JP5114323B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5114323B2
JP5114323B2 JP2008176087A JP2008176087A JP5114323B2 JP 5114323 B2 JP5114323 B2 JP 5114323B2 JP 2008176087 A JP2008176087 A JP 2008176087A JP 2008176087 A JP2008176087 A JP 2008176087A JP 5114323 B2 JP5114323 B2 JP 5114323B2
Authority
JP
Japan
Prior art keywords
stress relaxation
heat sink
hole
relaxation member
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008176087A
Other languages
Japanese (ja)
Other versions
JP2010016254A (en
Inventor
昌吾 森
忍 田村
忍 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Showa Denko KK
Original Assignee
Toyota Industries Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Showa Denko KK filed Critical Toyota Industries Corp
Priority to JP2008176087A priority Critical patent/JP5114323B2/en
Priority to US12/496,391 priority patent/US8472193B2/en
Priority to EP09164413A priority patent/EP2141740A3/en
Priority to EP11161897.1A priority patent/EP2339620A3/en
Priority to EP11161895.5A priority patent/EP2337069A3/en
Priority to KR1020090060190A priority patent/KR101118499B1/en
Priority to CN2009101587286A priority patent/CN101699620B/en
Priority to CN201110057706.8A priority patent/CN102163586B/en
Priority to CN201110057688.3A priority patent/CN102163585B/en
Publication of JP2010016254A publication Critical patent/JP2010016254A/en
Priority to KR1020110013831A priority patent/KR101110164B1/en
Priority to KR1020110013830A priority patent/KR101118948B1/en
Priority to US13/428,542 priority patent/US8958208B2/en
Priority to US13/428,584 priority patent/US20120182695A1/en
Application granted granted Critical
Publication of JP5114323B2 publication Critical patent/JP5114323B2/en
Priority to US13/900,108 priority patent/US20130256867A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、絶縁基板とヒートシンクとの間に応力緩和部材が設けられるとともに、絶縁基板とヒートシンクとが熱伝導可能に結合された半導体装置に関する。   The present invention relates to a semiconductor device in which a stress relaxation member is provided between an insulating substrate and a heat sink, and the insulating substrate and the heat sink are coupled so as to conduct heat.

半導体装置としては、窒化アルミニウムなどからなる絶縁基板の表裏両面に純アルミニウムなどの金属板を接合し、表面金属板に半田付けなどにより半導体素子を接合するとともに裏面金属板とヒートシンク(放熱装置)とを互いに熱伝導可能な状態で結合したものがある。そして、この半導体装置では、半導体素子の発する熱を、裏面金属板に接合されたヒートシンクから放熱するようになっている。ところで、半導体装置では、ヒートシンクの放熱性能が長期間にわたって維持されることが要求されているが、従来の構成によれば、使用条件によっては絶縁基板と、金属板及びヒートシンクとの線膨張係数の相違に起因して発生する熱応力によって接合部にクラックや反りが生じ、放熱性能が低下する虞がある。   As a semiconductor device, a metal plate such as pure aluminum is bonded to both front and back surfaces of an insulating substrate made of aluminum nitride, etc., and a semiconductor element is bonded to a front surface metal plate by soldering, and a back surface metal plate and a heat sink (heat dissipation device) Are combined in a state where they can conduct heat with each other. In this semiconductor device, the heat generated by the semiconductor element is radiated from the heat sink joined to the back metal plate. By the way, in the semiconductor device, it is required that the heat dissipation performance of the heat sink is maintained over a long period of time. However, according to the conventional configuration, the linear expansion coefficient of the insulating substrate, the metal plate, and the heat sink depends on the use conditions. There is a risk that the thermal stress generated due to the difference will cause cracks and warpage in the joint, resulting in a reduction in heat dissipation performance.

そこで、従来、このような問題を解決するために、裏面側の金属板に対して所定深さの段差、溝、凹陥部からなる熱応力緩和部を設けた半導体モジュールが提案されている(例えば、特許文献1参照。)。そして、特許文献1に記載の半導体モジュールでは、表面側の金属板に対する裏面側の金属板の体積比が0.6以下となるように、熱応力緩和部の数や大きさを設定している。   Therefore, conventionally, in order to solve such a problem, there has been proposed a semiconductor module provided with a thermal stress relaxation portion including a step, a groove, and a recessed portion having a predetermined depth with respect to the metal plate on the back surface side (for example, , See Patent Document 1). And in the semiconductor module of patent document 1, the number and magnitude | size of a thermal-stress relaxation part are set so that the volume ratio of the metal plate of the back surface side with respect to the metal plate of the surface side may be 0.6 or less. .

また、その他に、裏金属板に対して放熱装置との接合面に、孔又は溝からなる非接合領域と孔又は溝が形成されていない接合領域とを形成し、接合領域の面積を接合面全体の面積に対して65%〜85%の範囲とした半導体モジュールが提案されている(例えば、特許文献2参照。)。
特開2003−17627号公報 特開2007−173405号公報
In addition, a non-joint region composed of holes or grooves and a joint region where no holes or grooves are formed are formed on the joint surface with the heat dissipation device with respect to the back metal plate. A semiconductor module having a range of 65% to 85% with respect to the entire area has been proposed (see, for example, Patent Document 2).
JP 2003-17627 A JP 2007-173405 A

ところで、特許文献1に記載の半導体モジュールは、裏面側の金属板に形成された熱応力緩和部としての段差、溝、凹陥部によって、温度変化時に半導体モジュールに生じる熱応力を緩和するようになっている。このため、半導体モジュールにおいては、段差、溝、凹陥部をできる限り大きくして、熱応力緩和部として設けた方が好ましいが、熱応力緩和部を大きくすると、その分、裏面側の金属板の熱伝導性が低下するため、熱伝導性及び応力緩和機能のバランスを考慮する必要があった。ところが、この半導体モジュールでは、熱応力緩和部を大きくすることに比例して裏面側の金属板の熱伝導性が低下してしまうため、応力緩和機能の向上には限界があった。   By the way, the semiconductor module described in Patent Document 1 relaxes the thermal stress generated in the semiconductor module when the temperature changes due to the steps, grooves, and recesses as thermal stress relaxation portions formed on the metal plate on the back surface side. ing. For this reason, in the semiconductor module, it is preferable that the step, the groove, and the recessed portion are made as large as possible and provided as the thermal stress relaxation portion. However, when the thermal stress relaxation portion is enlarged, the portion of the metal plate on the back side is increased accordingly. Since the thermal conductivity is lowered, it is necessary to consider the balance between the thermal conductivity and the stress relaxation function. However, in this semiconductor module, the thermal conductivity of the metal plate on the back surface side is reduced in proportion to the increase in the thermal stress relaxation part, and thus there is a limit to the improvement of the stress relaxation function.

また、特許文献2に記載の半導体モジュールにおいても同様に、非接合領域を大きくするのに比例して裏金属板の熱伝導性が低下してしまうため、応力緩和機能の向上には限界があった。   Similarly, in the semiconductor module described in Patent Document 2, since the thermal conductivity of the back metal plate decreases in proportion to the increase in the non-bonded region, there is a limit to the improvement of the stress relaxation function. It was.

本発明は、前記問題に鑑みてなされたものであって、その目的は、応力緩和部材の熱伝導性の低下を抑えつつ、応力緩和部材による応力緩和機能を向上させることができる半導体装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor device capable of improving the stress relaxation function of the stress relaxation member while suppressing a decrease in the thermal conductivity of the stress relaxation member. There is to do.

上記の目的を達成するため、請求項1に記載の発明は、絶縁基板の一面に金属配線層が接合されるとともに前記金属配線層には半導体素子が接合され、前記絶縁基板と前記絶縁基板の他面側に配置されたヒートシンクとの間には、高熱伝導性材料からなる応力緩和部材が設けられ、前記絶縁基板と前記ヒートシンクとは互いに熱伝導可能に結合された半導体装置において、前記ヒートシンクは、一方向に長くかつ間隔を空けて並設された複数の仕切り壁を有し、前記応力緩和部材には、厚み方向に貫通する貫通孔又は厚み方向に開口する有底穴からなる応力吸収部が設けられ、前記貫通孔における仕切り壁の長手方向に沿う長さは、前記貫通孔における複数の仕切り壁の並設方向に沿う長さよりも長く、前記有底穴における仕切り壁の長手方向に沿う長さは、前記有底穴における複数の仕切り壁の並設方向に沿う長さよりも長いことを要旨とする。   In order to achieve the above object, according to the first aspect of the present invention, a metal wiring layer is bonded to one surface of an insulating substrate and a semiconductor element is bonded to the metal wiring layer. In the semiconductor device in which a stress relaxation member made of a high thermal conductivity material is provided between the heat sink disposed on the other surface side and the insulating substrate and the heat sink are coupled to each other so as to conduct heat, the heat sink A stress absorbing portion having a plurality of partition walls which are long in one direction and spaced apart from each other, and the stress relaxation member includes a through-hole penetrating in the thickness direction or a bottomed hole opening in the thickness direction. The length along the longitudinal direction of the partition wall in the through hole is longer than the length along the parallel direction of the plurality of partition walls in the through hole, and the length of the partition wall in the bottomed hole is longer The length along the is summarized in that longer than the length along the arrangement direction of the plurality of partition walls in the closed bottom hole.

上記の目的を達成するため、請求項4に記載の発明は、絶縁基板の一面に金属配線層が接合されるとともに前記金属配線層には半導体素子が接合され、前記絶縁基板と前記絶縁基板の他面側に配置されたヒートシンクとの間には、高熱伝導性材料からなる応力緩和部材が設けられ、前記絶縁基板と前記ヒートシンクとは互いに熱伝導可能に結合された半導体装置において、前記ヒートシンクは、一方向に長くかつ間隔を空けて並設された複数の仕切り壁を有し、前記応力緩和部材には、厚み方向に貫通するとともに前記仕切り壁の長手方向に沿うように配列された複数の貫通孔によって構成された孔群からなる応力吸収部が設けられ、全ての前記貫通孔は、前記仕切り壁の並設方向に沿う開口幅が前記仕切り壁の長手方向に沿う開口幅よりも長くなるように形成され、前記孔群における仕切り壁の長手方向に沿う開口幅の総和は、前記応力吸収部における複数の仕切り壁の並設方向に沿う最大幅よりも長いことを要旨とする。   In order to achieve the above object, according to a fourth aspect of the present invention, a metal wiring layer is bonded to one surface of an insulating substrate, a semiconductor element is bonded to the metal wiring layer, and the insulating substrate and the insulating substrate In the semiconductor device in which a stress relaxation member made of a high thermal conductivity material is provided between the heat sink disposed on the other surface side and the insulating substrate and the heat sink are coupled to each other so as to conduct heat, the heat sink A plurality of partition walls that are long in one direction and spaced apart from each other, and the stress relaxation member includes a plurality of partition walls that penetrate in the thickness direction and are arranged along the longitudinal direction of the partition walls. A stress absorbing part composed of a group of holes formed by through holes is provided, and all the through holes have an opening width along the parallel arrangement direction of the partition walls larger than an opening width along the longitudinal direction of the partition walls. Formed in Kunar so, the sum of the longitudinal direction along the opening width of the partition wall in the hole group is summarized in that longer than the maximum width along the arrangement direction of the plurality of partition walls in the stress absorbing portion.

請求項1及び請求項4に記載の発明では、応力緩和部材は仕切り壁の長手方向に変形し易くなっている。そして、絶縁基板とヒートシンクとの線膨張係数の相違に起因して熱応力が発生したときに、一方向に延びる仕切り壁があることで仕切り壁の長手方向の熱応力は仕切り壁の並設方向の熱応力に比べて大きくなるが、応力緩和部材は仕切り壁の長手方向に沿う熱応力をより緩和できる。したがって、応力緩和部材の応力緩和機能は向上する。   In the first and fourth aspects of the invention, the stress relaxation member is easily deformed in the longitudinal direction of the partition wall. And when thermal stress occurs due to the difference in linear expansion coefficient between the insulating substrate and the heat sink, there is a partition wall extending in one direction, so that the thermal stress in the longitudinal direction of the partition wall is the direction in which the partition walls are arranged side by side However, the stress relaxation member can further relax the thermal stress along the longitudinal direction of the partition wall. Therefore, the stress relaxation function of the stress relaxation member is improved.

また、応力緩和部材において、応力吸収部を形成しても、応力吸収部における複数の仕切り壁の並設方向に沿った長さが長くなることを抑制できる。そのため、例えば、真円形状の孔又は穴を大きくすることで応力緩和部材の応力緩和機能を向上させる場合に比べて、応力緩和部材において高熱伝導性材料からなる部分の減少量を抑制できる。そして、半導体素子から発生した熱は第1金属板、絶縁基板、応力緩和部材を介してヒートシンクに円滑に伝達され、ヒートシンクに伝達された熱は、ヒートシンクから外部に放出される。したがって、応力緩和部材に設けられた応力吸収部を大きくしたことに起因する、応力緩和部材の熱伝導性の低下を抑制できる。   Moreover, even if a stress absorbing part is formed in the stress relaxation member, it is possible to suppress an increase in the length along the juxtaposed direction of the plurality of partition walls in the stress absorbing part. Therefore, for example, as compared with the case where the stress relaxation function of the stress relaxation member is improved by enlarging the perfect circular hole or hole, the amount of reduction in the portion made of the high thermal conductivity material in the stress relaxation member can be suppressed. The heat generated from the semiconductor element is smoothly transmitted to the heat sink through the first metal plate, the insulating substrate, and the stress relaxation member, and the heat transmitted to the heat sink is released to the outside from the heat sink. Therefore, it is possible to suppress a decrease in the thermal conductivity of the stress relaxation member due to the enlargement of the stress absorbing portion provided in the stress relaxation member.

請求項2に記載の発明は、請求項1に記載の発明において、前記絶縁基板の他面には、金属板が接合され、前記応力緩和部材は、前記金属板とは別に設けられていることを要旨とする。   According to a second aspect of the present invention, in the first aspect of the present invention, a metal plate is bonded to the other surface of the insulating substrate, and the stress relaxation member is provided separately from the metal plate. Is the gist.

この発明では、応力緩和部材は、半導体素子や基板等とは別体の状態で加工することができるため、応力緩和部材に孔や穴を形成する際に半導体素子や基板に対する影響を考慮する必要がない。よって、応力緩和部材の応力吸収部は、高熱伝導性材料に対して、例えば、プレス加工のような機械的な加工を施すことにより形成することができる。   In this invention, since the stress relaxation member can be processed in a state separate from the semiconductor element or the substrate, it is necessary to consider the influence on the semiconductor element or the substrate when forming the hole or hole in the stress relaxation member. There is no. Therefore, the stress absorbing portion of the stress relaxation member can be formed by performing mechanical processing such as press processing on the high thermal conductivity material.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記応力緩和部材のうち前記半導体素子と対応する部分は、前記応力吸収部が形成されておらず、前記半導体素子から発生した熱を伝導可能な熱伝導部として構成されていることを要旨とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the stress absorbing portion is not formed in a portion corresponding to the semiconductor element in the stress relaxation member, and the semiconductor The gist is that it is configured as a heat conducting portion capable of conducting heat generated from the element.

応力緩和部材において半導体素子と対応する部分は、半導体素子から発生した熱が早くに到達する部分である。そのため、この発明では、この半導体素子と対応する部分を応力緩和部が存在しない熱伝導部とすることで、半導体素子から発生した熱が速やかに応力緩和部材を伝導してヒートシンクに到達できるように構成することができる。   The part corresponding to the semiconductor element in the stress relaxation member is a part where heat generated from the semiconductor element reaches early. Therefore, according to the present invention, the portion corresponding to the semiconductor element is a heat conducting portion having no stress relaxation portion so that the heat generated from the semiconductor element can quickly pass through the stress relaxation member and reach the heat sink. Can be configured.

本発明によれば、応力緩和部材の熱伝導性の低下を抑えつつ、応力緩和部材による応力緩和機能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the stress relaxation function by a stress relaxation member can be improved, suppressing the heat conductive fall of a stress relaxation member.

以下、本発明を具体化した一実施形態を図1及び図2にしたがって説明する。なお、図1及び図2は、半導体装置の構成を模式的に示したものであり、図示の都合上、一部の寸法を誇張して分かりやすくするために、それぞれの部分の幅、長さ、厚さ等の寸法の比は実際の比と異なっている。   Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2. 1 and 2 schematically show the structure of the semiconductor device. For convenience of illustration, in order to exaggerate some of the dimensions, the width and length of each part are easy to understand. The ratio of dimensions such as thickness is different from the actual ratio.

図1に示すように、半導体装置10は、絶縁回路基板11を備え、絶縁回路基板11上に半導体素子(半導体チップ)12が搭載されている。絶縁回路基板11は、絶縁基板としてのセラミック基板13の表面13aに第1金属板(金属回路板)14が接合されるとともにセラミック基板13の裏面13bに第2金属板15が接合されることで構成されている。なお、第1金属板14及び第2金属板15は、アルミニウムや銅により形成されている。   As shown in FIG. 1, the semiconductor device 10 includes an insulating circuit substrate 11, and a semiconductor element (semiconductor chip) 12 is mounted on the insulating circuit substrate 11. The insulated circuit board 11 has a first metal plate (metal circuit board) 14 joined to a surface 13a of a ceramic substrate 13 as an insulated substrate, and a second metal plate 15 joined to a back surface 13b of the ceramic substrate 13. It is configured. The first metal plate 14 and the second metal plate 15 are made of aluminum or copper.

セラミック基板13は、図1における上側が半導体素子12の搭載面となる表面13a側とされており、表面13aのうち半導体素子12の搭載面に金属配線層として機能する第1金属板14が接合されている。そして、第1金属板14には、図示しない半田を介して半導体素子12が接合されている。半導体素子12としては、例えば、IGBT(Insulated Gate Bipolar Transistor )、MOSFET、ダイオードが用いられる。   The upper side in FIG. 1 is the surface 13a side on which the semiconductor element 12 is mounted, and the ceramic substrate 13 is joined to the first metal plate 14 that functions as a metal wiring layer on the mounting surface of the semiconductor element 12 in the surface 13a. Has been. The semiconductor element 12 is joined to the first metal plate 14 via solder (not shown). As the semiconductor element 12, for example, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET, or a diode is used.

一方、セラミック基板13は図1における下側が表面13aの反対面としての裏面13bとされており、裏面13bにセラミック基板13とヒートシンク16とを結合する結合層として機能する第2金属板15が接合されている。   On the other hand, the lower side of the ceramic substrate 13 in FIG. 1 is a back surface 13b as an opposite surface of the front surface 13a, and a second metal plate 15 that functions as a bonding layer for bonding the ceramic substrate 13 and the heat sink 16 is joined to the back surface 13b. Has been.

そして、セラミック基板13が結合されたヒートシンク16は、金属製であるとともに、半導体素子12で発生した熱を強制的に除去する強制冷却式の冷却器として機能する。ヒートシンク16の冷却能力は、半導体素子12が定常発熱状態(通常状態)にある場合、半導体素子12で発生した熱が絶縁回路基板11を介してヒートシンク16に伝導されて円滑に除去されるように設定されている。ヒートシンク16は、長手方向が図2における左右方向となり、短手方向が図2の上下方向となる平面視略長方形状に形成されるとともに、その外郭が扁平中空状のケース部17によって構成されている。   The heat sink 16 to which the ceramic substrate 13 is coupled is made of metal and functions as a forced cooling type cooler that forcibly removes the heat generated in the semiconductor element 12. The cooling capacity of the heat sink 16 is such that when the semiconductor element 12 is in a steady heat generation state (normal state), the heat generated in the semiconductor element 12 is conducted to the heat sink 16 through the insulating circuit board 11 and smoothly removed. Is set. The heat sink 16 is formed in a substantially rectangular shape in a plan view in which the longitudinal direction is the left-right direction in FIG. 2 and the short side direction is the up-down direction in FIG. Yes.

ケース部17にはその内部に一直線状に延びる複数の仕切り壁18が設けられている。図1及び図2に示すように、複数の仕切り壁18は等間隔に配置されるとともに、互いに平行となるように構成されている。そして、複数の仕切り壁18は、隣り合う仕切り壁18同士及び仕切り壁18とケース部17の内側壁部17aとによって流体(例えば、冷却水)が流れる複数の冷媒通路19を区画している。複数の仕切り壁18は、ヒートシンク16の長手方向に並列されるとともに、ヒートシンク16の短手方向に沿って長く延びている。そして、ヒートシンク16と絶縁回路基板11における第2金属板15との間には、絶縁回路基板11とヒートシンク16とを結合する応力緩和部材20が設けられている。   The case portion 17 is provided with a plurality of partition walls 18 extending linearly therein. As shown in FIGS. 1 and 2, the plurality of partition walls 18 are arranged at equal intervals and are configured to be parallel to each other. The plurality of partition walls 18 define a plurality of refrigerant passages 19 through which fluid (for example, cooling water) flows by the adjacent partition walls 18 and the partition walls 18 and the inner wall portion 17a of the case portion 17. The plurality of partition walls 18 are juxtaposed in the longitudinal direction of the heat sink 16 and extend long along the short direction of the heat sink 16. And between the heat sink 16 and the 2nd metal plate 15 in the insulated circuit board 11, the stress relaxation member 20 which couple | bonds the insulated circuit board 11 and the heat sink 16 is provided.

応力緩和部材20は高熱伝導性材料としてのアルミニウムからなるとともに、平面視略長方形の平板状に形成されている。そして、応力緩和部材20は、一面20a全体が第2金属板15にろう付けされるとともに、一面20aに背向する他面20b全体がヒートシンク16にろう付けされている。すなわち、応力緩和部材20と第2金属板15との間、及び応力緩和部材20とヒートシンク16との間にはろう材よりなる接合部が形成されている。このため、絶縁回路基板11とヒートシンク16とは、応力緩和部材20を介して互いに熱伝導可能に結合され、半導体素子12から発せられた熱が絶縁回路基板11、応力緩和部材20の順に伝導してヒートシンク16に伝わるようになっている。また、応力緩和部材20には、応力緩和部材20の厚み方向のみに貫通する平面視楕円形状の複数個(本実施形態では12個)の応力吸収部としての貫通孔21が形成されている。   The stress relaxation member 20 is made of aluminum as a high thermal conductivity material and is formed in a flat plate shape having a substantially rectangular shape in plan view. The entire surface 20 a of the stress relaxation member 20 is brazed to the second metal plate 15, and the entire other surface 20 b facing away from the one surface 20 a is brazed to the heat sink 16. That is, joints made of a brazing material are formed between the stress relaxation member 20 and the second metal plate 15 and between the stress relaxation member 20 and the heat sink 16. For this reason, the insulating circuit board 11 and the heat sink 16 are coupled to each other through the stress relaxation member 20 so as to be able to conduct heat, and heat generated from the semiconductor element 12 is conducted in the order of the insulating circuit board 11 and the stress relaxation member 20. Then, it is transmitted to the heat sink 16. The stress relaxation member 20 is formed with a plurality of through-holes 21 as ellipsoidal shapes (12 in the present embodiment) in a plan view that penetrate only in the thickness direction of the stress relaxation member 20.

貫通孔21は、応力緩和部材20を構成する平板にプレス加工(機械加工)を施すことにより形成されている。図2に示すように、各貫通孔21は、その仕切り壁18の長手方向(図2で示す矢印Y方向)に沿う長さT1が、仕切り壁18の並設方向(図1及び図2で示す矢印X方向)に沿う長さT2よりも長く形成されている。そして、各貫通孔21は全て同じ形状に形成されるとともに、2つ以上の貫通孔21が仕切り壁18の長手方向に沿って並べられた状態で配置されている。各貫通孔21は、その長軸が仕切り壁18の長手方向に平行で、かつ、その短軸が仕切り壁18の並設方向に平行となるように形成されている。つまり応力緩和部材20は、仕切り壁18の並設方向に比べて仕切り壁18の長手方向へ変形し易く構成されている。各貫通孔21は、半導体素子12の中心と対応する応力緩和部材20の基準点Pを基準として点対称な配置となっている。また、貫通孔21は、応力緩和部材20のうち半導体素子12直下の部分には形成されておらず、平面視において半導体素子12と重ならないように構成されている。そして、半導体素子12と対応する応力緩和部材20の部位は、半導体素子12に最も近い部位であり、貫通孔21に比べて熱伝導性が良好な熱伝導部22として構成されている。   The through hole 21 is formed by subjecting a flat plate constituting the stress relaxation member 20 to press working (machining). As shown in FIG. 2, each through-hole 21 has a length T1 along the longitudinal direction of the partition wall 18 (the arrow Y direction shown in FIG. 2), and the parallel direction of the partition walls 18 (in FIGS. 1 and 2). It is formed longer than the length T2 along the arrow X direction shown. The through holes 21 are all formed in the same shape, and two or more through holes 21 are arranged along the longitudinal direction of the partition wall 18. Each through-hole 21 is formed such that its major axis is parallel to the longitudinal direction of the partition wall 18 and its minor axis is parallel to the parallel arrangement direction of the partition walls 18. That is, the stress relaxation member 20 is configured to be easily deformed in the longitudinal direction of the partition wall 18 as compared with the direction in which the partition walls 18 are arranged side by side. Each through hole 21 is arranged point-symmetrically with respect to the reference point P of the stress relaxation member 20 corresponding to the center of the semiconductor element 12. Further, the through hole 21 is not formed in the portion immediately below the semiconductor element 12 in the stress relaxation member 20 and is configured not to overlap the semiconductor element 12 in plan view. The part of the stress relaxation member 20 corresponding to the semiconductor element 12 is the part closest to the semiconductor element 12, and is configured as a heat conductive portion 22 having better thermal conductivity than the through hole 21.

次に、前記のように構成された半導体装置10の作用について説明する。
半導体装置10は、ハイブリッド車に搭載されるとともに、図示しない冷却媒体循環路にヒートシンク16がパイプを介して連通された状態で使用される。冷却媒体循環路にはポンプ及びラジエータが設けられ、ラジエータは、モータにより回転されるファンを備え、ラジエータからの放熱が効率よく行われるようになっている。冷媒として、例えば、水が使用される。
Next, the operation of the semiconductor device 10 configured as described above will be described.
The semiconductor device 10 is mounted on a hybrid vehicle, and is used in a state where the heat sink 16 communicates with a cooling medium circulation path (not shown) via a pipe. The cooling medium circulation path is provided with a pump and a radiator, and the radiator includes a fan that is rotated by a motor so that heat is efficiently radiated from the radiator. For example, water is used as the refrigerant.

半導体装置10に搭載された半導体素子12が駆動されると、半導体素子12から熱が発生する。半導体素子12から発生した熱は、半導体素子12の直下に向けて伝導され、第1金属板14、セラミック基板13、第2金属板15、応力緩和部材20、ヒートシンク16の順に伝導される。なお、応力緩和部材20においては、半導体素子12の直下には貫通孔21が形成されておらず、熱伝導部22が形成されているため、応力緩和部材20に伝達された熱は円滑にヒートシンク16にまで伝導することができる。   When the semiconductor element 12 mounted on the semiconductor device 10 is driven, heat is generated from the semiconductor element 12. Heat generated from the semiconductor element 12 is conducted directly below the semiconductor element 12, and is conducted in the order of the first metal plate 14, the ceramic substrate 13, the second metal plate 15, the stress relaxation member 20, and the heat sink 16. In the stress relaxation member 20, the through hole 21 is not formed immediately below the semiconductor element 12, and the heat conduction portion 22 is formed. Therefore, the heat transmitted to the stress relaxation member 20 is smoothly absorbed by the heat sink. It can conduct up to 16.

このように熱伝導されると、絶縁回路基板11及びヒートシンク16は高温となり、熱膨張する。このとき、例えば、仕切り壁18の長手方向を考慮せず、図2に2点鎖線で示す真円形状の仮想孔R1のような形状の孔が形成されている場合、一方向に長い仕切り壁18が存在するため、仕切り壁18の長手方向におけるヒートシンク16とセラミック基板13との間に発生する熱膨張による応力は、仕切り壁18の並設方向におけるヒートシンク16とセラミック基板13との間に発生する熱膨張による応力に比べて大きくなる。つまり、セラミック基板13と、ヒートシンク16及び第1,第2金属板14,15との線膨張係数が異なることで、半導体装置10には熱応力が発生し、とくに、ヒートシンク16とセラミック基板13との間には、仕切り壁18の長手方向に大きな熱応力が発生しようとする。ここで、この長手方向の熱応力を緩和するために、仮想孔R2のように孔を大きくすればよいが、高熱伝導性材料からなる部分が減少し、熱伝導性が低下する。本実施形態においては、ヒートシンク16の仕切り壁18の方向を考慮し、応力緩和部材20は、仕切り壁18の長手方向へ変形し易く構成されているため仕切り壁18の長手方向における熱応力を並設方向における熱応力よりも緩和する。その結果、長手方向と並設方向の熱応力を均一に近づけることになる。したがって、必要以上に貫通孔を大きくすることがないので熱伝導性の低下を抑制できる。さらに、半導体装置10の温度上昇時に、セラミック基板13と第2金属板15との間の接合部にクラックが生じたり、ヒートシンク16の絶縁回路基板11への接合面に反りが生じたりすることをより抑制できる。   When heat conduction is performed in this manner, the insulating circuit board 11 and the heat sink 16 become high temperature and thermally expand. At this time, for example, when a hole having a shape like the perfect circular virtual hole R1 indicated by a two-dot chain line in FIG. 2 is formed without considering the longitudinal direction of the partition wall 18, the partition wall is long in one direction. 18 is present, the stress due to thermal expansion generated between the heat sink 16 and the ceramic substrate 13 in the longitudinal direction of the partition wall 18 is generated between the heat sink 16 and the ceramic substrate 13 in the parallel direction of the partition wall 18. It becomes larger than the stress due to thermal expansion. That is, the thermal expansion is generated in the semiconductor device 10 due to the difference in the linear expansion coefficient between the ceramic substrate 13 and the heat sink 16 and the first and second metal plates 14 and 15, and in particular, the heat sink 16 and the ceramic substrate 13 In between, a large thermal stress tends to be generated in the longitudinal direction of the partition wall 18. Here, in order to relieve the thermal stress in the longitudinal direction, the hole may be enlarged like the virtual hole R2, but the portion made of the high thermal conductivity material is reduced and the thermal conductivity is lowered. In the present embodiment, considering the direction of the partition wall 18 of the heat sink 16, the stress relaxation member 20 is configured to be easily deformed in the longitudinal direction of the partition wall 18, so that the thermal stress in the longitudinal direction of the partition wall 18 is parallelized. It relaxes more than the thermal stress in the installation direction. As a result, the thermal stress in the longitudinal direction and the juxtaposed direction are brought closer to each other. Therefore, since the through hole is not enlarged more than necessary, it is possible to suppress a decrease in thermal conductivity. Furthermore, when the temperature of the semiconductor device 10 rises, cracks occur in the joint between the ceramic substrate 13 and the second metal plate 15, and warpage occurs in the joint surface of the heat sink 16 to the insulating circuit substrate 11. It can be suppressed more.

一方、半導体素子12からの発熱が停止すると、セラミック基板13及びヒートシンク16の温度は低下し、熱収縮する。本実施形態においては、このときも、ヒートシンク16と第2金属板15との間の熱応力について仕切り壁、応力緩和部材20が仕切り壁18の長手方向により変形することで、仕切り壁18の長手方向における熱応力をより緩和する。したがって、半導体装置10の温度低下時に、セラミック基板13と第2金属板15との間の接合部にクラックが生じたり、ヒートシンク16の絶縁回路基板11への接合面に反りが生じたりすることをより抑制できる。   On the other hand, when the heat generation from the semiconductor element 12 is stopped, the temperature of the ceramic substrate 13 and the heat sink 16 is lowered and the heat shrinks. In the present embodiment, the partition wall and the stress relaxation member 20 are deformed in the longitudinal direction of the partition wall 18 with respect to the thermal stress between the heat sink 16 and the second metal plate 15 at this time as well. Relieve thermal stress in the direction more. Therefore, when the temperature of the semiconductor device 10 is lowered, cracks occur in the joint between the ceramic substrate 13 and the second metal plate 15, and warpage occurs in the joint surface of the heat sink 16 to the insulating circuit substrate 11. It can be suppressed more.

また、ヒートシンク16に熱が伝導されると、ケース部17、及び仕切り壁18と、冷媒通路19を流れる冷媒との間で熱交換が行われ、半導体素子12から発生した熱は冷媒によって持ち去られる。即ち、ヒートシンク16は、冷媒通路19を流れる冷却媒体によって強制冷却されるため、半導体素子12等からヒートシンク16に至る熱の伝導経路における温度勾配が大きくなり、半導体素子12で発生した熱が絶縁回路基板11を介して効率よく除去される。   Further, when heat is conducted to the heat sink 16, heat exchange is performed between the case portion 17, the partition wall 18, and the refrigerant flowing through the refrigerant passage 19, and the heat generated from the semiconductor element 12 is carried away by the refrigerant. . That is, since the heat sink 16 is forcibly cooled by the cooling medium flowing through the refrigerant passage 19, the temperature gradient in the heat conduction path from the semiconductor element 12 or the like to the heat sink 16 increases, and the heat generated in the semiconductor element 12 is insulated from the insulation circuit. It is efficiently removed through the substrate 11.

この実施形態によれば以下の効果を得ることができる。
(1)応力緩和部材20には、複数の貫通孔21が形成されている。そして、各貫通孔21は、その仕切り壁18の長手方向に沿った長さT1が複数の仕切り壁18の並設方向に沿った長さT2に比べて長くなるように形成されている。したがって、応力緩和部材20を仕切り壁18の長手方向に変形し易くして、その応力緩和機能を向上させることができる。
According to this embodiment, the following effects can be obtained.
(1) A plurality of through holes 21 are formed in the stress relaxation member 20. And each through-hole 21 is formed so that length T1 along the longitudinal direction of the partition wall 18 may become long compared with length T2 along the parallel arrangement direction of the some partition wall 18. As shown in FIG. Therefore, the stress relaxation member 20 can be easily deformed in the longitudinal direction of the partition wall 18 and the stress relaxation function can be improved.

(2)貫通孔21は、複数の仕切り壁18の並設方向に沿った長さT2は、仕切り壁18の長手方向に沿った長さT1よりも短く、応力緩和部材20の応力緩和機能を向上させようとして仮想孔R1自体を拡大した場合に比べて応力緩和部材20の接合部分の減少量を抑制できる。したがって、半導体素子12から発生した熱は、応力緩和部材20を円滑に伝導して、ヒートシンク16にまで到達することができる。そのため、応力緩和部材20における熱伝導性の低下を抑制できる。   (2) The through hole 21 has a length T2 along the juxtaposed direction of the plurality of partition walls 18 shorter than a length T1 along the longitudinal direction of the partition walls 18, and the stress relaxation function of the stress relaxation member 20. Compared with the case where the virtual hole R <b> 1 itself is enlarged in order to improve it, it is possible to suppress the decrease amount of the joint portion of the stress relaxation member 20. Therefore, the heat generated from the semiconductor element 12 can smoothly conduct through the stress relaxation member 20 and reach the heat sink 16. Therefore, a decrease in thermal conductivity in the stress relaxation member 20 can be suppressed.

(3)セラミック基板13の裏面13bには、第2金属板15が接合されている。そして、ヒートシンク16と絶縁回路基板11における第2金属板15との間には、絶縁回路基板11とは別に応力緩和部材20が設けられている。したがって、半導体素子12やセラミック基板13とは別の状態で、応力緩和部材20を構成する平板を加工して貫通孔21を形成することができるため、半導体素子12やセラミック基板13に対する影響を考慮する必要がない。よって、応力緩和部材20の貫通孔21を、例えば、プレス加工等の機械加工で簡単に形成することができる。   (3) The second metal plate 15 is bonded to the back surface 13 b of the ceramic substrate 13. In addition, a stress relaxation member 20 is provided between the heat sink 16 and the second metal plate 15 in the insulated circuit board 11 separately from the insulated circuit board 11. Therefore, since the through hole 21 can be formed by processing the flat plate constituting the stress relaxation member 20 in a state different from the semiconductor element 12 and the ceramic substrate 13, the influence on the semiconductor element 12 and the ceramic substrate 13 is considered. There is no need to do. Therefore, the through-hole 21 of the stress relaxation member 20 can be easily formed by, for example, machining such as press working.

(4)応力緩和部材20において、半導体素子12の直下であって、半導体素子12と対応する部分は、半導体素子12から発生した熱が通過する熱伝導部22として形成されている。したがって、応力緩和部材20のうち、半導体素子12から発生した熱が最も早くに到達する半導体素子12の直下の部分を熱伝導部22として構成することで、半導体素子12から発生した熱は、円滑に応力緩和部材20を伝導してヒートシンク16へ到達することができる。   (4) In the stress relaxation member 20, a portion immediately below the semiconductor element 12 and corresponding to the semiconductor element 12 is formed as a heat conducting portion 22 through which heat generated from the semiconductor element 12 passes. Therefore, by configuring the portion immediately below the semiconductor element 12 where the heat generated from the semiconductor element 12 of the stress relaxation member 20 reaches the earliest as the heat conducting portion 22, the heat generated from the semiconductor element 12 is smooth. The stress relaxation member 20 can be conducted to reach the heat sink 16.

(5)複数の貫通孔21は、応力緩和部材20の厚み方向に貫通している。したがって、高熱伝導性材料からなる板材に複数の有底穴を形成して応力緩和部材とする場合に比べて、応力緩和部材20をより変形し易く構成することができる。   (5) The plurality of through holes 21 penetrates in the thickness direction of the stress relaxation member 20. Therefore, the stress relaxation member 20 can be configured to be more easily deformed than a case where a plurality of bottomed holes are formed in a plate made of a high thermal conductivity material to form a stress relaxation member.

実施形態は前記に限定されるものではなく、例えば、次のように構成してもよい。
○ 貫通孔21は、その長軸が仕切り壁18の長手方向と平行となるように形成しなくともよい。例えば、仕切り壁18の長手方向に沿う長さT1が仕切り壁18の並設方向に沿う長さT2に比べて長くなるのであれば、長軸が仕切り壁18の長手方向に対して交差するような楕円形状の貫通孔21を形成してもよい。
The embodiment is not limited to the above, and may be configured as follows, for example.
The through hole 21 may not be formed so that its long axis is parallel to the longitudinal direction of the partition wall 18. For example, if the length T1 along the longitudinal direction of the partition wall 18 is longer than the length T2 along the parallel direction of the partition walls 18, the long axis intersects the longitudinal direction of the partition wall 18. An elliptical through hole 21 may be formed.

○ 貫通孔21の数についてはとくに限定しない。寸法の大きな応力緩和部材20を用いる場合には、設ける貫通孔21の数を増やしてもよい。
○ 貫通孔21の大きさを変更してもよい。貫通孔21は仕切り壁18の長手方向に沿う長さT1が仕切り壁18の並設方向に沿う長さT2よりも長い形状であるならば、貫通孔21を小さくしてもよいし、大きくしてもよい。したがって、例えば、仕切り壁18の並設方向に沿った長さT2が仮想孔R1の直径よりも長い貫通孔21を形成してもよい。
○ The number of through holes 21 is not particularly limited. When using the stress relaxation member 20 with a large dimension, you may increase the number of the through-holes 21 provided.
○ The size of the through hole 21 may be changed. If the length T1 along the longitudinal direction of the partition wall 18 is longer than the length T2 along the parallel direction of the partition wall 18, the through hole 21 may be made smaller or larger. May be. Therefore, for example, a through hole 21 having a length T2 along the direction in which the partition walls 18 are juxtaposed may be longer than the diameter of the virtual hole R1.

○ 貫通孔21の形状を変更してもよい。例えば、図3(a)に示すように、貫通孔30を平面視矩形状に形成し、その貫通孔30において、仕切り壁18の長手方向に沿った長さT3が仕切り壁18の並設方向に沿った長さT4に比べて長くなるように形成してもよい。また、仕切り壁18の長手方向に沿って配列されている各貫通孔30が連続するように変更してもよい。例えば、図3(b)に示すように、仕切り壁18の長手方向に沿って一続きに延びるように形成された貫通孔31を設けてもよい。ただし、この場合、半導体素子12の直下に位置する応力緩和部材20の部分は、熱伝導部22として構成し、貫通孔31が存在しないようにする必要がある。   ○ The shape of the through hole 21 may be changed. For example, as shown in FIG. 3A, the through-hole 30 is formed in a rectangular shape in plan view, and the length T3 along the longitudinal direction of the partition wall 18 in the through-hole 30 is the parallel arrangement direction of the partition walls 18. You may form so that it may become long compared with length T4 along. Moreover, you may change so that each through-hole 30 arranged along the longitudinal direction of the partition wall 18 may continue. For example, as shown in FIG. 3B, a through hole 31 formed so as to extend continuously along the longitudinal direction of the partition wall 18 may be provided. However, in this case, the portion of the stress relaxation member 20 located immediately below the semiconductor element 12 needs to be configured as the heat conducting portion 22 so that the through hole 31 does not exist.

○ 貫通孔21からなる応力吸収部の代わりに、応力緩和部材20の厚み方向に貫通するとともに仕切り壁18の長手方向に沿って配列された複数の孔からなる孔群を応力吸収部として設けてもよい。例えば、貫通孔21が形成されていた部位に、図3(c)に示すように、孔群40を設け、全ての孔群40を、仕切り壁18の長手方向に沿う開口幅t1が複数の仕切り壁18の並設方向に沿う開口幅t2よりも短い矩形状の複数の貫通孔41によって形成する。孔群40を構成する各貫通孔41は、仕切り壁18の長手方向に沿うように配列されるとともに、応力緩和部材20には貫通孔41のみ形成する。そして、応力吸収部を構成する孔群40は、仕切り壁18の長手方向に沿う開口幅t1の総和が、仕切り壁18の並設方向に沿う貫通孔41の開口幅t2(応力吸収部の幅)に比べて長くなるように形成する。また、仕切り壁18の長手方向において隣り合う孔群40間の間隔H1は、孔群40を構成する複数の貫通孔41のうちの、仕切り壁18の長手方向において隣り合う貫通孔41の間隔H2よりも長くなるように形成する。そして、このような孔群40を設ければ、応力緩和部材20は、仕切り壁18の長手方向に変形し易くなるため、仕切り壁18の長手方向における熱応力をより緩和できるようになり、応力緩和機能が向上する。しかも、応力吸収部が応力緩和部材20の厚み方向に貫通する複数の貫通孔41からなる孔群40によって構成されているため、有底穴からなる応力吸収部に比べて応力緩和部材20をより変形し易く構成することができる。また、仕切り壁18の並設方向に沿う孔群40の最大幅が、孔群40における仕切り壁18の長手方向に沿った開口幅t1の総和を超えない程度であれば、仕切り壁18の並設方向において若干ずれた状態で仕切り壁18の長手方向に沿って並べられた複数の貫通孔41から孔群40を構成してもよい。   ○ Instead of the stress absorbing portion consisting of the through hole 21, a hole group consisting of a plurality of holes penetrating in the thickness direction of the stress relaxation member 20 and arranged along the longitudinal direction of the partition wall 18 is provided as the stress absorbing portion. Also good. For example, as shown in FIG. 3 (c), a hole group 40 is provided at a portion where the through hole 21 has been formed, and all the hole groups 40 have a plurality of opening widths t 1 along the longitudinal direction of the partition wall 18. It is formed by a plurality of rectangular through holes 41 shorter than the opening width t2 along the direction in which the partition walls 18 are arranged side by side. The through holes 41 constituting the hole group 40 are arranged along the longitudinal direction of the partition wall 18, and only the through holes 41 are formed in the stress relaxation member 20. In the hole group 40 constituting the stress absorbing portion, the sum of the opening width t1 along the longitudinal direction of the partition wall 18 is equal to the opening width t2 of the through hole 41 along the parallel direction of the partition wall 18 (width of the stress absorbing portion). ) To be longer than The interval H1 between the hole groups 40 adjacent in the longitudinal direction of the partition wall 18 is the interval H2 between the through holes 41 adjacent in the longitudinal direction of the partition wall 18 among the plurality of through holes 41 constituting the hole group 40. It is formed to be longer. If such a hole group 40 is provided, the stress relaxation member 20 can be easily deformed in the longitudinal direction of the partition wall 18, so that the thermal stress in the longitudinal direction of the partition wall 18 can be further relaxed. Mitigation function is improved. In addition, since the stress absorbing portion is constituted by the hole group 40 including the plurality of through holes 41 penetrating in the thickness direction of the stress relaxing member 20, the stress absorbing member 20 is more formed than the stress absorbing portion including the bottomed hole. It can be configured to be easily deformed. Moreover, if the maximum width of the hole group 40 along the direction in which the partition walls 18 are juxtaposed does not exceed the total sum of the opening widths t1 along the longitudinal direction of the partition wall 18 in the hole group 40, You may comprise the hole group 40 from the several through-hole 41 arranged along the longitudinal direction of the partition wall 18 in the state shifted | deviated slightly in the installation direction.

○ 応力緩和部材20に形成する貫通孔21の配置を変更してもよい。例えば、複数の貫通孔21が千鳥状の配置となるように、応力緩和部材20に複数の貫通孔21を形成してもよい。   The arrangement of the through holes 21 formed in the stress relaxation member 20 may be changed. For example, the plurality of through holes 21 may be formed in the stress relaxation member 20 so that the plurality of through holes 21 are arranged in a staggered manner.

○ 応力吸収部として貫通孔21の代わりに応力緩和部材20にその厚み方向のみに開口する有底穴を形成してもよい。この場合、例えば、応力緩和部材20の他面20bに仕切り壁18の長手方向に沿った開口幅が仕切り壁18の並設方向に沿った開口幅に比べて長い有底穴を形成すればよく、この場合、有底穴の開口はヒートシンク16側を向くようになる。また、貫通孔21の代わりに応力緩和部材20に有底穴を形成する場合、応力緩和部材20が半導体装置10に生じた熱応力を十分に緩和できる機能を得られるのであれば、有底穴の深さについてはとくに限定しない。   A bottomed hole that opens only in the thickness direction may be formed in the stress relaxation member 20 instead of the through hole 21 as a stress absorbing portion. In this case, for example, a bottomed hole whose opening width along the longitudinal direction of the partition wall 18 is longer than the opening width along the parallel direction of the partition wall 18 may be formed on the other surface 20b of the stress relaxation member 20. In this case, the opening of the bottomed hole faces the heat sink 16 side. Further, in the case where a bottomed hole is formed in the stress relaxation member 20 instead of the through hole 21, the bottomed hole can be used if the stress relaxation member 20 can obtain a function capable of sufficiently relaxing the thermal stress generated in the semiconductor device 10. There is no particular limitation on the depth.

○ 第2金属板15が応力緩和部材20を兼用するように構成してもよい。例えば、応力緩和部材20を省略し、第2金属板15のヒートシンク16側の面に、仕切り壁18の長手方向に沿った長さが仕切り壁18の並設方向に沿った長さに比べて長い穴を複数形成し、第2金属板15を応力緩和部材として用いてもよい。このように構成すれば、第2金属板15は、半導体装置10の温度変化時に、半導体装置10に生じた熱応力を緩和する応力緩和部材として機能する。しかも、第2金属板15は、応力吸収部として平面視真円状の穴からなる従来の応力緩和部材に比べて仕切り壁18の長手方向に大きく変形することができるため、従来に比べて応力緩和機能は向上している。   (Circle) you may comprise so that the 2nd metal plate 15 may serve as the stress relaxation member 20 together. For example, the stress relaxation member 20 is omitted, and the length along the longitudinal direction of the partition wall 18 on the surface of the second metal plate 15 on the heat sink 16 side is longer than the length along the parallel direction of the partition walls 18. A plurality of long holes may be formed, and the second metal plate 15 may be used as a stress relaxation member. With this configuration, the second metal plate 15 functions as a stress relaxation member that relaxes the thermal stress generated in the semiconductor device 10 when the temperature of the semiconductor device 10 changes. In addition, since the second metal plate 15 can be greatly deformed in the longitudinal direction of the partition wall 18 as compared with a conventional stress relaxation member made of a hole having a circular shape in plan view as a stress absorbing portion, the second metal plate 15 has a higher stress than the conventional one. Mitigation function is improved.

○ 各仕切り壁18が延びる方向を変更してもよい。各仕切り壁18は、一方向に長い仕切り壁であれば、その延設方向についてはとくに限定されないため、例えば、ヒートシンク16の短手方向に対して交差する方向に延びる仕切り壁18を設けてもよい。   O The direction in which each partition wall 18 extends may be changed. If each partition wall 18 is a partition wall that is long in one direction, the extending direction is not particularly limited. For example, even if a partition wall 18 that extends in a direction intersecting the short direction of the heat sink 16 is provided. Good.

○ 各仕切り壁18同士は、並設方向に連続して延びる構成でもよい。したがって、例えば、連続する波板状のコルゲートフィンを用いて、各仕切り壁18を構成してもよい。この場合、仕切り壁18の上端部と別の仕切り壁18の上端部とは連続するとともに、仕切り壁18の下端部と別の仕切り壁18の下端部とは連続するように構成される。   O Each partition wall 18 may be configured to extend continuously in the juxtaposed direction. Therefore, for example, each partition wall 18 may be configured by using continuous corrugated fins. In this case, the upper end of the partition wall 18 and the upper end of another partition wall 18 are continuous, and the lower end of the partition wall 18 and the lower end of another partition wall 18 are configured to be continuous.

○ ヒートシンク16の構成を変更してもよい。例えば、ケース部17に代えて、板状のヒートシンクベースを用い、ヒートシンクベースの一面に複数の仕切り壁18を設けてもよい。そして、この場合、ヒートシンクベースの他面に応力緩和部材20を接合することで、ヒートシンク16を半導体素子12で発生した熱を除去する冷却器として構成すればよい。   ○ The configuration of the heat sink 16 may be changed. For example, instead of the case portion 17, a plate-like heat sink base may be used, and a plurality of partition walls 18 may be provided on one surface of the heat sink base. In this case, the heat sink 16 may be configured as a cooler that removes heat generated in the semiconductor element 12 by joining the stress relaxation member 20 to the other surface of the heat sink base.

○ ヒートシンク16を構成する材料については、セラミック基板13と線膨張係数が異なる金属材料であればよく、例えば、ヒートシンク16をアルミニウムや銅等で形成してもよい。なお、アルミニウムとは純アルミニウム又はアルミニウム合金を意味する。   The material constituting the heat sink 16 may be any metal material having a linear expansion coefficient different from that of the ceramic substrate 13. For example, the heat sink 16 may be formed of aluminum, copper, or the like. Aluminum means pure aluminum or an aluminum alloy.

○ セラミック基板13を構成する具体的な材料については、とくに限定されない。セラミック基板13は、窒化アルミニウム、アルミナ、窒化ケイ素などにより形成すればよい。   A specific material constituting the ceramic substrate 13 is not particularly limited. The ceramic substrate 13 may be formed of aluminum nitride, alumina, silicon nitride, or the like.

○ ヒートシンク16は内部に水が流れる構成としたが、水以外にもアルコール等の他の液体が流れる構成としてもよい。また、ヒートシンク16を流れる冷媒は、液体に限らず、空気などの気体であってもよい。   The heat sink 16 has a structure in which water flows inside, but may have a structure in which other liquids such as alcohol flow in addition to water. Further, the refrigerant flowing through the heat sink 16 is not limited to a liquid but may be a gas such as air.

○ 半導体装置10は、車載用に限らず他の用途に使用するものに適用してもよい。   The semiconductor device 10 may be applied not only to in-vehicle use but also to other uses.

半導体装置の模式断面図。1 is a schematic cross-sectional view of a semiconductor device. 絶縁回路基板を省略した状態における半導体装置の部分模式平面図。The partial schematic plan view of the semiconductor device in the state which abbreviate | omitted the insulated circuit board. (a)、(b)、(c)は、別の実施形態において絶縁回路基板を省略した状態における半導体装置の部分模式平面図。(A), (b), (c) is the partial schematic plan view of the semiconductor device in the state which abbreviate | omitted the insulated circuit board in another embodiment.

符号の説明Explanation of symbols

T1…仕切り壁の長手方向に沿う貫通孔の長さ、T2…仕切り壁の並設方向に沿う貫通孔の長さ、t1…仕切り壁の長手方向に沿う開口幅、t2…仕切り壁の並設方向に沿う開口幅、10…半導体装置、12…半導体素子、13…絶縁基板としてのセラミック基板、13a…一面としての表面、13b…他面としての裏面、14…金属配線層としての第1金属板、15…金属板としての第2金属板、16…ヒートシンク、18…仕切り壁、20…応力緩和部材、21,30,31…貫通孔、22…熱伝導部、40…孔群、41…貫通孔。   T1: Length of the through hole along the longitudinal direction of the partition wall, T2: Length of the through hole along the parallel direction of the partition wall, t1: Opening width along the longitudinal direction of the partition wall, t2: Parallel arrangement of the partition walls Opening width along the direction, 10 ... semiconductor device, 12 ... semiconductor element, 13 ... ceramic substrate as an insulating substrate, 13a ... surface as one surface, 13b ... back surface as another surface, 14 ... first metal as a metal wiring layer Plate: 15 ... 2nd metal plate as a metal plate, 16 ... Heat sink, 18 ... Partition wall, 20 ... Stress relaxation member, 21, 30, 31 ... Through hole, 22 ... Heat conduction part, 40 ... Hole group, 41 ... Through hole.

Claims (4)

絶縁基板の一面に金属配線層が接合されるとともに前記金属配線層には半導体素子が接合され、前記絶縁基板と前記絶縁基板の他面側に配置されたヒートシンクとの間には、高熱伝導性材料からなる応力緩和部材が設けられ、前記絶縁基板と前記ヒートシンクとは互いに熱伝導可能に結合された半導体装置において、
前記ヒートシンクは、一方向に長くかつ間隔を空けて並設された複数の仕切り壁を有し、
前記応力緩和部材には、厚み方向に貫通する貫通孔又は厚み方向に開口する有底穴からなる応力吸収部が設けられ、
前記貫通孔における仕切り壁の長手方向に沿う長さは、前記貫通孔における複数の仕切り壁の並設方向に沿う長さよりも長く、
前記有底穴における仕切り壁の長手方向に沿う長さは、前記有底穴における複数の仕切り壁の並設方向に沿う長さよりも長いことを特徴とする半導体装置。
A metal wiring layer is bonded to one surface of the insulating substrate, and a semiconductor element is bonded to the metal wiring layer, and high thermal conductivity is provided between the insulating substrate and a heat sink disposed on the other surface side of the insulating substrate. In a semiconductor device in which a stress relaxation member made of a material is provided, and the insulating substrate and the heat sink are coupled to each other so as to conduct heat,
The heat sink has a plurality of partition walls that are long in one direction and arranged in parallel at intervals.
The stress relaxation member is provided with a stress absorbing portion consisting of a through hole penetrating in the thickness direction or a bottomed hole opening in the thickness direction,
The length along the longitudinal direction of the partition wall in the through hole is longer than the length along the juxtaposed direction of the plurality of partition walls in the through hole,
The length along the longitudinal direction of the partition wall in the bottomed hole is longer than the length along the juxtaposed direction of the plurality of partition walls in the bottomed hole.
前記絶縁基板の他面には、金属板が接合され、
前記応力緩和部材は、前記金属板とは別に設けられている請求項1に記載の半導体装置。
A metal plate is bonded to the other surface of the insulating substrate,
The semiconductor device according to claim 1, wherein the stress relaxation member is provided separately from the metal plate.
前記応力緩和部材のうち前記半導体素子と対応する部分は、前記応力吸収部が形成されておらず、前記半導体素子から発生した熱を伝導可能な熱伝導部として構成されている請求項1又は請求項2に記載の半導体装置。   The portion corresponding to the semiconductor element in the stress relaxation member is configured as a heat conducting part capable of conducting heat generated from the semiconductor element without forming the stress absorbing part. Item 3. The semiconductor device according to Item 2. 絶縁基板の一面に金属配線層が接合されるとともに前記金属配線層には半導体素子が接合され、前記絶縁基板と前記絶縁基板の他面側に配置されたヒートシンクとの間には、高熱伝導性材料からなる応力緩和部材が設けられ、前記絶縁基板と前記ヒートシンクとは互いに熱伝導可能に結合された半導体装置において、
前記ヒートシンクは、一方向に長くかつ間隔を空けて並設された複数の仕切り壁を有し、
前記応力緩和部材には、厚み方向に貫通するとともに前記仕切り壁の長手方向に沿うように配列された複数の貫通孔によって構成された孔群からなる応力吸収部が設けられ、
全ての前記貫通孔は、前記仕切り壁の並設方向に沿う開口幅が前記仕切り壁の長手方向に沿う開口幅よりも長くなるように形成され、
前記孔群における仕切り壁の長手方向に沿う開口幅の総和は、前記応力吸収部における複数の仕切り壁の並設方向に沿う最大幅よりも長いことを特徴とする半導体装置。
A metal wiring layer is bonded to one surface of the insulating substrate, and a semiconductor element is bonded to the metal wiring layer, and high thermal conductivity is provided between the insulating substrate and a heat sink disposed on the other surface side of the insulating substrate. In a semiconductor device in which a stress relaxation member made of a material is provided, and the insulating substrate and the heat sink are coupled to each other so as to conduct heat,
The heat sink has a plurality of partition walls that are long in one direction and arranged in parallel at intervals.
The stress relieving member is provided with a stress absorbing portion including a group of holes formed by a plurality of through holes that are arranged so as to penetrate in the thickness direction and along the longitudinal direction of the partition wall.
All the through holes are formed such that the opening width along the parallel direction of the partition walls is longer than the opening width along the longitudinal direction of the partition walls,
The total sum of the opening widths along the longitudinal direction of the partition walls in the hole group is longer than the maximum width along the juxtaposed direction of the plurality of partition walls in the stress absorbing portion.
JP2008176087A 2008-07-04 2008-07-04 Semiconductor device Expired - Fee Related JP5114323B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2008176087A JP5114323B2 (en) 2008-07-04 2008-07-04 Semiconductor device
US12/496,391 US8472193B2 (en) 2008-07-04 2009-07-01 Semiconductor device
EP11161897.1A EP2339620A3 (en) 2008-07-04 2009-07-02 Semiconductor device
EP11161895.5A EP2337069A3 (en) 2008-07-04 2009-07-02 Semiconductor device
KR1020090060190A KR101118499B1 (en) 2008-07-04 2009-07-02 Semiconductor device
EP09164413A EP2141740A3 (en) 2008-07-04 2009-07-02 Semiconductor device
CN201110057706.8A CN102163586B (en) 2008-07-04 2009-07-03 Semiconductor device
CN201110057688.3A CN102163585B (en) 2008-07-04 2009-07-03 Semiconductor device
CN2009101587286A CN101699620B (en) 2008-07-04 2009-07-03 Semiconductor device
KR1020110013831A KR101110164B1 (en) 2008-07-04 2011-02-16 Semiconductor device
KR1020110013830A KR101118948B1 (en) 2008-07-04 2011-02-16 Semiconductor device
US13/428,542 US8958208B2 (en) 2008-07-04 2012-03-23 Semiconductor device
US13/428,584 US20120182695A1 (en) 2008-07-04 2012-03-23 Semiconductor device
US13/900,108 US20130256867A1 (en) 2008-07-04 2013-05-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176087A JP5114323B2 (en) 2008-07-04 2008-07-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010016254A JP2010016254A (en) 2010-01-21
JP5114323B2 true JP5114323B2 (en) 2013-01-09

Family

ID=41702065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176087A Expired - Fee Related JP5114323B2 (en) 2008-07-04 2008-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5114323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235082A (en) * 2011-04-18 2012-11-29 Toyota Industries Corp Heat dissipator and manufacturing method therefor
JP2017015522A (en) * 2015-06-30 2017-01-19 富士電機株式会社 Electronic component module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856750B2 (en) * 2011-04-19 2016-02-10 昭和電工株式会社 Heat dissipation device
JP2014017318A (en) 2012-07-06 2014-01-30 Toyota Industries Corp Semiconductor device
JP2016046403A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Semiconductor device
CN108257971B (en) * 2016-12-27 2019-07-05 昆山工研院新型平板显示技术中心有限公司 Flexible display apparatus and its manufacturing method
JP2020013908A (en) * 2018-07-18 2020-01-23 住友電工デバイス・イノベーション株式会社 Electronic component mounting structure
WO2023195325A1 (en) * 2022-04-04 2023-10-12 三菱電機株式会社 Power module and power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621531B2 (en) * 2005-04-06 2011-01-26 株式会社豊田自動織機 Heat dissipation device
JP2006344770A (en) * 2005-06-09 2006-12-21 Mitsubishi Electric Corp Semiconductor module and semiconductor device
JP4759384B2 (en) * 2005-12-20 2011-08-31 昭和電工株式会社 Semiconductor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235082A (en) * 2011-04-18 2012-11-29 Toyota Industries Corp Heat dissipator and manufacturing method therefor
JP2017015522A (en) * 2015-06-30 2017-01-19 富士電機株式会社 Electronic component module

Also Published As

Publication number Publication date
JP2010016254A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
KR101118948B1 (en) Semiconductor device
JP5114323B2 (en) Semiconductor device
JP5070014B2 (en) Heat dissipation device
TWI482244B (en) Heat exchanger and semiconductor module
JP6060553B2 (en) Semiconductor device
JP4729336B2 (en) Power module substrate
KR101077803B1 (en) Semiconductor device
JP4600220B2 (en) Cooler and power module
JP2010123881A (en) Cold plate
JPWO2018179314A1 (en) COOLING DEVICE AND VEHICLE POWER CONVERSION DEVICE
JP2008282969A (en) Cooler and electronic instrument
JP2008294279A (en) Semiconductor device
JP2008277442A (en) Heat dissipation board
JP5114324B2 (en) Semiconductor device
JP5217246B2 (en) Method for manufacturing power module unit
JP2008294281A (en) Semiconductor device and manufacturing method therefor
JP4935783B2 (en) Semiconductor device and composite semiconductor device
JP5227681B2 (en) Semiconductor device
JP2008262974A (en) Semiconductor device
JP2015065309A (en) Cooler and semiconductor device
JP4832316B2 (en) Liquid cooling heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees