた点の様々な領域が、負荷に加えられる多かれ少なかれ電力を表すことができることを認識するであろう。したがって、様々なRF発電機の場合、スミスチャート110の領域は、最大電力を負荷に転送するための最適な動作領域を表し得る。様々な実装では、RF発電機が最適な領域で動作し、次善の領域を回避するように制御パラメータを選択できる。
図10は、図2と同様のパルスRFシステムのパルス波形120を示している。図2のRF波形40は、図10から省略されているが、当業者は、図10が、図1の電力供給システム10などのRF発電機システムのパルス実装におけるパルスを表すことを認識するであろう。パルス波形120のオン期間または領域122、122'は、電力バーストおよび周波数ベースのインピーダンス制御を含む第1のセクションまたは状態124と、整合ネットワークインピーダンス制御セクションまたは状態を含むポストバーストセクションまたは状態126とに分割されて示されている。パルス波形120はまた、オフ期間または領域123を含む。
パルス波形120のオン領域122'は、2つのインピーダンス制御サブセクションまたはサブ状態124a'、124b'を示している。セクションまたは状態124、126は、パルス波形120のオン領域にわたるRF発電機12および整合ネットワーク18の時間ベースの動作または制御を参照し得る。各状態の間に、RF発電機12および整合ネットワーク18の様々な制御モードを実施することができる。したがって、パルス波形120のオン領域122、122'は、電力供給システム10における電力供給およびインピーダンス整合の少なくとも2つのモードに対応し得る少なくとも2つの状態を示す。第1のモードは、電力バーストを適用している間に状態124の間に発生する周波数ベースのインピーダンス制御を含む。第2のモードは、状態126の間に発生する整合ネットワークインピーダンス制御を含み、電力供給システム10の整合ネットワーク18によって実施される。整合ネットワーク18の整合ネットワークインピーダンス制御調整要素は、インピーダンス整合を提供するように調整される。
様々な実施形態において、状態124における周波数ベースのインピーダンス整合または調整は、自動周波数調整(AFT)または動的周波数調整(DFT)のいずれかとして実施され得る。AFT/DFTは、一般に、インピーダンス整合を制御するために、所定の周波数範囲内で動作するものとして説明できる。自動周波数調整および動的周波数調整の例は、すべて本出願の譲受人に譲渡され、参照により本出願に組み込まれる米国特許第8,576,13号および米国特許第9,041,471号に関して見出すことができる。様々な実施形態において、AFT/DFTは、負荷に供給される電力が電力要件を満たし、バースト電力が必要とされないように、十分なインピーダンス制御を提供し得る。
様々な実施形態において、周波数ベースのインピーダンス整合または調整は、AFTまたはDFTのように、所定の周波数範囲内で周波数を変化させるのと比較して、インピーダンスを制御するために選択された動作周波数を使用して達成され得る。他の様々な実施形態では、周波数ベースのインピーダンス整合または調整は、開始周波数から終了周波数への遷移が1つまたは複数の所定の中間周波数を利用して遷移中のインピーダンス整合を最適化する周波数軌道の選択によって達成され得る。状態124に続いて、周波数ベースの調整は、状態126で無効にされ得、インピーダンス整合は、従来の整合ネットワーク技術を使用して整合ネットワーク18によって実行される。そのような技術には、RF発電機12の出力でのインピーダンスを変化させるために1つまたは複数の可変反応要素が調整される従来の整合ネットワーク技術が含まれる。
様々な実施形態において、そして単に例として、図1のRF発電機12の一方または両方のRF周波数は、13.56MHzまたはその倍数であり得る。他の様々な実施形態では、ソースRF発電機は、13.56MHzまたはその倍数で動作することができ、バイアスRF発電機は、13.56MHzまたはその倍数の約2%またはその範囲内で動作することができる。
様々な実施形態において、パルス120は、約100Hzの周波数を有し得る。パルス120が約100Hzの場合、状態124は約30μsになる可能性があるが、変動する可能性がある。状態124の持続時間は、様々な設計上の考慮事項に従って調整できる。他の様々な実施形態では、状態124は、一致を達成するためにAFTまたはDFT周波数調整を実施する必要はない。様々な実施形態では、パルス120の状態124は、RF発電機12がオン領域122の実質的な持続時間にわたって動作する周波数とは異なる選択されたRF周波数を示すことができる。非限定的な例として、様々な実施形態において、RF発電機12が13.56MHzで動作すると仮定すると、起動中に、状態124のRF発電機12によって出力される周波数は、制御システムによって自動的に選択され得る。制御システムは、周波数復元モードを使用して周波数を選択することができる。このモードでは、周波数は、同様の以前の条件で使用された周波数に従って設定される。または、周波数は、ユーザが選択した周波数にプリセットできる。最適な開始周波数を決定するための1つのアプローチには、パルス開始条件を表す、可能な限り低いまたは最も低い電力で周波数掃引を実行し、反射電力が最も低くなる周波数を記録することが含まれる。さらに、様々な実施形態において、パルス120の状態124にわたる周波数ベースのインピーダンス調整は、電力バーストの有無にかかわらず実施され得る。すなわち、周波数調整は、RF信号の振幅を30μsなどの所定の時間増加させることによってRF発電機の電力出力が増加する電力バーストと一致する状態124で適用することができる。他の実施形態では、周波数ベースのインピーダンス調整は、電力バーストを適用することなく実施することができる。
図11および図12は、図11の電圧定在波比(VSWR)のプロットと、図12のスミスチャートを示している。図11では、VSWRが周波数の関数として示されている。波形130は、約13.78MHzの周波数で位置132で最小に達する。図12において、プロット136は、位置138で始まり、位置140で原点に到達し、位置142への軌道をたどる周波数に関する位相の変化を示している。したがって、約12.8MHzから14.238MHzまでの掃引では、周波数の変化によってインピーダンスが変化し、周波数の変化は、図11に示すようにVSWRと、図12に示すように位相の両方のアクチュエータとして機能する。したがって、図11および図12は、図10の状態124の間の周波数調整が、RF発電機12と負荷32との間の改善されたインピーダンス整合を提供することを示している。
図13および図14は、図13に示すように、図10のオン領域122など、パルス全体にわたって従来の整合ネットワークインピーダンス制御を利用した場合の結果の例を示す波形を表している。図14は、図10の状態124のようなバースト電力と周波数ベースのインピーダンス制御モードでの結合電力バーストと、それに続く図10の状態126のようなネットワークインピーダンス整合制御モードを示している。状態126の間、周波数はインピーダンスに関係なく選択され、様々な実施形態では、負荷に関連する製造プロセス要件に従って選択される。各図について、システムは、複数の状態にわたるインピーダンス整合の様々なモードの実装を除いて、実質的に類似している。
図13では、波形150は順方向電力を示し、波形152は反射電力を示している。波形154は電圧を表し、波形156は電流を表す。この様々な実施形態では、順方向電力波形150および逆方向電力波形152は、図1のRF発電機12などのRF発電機の出力で測定され、電圧波形154と電流波形156は、図1の負荷32などの負荷で測定される。
図13に示すように、インピーダンス整合が、図1の整合ネットワーク18などの整合ネットワークのみを使用して実装されている場合、逆方向電力152は、逆方向電力152が位置162で順方向電力150よりも実質的に小さくなるおよそ位置160まで、順方向電力150とほぼ等しい。図13はまた、負荷32に印加される電圧154および電流156が、位置160で逆電力152の減衰が開始される前の値の約半分であることを示している。位置162に続いて、電圧154および電流156は、位置162の前の電圧および電流の約2倍に増加する。図14では、インピーダンス整合のAFT/DFTインピーダンス調整モードは、電力バーストのないパルス161'の開始時に使用される。図13で参照されている量は、プライムインジケーターを追加して図14でも同様に参照されていることに注意されたい。
図14では、位置161'でのパルスの開始に続いて、逆電力152'は、位置160'で減少し始め、およそ位置162'で最小に達する。位置160'と162'の間では、逆電力152'が減少することに加えて、電圧154'と電流156'が図13と同様に増加することが分かり、電圧154'および電流156'は、位置160'の前の値の少なくとも2倍に増加する。さらに、位置161と162の間の時間に注意する必要がある。図14では、位置161'と位置162'でのパルス開始の間の時間は、図13の位置161と162の間の時間よりも実質的に短い時間を表す。さらに、位置160'と162'との間のより短い期間に関して見られるように、逆電力152'は、より早くだけでなく、より短い時間にわたっても減衰することも分かる。一方、図13では、位置160と位置162の間に長い期間が存在する。
さらに、図13および14に関して、図1の整合ネットワーク18などによって、自動調整整合ネットワークアプローチを実施することができる。オートチューニング整合ネットワークアプローチでは、整合ネットワーク18は、パルスの検出ではなく、RF信号の検出時にインピーダンス整合制御を開始する。RF信号はパルスの開始時に現れる。RF信号を検出した後、整合ネットワーク18は、整合ネットワーク18内の静電容量およびインダクタンスなどの反応要素を調整することによってインピーダンス整合を開始し、インピーダンスを調整して、RF発電機12と整合ネットワーク18の出力での伝送ラインとの間の整合を改善する。パルスが検出されなくなった後、整合ネットワーク18は現在の位置に留まり、次のパルスが同様の一致構成を必要とすることを予期している。したがって、その後にRF信号が検出されないパルスオン期間の完了時に、整合ネットワーク18は、検出された次のRF信号がおおよその現在位置への調整を引き起こすことを見越して現在の位置に留まり、それにより、RF信号の次の検出のために整合ネットワーク18を事前設定する。様々な実施形態は、RFオンまたはパルスオンの検出に関連するいくつかの時間遅延のうちの1つを使用して、整合ネットワーク18が調整されるべきパルスの領域を規定する。様々な実施形態では、整合ネットワーク18は、バースト後のある時点、およびRF信号またはパルスがオフになるか状態が変化する前のある時点で調整する。
そのようなアプローチはバーストが発生しない図13では有用かもしれないが、RF発電機12が状態124のように電力バーストを出力するとき、パルス開始時により大きな電力がRF発電機12によって出力される。整合ネットワーク18のチューニング構成要素は、バーストにおける増加した電力を調整するための最適な位置にない可能性がある。電力バースト中に高振幅のRF信号が検出されると、整合ネットワークは通常の電力バースト間隔内で応答できず、電力バーストがマスクされるため、整合ネットワークは電力バーストを検出しない。整合ネットワーク18は、電力バースト中に反応せず、状態126などのパルスオン時間の定常状態に同調するため、電力がオンになる瞬間に発電機によって重大なインピーダンス不整合が見られる。整合ネットワーク18は、調整するのに時間を必要とし、調整時間は、調整中の最適ではないインピーダンス整合をもたらす。バーストは追加の電力を提供するが、整合ネットワーク18の操作に複雑さを追加する。インピーダンス整合のために周波数ベースの調整を使用することにより、整合ネットワーク18は、電力バースト中に調整する必要がなくなり、電力バースト後のインピーダンス整合が容易になる。
図15は、横軸に沿ったケーブル長と縦軸に沿った電力設定値の安定性マップを示している。図15の安定性マップは、2つの領域を示している。最初のクロスハッチングで示される安定した領域と、第2のクロスハッチングで示される不安定な領域である。安定性は、パルスの所定のパーセンテージより大きいまたは以下の逆電力に従って決定される。すなわち、逆電力がパルスの所定のパーセンテージ以下であるとき、シースは安定している。逆に、逆電力がパルスの所定のパーセンテージよりも大きい場合、シースは不安定である。反射係数やSWRなどの別のメトリックを使用して、同様の安定性マップを生成することもできる。
様々な構成で、ケーブルの長さを使用して、システムの安定性の尺度を示すことができる。たとえば、ボックス176は、複数の電力設定値にわたる7つのケーブル長にわたるシステムの安定性を示し、反射電力は、パルスの所定のパーセンテージ以下である。ボックス176の外側では、各ケーブル長は、特定のケーブル長ごとに1つまたは複数の電力設定で、パルスの所定のパーセンテージよりも大きい反射電力を示す。さらに、ボックス176内では、ケーブル長全体にわたって安定性があるだけでなく、複数の電力で複数のケーブル長にわたって安定性が存在する。ボックス176内のケーブル長は、多数の電力設定値に対応する。ボックス176内で、それぞれの3つおよび4つのケーブル長は、複数のケーブル長でのシース形成を可能にする。したがって、インピーダンス整合を可能にする周波数でバースト電力がRF発電機によって出力される第1の状態と、インピーダンス整合の整合ネットワークモードが発生する第2の状態を含む、マルチ状態インピーダンス整合の1つの利点は、図15に示すような特性を有する安定性マップを提供する。これにより、従来の整合ネットワークベースのインピーダンス整合よりも改善される。小さなユニット間の変動が動作を不安定な領域にシフトしないことを保証するために、広く安定した動作ウィンドウを有することが望ましい。
図16~図25は、RF発電機12のいずれかを参照して、図1の電力供給システム10における複数の状態に対するマルチモードインピーダンス制御の動作を説明している。図16は、図1のRF発電機12などのRF発電機の出力の波形を示している。図16は、2つの図を示しており、第1の時間スケールでの上面図180aと、括弧で囲まれた部分184aの拡大図を表す第2の図182aとを含む。底面図182aは、ブラケットセクション184aの20倍の拡大図を表している。図16では、波形186aは順方向電力を表し、波形188aは逆方向電力を表し、波形190aは図1の整合ネットワーク18aまたは18bの出力で測定された電圧を表す。
上記のように、負荷に供給される電力は、順方向電力186aと逆方向電力188aなどの順方向電力との間の差によって表される量であることが認識されよう。供給される電力は図16には示されていないが、電圧190aは供給される電力に従って変化し、供給される電力は順方向電圧186aと逆方向電圧188aとの間の差に従って変化する。順方向電力波形186aは、電圧190aによってオーバーレイされるため、ビュー182a全体にわたって示されていない。しかしながら、順方向電力186aは、電圧190aにいくらか比例して変化し、電圧190aの増加は、順方向電力186aの増加および/または逆方向電力188aの減少と一致する。
図16は、RF信号をパルスすることによってRF発電機12を操作する一連のベースライン測定値を表す。図16の制御構成では、インピーダンス整合は整合ネットワーク18を介して制御されるため、図16では周波数ベースのインピーダンス整合は発生しない。図17は、図16と同様の波形を示しているが、図16とは異なる動作条件での波形である。慣例として、図16の波形の後には、接尾辞「a」が続く。図16~図23全体を通して、各図の同様の波形は、異なる文字の接尾辞が付いた同じ参照番号を使用して参照される。たとえば、ビュー180aは図16の上面図を参照し、ビュー180bは図17の上面図を参照する。たとえば、波形168aは図16の順方向電力を示し、波形186bは図17の順方向電力を示す。
図17は、周波数ベースのインピーダンス調整が、状態124などの第1の状態の第1のモードを含むシステムの動作を示している。状態126などの第2の状態では、負荷の電力が通常の動作電力に調整され、インピーダンスの整合ネットワーク制御が第2のモードを構成する。様々な実施形態において、状態126の間、周波数は、インピーダンスに関係なく選択され、負荷に関連する製造プロセス要件に従って選択され得る。図17に示されているように、電圧190bは、図16とほぼ同じ時間と速度で増加する。これは、他の制御パラメータが発電機の出力電力を制限していることを示している。
図18は、図17の第1の状態のモードを使用して制御され、さらにガンマブランキング技術を実装するRF発電機12aの動作を示している。ガンマ(Γ)は、電力供給システム10のRF発電機12の反射係数を表す。ガンマブランキング技術では、RF発電機12は、発電機の反射係数に関係なく、増加した電力が印加される所定の間隔の間動作する。RF発電機12による電力の一般的なアプリケーションでは、スミスチャートの反射係数を使用して、位相に対するインピーダンスを決定し、電力を制限する。一般にパルス幅全体のわずかな割合である所定の間隔時間の間、電力は電力バーストの形で追加され、電力を制御するときに反射係数は考慮されない。ガンマブランキングの場合、RF発電機は、インピーダンスの一致に関係なく、電力バースト中に要求された出力電力を供給するために疑似開ループで動作する。疑似開ループとは、RF発電機がまだ閉ループで動作している動作を指し、つまり、センサからのデータを使用して目的の電力設定値を達成しているが、順方向電力を制限する制限は無視される。これにより、RF発電機は基本的に、真の開ループモードで動作しているかのように同等の順方向電力レベルを生成できる。ただし、インピーダンス整合のため、RF発電機からの電力出力は負荷に到達しない。したがって、負荷に供給される電力は、図2および図10に示すように、パルスによって制限される。しかしながら、電力バーストの間、図2および図10のパルスは、RF発電機の出力の境界を規定しないかもしれないが、それでも、負荷に供給される電力の境界を規定するかもしれない。RF発電機の出力は、インピーダンスの不一致のために、負荷に供給される電力よりも大幅に高くなる可能性がある。非限定的な例として、ブランキングは、1000μsのパルスの約50μsで発生する可能性がある。図18は、以下でさらに説明する他の要因により、図17と同様の結果をもたらす。
図19は、図17に従って動作され、さらにRF発電機12の以前の動作に基づくフィードフォワード制御を含む、RF発電機12の動作を表す波形を示している。RF発電機12は、前のパルスの間の発電機の動作に部分的に基づいて制御される。PID復元において、RF発電機12が前の状態からのパラメータおよび設定を使用して再び動作するように設定される場合、前の状態からのパラメータおよび設定が復元される。このようなアプローチは、比例積分微分(PID)復元と呼ばれ得る。そのようなPID回復制御の例は、米国特許第8,952,765号、米国特許第10,049,857号、および米国特許第10,217,609号に関して見出すことができ、これらはすべて本開示の譲受人に譲渡され、参照により本出願に組み込まれる。
図19に見られるように、電圧190dは、パルス開始に比べて短い時間で増加し、それによってプラズマシースを完全に形成する時間を短縮する。したがって、状態124などの第1の状態での周波数調整ベースのインピーダンス制御とフィードフォワード制御の組み合わせは、パルス開始と比較してシース形成までの時間をさらに改善する。フィードフォワードアプローチは、ここではPID復元制御として説明されているが、様々なフィードフォワードまたはフィードバック制御機構がシースの形成を加速する可能性があり、ここでも同様に適用できる。
図20は、図19に従って動作され、さらに図18に記載されたガンマブランキングを含む、RF発電機12の動作を表す波形を示している。したがって、バースト電力、周波数ベースのインピーダンス調整、PID復元、およびガンマブランキングの組み合わせにより、パルス開始に比べてシース形成までの時間がさらに改善される。図20は、シース形成時間を改善するが、電圧190eの低下によって示唆されるように、部分的なシースの崩壊ももたらす。
図21は、第1の状態で、RF発電機12が電力バーストを適用し、起動時に第1の周波数で短時間動作して、第1の状態にわたって周波数ベースのインピーダンス調整を提供する、RF発電機12の動作を説明する波形を示す。第1の初期状態に続く第2の状態では、RF発電機12は、第2の周波数で動作して、第2の状態で周波数ベースのインピーダンス調整を提供する。図10のサブ状態124a'および124b'は、それぞれの第1および第2の状態の例を提供する。次に、制御は、図10の状態126'など、整合ネットワーク18を使用した整合ネットワークベースのインピーダンス調整に移行する。図21に見られるように、プラズマシースは起動中のパルス開始直後に蓄積する。他の実施形態では、DFTなどの周波数ベースのインピーダンス調整は、状態124a'および124b'の両方に対して有効にされ得る。このアプローチは、状態間の遷移をスムーズにして、負荷への電力結合を維持する。124b'の間の周波数は固定され得る。他の様々なアプローチでは、状態124b'の周波数ランプに可変電力を適用できる。これにより、制御システムは、電力設定値と周波数を状態124aの値から目的の状態124bの値に短時間で変化され得る。したがって、電力バーストおよび周波数ベースのインピーダンス調整を使用して状態124a'、124b'を調整すると、波形190fで示されるように、シースをより短い時間で形成することができる。
図22および図23は、電力バーストを適用し、周波数ベースのインピーダンス調整が採用される(状態124a')パルスの開始時にRF信号の第1の起動周波数で動作し、続いて、電力バーストを適用し、第2の周波数で動作し、この間、周波数ベースのインピーダンス調整が使用される(状態124b')RF発電機の動作を説明する波形を示している。PID修復はガンマブランキングとともに適用される。さらに、周波数を状態1の第1周波数から状態2の第2周波数に変更すると、電力がランプダウンする。図22と図23との違いは、図22は、より低い電力設定値でのRF発電機12の動作を示し、図23は、より高い電力設定値でのRF発電機12の動作を示し、より高い設定値は、より低い設定値の約50倍である。図22および図23のそれぞれにおいて、パルス開始時の電力バーストと第1の起動周波数(状態1)および電力バーストとそれに続く第2の起動周波数(状態2)の組み合わせは、PID復元制御、ガンマバンキングと組み合わせて、各状態で周波数ベースのインピーダンス調整を利用し、電力ランピングは最小限の遅延でシース形成を提供する。他の様々なアプローチでは、状態1と状態2は各状態の周波数を固定する必要はないが、第1の周波数から第2の周波数への急激な変化と比較して、周波数を状態1から状態2にランプすることができる。
図24および図25は、それぞれの図22および図23に対応し、負荷またはプラズマチャンバで検出されたパラメータに基づいて、パルスストライクまたはパルスの開始からパルス定常状態までのインピーダンスのそれぞれの軌跡のスミスチャートである。スミスチャートに見られるように、軌道は類似しており、それぞれの円200gと200hによってスミスチャートに示されているプラズマオフチャンバインピーダンスに向かう傾向がある。したがって、図24および図25から分かるように、図23および図24で適用される制御は、電力設定値に関係なく、同様の軌道を提供する。
図26は、制御モジュール210を示している。制御モジュール210は、図1の様々な構成要素を組み込んでいる。制御モジュール210は、発電制御モジュールセクション212、インピーダンス整合モジュールセクション210、および電力調整モジュールセクション216を含み得る。発電モジュールセクション212は、パルス制御モジュール218、RF周波数制御モジュール220、およびRF振幅モジュール222を含む。インピーダンス整合モジュールセクション214は、周波数調整モジュール224および整合ネットワークモジュール226を含む。電力チューニングモジュールセクション216は、PID復元モジュール230、ガンマブランキングモジュール232、および電力ランピングモジュール234を含む。様々な実施形態では、制御モジュール170は、モジュールセクションまたはモジュール210、212、214、216、218、220、222、224、226、230、232、および234に関連するコードを実行する1つまたは複数のプロセッサを含む。モジュールセクションまたはモジュール210、212、214、216、218、220、222、224、226、230、232、および234の操作を、図26の方法に関して以下に説明する。
図1のコントローラ20a、20b、および20'のさらに規定された構造については、以下に示す図27のフローチャートと、以下に示す「モジュール」という用語の規定を参照されたい。本明細書に開示されるシステムは、多くの方法、例、およびその様々な制御システム方法を使用して操作することができ、それらの方法を図26に示す。以下の操作は、主に図1の実装に関して説明されているが、操作は、本開示の他の実装に適用するように容易に修正することができる。操作は繰り返し実行され得る。以下の操作は、主に順次実行されるものとして示され、説明されているが、以下の操作の1つまたは複数は、他の操作の1つまたは複数が実行されている間に実行され得る。
図27は、たとえば、図1の電力供給システムのために状態/モードベースのインピーダンス制御を実行するための制御システム240のフローチャートを示している。制御は、初期化が行われるブロック242から始まる。制御はブロック244に進み、13.56MHz信号などのRF信号が開始される。制御はブロック246に進み、そこでパルスが生成されて、ブロック244で開始されたRF信号を変調する。ブロック246に見られるように、パルス生成は、上記の図1~25に記載されているように、いくつかのパラメータを含み得る。ブロック244にも示されているように、パルスは、複数の状態に分割することができ、その中で、各状態に対していくつかのパラメータを設定することができる。パラメータには、RF周波数、RF振幅/電力、インピーダンス制御用の周波数調整パラメータ、整合ネットワークインピーダンス制御用のインピーダンス整合ネットワークパラメータ、PID復元、ガンマブランキング、および電力ランプが含まれるが、これらに限定されない。次に、制御はブロック248に進み、そこで別のパルスを開始すべきかどうかが決定される。その場合、制御はブロック246に戻る。そうでない場合、制御はブロック250に進み、そこで制御が終了する。
図28は、パルス領域128と呼ばれる、図10のパルス波形120の122または122'などのパルスのオン期間または領域の拡大図を示している。図10に関して上で説明したように、波形120は、オン領域122、122'およびオフ領域123を有する。パルス波形120の122のオン領域は、第1のセクションまたは状態124および第2のセクションまたは状態126を含む。図10に記載されているように、パルス122'は、第1のサブセクションまたはサブ状態124a'、第2のサブセクションまたはサブ状態124b'、および第3のサブセクションまたはサブ状態126'を有する。サブ状態124a'、124b'は、状態124のサブセクションまたはサブ状態1を表す。サブ状態124a'、124b'は、異なる動作モードを描写するために使用することができ、そのようなモードは、RF周波数、RF振幅、位相、および本明細書で説明される他のパラメータを含むがこれらに限定されない、RF発電機の様々な出力パラメータを含み得る。
様々な実施形態において、サブ状態124a'、124b'は、RF発電機が選択された周波数で電力バーストを出力する第1のサブ状態124a'、およびRF発電機が第1のサブ状態124a'と状態126との間の遷移モードで動作する第2のサブ状態124b'を表し得る。様々な実施形態において、状態126は、RF発電機の動作モードをさらに規定することができる。サブ状態124b'では、RF発電機は状態124a'と同じまたは異なる電力バーストと周波数を出力できる。様々な実施形態において、状態126は、状態124によって規定される動作のバーストモードに続く定常状態を表し得る。したがって、状態126は、状態124で発生する動作のバーストモードに続く動作モードの定常状態を表し得る。他の様々な実施形態では、状態126は、サブ状態126a'およびサブ状態126b'などの様々な細分化を含み得る。サブ状態126a'は、サブ状態126b'でのバースト動作モード124と定常または動作モードの間の移行動作モードと一致し得る。他の様々な実施形態では、サブ状態126a'およびサブ状態126b'は、状態126によって表される単一の状態に組み合わせることができる。同様に、サブ状態124a'とサブ状態124b'を組み合わせて、単一のセクションまたは状態124を規定し得る。
サブ状態124a'およびサブ状態124b'は、さらに複数のビンbxに細分化することができ、xは一般的に複数のビンの任意のビンを示す。図28に示すように、サブ状態124a'は、ビンba1、ba2、…、banなどのビンに細分化される。同様に、サブ状態124b'は、ビンbb1、bb2、…、bbnに細分化できる。様々な実施形態では、ビンの幅および数の両方が変化し得、その結果、サブ状態124a'内の各ビンの幅は、同じ幅または変化する幅であり得る。同様に、サブ状態124b'のビンの幅と数は、同じ幅でも異なる幅でも構わない。さらに、サブ状態124a'を構成するビンの数およびサブ状態124b'を構成するビンの数は変化する可能性があり、パルス間の任意の状態またはサブ状態のビンの数は変化し得る。さらに、サブ状態126a'およびサブ状態126b'は、124a'、124b'、124に関して上記のようにビンに細分化され得る。
様々な実施形態では、ビンbx、サブ状態124a'、124b'、または状態124のいずれかまたは1つは、様々なRFシステム制御パラメータを変えることができる様々な動作モードを規定することができる。このようなパラメータには、図1のRF発電機12などのRF発電機によって出力されるRF信号の周波数、振幅、および位相が含まれ、ネットワーク制御パラメータおよびその他の制御パラメータと一致する。様々な実施形態において、ビンの幅は、ビンの最小幅がRF発電機の最大制御ループ速度に対応するように選択され得る。同じパルス内のビン内の周波数の更新は制御ループレートによって制約され得るため、ビン内で出力される1つまたは複数の周波数はパルスごとに更新され得る。したがって、様々な実施形態では、ビン内の周波数制御はフィードフォワード制御であり、ビン内のフィードフォワード値は、対応するビンについて1つまたは複数の前のパルスにわたって行われた測定に基づいて更新される。
各状態に関連する動作モードは、たとえば、RF発電機12によって出力されるRF信号の周波数を規定することができる。したがって、各ビンbxは、RF発電機12によって出力されるRF信号の特定の周波数または複数の周波数を規定することができる。規定された周波数を選択して、RF発電機12と負荷32との間のインピーダンス整合を変化させて、負荷に供給される電力を制御することができる。たとえば、状態124aが、RF発電機12が電力バーストを出力するモードを規定する場合、各ビンba1、ba2、…、banには特定の周波数を割り当てることができ、RF発電機12と負荷32の間のインピーダンス整合を調整して、負荷32に供給される電力を制御するために選択される。さらに、様々な実施形態では、状態124またはサブ状態124a'、124b'は、整合ネットワーク18などの整合ネットワークの動作モードを規定することができる。非限定的な例として、状態124の間、各ビンba1、ba2、…、banに関連するモードによって規定される選択された周波数で選択された電力を出力するようにRF発電機を制御しながら、上記のように整合ネットワーク18の動作を禁止することが望ましい場合がある。
様々な動作モードにおいて、状態124b'の間にRF発電機12によって出力されるRF周波数は、同様に、ビンbb1、bb2、…、bbnに分割され得る。状態124b'の間、特定の動作モードは、サブ状態124a'に関して説明したように、整合ネットワーク18の動作を同様に禁止することができる。さらに、上記のように、状態124a'、124b'を組み合わせて、単一の状態124を規定することができる。単一の状態124では、状態124をビンbxに細分化することができ、RF発電機12と負荷32との間のインピーダンス整合を変化させて負荷32への電力供給を改善するために、上記の電気的パラメータを制御することができる。また、上記のように、状態124の間、整合ネットワーク18の動作は禁止され得、その結果、インピーダンス整合は、RF発電機12によって出力されるRF信号の周波数に従って実質的に変化する。
以下のTable 1(表1)およびTable 2(表2)を参照して、Table 1(表1)およびTable 2(表2)に動作状態とモードの関係を示す。Table 1(表1)は、図28のパルス128が、RF発電機が選択された周波数で電力バーストを出力する状態124と、RF発電機が作動電力およびより高いまたは公称周波数を出力する作動状態126とを含むように構成されたシステムに対処する。Table 1(表1)はさらに、状態124、126がサブ状態124'または126'を介してさらに細分化されないシステムを示している。したがって、状態124はビンbb1、bb2、…、bbnに分割される。Table 1(表1)に示すように、状態124の間、RF発電機は電力バーストを出力し、周波数は状態124の連続するビンにわたって周波数f1、f2、…、fx、…、fnにわたって変化する。Table 1(表1)およびTable 2(表2)の周波数fxは、状態またはビン内の1つまたは複数の周波数を表し得る。Table 1(表1)は、モードの制御アクチュエータに、周波数、電力、および整合ネットワークインピーダンス制御を含め得ることも示している。様々な実施形態において、電力または電力値PBは、状態124にわたってビンからビンへと変化させることができ、またはビンからビンへと一定に維持することができる。Table 1(表1)およびTable 2(表2)の電力値PBは、状態またはビン内の1つまたは複数の電力値を表し得る。状態124では、ガンマブランキングなどによって整合ネットワークが無効になっているため、それぞれのビンの周波数を選択することでインピーダンス整合が発生する。
Table 2(表2)は、RF制御の状態とモードを示している。RF制御では、状態124がサブ状態124a'、124b'に細分化され、さらにTable 2(表2)に示すようにそれぞれのビンに細分化される。Table 2(表2)において、RF発電機12によって出力される周波数は、動作モードに応じて変化し得る。たとえば、サブ状態124a'の間、周波数はビンごとに異なるが、電力はPBまたはバースト電力で一定に保たれる。Table 2(表2)はまた、サブ状態126aが、遷移周波数ftおよび遷移電力PtがRF発電機12によって出力される遷移状態として構成されていることを示している。バースト電力PBは、上記のようにビンごと、および状態ごとに異なる。
Figure 0007393523000001
Figure 0007393523000002
様々な実施形態において、各状態に応じて名前を付けることができ、各モードに対応する各パラメータを特定の状態、サブ状態、またはビン内で変えることができるので、周波数、電力、および整合ネットワーク制御の様々なモードを各状態に適用することができる。様々な実施形態において、周波数ベースのインピーダンス制御および整合ネットワークベースのインピーダンス制御の両方が、様々なパルス状態でアクティブであり得る。このような実装では、周波数ベースのインピーダンス制御が実装され、割り当てられたパルス状態の短時間で公称値に落ち着く。予想されるチューニング時間は、バッファ時間を追加して、整合ネットワークのオフ期間として使用される。そのような構成は、整合ネットワーク18がアクティブ化されると定常周波数を感知することを可能にし、したがって、周波数が落ち着くときに整合ネットワークがハントする必要性を軽減する。様々な実施形態では、整合ネットワーク18はまた、周波数追跡機能を組み込んでいる。
様々な実施形態において、負荷インピーダンスの反応を測定して、各ビンまたは状態に割り当てられた周波数を調整することができ、その結果、所与のビンに対して選択されたRF周波数を調整して、インピーダンス変動をさらに最小化し、電力供給を最大化することができる。周波数または電力値は、電力供給またはインピーダンス整合条件に基づいて、1つまたはすべての状態、サブ状態、およびビンに対して更新され得る。将来の状態は、以前の周波数または電力値の以前の結果に基づいて決定された調整済みの周波数および電力値を出力する。すなわち、ビンbx1 n+1、bx2 n+1、…、bxn n+1の値は、bx1 n、bx2 n、…、bxn nの値の適用に応じた電気的パラメータの測定に従って決定され得、ここでnは時間間隔である。さらに、ビンbx1 n+1、bx2 n+1、…、bxn n+1の更新は、n、n-1、...、n-m間隔に対する1つまたは複数の以前のシステム反応に基づくことができる。したがって、RF発電機のパラメータを事前設定することで、適応型のフィードフォワード制御が可能になり、制御ループの帯域幅の問題が軽減される。
図29は、周波数対時間のプロットであり、状態またはサブ状態に4つのビンb1、b2、b3、b4があり、それぞれビン1、ビン2、ビン3、およびビン4とも呼ばれるRF発電機の動作を表す複数の波形が含まれている。プロット252は、それぞれの波形254、256、および258を示している。図29の各ビンには、5つの周波数設定または値が含まれている。これらは、ビン内および対応するパルス内の特定の時間におけるRFの周波数設定または値に対応している。
波形254は、ビン内で、
Figure 0007393523000003
に従って周波数が一定に維持されることを示し、nはそれぞれのビンを示す。たとえば、
Figure 0007393523000004
は、ビンb1の一定周波数α1を示す。したがって、波形254は、各ビンbnの一定周波数を規定し、一定周波数は、ビンごとに変化し得る。波形256は、各ビン内の複数の周波数を示し、各ビン内の周波数は線形に変化し、各ビンに関連付けられたそれぞれのラインのパラメータは、ビンごとに変化し得る。周波数の選択を表す式は、
Figure 0007393523000005
として理解でき、nは特定のビンを示し、tは時間である。したがって、各ビンには、それぞれanとβnに従って規定されたオフセット周波数と勾配がある。波形258は、特定のビンの周波数が
Figure 0007393523000006
に従ってパルスごとに変化することを示している。したがって、波形258の周波数設定は、特定のビンnに依存し、それぞれのビンに対して規定された関数に従って変化する。
図30は、時間対周波数の複数のプロットを示すグラフ270を示している。横軸に沿った時間は、状態、サブ状態、またはビンの位置に関連している。縦軸は周波数を示しているため、時間対周波数のプロットは、インピーダンス整合を改善するために選択された周波数設定値を示している。様々な実施形態において、各ビンの周波数設定値は、経験的に個別に、または反復プロセスと組み合わせて決定される。波形272は、50Wを出力するように構成されたRF発電機の周波数のセットを示す。波形274は、100Wを出力するように構成されたRF発電機の時間対周波数のプロットである。波形276は、300Wを出力するように構成されたRF発電機の時間対周波数のプロットである。波形278は、600Wを出力するように構成されたRF発電機の時間対周波数のプロットである。同様に、波形280は、1,200Wを出力するように構成されたRF発電機の周波数対時間のプロットである。様々な実施形態において、縦軸は、動作の中心周波数の約10+/-5%を表すことができる。
図31は、時間サンプルインデックス対、反射率とも呼ばれる反射係数の2乗のプロットを示しており、最適なインピーダンス整合を得るために周波数を調整するための軌跡を示している。図31の反復学習アプローチでは、状態124aなどのバースト状態が4つの(n=4)サブセクションまたはビンに分割され、各ビンに対して所定の回数のサンプルが取得された。各ビン内で、周波数は直線的に変化した。1つのアプローチでは、反復学習モデルは、各ビンの線の傾きとオフセットを調整して、反射係数を最小化し、供給される電力を最大化する。図31のプロット292、294、296、298、および300のそれぞれは、それぞれのパルス数を示している。すなわち、様々な実施形態において、波形292、294、296、298、300は、それぞれの1、10、20、25、および30パルスを表す。
図32は、様々な実施形態に従って配置された例示的な制御モジュールの機能ブロック図である。図32では、図26と同様の参照番号が図32で使用される。したがって、図32の制御モジュール210'は図26と同様に配置され、上記の説明はここでも同様に適用される。図32はまた、上記の各状態、サブ状態、またはビンbxの周波数値または他の電気的パラメータを更新するように構成されたビン更新モジュール228を含む。
図33は、図1の電力供給システムのインピーダンス制御を実行するための制御システム240のフローチャートを示している。図32は図27と同様に配置されており、同様の参照番号を使用して同様の機能を示す。このような同様の機能は、図33の説明では繰り返されない。流量制御システム240'は図27と同様に構成され、ビン更新セクション260を含む。ビン更新セクション260は、ビンbxのインピーダンス整合を決定するブロック262を含む。ビンbxに対応するインピーダンス整合が決定されると、ブロック264は、特定のビンbxについてインピーダンス整合が改善されたかどうかを決定する。インピーダンス整合が改善された場合、ブロック260は、制御システム240の将来の反復が更新された周波数を使用するように、ビンbxの周波数を更新する。ブロック264に戻ると、一致が改善されなかった場合、ブロック268に示すように更新は発生しない。
前述の説明は、本質的に単なる例示であり、開示、その適用、または使用を制限することを決して意図するものではない。本開示の幅広い教示は、様々な形態で実施することができる。したがって、本開示には特定の例が含まれるが、図面、明細書、および以下の特許請求の範囲を検討すると他の修正が明らかになるため、本開示の真の範囲はそれほど限定されるべきではない。本開示の原理を変更することなく、方法内の1つまたは複数のステップを異なる順序で(または同時に)実行できることを理解されたい。さらに、実施形態のそれぞれは、特定の特徴を有するものとして上に記載されているが、本開示の任意の実施形態に関して記載されたこれらの特徴のいずれか1つまたは複数は、たとえその組み合わせが明示的に記載されていなくても、他の実施形態のいずれかの特徴に実装および/または組み合わせられ得る。言い換えれば、説明された実施形態は相互に排他的ではなく、1つまたは複数の実施形態の相互の順列は、本開示の範囲内にとどまる。
要素間の空間的および機能的関係(たとえば、モジュール間、回路要素間、半導体層間など)は、「接続されている」、「係合している」、「結合されている」、「隣接している」、「隣にある」、「上にある」、「上にある」、「下にある」、「配置されている」を含む、様々な用語を使用して記述される。「直接」であると明示的に説明されていない限り、第1の要素と第2の要素との間の関係が上記の開示に記載されている場合、その関係は、第1要素と第2要素の間に他の介在要素が存在しない直接的な関係である場合もあるが、第1要素と第2要素の間に1つまたは複数の介在要素が(空間的または機能的に)存在する間接的な関係である場合もある。本明細書で使用される場合、A、B、およびCの少なくとも1つの句は、非排他的論理ORを使用して、論理(A OR B OR C)を意味すると解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、およびCの少なくとも1つ」を意味すると解釈されるべきではない。
図では、矢じりで示されている矢印の方向は、一般に、図に関係する情報(データや指示など)の流れを示している。たとえば、要素Aと要素Bが様々な情報を交換するが、要素Aから要素Bに送信される情報が図に関連している場合、矢印は要素Aから要素Bを指し得る。この一方向の矢印は、他の情報が要素Bから要素Aに送信されないことを意味するものではない。さらに、要素Aから要素Bに送信される情報について、要素Bは、情報の要求または受信確認を要素Aに送信することができる。
以下の規定を含む本出願では、「モジュール」という用語または「コントローラ」という用語は、「回路」という用語に置き換えることができる。「モジュール」という用語は、特定用途向け集積回路(ASIC)、デジタル、アナログ、またはアナログ/デジタル混合ディスクリート回路、デジタル、アナログ、またはアナログ/デジタル混合集積回路、組み合わせ論理回路;フィールドプログラマブルゲートアレイ(FPGA)、コードを実行するプロセッサ回路(共有、専用、またはグループ)、プロセッサ回路によって実行されるコードを格納するメモリ回路(共有、専用、またはグループ)、説明されている機能を提供するその他の適切なハードウェア構成要素、または、システムオンチップなど、上記の一部またはすべての組み合わせ、を指す、その一部である、または含み得る。
モジュールは、1つまたは複数のインターフェース回路を含み得る。いくつかの例では、インターフェース回路は、ローカルエリアネットワーク(LAN)、インターネット、ワイドエリアネットワーク(WAN)、またはそれらの組み合わせに接続された有線または無線インターフェースを含み得る。本開示の任意の所与のモジュールの機能は、インターフェース回路を介して接続された複数のモジュールに分散され得る。たとえば、複数のモジュールで負荷分散が可能になり得る。さらなる例では、サーバー(リモートまたはクラウドとも呼ばれる)モジュールが、クライアントモジュールに代わっていくつかの機能を実行し得る。
コードという用語は、上記で使用されているように、ソフトウェア、ファームウェア、および/またはマイクロコードを含み得、プログラム、ルーチン、関数、クラス、データ構造、および/またはオブジェクトを指し得る。共有プロセッサ回路という用語は、複数のモジュールからの一部またはすべてのコードを実行する単一のプロセッサ回路を含む。グループプロセッサ回路という用語は、追加のプロセッサ回路と組み合わせて、1つまたは複数のモジュールからの一部またはすべてのコードを実行するプロセッサ回路を含む。複数のプロセッサ回路への言及は、個別のダイ上の複数のプロセッサ回路、単一のダイ上の複数のプロセッサ回路、単一のプロセッサ回路の複数のコア、単一のプロセッサ回路の複数のスレッド、または上記の組み合わせを含む。共有メモリ回路という用語は、複数のモジュールからのコードの一部またはすべてを格納する単一のメモリ回路を含む。グループメモリ回路という用語は、追加のメモリと組み合わせて、1つまたは複数のモジュールからのコードの一部またはすべてを格納するメモリ回路を含む。
メモリ回路という用語は、コンピュータ可読媒体という用語のサブセットである。本明細書で使用されるコンピュータ可読媒体という用語は、媒体を通って伝播する一時的な電気信号または電磁信号(搬送波上など)を含まない。したがって、コンピュータ可読媒体という用語は、有形で一時的ではないと見なされ得る。非一時的で有形のコンピュータ可読媒体の非限定的な例は、不揮発性メモリ回路(フラッシュメモリ回路、消去可能プログラマブル読み取り専用メモリ回路、マスク読み取り専用メモリ回路など)、揮発性メモリ回路(スタティックランダムアクセスメモリ回路やダイナミックランダムアクセスメモリ回路など)、磁気記憶媒体(アナログまたはデジタル磁気テープまたはハードディスクドライブなど)、および光ストレージメディア(CD、DVD、Blu-ray(登録商標)ディスクなど)である。
本出願では、特定の属性を有する、または特定の操作を実行するものとして説明される装置要素は、それらの特定の属性を有し、それらの特定の操作を実行するように特別に構成される。具体的には、アクションを実行する要素の説明は、要素がアクションを実行するように構成されていることを意味する。要素の構成は、要素に関連付けられた非一時的で有形のコンピュータ可読媒体上で命令を符号化することによるなど、要素のプログラミングを含み得る。
本出願で説明される装置および方法は、コンピュータプログラムに具体化された1つまたは複数の特定の機能を実行するように汎用コンピュータを構成することによって作成された専用コンピュータによって部分的または完全に実装され得る。上記の機能ブロック、フローチャート構成要素、およびその他の要素は、ソフトウェア仕様として機能し、熟練した技術者またはプログラマーの日常業務によってコンピュータプログラムに変換できる。
コンピュータプログラムには、少なくとも1つの非一時的で有形のコンピュータ可読媒体に格納されているプロセッサ実行可能命令が含まれている。コンピュータプログラムはまた、保存されたデータを含むか、またはそれに依存し得る。コンピュータプログラムは、専用コンピュータのハードウェアと相互作用する基本的な入出力システム(BIOS)、専用コンピュータの特定のデバイスと対話するデバイスドライバー、1つまたは複数のオペレーティングシステム、ユーザアプリケーション、バックグラウンドサービス、バックグラウンドアプリケーションなどを含み得る。
コンピュータプログラムは、(i)HTML(ハイパーテキストマークアップ言語)、XML(拡張マークアップ言語)、JSON(JavaScript Object Notation)などの解析対象の説明テキスト、(ii)アセンブリコード、(iii)コンパイラによってソースコードから生成されたオブジェクトコード、(iv)インタプリタによる実行のためのソースコード、(v)ジャストインタイムコンパイラなどによるコンパイルと実行のためのソースコード、を含む。例としてのみ、ソースコードは、C、C++、C#、Objective C、Swift、Haskell、Go、SQL、R、Lisp、Java(登録商標)、Fortran、Perl、Pascal、Curl、OCaml、Javascript(登録商標)、HTML5(Hypertext Markup Language 5thリビジョン)、Ada、ASP(Active Server Pages)、PHP(PHP:Hypertext Preprocessor)、Scala、Eiffel、Smalltalk、Erlang、Ruby、Flash(登録商標)、VisualBasic(登録商標)、Lua、MATLAB(登録商標)、SIMULINK(登録商標)、およびPython(登録商標)を含む言語の構文を使用して記述できる。
10 電源システム
12a、12b 電源、RF発電機
14a、14b RF電源、電力増幅器
16a、16b センサ
18a、18b 整合ネットワーク
20'、20a、20b コントローラ
21a、21b 制御信号
22a、22b RF電力信号
24a、24b X信号
26a、26b Y信号
28a、28b フィードバック制御信号
30、30' 制御信号
32 負荷
34 同期検出器
36、38 リンク
40 RF信号、RF波形
42 パルス信号
44、46 領域
50 パルス、パルス波形
51 パルス、オン領域
54 波形、反射電圧、逆方向電圧
94 波形、逆電圧
58、96、150 順電力
60、98、152 逆電力
62 供給電力
66、70、72、75、80、132、138、140、142、160、160'、162、162' 位置
74、186a 順方向電力波形
76 逆方向電力波形
77 順方向電力ピーク
90、92、130、150、152、168a、190f、254、256、258、272、274、276、278、280 波形
100 電力
102 電力バースト
110 スミスチャート
120 パルス波形、パルス
122、122' オン領域
123 オフ領域
124、124a'、124b'、126 状態
136、252 プロット
292、294、296、298、300 プロット、波形
154 波形、電圧
154' 電圧
156' 電流
176 ボックス
182a 底面図
188a 波形、逆方向電力
190a 電圧
210 制御モジュール
212 モジュール、発電制御モジュールセクション
214 モジュール、インピーダンス整合モジュールセクション
216 モジュール、電力調整モジュールセクション
218 パルス制御モジュール
220 RF周波数制御モジュール
222 RF振幅モジュール
224 周波数調整モジュール
226 整合ネットワークモジュール
230 PID復元モジュール
232 ガンマブランキングモジュール
234 電力ランピングモジュール
240 制御システム
240' 流量制御システム
244、246、248、250、262、264 ブロック
260 ブロック、ビン更新セクション
260 ビン更新セクション
270 グラフ
f1、f2 RF電力信号

Claims (39)

  1. 無線周波数(RF)発電機であって、
    負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成するRF電源と、
    複数の状態を含むように前記パルスを制御するように構成されたコントローラであって、
    第1の状態では、前記コントローラは、前記RF信号を第1の電力値で出力するように前記RF発電機を制御し、前記RF信号の周波数を第1の周波数に制御して、前記RF発電機と前記負荷との間のインピーダンスを変化させるように前記RF発電機を制御するように構成されており、
    第2の状態では、前記コントローラは、さらに
    (a)前記RF信号を第2の電力値で出力するように前記RF発電機を制御するモードであって、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく前記RF信号の周波数を制御し、前記第1の電力値はバースト電力であり、前記第2の電力値は作動電力である、モードと、
    (b)前記RF信号を前記第2の電力値で出力するように前記RF発電機を制御するモードであって、前記RF信号の前記周波数を制御して前記RF発電機と前記負荷との間の前記インピーダンスを変化させ、前記第1の電力値は前記バースト電力であり、前記第2の電力値は前記作動電力である、モードと、
    (c)前記RF発電機を制御して、前記第2の電力値で前記RF信号を出力し、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく、前記RF信号の前記周波数を制御し、前記第1の電力値は前記第2の電力値を超える、モードと、
    (d)前記RF発電機を制御して前記第2の電力値で前記RF信号を出力し、前記RF信号の前記周波数を制御して、前記RF発電機と前記負荷との間の前記インピーダンスを変化させ、前記第1の電力値は前記第2の電力値を超える、モードと、
    のうちの少なくとも1つで構成される、コントローラと、
    を備える、無線周波数(RF)発電機。
  2. 前記モード(b)および前記モード(d)において、前記RF信号の前記周波数が、前記RF発電機と前記負荷との間の前記インピーダンスに従って前記周波数の範囲内で変化する、請求項1に記載のRF発電機。
  3. 前記モード(a)および前記モード(b)において、前記第1の電力値が前記パルスの境界を超え、前記第2の電力値が前記パルスによって制限される、請求項1に記載のRF発電機。
  4. 前記第1の状態および前記第2の状態は、前記パルスの開始に対して発生し、前記第1の状態は、前記パルスの開始時に発生し、前記第2の状態は、前記第1の状態の完了に続いて発生する、請求項1に記載のRF発電機。
  5. 前記コントローラは、前記RF発電機と前記負荷との間の整合ネットワークの動作を開始するための信号を出力するようにさらに構成されている、請求項1に記載のRF発電機。
  6. 前記モード(a)および前記モード(c)において、前記コントローラは、前記第1の電力値を出力するときにガンマブランキングを適用するようにさらに構成されている、請求項1に記載のRF発電機。
  7. 前記第1の状態は、複数のビンを含み、前記コントローラは、各々の前記ビンについて前記RF発電機を制御して、前記複数のビンのそれぞれに関連する選択された周波数に従って前記第1の周波数を出力するように構成されており、前記複数のビンのそれぞれに関連する前記選択された周波数は、前記複数のビンの少なくとも1つの対について変化する、請求項1に記載のRF発電機。
  8. 前記コントローラは、前記複数のビンのそれぞれに関連する選択された電力値に従って前記第1の電力値を出力するように、前記複数のビンのそれぞれについて前記RF発電機を制御するように構成されており、各々の前記ビンに関連する前記選択された電力値は、前記複数のビンの少なくとも1つの対について変化する、請求項7に記載のRF発電機。
  9. 次のパルスのための前記複数のビンのそれぞれに関連する前記選択された周波数が、前記RF発電機と前記負荷との間のインピーダンス整合と、少なくとも1つの前のパルスのための前記負荷に供給された電力との少なくとも1つに従って更新される、請求項7に記載のRF発電機。
  10. 次のパルスのための前記複数のビンのそれぞれに関連する前記選択された周波数が、前記複数のビンのそれぞれの中で前記周波数を線形に変化させ、前記周波数の変化を規定する線の傾きとオフセットを調整して、前記RF発電機と前記負荷の間の前記インピーダンスを最小化することに応じて更新される、請求項7に記載のRF発電機。
  11. 前記コントローラは、第3の電力値で前記RF信号を出力するように前記RF発電機を制御し、前記RF信号の前記周波数を第2の周波数に制御するように前記コントローラが構成される第3の状態を含むように前記パルスを制御するようにさらに構成されており、前記第3の電力値の少なくとも1つは、前記第1の電力値または前記第2の電力値の1つと等しくなく、前記第2の周波数は、前記第1の周波数と等しくない、請求項1に記載のRF発電機。
  12. 無線周波数(RF)発電機システムであって、
    負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成するRF電源であって、前記パルスは複数の状態を含む、RF電源と、
    前記RF発電機を制御するように構成されたコントローラであって、
    複数のビンを含む第1の状態では、前記コントローラは、(a)各々の前記ビン内の複数の周波数を出力するように前記RF発電機を制御するように構成され、前記コントローラは、少なくとも1つの第1の電力値で前記RF信号を出力するように前記RF発電機を制御するように構成されており、
    第2の状態では、前記コントローラは、第2の電力値で前記RF信号を出力するように前記RF発電機をモードで制御するようにさらに構成されている、
    無線周波数(RF)発電機システム。
  13. 前記少なくとも1つの第1の電力値および前記第2の電力値が前記パルスによって制限される、請求項12に記載のRF発電機システム。
  14. 前記少なくとも1つの第1の電力値がバースト電力であり、前記第2の電力値が作動電力であり、前記バースト電力が前記パルスの境界を超え、前記第2の電力値が前記パルスによって制限される、請求項12に記載のRF発電機システム。
  15. 前記第2の状態において、前記コントローラは、
    (a)各々の前記ビン内の複数の周波数を複数の事前に選択された周波数に出力するように前記RF発電機をさらに制御するモードと、
    (b)前記RF信号を前記第2の電力値で出力するように前記RF発電機を制御し、前記複数のビンのそれぞれに関連付けられたそれぞれの前記周波数を制御して、前記RF発電機と前記負荷との間のインピーダンスを変化させるモードであって、前記第1の電力値はバースト電力であり、前記第2の電力値は作動電力である、モードと、
    (c)各々の前記ビン内の複数の周波数を複数の事前に選択された周波数に出力するように前記RF発電機を制御するモードであって、前記第1の電力値は前記第2の電力値を超える、モードと、
    (d)前記RF信号を前記第2の電力値で出力するように前記RF発電機を制御モードであって、前記複数のビンのそれぞれに関連付けられたそれぞれの前記周波数を制御して、前記RF発電機と前記負荷との間の前記インピーダンスを変化させ、前記第1の電力値は前記第2の電力値を超える、モードと、
    のうちの少なくとも1つでさらに構成されている、請求項12に記載のRF発電機システム。
  16. 前記モード(c)および前記モード(d)において、前記少なくとも1つの第1の電力値および前記第2の電力値が前記パルスによって制限される、請求項15に記載のRF発電機システム。
  17. 前記モード(a)および前記モード(b)において、前記少なくとも1つの第1の電力値が前記パルスの境界を超え、前記第2の電力値が前記パルスによって制限される、請求項15に記載のRF発電機システム。
  18. 前記モード(a)および前記モード(c)において、前記コントローラは、前記少なくとも1つの第1の電力値を出力しながらガンマブランキングを適用するようにさらに構成されている、請求項15に記載のRF発電機システム。
  19. 前記モード(b)および前記モード(d)において、各々の前記ビン内の前記複数の周波数が、前記RF発電機と前記負荷との間の前記インピーダンスに従って、それぞれの周波数の範囲内で変化する、請求項15に記載のRF発電機システム。
  20. 前記第1の状態および前記第2の状態は、前記パルスの開始に対して発生し、前記第1の状態は、前記パルスの開始時に発生し、前記第2の状態は、前記第1の状態の完了に続いて発生する、請求項12に記載のRF発電機システム。
  21. 前記コントローラは、前記RF発電機と前記負荷との間の整合ネットワークの動作を開始するための信号を出力するようにさらに構成されている、請求項12に記載のRF発電機システム。
  22. 前記コントローラは、各々の前記ビン内に複数の電力値を出力するように前記RF発電機を制御するように構成されており、前記複数の電力値は、前記複数のビンの少なくとも1つの対について変化する、請求項12に記載のRF発電機システム。
  23. 次のパルスのための各々の前記ビン内の前記複数の周波数が、前記RF発電機と前記負荷との間のインピーダンスと、少なくとも1つの前のパルスで前記負荷に供給される電力との少なくとも1つに応じて更新される、請求項12に記載のRF発電機システム。
  24. 次のパルスのための各々の前記ビン内の前記複数の周波数が、各々の前記ビン内の前記周波数を線形に変化させ、前記周波数の変化を規定する線の傾きとオフセットとを調整して、前記RF発電機と前記負荷との間のインピーダンスを最小化することに応じて更新される、請求項12に記載のRF発電機システム。
  25. 前記コントローラは、第3の電力値で前記RF信号を出力するように前記RF発電機を制御し、前記RF信号の前記周波数を第2の周波数に制御するように前記コントローラが構成される第3の状態を含むように前記パルスを制御するようにさらに構成されており、前記第3の電力値の少なくとも1つは、前記第1の電力値または前記第2の電力値の1つと等しくなく、前記第2の周波数は、前記複数のビンのそれぞれに関連するそれぞれの前記周波数と等しくない、請求項12に記載のRF発電機システム。
  26. RF発電機によってパルス出力を制御するように構成されたコントローラであって、前記RF発電機は、負荷に供給される電力に応じて変化するパルスによって変調されたRF信号を含む出力信号を生成し、
    第1の状態では、前記コントローラは、前記RF信号を第1の電力値で出力するように前記RF発電機を制御し、前記RF信号の周波数を第1の周波数に制御して、前記RF発電機と前記負荷との間のインピーダンスを変化させるように構成されており、
    第2の状態では、前記コントローラはさらに、前記RF発電機を制御して、第2の電力値で前記RF信号を出力し、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく、前記RF信号の前記周波数を制御する、モード(a)で構成されており、前記第1の電力値はバースト電力であり、前記第2の電力値は作動電力である、コントローラ。
  27. 前記モード(a)または
    (b)前記RF発電機を制御して、前記RF信号を前記第2の電力値で出力するように制御し、前記RF信号の前記第1の周波数を制御して、前記RF発電機と前記負荷との間の前記インピーダンスを変化させるモードであって、前記第1の電力値は前記バースト電力であり、前記第2の電力値は前記作動電力である、モードと、
    (c)前記RF発電機を制御して、前記RF信号を前記第2の電力値で出力し、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく、前記RF信号の前記第1の周波数を制御するモードであって、前記第1の電力値は前記第2の電力値を超える、モードと、
    (d)前記RF発電機を制御して前記第2の電力値で前記RF信号を出力し、前記RF信号の前記第1の周波数を制御して前記RF発電機と前記負荷との間の前記インピーダンスを変化させるモードであって、前記第1の電力値は前記第2の電力値を超える、モードと、
    のうちの1つにさらに構成された、請求項26に記載のコントローラ。
  28. 前記モード(b)および前記モード(d)において、前記RF信号の前記周波数は、前記RF発電機と前記負荷との間の前記インピーダンスに従って、前記第1の周波数の範囲内で変化する、請求項27に記載のコントローラ。
  29. 前記モード(a)および前記モード(b)において、前記第1の電力値が前記パルスの境界を超え、前記第2の電力値が前記パルスによって制限される、請求項27に記載のコントローラ。
  30. 前記第1の状態および前記第2の状態は、前記パルスの開始に対して発生し、前記第1の状態は、前記パルスの前記開始時に発生し、前記第2の状態は、前記第1の状態の完了に続いて発生する、請求項27に記載のコントローラ。
  31. 前記第1の状態は複数のビンを含み、前記コントローラは、各々の前記ビンの前記RF発電機を制御して、前記複数のビンのそれぞれに関連する選択された周波数に従って前記第1の周波数を出力するように構成されており、前記複数のビンのそれぞれに関連する前記選択された周波数は、前記複数のビンの少なくとも1つの対について変化する、請求項26に記載のコントローラ。
  32. 前記コントローラは、前記複数のビンのそれぞれについて前記RF発電機を制御して、前記複数のビンのそれぞれに関連付けられた選択された電力値に従って前記第1の電力値を出力するように構成されており、前記複数のビンのそれぞれに関連する前記選択された電力値は、前記複数のビンの少なくとも1つの対について変化する、請求項31に記載のコントローラ。
  33. 次のパルスの前記複数のビンのそれぞれに関連する前記選択された周波数は、前記RF発電機と前記負荷との間のインピーダンス整合と、少なくとも1つの前のパルスについて前記負荷に供給される電力との少なくとも1つに従って更新される、請求項32に記載のコントローラ。
  34. 負荷への電力供給を制御するための方法であって、
    前記負荷に供給される電力を変化させるためにパルスによって変調されたRF出力信号を生成するようにRF発電機を制御するステップと、
    第1の状態において、前記RF発電機を制御して、第1の周波数で第1の電力値で前記RF信号を出力し、前記RF発電機と前記負荷との間のインピーダンスを変化させるステップと、
    第2の状態において、前記RF信号を第2の電力値で出力し、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく前記RF信号の周波数を制御する、モード(a)で制御するステップであって、前記第1の電力値はバースト電力であり、前記第2の電力値は作動電力である、ステップと、
    を含む、方法。
  35. 前記第2の状態において
    (b)前記第2の電力値で前記RF信号を出力し、前記RF信号の前記周波数を制御して、前記RF発電機と前記負荷との間の前記インピーダンスを変化させるモードであって、前記第1の電力値は前記バースト電力であり、前記第2の電力値は前記作動電力である、モードと、
    (c)前記RF信号を前記第2の電力値で出力し、前記RF発電機と前記負荷との間の前記インピーダンスに関係なく、前記RF信号の前記周波数を制御し、前記第1の電力値が前記第2の電力値を超える、モードと、
    (d)前記第2の電力値で前記RF信号を出力し、前記RF信号の前記周波数を制御して、前記RF発電機と前記負荷との間の前記インピーダンスを変化させ、前記第1の電力値は前記第2の電力値を超える、モードと、
    のうちの1つに制御する、請求項34に記載の方法。
  36. 前記第1の状態および前記第2の状態が前記パルスの開始に対して発生し、前記第1の状態が前記パルスの前記開始時に発生し、前記第2の状態が前記第1の状態の完了に続いて発生する、請求項35に記載の方法。
  37. 前記第1の状態は複数のビンを含み、前記第1の周波数は、前記複数のビンのそれぞれに関連する選択された周波数に従って各々のビンに対して出力され、前記複数のビンのそれぞれに関連する前記選択された周波数は、前記複数のビンの少なくとも1つの対について変化する、請求項34に記載の方法。
  38. 前記複数のビンのそれぞれに対する前記第1の電力値は、前記複数のビンのそれぞれに関連付けられた選択された電力値に従って出力され、前記複数のビンのそれぞれに関連する前記選択された電力値は、前記複数のビンの少なくとも1つの対について変化する、請求項37に記載の方法。
  39. 次のパルスのための前記複数のビンのそれぞれに関連する前記選択された周波数は、前記RF発電機と前記負荷との間のインピーダンス整合と、少なくとも1つの前のパルスで前記負荷に供給される電力との少なくとも1つに従って更新される、請求項38に記載の方法。
JP2022508899A 2019-08-13 2020-08-12 Rf給電プラズマ用途におけるシース形成、進化、およびパルスからパルスへの安定性を強化するための方法および装置 Active JP7393523B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962886279P 2019-08-13 2019-08-13
US62/886,279 2019-08-13
US16/986,680 2020-08-06
US16/986,680 US11315757B2 (en) 2019-08-13 2020-08-06 Method and apparatus to enhance sheath formation, evolution and pulse to pulse stability in RF powered plasma applications
PCT/US2020/045955 WO2021030453A1 (en) 2019-08-13 2020-08-12 Method and apparatus to enhance sheath formation, evolution and pulse to pulse stability in rf powered plasma applications

Publications (2)

Publication Number Publication Date
JP2022552589A JP2022552589A (ja) 2022-12-19
JP7393523B2 true JP7393523B2 (ja) 2023-12-06

Family

ID=74566882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022508899A Active JP7393523B2 (ja) 2019-08-13 2020-08-12 Rf給電プラズマ用途におけるシース形成、進化、およびパルスからパルスへの安定性を強化するための方法および装置

Country Status (7)

Country Link
US (1) US11315757B2 (ja)
EP (1) EP4014245A4 (ja)
JP (1) JP7393523B2 (ja)
KR (1) KR20220044819A (ja)
CN (1) CN114424317A (ja)
TW (1) TWI791163B (ja)
WO (1) WO2021030453A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626357B1 (ko) * 2017-12-07 2024-01-16 램 리써치 코포레이션 반도체 rf 플라즈마 프로세싱을 위한 펄싱 내 rf 펄싱
US11158488B2 (en) * 2019-06-26 2021-10-26 Mks Instruments, Inc. High speed synchronization of plasma source/bias power delivery
CN110299279B (zh) * 2019-08-22 2019-11-12 中微半导体设备(上海)股份有限公司 一种射频电源系统、等离子体处理器及其调频匹配方法
US20230072008A1 (en) * 2020-03-11 2023-03-09 Hitachi Kokusai Electric Inc. Terminal device and rf power supply device
US11715624B2 (en) 2021-08-09 2023-08-01 Mks Instruments, Inc. Adaptive pulse shaping with post match sensor
US20230223235A1 (en) * 2022-01-12 2023-07-13 Mks Instruments, Inc. Pulse And Bias Synchronization Methods And Systems
US12020902B2 (en) * 2022-07-14 2024-06-25 Tokyo Electron Limited Plasma processing with broadband RF waveforms
DE102022122044A1 (de) * 2022-08-31 2024-02-29 TRUMPF Hüttinger GmbH + Co. KG Plasmazustandsüberwachungsvorrichtung zum Anschluss an eine Impedanzanpassungsschaltung für ein Plasmaerzeugungssystem, ein Plasmaerzeugungssystem und ein Verfahren zur Überwachung des Plasmaerzeugungssystems
WO2024075596A1 (ja) * 2022-10-07 2024-04-11 東京エレクトロン株式会社 プラズマ処理装置、電源システム、及び周波数制御方法
US20240153741A1 (en) * 2022-11-09 2024-05-09 Applied Materials, Inc. Multi-shape voltage pulse trains for uniformity and etch profile tuning
WO2024106256A1 (ja) * 2022-11-18 2024-05-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2024106257A1 (ja) * 2022-11-18 2024-05-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2024129517A1 (en) * 2022-12-14 2024-06-20 Lam Research Corporation Systems and methods for controlling an lf rf pulse generator to increase selectivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179047A (ja) 2012-02-22 2013-09-09 Lam Research Corporation インピーダンスに基づいた電力および周波数の調整
US20150382442A1 (en) 2014-06-30 2015-12-31 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
JP2016540455A (ja) 2013-09-30 2016-12-22 エムケーエス コリア リミテッド インピーダンスマッチング方法及びインピーダンスマッチングシステム
JP2017073247A (ja) 2015-10-06 2017-04-13 東京エレクトロン株式会社 プラズマ処理装置のインピーダンス整合のための方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431857B2 (en) 2003-08-15 2008-10-07 Applied Materials, Inc. Plasma generation and control using a dual frequency RF source
US7602127B2 (en) 2005-04-18 2009-10-13 Mks Instruments, Inc. Phase and frequency control of a radio frequency generator from an external source
CN100530529C (zh) 2006-07-17 2009-08-19 应用材料公司 具有静电卡盘电压反馈控制的双偏置频率等离子体反应器
US8576130B2 (en) 2010-10-22 2013-11-05 Pittsburgh Glass Works, Llc Wideband antenna
US8576013B2 (en) 2011-12-29 2013-11-05 Mks Instruments, Inc. Power distortion-based servo control systems for frequency tuning RF power sources
US8952765B2 (en) 2012-03-23 2015-02-10 Mks Instruments, Inc. System and methods of bimodal automatic power and frequency tuning of RF generators
US10821542B2 (en) 2013-03-15 2020-11-03 Mks Instruments, Inc. Pulse synchronization by monitoring power in another frequency band
JP6424024B2 (ja) 2014-06-24 2018-11-14 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
US10049857B2 (en) 2014-12-04 2018-08-14 Mks Instruments, Inc. Adaptive periodic waveform controller
US10063062B2 (en) 2015-06-18 2018-08-28 Tokyo Electron Limited Method of detecting plasma discharge in a plasma processing system
US9876476B2 (en) 2015-08-18 2018-01-23 Mks Instruments, Inc. Supervisory control of radio frequency (RF) impedance tuning operation
US9947514B2 (en) 2015-09-01 2018-04-17 Mks Instruments, Inc. Plasma RF bias cancellation system
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
US10009028B2 (en) * 2016-09-30 2018-06-26 Lam Research Corporation Frequency and match tuning in one state and frequency tuning in the other state
JP6770868B2 (ja) 2016-10-26 2020-10-21 東京エレクトロン株式会社 プラズマ処理装置のインピーダンス整合のための方法
US10395896B2 (en) 2017-03-03 2019-08-27 Applied Materials, Inc. Method and apparatus for ion energy distribution manipulation for plasma processing chambers that allows ion energy boosting through amplitude modulation
US10546724B2 (en) 2017-05-10 2020-01-28 Mks Instruments, Inc. Pulsed, bidirectional radio frequency source/load
EP3616235A4 (en) 2017-07-07 2021-02-24 Advanced Energy Industries, Inc. INTER-PERIODIC CONTROL SYSTEM FOR PLASMA POWER SUPPLY SYSTEM AND ITS OPERATING PROCESS
US10395894B2 (en) 2017-08-31 2019-08-27 Lam Research Corporation Systems and methods for achieving peak ion energy enhancement with a low angular spread
US20190108976A1 (en) * 2017-10-11 2019-04-11 Advanced Energy Industries, Inc. Matched source impedance driving system and method of operating the same
US10269540B1 (en) 2018-01-25 2019-04-23 Advanced Energy Industries, Inc. Impedance matching system and method of operating the same
US11158488B2 (en) 2019-06-26 2021-10-26 Mks Instruments, Inc. High speed synchronization of plasma source/bias power delivery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179047A (ja) 2012-02-22 2013-09-09 Lam Research Corporation インピーダンスに基づいた電力および周波数の調整
JP2016540455A (ja) 2013-09-30 2016-12-22 エムケーエス コリア リミテッド インピーダンスマッチング方法及びインピーダンスマッチングシステム
US20150382442A1 (en) 2014-06-30 2015-12-31 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
JP2017073247A (ja) 2015-10-06 2017-04-13 東京エレクトロン株式会社 プラズマ処理装置のインピーダンス整合のための方法

Also Published As

Publication number Publication date
US11315757B2 (en) 2022-04-26
EP4014245A1 (en) 2022-06-22
WO2021030453A9 (en) 2021-04-15
US20210050185A1 (en) 2021-02-18
TW202121485A (zh) 2021-06-01
WO2021030453A1 (en) 2021-02-18
JP2022552589A (ja) 2022-12-19
TWI791163B (zh) 2023-02-01
KR20220044819A (ko) 2022-04-11
CN114424317A (zh) 2022-04-29
EP4014245A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7393523B2 (ja) Rf給電プラズマ用途におけるシース形成、進化、およびパルスからパルスへの安定性を強化するための方法および装置
JP7152537B2 (ja) 連続的およびパルスモード動作のための一体化されたrf電力供給単一入力複数出力制御
KR102330684B1 (ko) 무선 주파수(rf) 임피던스 튜닝 동작의 감시 제어
US11158488B2 (en) High speed synchronization of plasma source/bias power delivery
JP7376702B2 (ja) Rfインピーダンス整合のための自動周波数チューニングのための極値探索制御装置および方法
US11715624B2 (en) Adaptive pulse shaping with post match sensor
CN116325071A (zh) 用于减轻周期性干扰引起的射频负载阻抗变化的设备及调谐方法
US20240055228A1 (en) Plasma Process Control of Multi-Electrode Systems Equipped with Ion Energy Sensors
US11823869B2 (en) Impedance matching in a RF power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7393523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150