JP7388145B2 - semiconductor cooling equipment - Google Patents

semiconductor cooling equipment Download PDF

Info

Publication number
JP7388145B2
JP7388145B2 JP2019208781A JP2019208781A JP7388145B2 JP 7388145 B2 JP7388145 B2 JP 7388145B2 JP 2019208781 A JP2019208781 A JP 2019208781A JP 2019208781 A JP2019208781 A JP 2019208781A JP 7388145 B2 JP7388145 B2 JP 7388145B2
Authority
JP
Japan
Prior art keywords
fin
liquid
fins
gap
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208781A
Other languages
Japanese (ja)
Other versions
JP2021082702A (en
Inventor
誠二 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019208781A priority Critical patent/JP7388145B2/en
Priority to CN202010976482.XA priority patent/CN112908951A/en
Publication of JP2021082702A publication Critical patent/JP2021082702A/en
Application granted granted Critical
Publication of JP7388145B2 publication Critical patent/JP7388145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、半導体素子搭載基板を液冷式冷却器で冷却する半導体冷却装置に関する。 The present invention relates to a semiconductor cooling device that cools a semiconductor element mounting board using a liquid cooling type cooler.

近年、半導体素子は大電力を扱うことが多く、それに伴って発熱量が増大している。このため、半導体素子を実装した基板に冷却器を接合して放熱している。放熱に大きなスペースを確保できる定置設備では強制空冷が可能であるが、限られたスペース内に機器は配置する場合は液冷式冷却器が有用である。 In recent years, semiconductor devices often handle large amounts of electric power, and the amount of heat generated has increased accordingly. For this reason, a cooler is bonded to the substrate on which the semiconductor element is mounted to radiate heat. Forced air cooling is possible for fixed equipment that can secure a large space for heat radiation, but liquid-cooled coolers are useful when equipment is placed in a limited space.

従来の液冷式冷却器は、冷却液流通空間内に薄板状のインナーフィンを設置し、フィンを介して冷却液に伝熱する構造が一般的である。このような構造の液冷式冷却器では、流通する冷却液に混入した異物がフィンとフィンの間に詰まって冷却液の流通を妨げることがあり、冷却性能が低下する原因となっている。また、異物量が多い場合は冷却液の圧力損失にもつながる。 Conventional liquid-cooled coolers generally have a structure in which thin plate-shaped inner fins are installed in a cooling liquid circulation space, and heat is transferred to the cooling liquid via the fins. In a liquid-cooled cooler having such a structure, foreign matter mixed into the circulating cooling liquid may get stuck between the fins and obstruct the circulation of the cooling liquid, causing a decrease in cooling performance. Furthermore, if there is a large amount of foreign matter, it will also lead to a pressure loss in the coolant.

異物の詰まりに対しては、異物を冷却液とともにフィン間を流通させるか、あるいは冷却液流通空間への異物の流入を阻止する方法が提案されている(特許文献1,2参照)。 To deal with the blockage of foreign matter, methods have been proposed in which the foreign matter is allowed to flow between the fins together with the coolant, or the foreign matter is prevented from flowing into the coolant circulation space (see Patent Documents 1 and 2).

特許文献1に記載された冷却器は、インナーフィンをフィンピッチの小さい上段フィンとフィンピッチの大きい下段フィンの上下2段とし、上段フィンと下段フィンの間に異物の受け渡し手段を設け、上段のフィン間を流通できないサイズの異物を下段フィンに導いて下段のフィン間を流通させている。 The cooler described in Patent Document 1 has two inner fins, upper and lower, including upper fins with a small fin pitch and lower fins with a large fin pitch, and a means for transferring foreign matter is provided between the upper fin and the lower fin, and Foreign matter that is too large to flow between the fins is guided to the lower fins and allowed to flow between the lower fins.

特許文献2に記載された冷却器は、冷却液流通空間に通じる入口配管内に袋状の異物除去部材を設置し、異物除去部材に異物を溜めることによって冷却液流通空間への異物の流入を阻止している。 In the cooler described in Patent Document 2, a bag-shaped foreign matter removal member is installed in an inlet pipe leading to a coolant circulation space, and foreign matter is collected in the foreign matter removal member to prevent foreign matter from flowing into the coolant circulation space. is being prevented.

特開2014-86641号公報Japanese Patent Application Publication No. 2014-86641 特開2008-275190号公報Japanese Patent Application Publication No. 2008-275190

液冷式冷却器はインナーフィンの冷却性能を高めるためにフィンピッチを小さくしてフィン数を多くしている。しかし、特許文献1に記載された冷却器のように、異物を流通させるために下段フィンのフィンピッチを大きくすることは冷却性能の観点からは好ましくない。また、特許文献2に記載された冷却器は入口配管の内部構造が複雑になるという問題点がある。 Liquid-cooled coolers have a small fin pitch and a large number of fins to improve the cooling performance of the inner fins. However, as in the cooler described in Patent Document 1, increasing the fin pitch of the lower fins in order to circulate foreign matter is not preferable from the viewpoint of cooling performance. Furthermore, the cooler described in Patent Document 2 has a problem in that the internal structure of the inlet piping is complicated.

本発明は、上述した背景技術に鑑みて、フィンピッチを大きくすることなく異物による冷却性能を低下や圧力損失の上昇を抑制できる半導体冷却装置の提供を目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned background art, an object of the present invention is to provide a semiconductor cooling device that can suppress a decrease in cooling performance and an increase in pressure loss due to foreign substances without increasing the fin pitch.

即ち、本発明は下記[1]~[7]に記載の構成を有する。 That is, the present invention has the configurations described in [1] to [7] below.

[1]絶縁基板の一方の面に配線層を介して半導体素子を搭載する絶縁基板と、
一方の面に複数の板状フィンが所定間隔で立設された放熱基板と、前記フィンを収容する凹部を有し、前記放熱基板の一方の面側に装着されて冷却液流通空間を形成するジャケットを有する液冷式冷却器とを備え、
前記絶縁基板の他方の面側が、前記液冷式冷却器の放熱基板の他方の面に接合又は接着されている半導体冷却装置であり、
前記液冷式冷却器の冷却液流通空間において、前記フィンの先端と前記ジャケットの凹部の底面との間に主流路となる隙間が形成され、前記主流路の高さHとフィンとフィンの間のフィン隙間の寸法WとがH>Wの関係を満たしていることを特徴とする半導体冷却装置。
[1] An insulating substrate on which a semiconductor element is mounted on one surface of the insulating substrate via a wiring layer,
A heat dissipation board having a plurality of plate-like fins erected at predetermined intervals on one surface, and a recess for accommodating the fins, and is attached to one surface of the heat dissipation board to form a coolant circulation space. Equipped with a liquid-cooled cooler with a jacket,
a semiconductor cooling device in which the other side of the insulating substrate is joined or adhered to the other side of the heat dissipation substrate of the liquid-cooled cooler;
In the cooling liquid circulation space of the liquid-cooled cooler, a gap serving as a main flow path is formed between the tip of the fin and the bottom surface of the recess of the jacket, and the height H of the main flow path and the gap between the fins are A semiconductor cooling device characterized in that a dimension W of a fin gap satisfies the relationship H>W.

[2]前記フィン隙間の寸法Wが0.1mm~0.6mmである前項1に記載の半導体冷却装置。 [2] The semiconductor cooling device according to item 1, wherein the fin gap has a dimension W of 0.1 mm to 0.6 mm.

[3]前記主流路の高さHが0.9mm~3mmである前項1または2に記載の半導体冷却装置。 [3] The semiconductor cooling device according to the above item 1 or 2, wherein the height H of the main flow path is 0.9 mm to 3 mm.

[4]前記フィンは先端から放熱基板側に延びる、少なくとも1つのスリットを有する前項1~3のうちのいずれかに記載の半導体冷却装置。 [4] The semiconductor cooling device according to any one of items 1 to 3 above, wherein the fin has at least one slit extending from the tip toward the heat dissipation substrate.

[5]前記スリットの幅Sとフィン隙間の寸法WはS≧Wの関係を満たしている前項4に記載の半導体冷却装置。 [5] The semiconductor cooling device according to item 4, wherein the width S of the slit and the dimension W of the fin gap satisfy the relationship S≧W.

[6]前記スリットは半導体素子の直下を避けた位置に設けられている前項4または5に記載の半導体冷却装置。 [6] The semiconductor cooling device according to the above item 4 or 5, wherein the slit is provided at a position avoiding directly under the semiconductor element.

[7]冷却液の流れ方向において複数の半導体素子を有し、前記スリットが冷却液の流れ方向において半導体素子間に設けられている前項4~6のうちのいずれかに記載の半導体冷却装置。 [7] The semiconductor cooling device according to any one of items 4 to 6 above, which has a plurality of semiconductor elements in the flow direction of the coolant, and the slit is provided between the semiconductor elements in the flow direction of the coolant.

上記[1]に記載の半導体冷却装置は、液冷式冷却器の冷却液流通空間においてフィンの先端とジャケットとの間に隙間がある。このフィン先端側の隙間の高さHとフィンとフィンの間のフィン隙間の寸法WはH>Wの関係にあるので、冷却水はフィン隙間よりも流通抵抗の少ないフィン先端側の隙間に多く流れかつ流速が早くなって、前記フィン先端側の隙間が冷却液の主流路になる。このため、冷却液に混入する異物は冷却液とともに主流路に流れ込んで冷却液流通空間から排出されるか、あるいは主流路に留まったとしても、主流路は断面積が大きいので圧力損失は極めて小さい。また、流速は主流路よりも遅いがフィン隙間にも冷却水が流れ、流速の速い主流路からも流れ込むので、フィンの側面に接触する冷却液は絶えず入れ替わるので、フィンの側面から冷却液への伝熱も支障なく行われる。また、異物が主流路に流入せずに上流でフィン隙間に詰まったとしても、詰まった箇所を除いて主流路からフィン隙間に冷却液が流入する。 In the semiconductor cooling device described in [1] above, there is a gap between the tip of the fin and the jacket in the cooling liquid circulation space of the liquid-cooled cooler. The height H of the gap on the fin tip side and the dimension W of the fin gap between the fins are in the relationship H>W, so cooling water flows more in the gap on the fin tip side where there is less flow resistance than in the fin gap. The flow and flow speed become faster, and the gap on the fin tip side becomes the main flow path for the coolant. Therefore, foreign matter mixed in the coolant either flows into the main flow path with the coolant and is discharged from the coolant circulation space, or even if it remains in the main flow path, the pressure loss is extremely small because the main flow path has a large cross-sectional area. . In addition, cooling water flows into the gaps between the fins, although the flow velocity is slower than that in the main channel, and it also flows from the main channel, where the flow velocity is faster, so the coolant in contact with the sides of the fins is constantly replaced, so there is no flow from the sides of the fins into the coolant. Heat transfer also occurs without any problems. Further, even if foreign matter does not flow into the main flow path and becomes clogged in the fin gap upstream, the cooling liquid will flow into the fin gap from the main flow path except for the clogged portion.

以上のとおり、前記液冷式冷却器は異物がフィン隙間に詰まり難い構造であり、かつ異物が詰まっても詰まった箇所を避けて冷却液が流れる。このため、安定して優れた冷却性能が得られ、異物による圧力損失の上昇も抑制される。また、異物を通すためにフィン隙間の寸法Wを拡げる必要がないので、フィンピッチを小さくすることによる高い冷却性能を維持できる。 As described above, the liquid cooling type cooler has a structure that prevents foreign matter from clogging the fin gaps, and even if foreign matter becomes clogged, the cooling liquid flows avoiding the clogged area. Therefore, stable and excellent cooling performance is obtained, and an increase in pressure loss due to foreign matter is also suppressed. Furthermore, since there is no need to widen the dimension W of the fin gap to allow foreign matter to pass through, high cooling performance can be maintained by reducing the fin pitch.

上記[2]に記載の半導体冷却装置は、前記フィン隙間の寸法Wが0.1mm~0.6mmであるから、高い冷却性能が得られる。 In the semiconductor cooling device described in [2] above, since the dimension W of the fin gap is 0.1 mm to 0.6 mm, high cooling performance can be obtained.

上記[3]に記載の半導体冷却装置は、前記主流路の高さHが0.9mm~3mmであるから、主流路とフィン隙間の冷却液の流速のバランスが良く、安定して優れた冷却性能が得られる。 In the semiconductor cooling device described in [3] above, since the height H of the main channel is 0.9 mm to 3 mm, the flow velocity of the coolant between the main channel and the fin gap is well balanced, and stable and excellent cooling can be achieved. Performance can be obtained.

上記[4]に記載の半導体冷却装置は、冷却液がフィンに形成されたスリットを通じて主流路からフィン隙間に流れ込み、主流路とフィン隙間の両方において流れが攪拌される。このため、上流側で異物が詰まったとしても、異物よりも下流側ではこの攪拌によって冷却液が滞留することなく流れるので、異物の影響を受けにくくなる。また、冷却液がスリットからスリット隙間に流れ込むことによって、スリットより下流域の流速が速くなるので冷却性能のばらつきが小さくなる。 In the semiconductor cooling device described in [4] above, the cooling liquid flows from the main channel into the fin gaps through the slits formed in the fins, and the flow is stirred in both the main channel and the fin gaps. Therefore, even if the upstream side is clogged with foreign matter, the cooling liquid flows downstream of the foreign matter without being stagnated due to this agitation, making it less susceptible to the influence of foreign matter. Furthermore, since the cooling liquid flows from the slits into the slit gaps, the flow velocity downstream of the slits becomes faster, so that variations in cooling performance are reduced.

上記[5]に記載の半導体冷却装置は、フィンに形成されたスリットの幅Sとフィン隙間の寸法WとがS≧Wの関係を満たしているので、十分な攪拌効果が得られる。 In the semiconductor cooling device described in [5] above, the width S of the slit formed in the fin and the dimension W of the fin gap satisfy the relationship S≧W, so that a sufficient stirring effect can be obtained.

上記[6]に記載の半導体冷却装置は、フィンのスリットが半導体素子の直下を避けて設けられているので、スリットによるフィンへの伝熱効率の低下を抑制できる。 In the semiconductor cooling device described in [6] above, the slits of the fins are provided so as to avoid being directly under the semiconductor element, so that it is possible to suppress a decrease in heat transfer efficiency to the fins due to the slits.

上記[7]に記載の半導体冷却装置は冷却液の流れ方向において複数の半導体を有し、フィンのスリットが冷却液の流れ方向において半導体素子間に設けられている。このため、冷却液がスリットを通じて主流路からフィン隙間に流入して攪拌されるので、数の半導体素子に対する冷却性能のばらつきを小さくすることができる。 The semiconductor cooling device according to [7] above has a plurality of semiconductors in the direction of flow of the coolant, and slits of the fins are provided between the semiconductor elements in the direction of flow of the coolant. Therefore, the cooling liquid flows from the main channel into the fin gaps through the slits and is stirred, so that variations in cooling performance for a number of semiconductor elements can be reduced.

本発明の実施形態である第1の半導体冷却装置の分解斜視図である。FIG. 1 is an exploded perspective view of a first semiconductor cooling device that is an embodiment of the present invention. 図1の2A-2A線断面図である。FIG. 2 is a sectional view taken along line 2A-2A in FIG. 1; 図1の2B-2B線断面図である。FIG. 2 is a sectional view taken along line 2B-2B in FIG. 1; 本発明の実施形態である第2の半導体冷却装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of a second semiconductor cooling device that is an embodiment of the present invention. 第2の半導体冷却装置の上面透視図である。FIG. 6 is a top perspective view of the second semiconductor cooling device. 第2の半導体冷却装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view showing a modification of the second semiconductor cooling device. 第2の半導体冷却装置の別の変形例を示す縦断面図である。FIG. 7 is a longitudinal cross-sectional view showing another modification of the second semiconductor cooling device. 本発明の実施形態である第3の半導体冷却装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of a third semiconductor cooling device according to an embodiment of the present invention. 第3の半導体冷却装置の上面透視図である。FIG. 7 is a top perspective view of the third semiconductor cooling device.

図1~6Bに、本発明の液冷式冷却器および半導体冷却装置の3つの実施形態およびその変形例を示す。また、以下の説明において、共通の符号を同一物を示すものとして説明を省略する。
[第1の半導体冷却装置]
図1~図2Bに示す半導体冷却装置1は、絶縁基板10および液冷式冷却器20を備えている。
FIGS. 1 to 6B show three embodiments of a liquid-cooled cooler and a semiconductor cooling device of the present invention, and variations thereof. Further, in the following description, common reference numerals will be used to indicate the same thing, and the description will be omitted.
[First semiconductor cooling device]
The semiconductor cooling device 1 shown in FIGS. 1 to 2B includes an insulating substrate 10 and a liquid-cooled cooler 20.

前記絶縁基板10は四角形であり、一方の面に半導体素子11を実装するための配線層12が接合され、他方の面に絶縁基板10と液冷式冷却器20の間に発生する応力を緩和するとともに伝熱を促す緩衝層13が接合されている。14は半導体素子11を接合するはんだ層である。 The insulating substrate 10 has a rectangular shape, and a wiring layer 12 for mounting a semiconductor element 11 is bonded to one surface, and a layer 12 for relieving stress generated between the insulating substrate 10 and the liquid cooler 20 is bonded to the other surface. At the same time, a buffer layer 13 that promotes heat transfer is bonded. 14 is a solder layer that joins the semiconductor elements 11 together.

前記液冷式冷却器20は、四角形の放熱基板21とジャケット30とを備えている。前記放熱基板21は一方の面の中央部に複数の板状フィン22が所定の隙間をもって立設され、フィン22群の周囲がフランジ23となされている。前記ジャケット30は、フィン22群を収容する凹部31を有する箱型であり、凹部31の深さDがフィン22の高さHfよりも深い寸法に設定されている。液冷式冷却器20においては、高さHfが2mm~12mmのフィン22が好適に用いられる。前記ジャケット30の対向する2つの側壁32、33に冷却液Cの入口孔32aおよび出口孔33aが穿設され、それぞれにジョント34が取り付けられている。 The liquid cooling type cooler 20 includes a rectangular heat dissipation board 21 and a jacket 30. The heat dissipation board 21 has a plurality of plate-shaped fins 22 erected at the center of one surface with a predetermined gap therebetween, and a flange 23 is formed around the group of fins 22 . The jacket 30 has a box shape having a recess 31 that accommodates the group of fins 22, and the depth D of the recess 31 is set to be deeper than the height Hf of the fins 22. In the liquid-cooled cooler 20, fins 22 having a height Hf of 2 mm to 12 mm are preferably used. An inlet hole 32a and an outlet hole 33a for the cooling liquid C are formed in two opposing side walls 32 and 33 of the jacket 30, and a joint 34 is attached to each of them.

前記放熱基板21を、フィン22の長さ方向の両端部が入口孔32aおよび出口孔33に対面するようにジャケット30に被せると、凹部31にフィン22群が収容され、放熱基板21のフランジ23がジャケット30の上面に当接し、放熱基板21の一方の面と凹部31の内面によって囲まれた冷却液流通空間35が形成される。前記放熱基板21のフランジ23とジャケット30の当接面はろう付またはOリングを用いたシール構造により水密性が保持されている。冷却液Cは入口孔32aから冷却液流通空間に入り、出口孔33aから排出される。 When the heat dissipation board 21 is placed over the jacket 30 so that both longitudinal ends of the fins 22 face the inlet holes 32a and the outlet holes 33, the fins 22 are accommodated in the recesses 31, and the flange 23 of the heat dissipation board 21 comes into contact with the upper surface of the jacket 30, and a coolant circulation space 35 is formed surrounded by one surface of the heat dissipation board 21 and the inner surface of the recess 31. The contact surface between the flange 23 of the heat dissipation board 21 and the jacket 30 is kept watertight by brazing or a sealing structure using an O-ring. The coolant C enters the coolant circulation space from the inlet hole 32a and is discharged from the outlet hole 33a.

前記液冷式冷却器20において、凹部31の深さDとフィン22の高さHfはD>Hfの関係にあるので、フィン22の先端と凹部31の底面との間に高さHがD-Hfなる扁平な隙間36が形成される。前記凹部31の深さDおよびフィン22の高さHfは前記隙間36の高さHがフィン22とフィン22の間のフィン隙間24の寸法Wよりも大きくなるように、即ちH>Wの関係を満たすように設定されている。このため、入口孔32aから冷却液流通空間35に入った冷却液Cは、フィン隙間24より流通抵抗の少ないフィン先端側の隙間36に多く流れかつ流速が早くなり、フィン先端側の隙間36が冷却液Cの主流路36になる。そして、冷却液Cに異物Qが混入していたとしても、異物Qは冷却液Cとともに主流路36に流れ込み主流路36を通って出口孔33aから排出される。異物Qが出口孔33aから排出されずに主流路36に留まったとしても、主流路36は断面積が大きいので異物Qによる圧力損失は極めて小さい。 In the liquid-cooled cooler 20, the depth D of the recess 31 and the height Hf of the fin 22 have a relationship of D>Hf, so the height H between the tip of the fin 22 and the bottom of the recess 31 is D. A flat gap 36 of −Hf is formed. The depth D of the recess 31 and the height Hf of the fin 22 are set such that the height H of the gap 36 is larger than the dimension W of the fin gap 24 between the fins 22, that is, the relationship H>W. is set to meet. Therefore, the coolant C that has entered the coolant circulation space 35 from the inlet hole 32a flows more into the gap 36 on the fin tip side where the flow resistance is lower than that in the fin gap 24, and the flow rate becomes faster. This becomes the main flow path 36 for the coolant C. Even if foreign matter Q is mixed in the coolant C, the foreign matter Q flows into the main channel 36 together with the coolant C, passes through the main channel 36, and is discharged from the outlet hole 33a. Even if the foreign matter Q remains in the main channel 36 without being discharged from the outlet hole 33a, the pressure loss due to the foreign matter Q is extremely small because the main channel 36 has a large cross-sectional area.

なお、前記フィン隙間24の寸法Wはフィン22の高さ方向において隙間が最も狭い箇所における寸法とする。例えば、フィンの厚みが基端(放熱基板側)から先端に向かって薄くなっている場合は基端部における隙間が最も狭くなる。 Note that the dimension W of the fin gap 24 is the dimension at the point where the gap is the narrowest in the height direction of the fins 22. For example, when the thickness of the fin becomes thinner from the base end (the heat dissipation board side) toward the tip, the gap at the base end becomes the narrowest.

また、冷却液Cはフィン隙間24にも流れる。前記フィン隙間24を流れる冷却液Cの流速は主流路36よりも遅いが滞留することはなく上流側(入口孔32a側)から下流側(出口孔33a側)に流れる。さらに、前記フィン隙間24と主流路36はフィン22の先端側で連通しているので、冷却液Cは流速の速い主流路36からフィン隙間24にも流入する。このように、フィン22の側面に接触する冷却液Cも絶えず入れ替わるので、フィン22の側面から冷却液Cへの伝熱も支障なく行われる。また、仮に異物Qが主流路36に流入せずに上流でフィン隙間24に詰まったとしても、詰まった箇所を除いて主流路36からフィン隙間24に冷却液Cが流入する。 The coolant C also flows into the fin gaps 24. Although the flow rate of the coolant C flowing through the fin gaps 24 is slower than that in the main flow path 36, it does not stagnate and flows from the upstream side (inlet hole 32a side) to the downstream side (outlet hole 33a side). Further, since the fin gap 24 and the main flow path 36 communicate with each other at the tip end side of the fin 22, the coolant C also flows into the fin gap 24 from the main flow path 36, which has a high flow rate. In this way, the coolant C in contact with the side surfaces of the fins 22 is also constantly replaced, so that heat is transferred from the side surfaces of the fins 22 to the coolant C without any problem. Further, even if the foreign matter Q does not flow into the main flow path 36 and becomes clogged in the fin gap 24 upstream, the coolant C flows into the fin gap 24 from the main flow path 36 except for the clogged portion.

以上のとおり、前記液冷式冷却器20は異物Qがフィン隙間24に詰まり難い構造であり、かつ異物Qが詰まっても詰まった箇所を避けて冷却液Cが流れる。このため、安定して優れた冷却性能が得られ、異物による圧力損失の上昇も抑制される。また、異物Qを通すためにフィン隙間24の寸法Wを拡げる必要がないので、フィンピッチを小さくすることによる高い冷却性能を維持できる。 As described above, the liquid cooling type cooler 20 has a structure in which the foreign matter Q does not easily clog the fin gaps 24, and even if the foreign matter Q becomes clogged, the cooling liquid C flows avoiding the clogged part. Therefore, stable and excellent cooling performance is obtained, and an increase in pressure loss due to foreign matter is also suppressed. Furthermore, since there is no need to widen the dimension W of the fin gap 24 to allow the foreign matter Q to pass through, high cooling performance can be maintained by reducing the fin pitch.

前記フィン隙間24の寸法Wは0.1mm~0.6mmが好ましい。前記寸法Wが0.1mm未満では組立の難度が増してコスト増加につながる。一方、前記寸法Wが大きくなるほどフィン数が減り、0.6mmを超えると高い冷却性能を得にくくなる。特に好ましい寸法Wは0.2mm~0.5mmである。 The dimension W of the fin gap 24 is preferably 0.1 mm to 0.6 mm. If the dimension W is less than 0.1 mm, the difficulty of assembly increases, leading to an increase in cost. On the other hand, as the dimension W increases, the number of fins decreases, and when it exceeds 0.6 mm, it becomes difficult to obtain high cooling performance. A particularly preferred dimension W is 0.2 mm to 0.5 mm.

前記主流路36の高さHは0.9mm~3mmの範囲が好ましい。前記主流路36の高さHが0.9mm未満では冷却液Cを優先的に主流路36に流通させる効果が小さくなる。一方、前記高さHが3mmを超えると、冷却液Cが主流路36に抵抗なく流れ過ぎ、その結果フィン隙間24における流速が低下してフィン24側面からの伝熱性能が低下するので、冷却性能の向上を見込めない。前記高さHが0.9mm~3mmの範囲に設定されていると主流路36とフィン隙間24の流速のバランスが良く、安定して優れた冷却性能が得られる。前記主流路36の特に好ましい高さHは0.9mm~1.5mmである。
[第2の半導体冷却装置]
図3Aおよび図3Bに示す半導体冷却装置2は、第1の半導体冷却装置1とは液冷式冷却器40のフィン42の形状が異なる。フィン42以外の構成は第1の半導体冷却装置1と共通である。図3Bは前記半導体冷却装置2を上面から見て液冷式冷却器40内を透視し、フィン42と半導体素子11の位置関係を示した図である。
The height H of the main flow path 36 is preferably in the range of 0.9 mm to 3 mm. If the height H of the main flow path 36 is less than 0.9 mm, the effect of preferentially causing the coolant C to flow through the main flow path 36 will be reduced. On the other hand, if the height H exceeds 3 mm, the coolant C flows too much into the main channel 36 without resistance, resulting in a decrease in the flow velocity in the fin gaps 24 and a decrease in heat transfer performance from the side surfaces of the fins 24. No improvement in performance is expected. When the height H is set in the range of 0.9 mm to 3 mm, the flow velocity between the main flow path 36 and the fin gap 24 is well balanced, and stable and excellent cooling performance can be obtained. A particularly preferable height H of the main flow path 36 is 0.9 mm to 1.5 mm.
[Second semiconductor cooling device]
The semiconductor cooling device 2 shown in FIGS. 3A and 3B differs from the first semiconductor cooling device 1 in the shape of the fins 42 of the liquid-cooled cooler 40. The configuration other than the fins 42 is the same as the first semiconductor cooling device 1. FIG. 3B is a diagram illustrating the positional relationship between the fins 42 and the semiconductor element 11 when the semiconductor cooling device 2 is viewed from above and the interior of the liquid cooling type cooler 40 is seen through.

前記フィン42は、前記フィン22と同形の板状フィンの長さ方向の両端部からそれぞれ中心側に寄った2箇所に、フィン42の先端から放熱基板21側に延びるスリット43a、43bを有している。全てのフィン42は同じ位置にスリット43a、43bを有しており、平面視において各スリット43a、43bは冷却液Cの流れを横断する方向に連なっている。 The fin 42 has slits 43a and 43b extending from the tip of the fin 42 toward the heat dissipation board 21 at two locations closer to the center from both longitudinal ends of the plate-like fin having the same shape as the fin 22. ing. All the fins 42 have slits 43a, 43b at the same position, and each slit 43a, 43b is continuous in a direction transverse to the flow of the coolant C in plan view.

前記主流路36を流れる冷却液Cは前記スリット43a、43bを通じてフィン隙間44に流れ込み、主流路36とフィン隙間44の両方において流れが攪拌される。上流側で異物Qが詰まったとしても、詰まった異物Qよりも下流側ではこの攪拌によって冷却液Cが滞留することなく流れるので、異物Qの影響を受けにくくなる。また、冷却液Cがスリット43a、43bからスリット隙間44に流れ込むことによって、スリット43a、43bより下流域の流速が速くなるので、スリットの無い冷却器よりも冷却性能のばらつきが小さくなる。 The cooling liquid C flowing through the main flow path 36 flows into the fin gap 44 through the slits 43a and 43b, and the flow is stirred in both the main flow path 36 and the fin gap 44. Even if the foreign matter Q becomes clogged on the upstream side, the coolant C flows downstream of the clogged foreign matter Q without being stagnated due to this agitation, making it less susceptible to the influence of the foreign matter Q. In addition, since the cooling liquid C flows into the slit gap 44 from the slits 43a and 43b, the flow velocity downstream of the slits 43a and 43b becomes faster, so that variations in cooling performance are smaller than in a cooler without slits.

前記スリット43a、43bの幅Sとフィン隙間44の寸法WはS≧Wの関係を満たしていることが好ましく、十分な攪拌効果が得られる。前記スリット43a、43bの幅Sがスリット隙間44の寸法Wよりも小さくなると上述した攪拌効果が小さくなる。スリット43a、43bの幅Sが大きくなるほど攪拌効果が大きくなるが、その反面フィン42の表面積が小さくなるので伝熱性能が低下する。かかる観点より、特に好ましいスリット43a、43bの幅Sはスリット隙間Wの1.5倍~2倍である。 It is preferable that the width S of the slits 43a, 43b and the dimension W of the fin gap 44 satisfy the relationship S≧W, so that a sufficient stirring effect can be obtained. When the width S of the slits 43a, 43b becomes smaller than the dimension W of the slit gap 44, the above-mentioned stirring effect becomes smaller. As the width S of the slits 43a and 43b increases, the stirring effect increases, but on the other hand, the surface area of the fins 42 decreases, resulting in a decrease in heat transfer performance. From this point of view, the particularly preferable width S of the slits 43a and 43b is 1.5 to 2 times the slit gap W.

また、スリットは1つあれば上記効果が得られるので、スリット数は限定されない。スリットの位置も限定されない。ただし、発熱体である半導体素子に近い位置にスリットを設けるとフィンへの伝熱効率が低下するので、スリットは半導体素子の直下を避けて設けることが好ましい。半導体素子の直下を避けてスリットを設けることによって、伝熱効率の低下を抑制できる。図3Aおよび図3Bの液冷式冷却器2は、半導体素子11の直下を避けて、半導体素子11よりも上流側と下流側の2箇所にスリット43a、43bを設けている。また、異物Qはフィンの上流側端部に詰まることが多いので、上流側に複数のスリットを設けて異物Qに近い領域の攪拌を促進するようにしてもよい。図4の液冷式冷却器50は、フィン51の半導体素子11よりも上流側の2箇所にスリット52aを設け、下流側にの1箇所にスリット52bを設けて上流域の攪拌を促進するようにした液冷式冷却器である。また、図5の液冷式冷却器55は、フィン56の半導体素子11直下にスリット57を設けた液冷式冷却器である。これらの液冷式冷却器も本発明に含まれる。 Furthermore, since the above effect can be obtained with just one slit, the number of slits is not limited. The position of the slit is also not limited. However, if the slit is provided close to the semiconductor element, which is a heating element, the efficiency of heat transfer to the fins will decrease, so it is preferable to provide the slit so as not to be directly under the semiconductor element. By providing the slit so as not to be directly under the semiconductor element, it is possible to suppress a decrease in heat transfer efficiency. The liquid cooling type cooler 2 shown in FIGS. 3A and 3B has slits 43a and 43b provided at two locations, one on the upstream side and one on the downstream side of the semiconductor device 11, avoiding directly below the semiconductor device 11. Furthermore, since the foreign matter Q often clogs the upstream end of the fin, a plurality of slits may be provided on the upstream side to promote agitation in the region near the foreign matter Q. The liquid cooling type cooler 50 in FIG. 4 has slits 52a at two locations on the upstream side of the semiconductor element 11 of the fin 51, and a slit 52b at one location on the downstream side to promote agitation in the upstream region. It is a liquid-cooled cooler. Further, the liquid-cooled cooler 55 in FIG. 5 is a liquid-cooled cooler in which a slit 57 is provided in the fin 56 directly below the semiconductor element 11. These liquid-cooled coolers are also included in the present invention.

なお、図示例の液例式冷却器40は複数のフィン42は同じ位置にスリット43a、43bを有しているが、一部のフィンにのみスリットが設けられている場合や複数のフィンが異なる位置にスリットを有している場合も本発明に含まれる。
[第3の半導体冷却装置]
図6Aおよび図6Bの半導体冷却装置3は、冷却液Cの流れ方向の上流側に2個の半導体素子11a、下流側に2個の半導体素子11bが配置され、合計4個の半導体素子11a、11bが配置されている。4個の半導体素子11a、11bはそれぞれ別個の絶縁基板10に搭載されている。図6Bは前記半導体冷却装置3を上面から見て液冷式冷却器60内を透視し、フィン62と半導体素子11a、11bの位置関係を示した図である。
In addition, in the illustrated liquid type cooler 40, the plurality of fins 42 have slits 43a and 43b at the same position, but there are cases where only some of the fins are provided with slits, or where the plurality of fins are different. A case where a slit is provided at a certain position is also included in the present invention.
[Third semiconductor cooling device]
In the semiconductor cooling device 3 of FIGS. 6A and 6B, two semiconductor elements 11a are arranged on the upstream side in the flow direction of the cooling liquid C, and two semiconductor elements 11b are arranged on the downstream side, for a total of four semiconductor elements 11a, 11b is arranged. The four semiconductor elements 11a and 11b are mounted on separate insulating substrates 10, respectively. FIG. 6B is a diagram illustrating the positional relationship between the fins 62 and the semiconductor elements 11a and 11b, when the semiconductor cooling device 3 is viewed from above and the inside of the liquid-cooled cooler 60 is seen through.

液冷式冷却器60において、全てのフィン62は冷却液Cの流れ方向の中央にスリット63を有している。平面視において、各スリット63は上流側の半導体素子11aと下流側の半導体素子11bの間で冷却液Cの流れを横断する方向に連なっている。前記スリット63は半導体素子11a、11bの直下を避けた位置に設けられている。そして、前記スリット33において主流路36からフィン隙間64に流れ込み、主流路36とフィン隙間64の両方において流れが攪拌される。上流側で異物Qが詰まったとしても、詰まった異物Qよりも下流側ではこの攪拌によって冷却液Cが滞留することなく流れるので、異物の影響を受けにくくなる。また、冷却液Cがスリット63からスリット隙間64に流れ込むことによって、スリット63より下流域の流速が速くなるので、スリットの無い冷却器よりも複数の半導体素子11a、11bに対する冷却性能のばらつきが小さくなる。 In the liquid-cooled cooler 60, all the fins 62 have a slit 63 at the center in the flow direction of the cooling liquid C. In plan view, each slit 63 is continuous in a direction across the flow of the coolant C between the upstream semiconductor element 11a and the downstream semiconductor element 11b. The slit 63 is provided at a position that avoids being directly under the semiconductor elements 11a and 11b. Then, it flows from the main flow path 36 into the fin gap 64 in the slit 33, and the flow is stirred in both the main flow path 36 and the fin gap 64. Even if the foreign matter Q becomes clogged upstream, the cooling liquid C flows downstream of the clogged foreign matter Q due to this agitation without being stagnated, making it less susceptible to the influence of the foreign matter. Furthermore, as the cooling liquid C flows from the slit 63 into the slit gap 64, the flow velocity downstream of the slit 63 becomes faster, so the variation in cooling performance for the plurality of semiconductor elements 11a and 11b is smaller than in a cooler without slits. Become.

また、複数の半導体素子を有する冷却装置においても、スリット63の幅Sとフィン隙間64の寸法Wの好ましい関係は1つ半導体素子を有する冷却装置と同じである(図3A、3B参照)。 Further, even in a cooling device having a plurality of semiconductor elements, the preferable relationship between the width S of the slit 63 and the dimension W of the fin gap 64 is the same as in the cooling device having one semiconductor element (see FIGS. 3A and 3B).

[半導体冷却装置の構成部材の材料]
本発明の半導体冷却装置の構成部材の好ましい材料は以下のとおりである。
[Materials of components of semiconductor cooling device]
Preferred materials for the constituent members of the semiconductor cooling device of the present invention are as follows.

絶縁基板10を構成する材料は、電気絶縁性が優れていることはもとより、熱伝導性が良く放熱性が優れていることが好ましい。かかる点で窒化アルミニウム(AlN)、酸化アルミニウム(Al3)、窒化ケイ素(Si)、酸化ジルコニウム(ZrO)、炭化ケイ素(SiC)等のセラミックを例示できる。また、シリコン樹脂やエポキシ樹脂中に前記セラミックスをフィラーとして混合した複合材料も使用できる。また、絶縁基板10の厚さは0.2mm~3mmの範囲が好ましい。 It is preferable that the material constituting the insulating substrate 10 has not only excellent electrical insulation but also good thermal conductivity and excellent heat dissipation. In this respect, ceramics such as aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ) , silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), and silicon carbide (SiC) can be exemplified. Moreover, a composite material in which the ceramics are mixed as a filler into a silicone resin or an epoxy resin can also be used. Further, the thickness of the insulating substrate 10 is preferably in the range of 0.2 mm to 3 mm.

配線層12を構成する材料は導電性に優れかつ熱伝導性に優れたものが好ましく、アルミニウムまたはアルミニウム合金、銅または銅合金が好ましい。これらの中でも特に純アルミニウムが好ましい。また、配線層12の厚さは0.2mm~1mmの範囲が好ましい。また、半導体素子11は前記配線層12にろう付、はんだ付、溶着、接着剤等によって接合される。 The material constituting the wiring layer 12 is preferably one having excellent electrical conductivity and excellent thermal conductivity, and preferably aluminum or an aluminum alloy, copper or a copper alloy. Among these, pure aluminum is particularly preferred. Further, the thickness of the wiring layer 12 is preferably in the range of 0.2 mm to 1 mm. Furthermore, the semiconductor element 11 is joined to the wiring layer 12 by brazing, soldering, welding, adhesive, or the like.

緩衝層13を構成する材料および厚みは配線層12を構成する材料に準じる。前記緩衝層13は半導体素子11が発する熱の液冷式冷却器20、40、50、55、60への放熱を促す効果がある。また、前記緩衝層13は必須の層ではなく、絶縁基板10が直接冷却器20、40、50、55、60に接合された半導体冷却装置も本発明に含まれる。 The material and thickness of the buffer layer 13 are based on the material of the wiring layer 12. The buffer layer 13 has the effect of promoting heat radiation generated by the semiconductor element 11 to the liquid-cooled coolers 20 , 40 , 50 , 55 , and 60 . Furthermore, the buffer layer 13 is not an essential layer, and a semiconductor cooling device in which the insulating substrate 10 is directly bonded to the coolers 20, 40, 50, 55, and 60 is also included in the present invention.

液冷式冷却器20、40、50、55、60を構成する材料は、アルミニウムまたはアルミニウム合金、銅または銅合金などの高熱伝導性材料が好ましい。 The material constituting the liquid-cooled coolers 20, 40, 50, 55, and 60 is preferably a highly thermally conductive material such as aluminum or aluminum alloy, copper, or copper alloy.

本発明は大きな発熱を伴う半導体素子を実装した半導体冷却装置として好適に利用できる。 The present invention can be suitably used as a semiconductor cooling device mounting a semiconductor element that generates a large amount of heat.

1、2、3…半導体冷却装置
10…絶縁基板
11、11a、11b…半導体素子
12…配線層
13…緩衝層
20、40、50、55…液冷式冷却器
21…放熱基板
22、42、51、56、62…フィン
24、44、64…フィン隙間
30…ジャケット
31…凹部
35…冷却液流通空間
36…主流路
43a、43b、52a、52b、57、63…スリット
H…主流路の高さ
S…スリットの幅
Q…異物
C…冷却液
1, 2, 3...Semiconductor cooling device 10...Insulating substrate 11, 11a, 11b...Semiconductor element 12...Wiring layer 13...Buffer layer 20, 40, 50, 55...Liquid cooling type cooler 21...Radiation substrate 22, 42, 51, 56, 62...Fins 24, 44, 64...Fin gap 30...Jacket 31...Recess 35...Cooling liquid circulation space 36...Main flow path 43a, 43b, 52a, 52b, 57, 63...Slit H...Height of main flow path S...Slit width Q...Foreign object C...Cooling liquid

Claims (8)

絶縁基板の一方の面に配線層を介して半導体素子を搭載する絶縁基板と、
一方の面に複数の板状フィンが所定間隔で立設された放熱基板と、前記フィンを収容する凹部を有し、前記放熱基板の一方の面側に装着されて冷却液流通空間を形成するジャケットを有する液冷式冷却器とを備え、
前記絶縁基板の他方の面側が、前記液冷式冷却器の放熱基板の他方の面に接合又は接着されている半導体冷却装置であり、
前記液冷式冷却器の冷却液流通空間において、前記フィンの先端と前記ジャケットの凹部の底面との間に主流路となる隙間が形成され、前記主流路の高さHとフィンとフィンの間のフィン隙間の寸法WとがH>Wの関係を満たしており、
前記フィン隙間の寸法Wが0.1mm~0.6mmであることを特徴とする半導体冷却装置。
an insulating substrate on which a semiconductor element is mounted on one side of the insulating substrate via a wiring layer;
A heat dissipation board having a plurality of plate-like fins erected at predetermined intervals on one surface, and a recess for accommodating the fins, and is attached to one surface of the heat dissipation board to form a coolant circulation space. Equipped with a liquid-cooled cooler with a jacket,
a semiconductor cooling device in which the other side of the insulating substrate is joined or adhered to the other side of the heat dissipation substrate of the liquid-cooled cooler;
In the cooling liquid circulation space of the liquid-cooled cooler, a gap serving as a main flow path is formed between the tip of the fin and the bottom surface of the recess of the jacket, and the height H of the main flow path and the gap between the fins are The dimension W of the fin gap satisfies the relationship H>W ,
A semiconductor cooling device characterized in that the dimension W of the fin gap is 0.1 mm to 0.6 mm .
前記主流路の高さHが0.9mm~3mmである請求項1に記載の半導体冷却装置。 The semiconductor cooling device according to claim 1, wherein the height H of the main flow path is 0.9 mm to 3 mm. 前記フィンは先端から放熱基板側に延びる、少なくとも1つのスリットを有し、
前記スリットの幅Sとフィン隙間の寸法WはS≧Wの関係を満たしている請求項1または2に記載の半導体冷却装置。
The fin has at least one slit extending from the tip toward the heat dissipation board,
3. The semiconductor cooling device according to claim 1, wherein the width S of the slit and the dimension W of the fin gap satisfy the relationship S≧W.
絶縁基板の一方の面に配線層を介して半導体素子を搭載する絶縁基板と、
一方の面に複数の板状フィンが所定間隔で立設された放熱基板と、前記フィンを収容する凹部を有し、前記放熱基板の一方の面側に装着されて冷却液流通空間を形成するジャケットを有する液冷式冷却器とを備え、
前記絶縁基板の他方の面側が、前記液冷式冷却器の放熱基板の他方の面に接合又は接着されている半導体冷却装置であり、
前記液冷式冷却器の冷却液流通空間において、前記フィンの先端と前記ジャケットの凹部の底面との間に主流路となる隙間が形成され、前記主流路の高さHとフィンとフィンの間のフィン隙間の寸法WとがH>Wの関係を満たしており、
前記主流路の高さHが0.9mm~3mmであることを特徴とする半導体冷却装置。
an insulating substrate on which a semiconductor element is mounted on one side of the insulating substrate via a wiring layer;
A heat dissipation board having a plurality of plate-like fins erected at predetermined intervals on one surface, and a recess for accommodating the fins, and is attached to one surface of the heat dissipation board to form a coolant circulation space. Equipped with a liquid-cooled cooler with a jacket,
a semiconductor cooling device in which the other side of the insulating substrate is joined or adhered to the other side of the heat dissipation substrate of the liquid-cooled cooler;
In the cooling liquid circulation space of the liquid-cooled cooler, a gap serving as a main flow path is formed between the tip of the fin and the bottom surface of the recess of the jacket, and the height H of the main flow path and the gap between the fins are The dimension W of the fin gap satisfies the relationship H>W ,
A semiconductor cooling device characterized in that the height H of the main flow path is 0.9 mm to 3 mm .
前記フィンは先端から放熱基板側に延びる、少なくとも1つのスリットを有し、
前記スリットの幅Sとフィン隙間の寸法WはS≧Wの関係を満たしている請求項4に記載の半導体冷却装置。
The fin has at least one slit extending from the tip toward the heat dissipation board,
5. The semiconductor cooling device according to claim 4, wherein the width S of the slit and the dimension W of the fin gap satisfy the relationship S≧W .
絶縁基板の一方の面に配線層を介して半導体素子を搭載する絶縁基板と、
一方の面に複数の板状フィンが所定間隔で立設された放熱基板と、前記フィンを収容する凹部を有し、前記放熱基板の一方の面側に装着されて冷却液流通空間を形成するジャケットを有する液冷式冷却器とを備え、
前記絶縁基板の他方の面側が、前記液冷式冷却器の放熱基板の他方の面に接合又は接着されている半導体冷却装置であり、
前記液冷式冷却器の冷却液流通空間において、前記フィンの先端と前記ジャケットの凹部の底面との間に主流路となる隙間が形成され、前記主流路の高さHとフィンとフィンの間のフィン隙間の寸法WとがH>Wの関係を満たしており、
前記フィンは先端から放熱基板側に延びる、少なくとも1つのスリットを有し、
前記スリットの幅Sとフィン隙間の寸法WはS≧Wの関係を満たしていることを特徴とする半導体冷却装置。
an insulating substrate on which a semiconductor element is mounted on one side of the insulating substrate via a wiring layer;
A heat dissipation board having a plurality of plate-like fins erected at predetermined intervals on one surface, and a recess for accommodating the fins, and is attached to one surface of the heat dissipation board to form a coolant circulation space. Equipped with a liquid-cooled cooler with a jacket,
a semiconductor cooling device in which the other side of the insulating substrate is joined or adhered to the other side of the heat dissipation substrate of the liquid-cooled cooler;
In the cooling liquid circulation space of the liquid-cooled cooler, a gap serving as a main flow path is formed between the tip of the fin and the bottom surface of the recess of the jacket, and the height H of the main flow path and the gap between the fins are The dimension W of the fin gap satisfies the relationship H>W ,
The fin has at least one slit extending from the tip toward the heat dissipation board,
A semiconductor cooling device characterized in that the width S of the slit and the dimension W of the fin gap satisfy the relationship S≧W .
前記スリットは半導体素子の直下を避けた位置に設けられている請求項3、5、6のいずれか1項に記載の半導体冷却装置。 7. The semiconductor cooling device according to claim 3, wherein the slit is provided at a position away from directly below the semiconductor element. 冷却液の流れ方向において複数の半導体素子を有し、前記スリットが冷却液の流れ方向において半導体素子間に設けられている請求項3、5、6、7のいずれか1項に記載の半導体冷却装置。 Semiconductor cooling according to any one of claims 3, 5, 6, and 7, which has a plurality of semiconductor elements in the flow direction of the coolant, and the slit is provided between the semiconductor elements in the flow direction of the coolant. Device.
JP2019208781A 2019-11-19 2019-11-19 semiconductor cooling equipment Active JP7388145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019208781A JP7388145B2 (en) 2019-11-19 2019-11-19 semiconductor cooling equipment
CN202010976482.XA CN112908951A (en) 2019-11-19 2020-09-16 Semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208781A JP7388145B2 (en) 2019-11-19 2019-11-19 semiconductor cooling equipment

Publications (2)

Publication Number Publication Date
JP2021082702A JP2021082702A (en) 2021-05-27
JP7388145B2 true JP7388145B2 (en) 2023-11-29

Family

ID=75966001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208781A Active JP7388145B2 (en) 2019-11-19 2019-11-19 semiconductor cooling equipment

Country Status (2)

Country Link
JP (1) JP7388145B2 (en)
CN (1) CN112908951A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907463B (en) * 2021-07-08 2022-09-06 中国地质大学(北京) Liquid cooling device and liquid cooling clothes system
CN115087334A (en) * 2022-07-21 2022-09-20 深圳威迈斯新能源股份有限公司 APM module vertical installation structure, installation method and vehicle-mounted charger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110025A (en) 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter
JP2007165481A (en) 2005-12-12 2007-06-28 Seiko Epson Corp Heat exchanger, light source device, projector, and electronic device
JP2007335588A (en) 2006-06-14 2007-12-27 Toyota Motor Corp Heat sink and condenser
JP2008135757A (en) 2005-04-21 2008-06-12 Nippon Light Metal Co Ltd Liquid-cooling jacket
JP2008218590A (en) 2007-03-02 2008-09-18 Hitachi Ltd Cooling device for electronic apparatus
JP2008300455A (en) 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Power module
JP2014135457A (en) 2013-01-11 2014-07-24 Honda Motor Co Ltd Cooler for semiconductor module, and semiconductor module
JP2014192409A (en) 2013-03-28 2014-10-06 Fujitsu Ltd Micro channel heat exchange device and electronic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989574B2 (en) * 2008-07-10 2012-08-01 株式会社日本自動車部品総合研究所 Heat sink for semiconductor element cooling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135757A (en) 2005-04-21 2008-06-12 Nippon Light Metal Co Ltd Liquid-cooling jacket
JP2007110025A (en) 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter
JP2007165481A (en) 2005-12-12 2007-06-28 Seiko Epson Corp Heat exchanger, light source device, projector, and electronic device
JP2007335588A (en) 2006-06-14 2007-12-27 Toyota Motor Corp Heat sink and condenser
JP2008218590A (en) 2007-03-02 2008-09-18 Hitachi Ltd Cooling device for electronic apparatus
JP2008300455A (en) 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Power module
JP2014135457A (en) 2013-01-11 2014-07-24 Honda Motor Co Ltd Cooler for semiconductor module, and semiconductor module
JP2014192409A (en) 2013-03-28 2014-10-06 Fujitsu Ltd Micro channel heat exchange device and electronic equipment

Also Published As

Publication number Publication date
JP2021082702A (en) 2021-05-27
CN112908951A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
JP5801996B2 (en) Double-sided cooling power module with power coating
US8210243B2 (en) Structure and apparatus for cooling integrated circuits using cooper microchannels
KR101906645B1 (en) Cooler for semiconductor module, and semiconductor module
JP5900610B2 (en) Semiconductor device and cooler for semiconductor device
KR101118948B1 (en) Semiconductor device
JP2007096306A (en) Heat sink
EP2538440B1 (en) Cooling device for a power module, and a related method thereof
JP7388145B2 (en) semiconductor cooling equipment
JPWO2015079643A1 (en) Manufacturing method of semiconductor module cooler, semiconductor module cooler, semiconductor module, and electrically driven vehicle
JP2008004667A (en) Cooling structure, and manufacturing method thereof
JP2010278438A (en) Heatsink, and method of fabricating the same
JP2023075207A (en) Cooling device
JP5344994B2 (en) Heat sink device
JP5114323B2 (en) Semiconductor device
JP2008294279A (en) Semiconductor device
JP2008071800A (en) Heat dissipation plate, cooling structure and heat sink
JP5114324B2 (en) Semiconductor device
JP2014045134A (en) Flow passage member, heat exchanger using the same, and semiconductor device
JPH06112382A (en) Cooling system of heating element
WO2019111751A1 (en) Semiconductor cooling device
JP5227681B2 (en) Semiconductor device
JP2014038893A (en) Heat exchange member, passage member including the same, heat exchanger, and semiconductor device
US20220246495A1 (en) Heat sink and semiconductor module
JP2005294425A (en) Comb heatsink
JP2021052060A (en) Heat sink and electronic apparatus with heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151