JP7386408B2 - semiconductor laser equipment - Google Patents

semiconductor laser equipment Download PDF

Info

Publication number
JP7386408B2
JP7386408B2 JP2022503246A JP2022503246A JP7386408B2 JP 7386408 B2 JP7386408 B2 JP 7386408B2 JP 2022503246 A JP2022503246 A JP 2022503246A JP 2022503246 A JP2022503246 A JP 2022503246A JP 7386408 B2 JP7386408 B2 JP 7386408B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
electrode
metal
laser device
electrode block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022503246A
Other languages
Japanese (ja)
Other versions
JPWO2021172012A1 (en
Inventor
光起 菱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2021172012A1 publication Critical patent/JPWO2021172012A1/ja
Application granted granted Critical
Publication of JP7386408B2 publication Critical patent/JP7386408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/02365Fixing laser chips on mounts by clamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Description

本開示は、半導体レーザ装置に関する。 The present disclosure relates to a semiconductor laser device.

近年、半導体レーザ素子を含む半導体装置において、半導体素子に流れる電流が大きくなっており、それに伴って半導体素子の発熱量が大きくなっている。例えば、レーザ加工に用いる高出力の半導体レーザ装置は、発熱量が大きい。半導体レーザ素子の性能は高温において低下し、レーザ出力の低下などをもたらす。そのため、高出力の半導体装置は、半導体レーザ素子を冷却するための構造を有する。そのような構造を有する半導体装置が、従来から提案されている(例えば特許文献1~3)。 In recent years, in semiconductor devices including semiconductor laser elements, the amount of current flowing through the semiconductor elements has increased, and the amount of heat generated by the semiconductor elements has accordingly increased. For example, a high-output semiconductor laser device used for laser processing generates a large amount of heat. The performance of semiconductor laser devices deteriorates at high temperatures, resulting in a decrease in laser output. Therefore, high-output semiconductor devices have a structure for cooling the semiconductor laser element. Semiconductor devices having such a structure have been proposed in the past (for example, Patent Documents 1 to 3).

特開2003-086883号JP2003-086883 国際公開第2016/103536号International Publication No. 2016/103536 国際公開第2019/009172号International Publication No. 2019/009172

現在、半導体レーザ装置に関して、簡単な構造で放熱性を高めることができる技術が求められている。このような状況において、本開示は、高い放熱性を有する半導体レーザ装置を提供することを目的の1つとする。 Currently, with regard to semiconductor laser devices, there is a need for technology that can improve heat dissipation with a simple structure. Under such circumstances, one of the objects of the present disclosure is to provide a semiconductor laser device with high heat dissipation.

本開示の一局面は、半導体レーザ装置に関する。当該半導体レーザ装置は、第1および第2の電極を含む半導体レーザ素子と、前記第1の電極上に配置された導電部と、前記導電部を介して前記第1の電極と電気的に接続された電極ブロックと、を含む半導体レーザ装置であって、前記導電部は、前記第1の電極と接触するように配置された複数の金属部材と、前記複数の金属部材の間を埋めるように配置された導電層とを含み、前記金属部材は金属ワイヤ部を含み、前記金属ワイヤ部の一部が前記導電層から突出しており、前記金属ワイヤ部の前記一部は、前記電極ブロックに向かって凸の円弧状の形状を有する湾曲部を含む。 One aspect of the present disclosure relates to a semiconductor laser device. The semiconductor laser device includes a semiconductor laser element including first and second electrodes, a conductive portion disposed on the first electrode, and electrically connected to the first electrode via the conductive portion. a semiconductor laser device including a plurality of metal members disposed in contact with the first electrode and a plurality of metal members arranged to be in contact with the first electrode; the metal member includes a metal wire portion, a portion of the metal wire portion protrudes from the conductive layer, and the portion of the metal wire portion extends toward the electrode block. It includes a curved portion having a convex arc shape.

本開示によれば、高い放熱性を有する半導体レーザ装置が得られる。 According to the present disclosure, a semiconductor laser device having high heat dissipation performance can be obtained.

図1は、本開示の半導体レーザ装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor laser device of the present disclosure. 図2Aは、導電部を第1の電極ブロック側から見たときの上面図を模式的に示す。FIG. 2A schematically shows a top view of the conductive part when viewed from the first electrode block side. 図2Bは、図2Aの線IIB-IIBにおける半導体レーザ素子および導電部の断面図を模式的に示す。FIG. 2B schematically shows a cross-sectional view of the semiconductor laser element and the conductive portion taken along line IIB-IIB in FIG. 2A.

本開示の半導体レーザ装置の実施形態について例を挙げて以下に説明する。しかしながら、本開示は以下に説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。 Embodiments of the semiconductor laser device of the present disclosure will be described below by giving examples. However, the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.

(半導体レーザ装置)
本開示の半導体レーザ装置は、第1および第2の電極を含む半導体レーザ素子と、第1の電極上に配置された導電部と、導電部を介して第1の電極と電気的に接続された電極ブロックと、を含む。以下では、それらについて説明する。
(Semiconductor laser device)
A semiconductor laser device of the present disclosure includes a semiconductor laser element including a first and a second electrode, a conductive portion disposed on the first electrode, and an electrically connected to the first electrode via the conductive portion. and an electrode block. These will be explained below.

(半導体レーザ素子)
半導体レーザ素子に特に限定はなく、公知の半導体レーザ素子を用いてもよい。半導体レーザ素子は、全体として、第1の面と、第1の面とは反対側の第2の面とを有する板状の形状を有してもよい。例えば、半導体レーザ素子は、平面形状が矩形状である板状の形状を有してもよい。第1の面に第1の電極が形成され、第2の面に第2の電極が形成されてもよい。
(semiconductor laser element)
There is no particular limitation on the semiconductor laser element, and any known semiconductor laser element may be used. The semiconductor laser device as a whole may have a plate-like shape having a first surface and a second surface opposite to the first surface. For example, the semiconductor laser element may have a plate-like shape with a rectangular planar shape. A first electrode may be formed on the first surface, and a second electrode may be formed on the second surface.

半導体レーザ素子は、第1の面と第2の面とをつなぐ側面に出射端面を有してもよい。半導体レーザ素子は、複数の出射端面(レーザ光の出射端面)を有してもよい。複数の出射端面は、半導体レーザ素子の側面に、当該側面の長手方向に沿って一列に並ぶように配置されてもよい。そのような半導体レーザ素子は従来から提案されており、それらの公知の半導体レーザ素子を用いてもよい。例えば、DDL(Direct Diode Laser)と呼ばれる半導体レーザに関して用いられている半導体レーザ素子を用いてもよい。そのような半導体レーザ素子において、第1および第2の電極はそれぞれ、2次元状に広がった形状を有してもよい。例えば、第1および第2の電極はそれぞれ、矩形状の平面形状を有してもよい。一例の半導体レーザ素子は、ストライプ状に並ぶ複数の共振器を含む。 The semiconductor laser element may have an emission end face on a side surface connecting the first surface and the second surface. The semiconductor laser element may have a plurality of emission end faces (laser light emission end faces). The plurality of emission end faces may be arranged on a side surface of the semiconductor laser element so as to be lined up in a line along the longitudinal direction of the side surface. Such semiconductor laser devices have been proposed in the past, and these known semiconductor laser devices may be used. For example, a semiconductor laser element used in a semiconductor laser called DDL (Direct Diode Laser) may be used. In such a semiconductor laser device, each of the first and second electrodes may have a two-dimensionally expanded shape. For example, the first and second electrodes may each have a rectangular planar shape. An example of a semiconductor laser device includes a plurality of resonators arranged in a stripe shape.

(電極ブロック)
電極ブロックは、導電性を有するブロックである。電極ブロックには、例えば、金属からなるブロックを用いることができる。電極ブロックの一例は、銅ブロック(銅からなるブロック)である。銅ブロックの表面には、銅以外の金属がメッキされていてもよく、例えば、ニッケルと金とがこの順にメッキされていてもよい。電極ブロックは、第1の電極に電流を流すための電極配線の一部、および、半導体レーザ素子で発生する熱を放熱するための部材の一部として機能しうる。
(electrode block)
The electrode block is a block that has electrical conductivity. For example, a block made of metal can be used as the electrode block. An example of the electrode block is a copper block (a block made of copper). The surface of the copper block may be plated with a metal other than copper, for example, nickel and gold may be plated in this order. The electrode block can function as a part of the electrode wiring for flowing a current to the first electrode and as a part of a member for dissipating heat generated by the semiconductor laser element.

なお、半導体レーザ装置は通常、2つの電極ブロック(第1および第2の電極ブロック)を含む。第1の電極ブロックは、導電部を介して半導体レーザ素子の第1の電極と電気的に接続される。第2の電極ブロックは、半導体レーザ素子の第2の電極と電気的に接続される。 Note that a semiconductor laser device usually includes two electrode blocks (first and second electrode blocks). The first electrode block is electrically connected to the first electrode of the semiconductor laser element via the conductive part. The second electrode block is electrically connected to the second electrode of the semiconductor laser element.

(導電部)
導電部は、第1の電極と接触するように配置された複数の金属部材と、複数の金属部材の間を埋めるように配置された導電層とを含む。導電層は、第1の電極と接触するように形成される。
(conductive part)
The conductive portion includes a plurality of metal members arranged to be in contact with the first electrode, and a conductive layer arranged to fill in spaces between the plurality of metal members. A conductive layer is formed in contact with the first electrode.

金属部材は金属ワイヤ部を含む。金属ワイヤ部の一部は、導電層から突出している。以下では、導電層から突出している当該一部を、「突出部(P)」と称する場合がある。金属部材の材料の例には、金、銅、アルミニウムなどが含まれる。金属部材の材料の好ましい一例は金である。なお、金属部材の材料には、微量の添加剤が添加されていてもよい。金属部材の材料には、ワイヤボンディングに用いられる公知の材料を用いてもよい。 The metal member includes a metal wire portion. A portion of the metal wire portion protrudes from the conductive layer. Hereinafter, the part protruding from the conductive layer may be referred to as a "protrusion (P)". Examples of materials for the metal member include gold, copper, aluminum, and the like. A preferable example of the material of the metal member is gold. Note that a trace amount of additive may be added to the material of the metal member. As the material of the metal member, a known material used for wire bonding may be used.

金属ワイヤ部の上記一部(突出部(P))は、電極ブロックに向かって凸の円弧状の形状を有する湾曲部を含む。この構成によれば、湾曲部が電極ブロックを特に柔軟に受け止めることができる。 The above-mentioned part of the metal wire portion (protruding portion (P)) includes a curved portion having an arcuate shape convex toward the electrode block. According to this configuration, the curved portion can receive the electrode block particularly flexibly.

金属部材は、後述するように、ワイヤボンディングに用いられるワイヤボンダを用いて形成してもよい。それによって、金属ワイヤ部を含む金属部材を簡単に形成できる。また、ワイヤボンダを用いることによって、後述する形状を有する金属ワイヤ部を簡単に形成できる。 The metal member may be formed using a wire bonder used for wire bonding, as described later. Thereby, a metal member including a metal wire portion can be easily formed. Further, by using a wire bonder, a metal wire portion having a shape to be described later can be easily formed.

金属ワイヤ部の突出部(P)は、電極ブロックを柔軟に受け止める。また、金属ワイヤ部の高さはフレキシブルに調整することが可能である。そのため、極力多くの金属ワイヤ部の突出部(P)を、電極ブロック(または電極ブロック上に形成された接続層)に接触させることができる。その結果、金属部材と電極ブロックとの間の接触抵抗を低減でき、半導体レーザ素子と電極ブロックとの良好な電気的接続を実現できる。さらに、突出部(P)が電極ブロックを柔軟に受け止めることによって、半導体レーザ素子と電極ブロックとの間に働く応力を緩和できる。その結果、半導体レーザ素子に物理的なダメージを与えることを抑制できる。 The protrusion (P) of the metal wire portion flexibly receives the electrode block. Further, the height of the metal wire portion can be flexibly adjusted. Therefore, as many protrusions (P) of the metal wire parts as possible can be brought into contact with the electrode block (or the connection layer formed on the electrode block). As a result, contact resistance between the metal member and the electrode block can be reduced, and good electrical connection between the semiconductor laser element and the electrode block can be realized. Furthermore, since the protrusion (P) flexibly receives the electrode block, stress acting between the semiconductor laser element and the electrode block can be alleviated. As a result, it is possible to suppress physical damage to the semiconductor laser element.

さらに、本開示の半導体レーザ装置では、第1の電極と電極ブロックとの間に導電層が配置されている。この導電層と金属部材とによって、半導体レーザ素子で発生した熱を電極ブロックに効率的に伝えることができる。すなわち、本開示の半導体レーザ装置では、半導体レーザ素子で発生した熱をバンプのみによって電極ブロックに伝える場合と比較して、高い放熱性を実現できる。また、バンプのみによって第1の電極と電極ブロックとを電気的に接続する場合と比較して、導電層を用いることによって、第1の電極と電極ブロックとの間の電気抵抗を低減することが可能である。 Furthermore, in the semiconductor laser device of the present disclosure, a conductive layer is disposed between the first electrode and the electrode block. The conductive layer and the metal member allow heat generated by the semiconductor laser element to be efficiently transferred to the electrode block. That is, in the semiconductor laser device of the present disclosure, higher heat dissipation performance can be achieved compared to the case where the heat generated in the semiconductor laser element is transmitted to the electrode block only by the bumps. Furthermore, by using a conductive layer, the electrical resistance between the first electrode and the electrode block can be reduced compared to the case where the first electrode and the electrode block are electrically connected only by bumps. It is possible.

以上のように、本開示によれば、高い放熱性を有し、半導体レーザ素子への物理的なダメージが少ない半導体レーザ装置が得られる。さらに、本開示によれば、第1の電極と電極ブロックとの間の電気抵抗を低減することが可能である。 As described above, according to the present disclosure, a semiconductor laser device having high heat dissipation properties and causing less physical damage to the semiconductor laser element can be obtained. Furthermore, according to the present disclosure, it is possible to reduce the electrical resistance between the first electrode and the electrode block.

複数の金属部材は、概ね等間隔で配置されることが好ましい。複数の金属部材は、マトリクス状に配置されてもてもよい。等間隔に配置された複数の金属部材を含む金属部材の列を、ストライプ状に等間隔に並べてもよい。 It is preferable that the plurality of metal members are arranged at approximately equal intervals. The plurality of metal members may be arranged in a matrix. A row of metal members including a plurality of metal members arranged at equal intervals may be arranged in a stripe shape at equal intervals.

金属部材の面密度は、50~1000個/cmの範囲(例えば100~300個/cmの範囲)にあってもよい。この範囲とすることによって、電気的および物理的な接続が特に良好になる。The areal density of the metal member may be in the range of 50 to 1000 pieces/cm 2 (for example, in the range of 100 to 300 pieces/cm 2 ). This range provides particularly good electrical and physical connections.

金属部材の平均(算術平均)の高さH(すなわち、第1の電極の表面から金属ワイヤ部の最も高い部分までの距離)は、70μm~300μmの範囲(例えば150μm~200μm)の範囲にあってもよい。この範囲とすることによって、電気的および物理的な接続が特に良好になる。 The average (arithmetic mean) height H of the metal member (that is, the distance from the surface of the first electrode to the highest part of the metal wire portion) is in the range of 70 μm to 300 μm (for example, 150 μm to 200 μm). You can. This range provides particularly good electrical and physical connections.

導電層の平均の厚さDは、60μm~250μmの範囲(例えば100μm~150μm)の範囲にあってもよい。金属部材の平均の高さH(μm)は、導電層の平均の厚さD(μm)の1.1~2.0倍の範囲(例えば1.2~1.5倍の範囲)にあってもよい。この範囲とすることによって、導電層から突出している金属ワイヤ部が、電極ブロックを特に柔軟に受け止めることが可能である。なお、導電層の平均の厚さDは、例えば、平均の厚さD=(導電層が形成されている部分の体積)/(導電層が形成されている部分の面積)で求めることができる。ここで、導電層が形成されている部分の体積および面積には、その部分に存在している金属部材の体積および面積も含まれる。 The average thickness D of the conductive layer may be in the range 60 μm to 250 μm (eg 100 μm to 150 μm). The average height H (μm) of the metal member is in the range of 1.1 to 2.0 times (for example, 1.2 to 1.5 times) the average thickness D (μm) of the conductive layer. You can. This range allows the metal wire portion protruding from the conductive layer to receive the electrode block particularly flexibly. Note that the average thickness D of the conductive layer can be determined by, for example, average thickness D = (volume of the part where the conductive layer is formed)/(area of the part where the conductive layer is formed) . Here, the volume and area of the portion where the conductive layer is formed also includes the volume and area of the metal member present in that portion.

金属ワイヤ部は、電極ブロックに向かって凸のアーチ状の形状を有してもよい。一例の金属部材は、第1の電極と接触する第1および第2の基部を含んでもよい。金属ワイヤ部の2つの端部はそれぞれ、第1および第2の基部につながっていてもよい。金属ワイヤ部は、両端がそれぞれ第1の基部と第2の基部とにつながっているアーチ状のワイヤであってもよい。第1および第2の基部はそれぞれ、半球状または円柱状の形状を有してもよい。 The metal wire portion may have an arched shape convex toward the electrode block. An example metal member may include first and second bases in contact with a first electrode. The two ends of the metal wire portion may be connected to the first and second base portions, respectively. The metal wire portion may be an arch-shaped wire having both ends connected to the first base portion and the second base portion, respectively. The first and second bases may each have a hemispherical or cylindrical shape.

導電層は、金属粒子を含んでもよい。金属粒子を用いることによって、導電層の熱伝導性および電気伝導性を高めることができる。そのような導電層は、金属ペースト(金属粒子を含むペースト)で形成されてもよく、例えば、金ペースト(金粒子を含むペースト)や銀ペースト(銀粒子を含むペースト)で形成されてもよい。金属ペーストとして、半導体装置の製造に用いられる公知の金属ペーストを用いてもよい。 The conductive layer may include metal particles. By using metal particles, the thermal conductivity and electrical conductivity of the conductive layer can be increased. Such a conductive layer may be formed of metal paste (paste containing metal particles), for example, gold paste (paste containing gold particles) or silver paste (paste containing silver particles). . As the metal paste, a known metal paste used for manufacturing semiconductor devices may be used.

本開示の半導体レーザ装置の製造方法について、特に限定はない。製造方法の一例については、実施形態1において説明する。 There are no particular limitations on the method of manufacturing the semiconductor laser device of the present disclosure. An example of a manufacturing method will be described in Embodiment 1.

以下では、本開示の半導体レーザ装置の一例について、図面を参照して具体的に説明する。以下で説明する一例の半導体レーザ装置の構成要素には、上述した構成要素を適用できる。以下で説明する一例の半導体レーザ装置の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。以下で説明する一例の半導体レーザ装置の構成要素のうち、本開示の半導体レーザ装置に必須ではない構成要素は省略してもよい。なお、以下で示す図は模式的なものであり、実際の部材の形状や数を正確に反映するものではない。 An example of the semiconductor laser device of the present disclosure will be specifically described below with reference to the drawings. The above-mentioned components can be applied to the components of an example semiconductor laser device described below. The components of the example semiconductor laser device described below can be changed based on the above description. Further, the matters described below may be applied to the above embodiments. Among the components of the example semiconductor laser device described below, components that are not essential to the semiconductor laser device of the present disclosure may be omitted. Note that the figures shown below are schematic and do not accurately reflect the shape or number of actual members.

(実施形態1)
実施形態1の半導体レーザ装置100の断面図を、図1に模式的に示す。半導体レーザ装置100は、半導体レーザ素子110、第1の電極ブロック(上部電極ブロック)121、第2の電極ブロック122、サブマウント123、絶縁層124、および導電部130を含む。
(Embodiment 1)
A cross-sectional view of a semiconductor laser device 100 of Embodiment 1 is schematically shown in FIG. The semiconductor laser device 100 includes a semiconductor laser element 110, a first electrode block (upper electrode block) 121, a second electrode block 122, a submount 123, an insulating layer 124, and a conductive part 130.

半導体レーザ素子110は、複数の出射端面を有してもよい。当該複数の出射端面は、半導体レーザ素子110の側壁の長手方向に沿って一列に並んでいてもよい。 The semiconductor laser element 110 may have a plurality of emission end faces. The plurality of emission end faces may be arranged in a line along the longitudinal direction of the side wall of the semiconductor laser element 110.

半導体レーザ素子110は、導電部130と対向する部分に設けられた第1の電極111(図2B参照)と、サブマウント123と対向する部分に設けられた第2の電極(図示せず)とを含む。第1の電極111は、導電部130を介して第1の電極ブロック121に電気的に接続されている。第2の電極は、サブマウント123を介して第2の電極ブロック122に電気的に接続されている。第1および第2の電極ブロック121および122は、半導体レーザ素子110に電流を注入するための電源(図示せず)に接続される。この電源によって、半導体レーザ素子110の活性層に電流が注入される。 The semiconductor laser element 110 includes a first electrode 111 (see FIG. 2B) provided at a portion facing the conductive portion 130 and a second electrode (not shown) provided at a portion facing the submount 123. including. The first electrode 111 is electrically connected to the first electrode block 121 via the conductive part 130. The second electrode is electrically connected to the second electrode block 122 via the submount 123. The first and second electrode blocks 121 and 122 are connected to a power source (not shown) for injecting current into the semiconductor laser device 110. A current is injected into the active layer of the semiconductor laser device 110 by this power source.

サブマウント123は、導電性および熱伝導性が高い材料で形成される。サブマウント123の熱膨張係数は、半導体レーザ素子110の熱膨張係数と近いことが好ましい。サブマウントに特に限定はなく、半導体レーザ装置に用いられている公知のサブマウントを適用してもよい。サブマウント123は、銅タングステン合金や銅モリブデン合金で形成されてもよい。 Submount 123 is made of a material with high electrical and thermal conductivity. The thermal expansion coefficient of the submount 123 is preferably close to that of the semiconductor laser element 110. There is no particular limitation on the submount, and any known submount used in semiconductor laser devices may be used. Submount 123 may be formed of copper-tungsten alloy or copper-molybdenum alloy.

第2の電極ブロック122とサブマウント123との間には、それらを接続するための導電性を有する接続層が配置されていてもよい。接続層は、例えば、ハンダ層やメッキ層や金属箔層などであってもよい(以下で説明する接続層についても同様である)。同様に、サブマウント123と半導体レーザ素子110との間にはそれらを接続するための接続層が配置されていてもよく、導電部130と第1の電極ブロック121との間にはそれらを接続するための接続層が配置されていてもよい。 A conductive connection layer may be disposed between the second electrode block 122 and the submount 123 to connect them. The connection layer may be, for example, a solder layer, a plating layer, a metal foil layer, or the like (the same applies to the connection layer described below). Similarly, a connection layer may be disposed between the submount 123 and the semiconductor laser element 110 for connecting them, and a connection layer for connecting them may be disposed between the conductive part 130 and the first electrode block 121. A connection layer may be provided for this purpose.

絶縁層124は、第1の電極ブロック121と第2の電極ブロック122とを絶縁している。絶縁層124は、絶縁性を有する材料で形成される。絶縁層124は、無機絶縁材料(例えば、窒化アルミニウムなどのセラミクス)、および/または、有機絶縁材料(例えば、ポリイミドなどの絶縁性樹脂)で形成してもよい。一例の絶縁層124は、ポリイミドや窒化アルミニウムなどを含んでもよい。 The insulating layer 124 insulates the first electrode block 121 and the second electrode block 122. The insulating layer 124 is made of an insulating material. The insulating layer 124 may be formed of an inorganic insulating material (eg, ceramics such as aluminum nitride) and/or an organic insulating material (eg, insulating resin such as polyimide). An example of the insulating layer 124 may include polyimide, aluminum nitride, or the like.

導電部130を第1の電極ブロック121側から見たときの上面図を、図2Aに模式的に示す。また、図2Aの線IIB-IIBにおける半導体レーザ素子110および導電部130の断面図を、図2Bに模式的に示す。 A top view of the conductive part 130 when viewed from the first electrode block 121 side is schematically shown in FIG. 2A. Further, a cross-sectional view of the semiconductor laser element 110 and the conductive portion 130 taken along line IIB-IIB in FIG. 2A is schematically shown in FIG. 2B.

導電部130は、複数の金属部材131と、複数の金属部材131の間を埋めるように配置された導電層132とを含む。複数の金属部材131および導電層132はそれぞれ、半導体レーザ素子110の第1の電極111と接触するように配置されている。図1に示す一例では、複数の金属部材131はマトリクス状に配置されている。別の観点では、複数の金属部材131は、格子点の位置に配置されている。 The conductive part 130 includes a plurality of metal members 131 and a conductive layer 132 arranged to fill in spaces between the plurality of metal members 131. Each of the plurality of metal members 131 and the conductive layer 132 is arranged so as to be in contact with the first electrode 111 of the semiconductor laser element 110. In the example shown in FIG. 1, the plurality of metal members 131 are arranged in a matrix. From another perspective, the plurality of metal members 131 are arranged at the positions of the grid points.

金属部材131は、第1の電極111と接触しているバンプ状の第1の基部131aと、第1の基部131aから延びる金属ワイヤ部131bとを含む。実施形態1で示す一例では、金属ワイヤ部131bの両端はそれぞれ、バンプ状の第1の基部131aおよびバンプ状の第2の基部131cにつながっている。1つの観点では、金属ワイヤ部131bは、アーチ状の形状を有する。また、基部131cは、電極111と接していないこともあるが、その場合でも、金属ワイヤ部131bは上記と同様にアーチ状の形状を有している。 The metal member 131 includes a bump-shaped first base portion 131a that is in contact with the first electrode 111, and a metal wire portion 131b extending from the first base portion 131a. In the example shown in Embodiment 1, both ends of the metal wire portion 131b are connected to a bump-shaped first base 131a and a bump-shaped second base 131c, respectively. In one aspect, the metal wire portion 131b has an arched shape. Further, the base portion 131c may not be in contact with the electrode 111, but even in that case, the metal wire portion 131b has an arch-like shape as described above.

金属ワイヤ部131bの一部である突出部131bp(突出部(P))は、導電層132から突出している。突出部131bpは、第1の電極ブロック121に向かって凸の円弧状の形状を有する湾曲部を含む。少なくとも湾曲部の上部は、第1の電極ブロック121(または第1の電極ブロック上に形成された接続層)と物理的に接触している。すなわち、少なくとも湾曲部の上部を介して、第1の電極111と第1の電極ブロック121とが電気的に接続されている。 A protruding portion 131bp (protruding portion (P)) that is a part of the metal wire portion 131b protrudes from the conductive layer 132. The protruding portion 131bp includes a curved portion having an arcuate shape that is convex toward the first electrode block 121. At least the upper portion of the curved portion is in physical contact with the first electrode block 121 (or the connection layer formed on the first electrode block). That is, the first electrode 111 and the first electrode block 121 are electrically connected through at least the upper part of the curved portion.

導電層132は、第1の電極111の表面のうち、金属部材131が覆っていない部分を覆うように配置されている。導電層132は、金属微粒子を含む。なお、導電層132を構成する材料の一部が、金属ワイヤ部131bの突出部131bpに付着している場合があるが、突出部131bpに付着している材料は、層を構成しないため、導電層132には含まれない。 The conductive layer 132 is arranged to cover a portion of the surface of the first electrode 111 that is not covered by the metal member 131. The conductive layer 132 includes metal fine particles. Note that a part of the material constituting the conductive layer 132 may adhere to the protrusion 131bp of the metal wire portion 131b, but since the material adhered to the protrusion 131bp does not constitute a layer, it is not conductive. It is not included in layer 132.

実施形態1の半導体レーザ装置100では、弾性を有する金属ワイヤ部131b(具体的には、湾曲部を含む突出部131bp)によって、第1の電極ブロック121(または接続層)を受け止めて電気的な接続を形成する。そのため、複数の金属部材131の形状や高さにばらつきがあっても、均一且つ安定に電気的な接続を形成できる。また、半導体レーザ素子110と第1の電極ブロック121との間に加わる応力を、金属ワイヤ部131bによって緩和することが可能である。また、半導体レーザ装置100では、導電層132によって、導電部130の導電性および熱伝導性が向上する。そのため、半導体レーザ装置100は高い放熱性を有し、半導体レーザ素子110への物理的なダメージが少ない。さらに、半導体レーザ装置100では、半導体レーザ素子110と第1の電極ブロック121との間の電気抵抗による損失が小さい。 In the semiconductor laser device 100 of the first embodiment, the first electrode block 121 (or the connection layer) is received by the elastic metal wire portion 131b (specifically, the protruding portion 131bp including the curved portion) and electrically connected. Form a connection. Therefore, even if the shapes and heights of the plurality of metal members 131 vary, uniform and stable electrical connections can be formed. Further, the stress applied between the semiconductor laser element 110 and the first electrode block 121 can be alleviated by the metal wire portion 131b. Furthermore, in the semiconductor laser device 100, the conductive layer 132 improves the electrical conductivity and thermal conductivity of the conductive portion 130. Therefore, the semiconductor laser device 100 has high heat dissipation properties, and there is little physical damage to the semiconductor laser element 110. Furthermore, in the semiconductor laser device 100, loss due to electrical resistance between the semiconductor laser element 110 and the first electrode block 121 is small.

半導体レーザ装置100の製造方法の一例について、以下に説明する。導電部130以外の部分の形成方法には、公知の方法を適用できるため、詳細な説明は省略する。以下では、金属部材131が金からなる一例について説明する。 An example of a method for manufacturing the semiconductor laser device 100 will be described below. Since a known method can be applied to a method for forming parts other than the conductive part 130, detailed explanation will be omitted. An example in which the metal member 131 is made of gold will be described below.

導電部130の形成では、まず、ワイヤボンダを用いて、金属部材131を第1の電極111上に形成する。具体的には、ワイヤボンダを用いたボールボンディングの手法によって、金線の先端に形成されたボール状の部分を第1の電極111上に接続して第1の基部131aを形成する。次に、金線(金属ワイヤ部131b)をある程度の長さまで延ばす。その後、図2Bに示すアーチ状の金属ワイヤ部131bが形成されるように、ワイヤボンダを操作して金線をアーチ状にし、金線を電極111上に押し付ける時に高電流を流して金線を切断する。このようにして、アーチ状の金属ワイヤ部131bを含む金属部材131が形成される。 In forming the conductive portion 130, first, a metal member 131 is formed on the first electrode 111 using a wire bonder. Specifically, a ball-shaped portion formed at the tip of a gold wire is connected to the first electrode 111 by a ball bonding method using a wire bonder to form the first base portion 131a. Next, the gold wire (metal wire portion 131b) is extended to a certain length. Thereafter, a wire bonder is operated to make the gold wire arch-shaped so that the arch-shaped metal wire portion 131b shown in FIG. 2B is formed, and when the gold wire is pressed onto the electrode 111, a high current is applied to cut the gold wire. do. In this way, the metal member 131 including the arch-shaped metal wire portion 131b is formed.

次に、導電層132を形成する。まず、金属ペースト(例えば銀ペースト)を、第1の電極111上に層状に塗布する。すなわち、複数の金属部材131の間を埋めるように、金属ペーストを塗布する。このとき、金属部材131の一部が露出するように金属ペーストを塗布してもよいし、金属部材131の全体が完全に覆われるように金属ペーストを塗布してもよい。いずれにせよ、導電層132の形成が終了したときに、金属部材131の一部(突出部131bp)が、導電層132から露出していればよい。 Next, a conductive layer 132 is formed. First, a metal paste (for example, silver paste) is applied in a layer on the first electrode 111. That is, the metal paste is applied so as to fill in the spaces between the plurality of metal members 131. At this time, the metal paste may be applied so that a part of the metal member 131 is exposed, or the metal paste may be applied so that the entire metal member 131 is completely covered. In any case, it is sufficient that a portion of the metal member 131 (protrusion 131bp) is exposed from the conductive layer 132 when the formation of the conductive layer 132 is completed.

金属ペーストを塗布した後、必要に応じて、金属ペーストの表面を平らにならしてもよい。例えば、不織布等で金属ペーストの表面を平らにならしてもよい。金属部材131の全体が完全に覆われるように金属ペーストを塗布した後、金属ペーストの表面を平らにならす際に、金属部材131の一部を金属ペーストの層から露出させてもよい。 After applying the metal paste, the surface of the metal paste may be smoothed, if necessary. For example, the surface of the metal paste may be made flat with a nonwoven fabric or the like. After applying the metal paste so that the entire metal member 131 is completely covered, a portion of the metal member 131 may be exposed from the layer of metal paste when the surface of the metal paste is leveled.

次に、金属ペーストを加熱(焼成)して、導電層132を形成する。加熱の条件は、金属ペーストに応じて選択できる。なお、加熱は、複数回に分けて行ってもよい。例えば、金属ペーストを塗布した後に比較的低温で加熱(仮焼成)を行い、半導体レーザ装置100を組み立てた後に高温で加熱を行ってもよい。 Next, the metal paste is heated (baked) to form a conductive layer 132. Heating conditions can be selected depending on the metal paste. Note that the heating may be performed in multiple steps. For example, heating (temporary firing) may be performed at a relatively low temperature after applying the metal paste, and heating may be performed at a high temperature after the semiconductor laser device 100 is assembled.

導電部130の形成工程をどの段階で行うかについては限定はなく、導電部130を形成可能な任意の段階で行うことができる。例えば、導電部130は、半導体レーザ素子110がマウントされたサブマウント123を第2の電極ブロック122に接合する前に形成してもよいし、接合した後に形成してもよい。 There is no limitation as to at what stage the process of forming the conductive part 130 is performed, and the process can be performed at any stage where the conductive part 130 can be formed. For example, the conductive portion 130 may be formed before or after bonding the submount 123 on which the semiconductor laser element 110 is mounted to the second electrode block 122.

導電部130を形成した後は、公知の方法によって半導体レーザ装置100を組み立てることができる。例えば、まず、第2の電極ブロック122上に、絶縁層124を形成する。また、第2の電極ブロック122に、半導体レーザ素子110がマウントされたサブマウント123を接合する。半導体レーザ素子110の第1の電極111上には、導電部130が形成されている。次に、絶縁層124および導電部130上に、第1の電極ブロック121を載置する。上述したように、導電部130と第1の電極ブロック121との間には接続層が配置されていてもよい。その場合、接続層は、第1の電極ブロック121上に形成される。 After forming the conductive portion 130, the semiconductor laser device 100 can be assembled by a known method. For example, first, the insulating layer 124 is formed on the second electrode block 122. Further, a submount 123 on which the semiconductor laser element 110 is mounted is bonded to the second electrode block 122. A conductive portion 130 is formed on the first electrode 111 of the semiconductor laser element 110. Next, the first electrode block 121 is placed on the insulating layer 124 and the conductive part 130. As described above, a connection layer may be disposed between the conductive part 130 and the first electrode block 121. In that case, the connection layer is formed on the first electrode block 121.

以上のようにして、半導体レーザ装置100を製造できる。なお、上述した製造方法は一例であり、本開示の半導体レーザ装置は、任意の方法で製造できる。 In the manner described above, the semiconductor laser device 100 can be manufactured. Note that the manufacturing method described above is an example, and the semiconductor laser device of the present disclosure can be manufactured by any method.

本開示は、半導体レーザ装置に利用できる。 The present disclosure can be used in semiconductor laser devices.

100:半導体レーザ装置
110:半導体レーザ素子
111:第1の電極
130:導電部
131:金属部材
131a:第1の基部
131b:金属ワイヤ部
131bp:突出部(金属ワイヤ部の一部、湾曲部)
131c:第2の基部
132:導電層
100: Semiconductor laser device 110: Semiconductor laser element 111: First electrode 130: Conductive part 131: Metal member 131a: First base 131b: Metal wire part 131bp: Projection part (part of metal wire part, curved part)
131c: Second base 132: Conductive layer

Claims (3)

第1および第2の電極を含む半導体レーザ素子と、
前記第1の電極上に配置された導電部と、
前記導電部を介して前記第1の電極と電気的に接続された電極ブロックと、を含む半導体レーザ装置であって、
前記導電部は、前記第1の電極と接触するように配置された複数の金属部材と、前記複数の金属部材の間を埋めるように配置された導電層とを含み、
前記金属部材は金属ワイヤ部を含み、
前記金属ワイヤ部の一部が前記導電層から突出しており、
前記金属ワイヤ部の前記一部は、前記電極ブロックに向かって凸の円弧状の形状を有する湾曲部を含む、半導体レーザ装置。
a semiconductor laser element including first and second electrodes;
a conductive part disposed on the first electrode;
A semiconductor laser device including an electrode block electrically connected to the first electrode via the conductive part,
The conductive part includes a plurality of metal members arranged to be in contact with the first electrode, and a conductive layer arranged to fill in spaces between the plurality of metal members,
The metal member includes a metal wire portion,
A portion of the metal wire portion protrudes from the conductive layer,
In the semiconductor laser device, the part of the metal wire portion includes a curved portion having an arcuate shape convex toward the electrode block.
前記金属ワイヤ部は、前記電極ブロックに向かって凸のアーチ状の形状を有する、請求項1に記載の半導体レーザ装置。 2. The semiconductor laser device according to claim 1, wherein the metal wire portion has an arch shape convex toward the electrode block. 前記導電層は金属粒子を含む、請求項1または2に記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 1, wherein the conductive layer includes metal particles.
JP2022503246A 2020-02-27 2021-02-10 semiconductor laser equipment Active JP7386408B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020031833 2020-02-27
JP2020031833 2020-02-27
PCT/JP2021/004885 WO2021172012A1 (en) 2020-02-27 2021-02-10 Semiconductor laser apparatus

Publications (2)

Publication Number Publication Date
JPWO2021172012A1 JPWO2021172012A1 (en) 2021-09-02
JP7386408B2 true JP7386408B2 (en) 2023-11-27

Family

ID=77491414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022503246A Active JP7386408B2 (en) 2020-02-27 2021-02-10 semiconductor laser equipment

Country Status (4)

Country Link
JP (1) JP7386408B2 (en)
CN (1) CN115004348A (en)
DE (1) DE112021000342T5 (en)
WO (1) WO2021172012A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234451A1 (en) 2002-06-25 2003-12-25 Eli Razon Stabilized wire bonded electrical connections and method of making same
US20050133928A1 (en) 2003-12-19 2005-06-23 Howard Gregory E. Wire loop grid array package
US20090026605A1 (en) 2007-07-26 2009-01-29 Texas Instruments Incorporated Heat Extraction from Packaged Semiconductor Chips, Scalable with Chip Area
JP2011216822A (en) 2010-04-02 2011-10-27 Hitachi Ltd Power semiconductor module
JP2014209614A (en) 2013-03-29 2014-11-06 株式会社フジクラ Heat radiator for electronic component
JP2015138824A (en) 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 Semiconductor device and manufacturing method of the same, and power electronics system using semiconductor device
WO2016103536A1 (en) 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Semiconductor device
US20170301606A1 (en) 2016-04-19 2017-10-19 Hyundai Mobis Co., Ltd. Bidirectional semiconductor package
WO2021044698A1 (en) 2019-09-06 2021-03-11 パナソニックIpマネジメント株式会社 Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303242A (en) * 1997-04-24 1998-11-13 Kyocera Corp Salient contact and formation of salient contact
WO2019009172A1 (en) 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 Semiconductor laser device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234451A1 (en) 2002-06-25 2003-12-25 Eli Razon Stabilized wire bonded electrical connections and method of making same
US20050133928A1 (en) 2003-12-19 2005-06-23 Howard Gregory E. Wire loop grid array package
US20090026605A1 (en) 2007-07-26 2009-01-29 Texas Instruments Incorporated Heat Extraction from Packaged Semiconductor Chips, Scalable with Chip Area
JP2011216822A (en) 2010-04-02 2011-10-27 Hitachi Ltd Power semiconductor module
JP2014209614A (en) 2013-03-29 2014-11-06 株式会社フジクラ Heat radiator for electronic component
JP2015138824A (en) 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 Semiconductor device and manufacturing method of the same, and power electronics system using semiconductor device
WO2016103536A1 (en) 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Semiconductor device
US20170301606A1 (en) 2016-04-19 2017-10-19 Hyundai Mobis Co., Ltd. Bidirectional semiconductor package
WO2021044698A1 (en) 2019-09-06 2021-03-11 パナソニックIpマネジメント株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JPWO2021172012A1 (en) 2021-09-02
WO2021172012A1 (en) 2021-09-02
CN115004348A (en) 2022-09-02
DE112021000342T5 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6152893B2 (en) Semiconductor device, method for assembling semiconductor device, component for semiconductor device, and unit module
JP5979883B2 (en) Thermoelectric element and thermoelectric module having the same
CN108847571B (en) Semiconductor laser device
JPWO2011074262A1 (en) Laser module
JPWO2018179981A1 (en) Semiconductor device
JP6580244B2 (en) Semiconductor laser light source device
JP2006210519A (en) Semiconductor device and its manufacturing method
JP6834436B2 (en) Semiconductor device
JPH11265976A (en) Power-semiconductor module and its manufacture
JP2001274177A (en) Semiconductor device and method of manufacturing the same
CN110880484A (en) Semiconductor device with a plurality of semiconductor chips
JP7386408B2 (en) semiconductor laser equipment
JP2001332773A (en) Multi-layer substrate for thermoelectric module and method of manufacturing the same, and thermoelectric module using multi-layer substrate
CN111354684A (en) Chip substrate and manufacturing method thereof, packaged chip and packaging method thereof
JP6818465B2 (en) Thermoelectric module
CN209747497U (en) Chip substrate and packaged chip
CN114512462A (en) Semiconductor device and method for manufacturing the same
JP7054429B2 (en) Light emitting device, light emitting module and its manufacturing method
JP6884225B2 (en) Thermoelectric module
CN113224022A (en) Semiconductor module and method for manufacturing semiconductor module
JP7130928B2 (en) semiconductor equipment
JPH01164084A (en) Semiconductor laser device
KR101897304B1 (en) Power module
CN113795932B (en) Method for manufacturing LED assembly
JP7322467B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230822

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7386408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151