JP7382736B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP7382736B2
JP7382736B2 JP2019090026A JP2019090026A JP7382736B2 JP 7382736 B2 JP7382736 B2 JP 7382736B2 JP 2019090026 A JP2019090026 A JP 2019090026A JP 2019090026 A JP2019090026 A JP 2019090026A JP 7382736 B2 JP7382736 B2 JP 7382736B2
Authority
JP
Japan
Prior art keywords
subject
signal
magnetic resonance
function
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019090026A
Other languages
English (en)
Other versions
JP2020185070A (ja
Inventor
基尚 横井
択真 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2019090026A priority Critical patent/JP7382736B2/ja
Publication of JP2020185070A publication Critical patent/JP2020185070A/ja
Application granted granted Critical
Publication of JP7382736B2 publication Critical patent/JP7382736B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明の実施形態は、磁気共鳴イメージング装置に関する。
従来から、磁気共鳴イメージング装置で胸部を撮像する場合に、呼吸に起因するアーチファクトを低減する技術が知られている。例えば、被検体の腹部に固定されたバルーンを用いた圧力変動検出方式の呼吸同期法や、横隔膜の位置を指標として呼吸を確認するRMC(Realtime Motion Correction)等の技術が知られている。また、フェーズドアレイコイルを用いて受信したMR信号に基づいて呼吸同期を行う技術も知られている。
特開2017-12363号公報
本発明が解決しようとする課題は、被検体の呼吸に起因するアーチファクトを低減することである。
実施形態の磁気共鳴イメージング装置は、収集部と、算出部と、推定部と、撮像部とを備える。収集部は、被検体の体軸方向を長手方向とするサジタル断面である第1の範囲を選択励起して、発生した第1のMR信号を収集する。算出部は、第1のMR信号のうち、第1の範囲の一部であり、被検体の肺を含む第2の範囲で発生した第1のMR信号の総和値を算出する。推定部は、総和値の時間変動により被検体の呼吸周期を推定する。撮像部は、推定された呼吸周期に基づくタイミングで、被検体を撮像する。収集部は、撮像部による撮像処理が開始すると、第1のMR信号の収集を停止する。
図1は、実施形態にかかる磁気共鳴イメージング装置の構成の一例を示すブロック図である。 図2は、実施形態にかかる選択励起範囲の一例を示す図である。 図3は、選択励起範囲の撮像イメージの一例である。 図4は、実施形態にかかる監視対象領域で発生した第1のMR信号の総和値の時系列の推移と、撮像タイミングの一例を示すグラフである。 図5は、実施形態にかかる撮像処理の流れの一例を示すフローチャートである。
以下、図面を参照しながら、磁気共鳴イメージング装置の実施形態について詳細に説明する。なお、本願にかかる磁気共鳴イメージング装置は、以下に示す実施形態に限定されるものではない。
(第1の実施形態)
図1は、本実施形態にかかる磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置100の構成の一例を示すブロック図である。図1に示すように、磁気共鳴イメージング装置100は、静磁場磁石101と、傾斜磁場コイル102と、傾斜磁場電源103と、寝台104と、寝台制御回路105と、送信コイル106と、送信回路107と、受信コイル108と、受信回路109と、シーケンス制御回路110と、計算機システム120と、高周波増幅装置1とを備える。なお、磁気共鳴イメージング装置100に被検体P(例えば、人体)は含まれない。
静磁場磁石101は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成された磁石であり、内部の空間に一様な静磁場を発生する。
傾斜磁場コイル102は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成されたコイルであり、傾斜磁場を発生する。より詳細には、傾斜磁場コイル102は、後述する傾斜磁場電源103から個別に電流供給を受けて、円筒内の空間に、互いに直交するX軸、Y軸およびZ軸の各軸に沿った傾斜磁場を発生させる。
ここで、X軸、Y軸及びZ軸は、MRI装置100に固有の装置座標系を構成する。例えば、Z軸方向は、傾斜磁場コイル102の円筒の軸方向に一致し、静磁場磁石101によって発生する静磁場の磁束に沿って設定される。また、Z軸方向は、後述する天板104aの長手方向および被検体Pの体軸方向と同方向である。また、X軸方向は、Z軸方向に直交する水平方向に沿って設定される。Y軸方向は、Z軸方向に直交する鉛直方向に沿って設定される。
傾斜磁場電源103は、傾斜磁場コイル102に電流を供給する。また、傾斜磁場電源103は、後述のシーケンス制御回路110による制御の下、傾斜磁場コイル102に傾斜磁場を印加させる。
寝台104は、被検体Pが載置される天板104aを備え、寝台制御回路105による制御のもと、天板104aを、被検体Pが載置された状態で撮像口内へ挿入する。寝台制御回路105は、計算機システム120による制御のもと、寝台104を駆動して天板104aを長手方向および上下方向へ移動するプロセッサである。
送信コイル106は、被検体Pに対して高周波を出力する。具体的には、送信コイル106は、傾斜磁場コイル102の内側に配置され、送信回路107からRF(Radio Frequency、高周波)パルスの供給を受けて、高周波磁場を発生する。
また、送信コイル106は、被検体Pに高周波磁場を印加することで、被検体Pの任意の断面を励起する。
送信回路107は、対象とする原子核の種類および磁場の強度で決まるラーモア周波数に対応するRFパルスを送信コイル106に供給する。
受信コイル108は、傾斜磁場コイル102の内側に配置され、高周波磁場の影響によって被検体Pから発せられる磁気共鳴信号(以下、MR信号と称する)を受信する。受信コイル108は、MR信号を受信すると、受信したMR信号を受信回路109へ出力する。
なお、図1では、受信コイル108が、送信コイル106と別個に設けられる構成としたが、これは一例であり、当該構成に限定されるものではない。例えば、受信コイル108が送信コイル106と兼用される構成を採用しても良い。また、受信コイル108は、架台内に設けられた全身用の受信コイルのみに限定されるものではなく、撮像対象部位に応じた局所コイルでも良い。局所コイルには、例えば、脊椎撮像用のSpineコイル、頭部撮像用のHeadコイル等の種類がある。撮像対象部位が複数である場合には、複数の局所コイルが受信コイル108として設置されても良い。
受信回路109は、受信コイル108から出力されるアナログのMR信号をアナログ・デジタル(AD)変換して、MRデータを生成する。また、受信回路109は、生成したMRデータをシーケンス制御回路110へ送信する。なお、AD変換に関しては、受信コイル108内で行っても構わないし、受信回路109はAD変換以外にも任意の信号処理を行うことが可能である。
シーケンス制御回路110は、計算機システム120から送信されるシーケンス情報に基づいて、高周波増幅装置1、傾斜磁場電源103、送信回路107、および受信回路109を制御することによって、被検体Pの撮像を行う。シーケンス制御回路110は、プロセッサにより実現されるものとしても良いし、ソフトウェアとハードウェアとの混合によって実現されても良い。
シーケンス情報とは、磁気共鳴イメージング装置100による検査で実行されるパルスシーケンスを定義する情報である。シーケンス情報には、傾斜磁場電源103が傾斜磁場コイル102に供給する電流の強さや電流を供給するタイミング、送信回路107が送信コイル106に送信するRFパルスの強さやRFパルスを印加するタイミング、受信回路109がMR信号を検出するタイミング等が定義される。
また、シーケンス情報は、操作者によって指定された撮像条件、例えば、選択励起位置、TR(繰り返し時間:Repetition Time)、TE(エコー時間:Echo Time)、スライス枚数、スライス厚、FOV(撮像視野:Field Of View)等、多数の撮像パラメータに情報に基づいて、計算機システム120によって生成されるものとする。
高周波増幅装置1は、計算機システム120、シーケンス制御回路110および送信回路107等に接続され、計算機システム120から受信した命令またはシーケンス制御回路110から受信したシーケンス情報に基づいて、RF信号を生成する。このRF信号は、シーケンス制御回路110から入力されたRF入力信号を高周波増幅装置1が増幅した増幅信号である。高周波増幅装置1は、生成した増幅信号を送信回路107に送信する。
計算機システム120は、磁気共鳴イメージング装置100の全体制御、データ収集、および画像再構成などを行う。より詳細には、計算機システム120は、シーケンス制御回路110、高周波増幅装置1、および寝台制御回路105を制御する。計算機システム120は、インタフェース回路121、記憶回路122、処理回路123、入力インタフェース124、およびディスプレイ125を有する。計算機システム120は、本実施形態における磁気共鳴イメージング装置100の制御システムの一例である。
インタフェース回路121は、シーケンス情報をシーケンス制御回路110へ送信し、シーケンス制御回路110からMRデータを受信する。また、インタフェース回路121は、MRデータを受信すると、受信したMRデータを記憶回路122に格納する。
記憶回路122は、各種のプログラムを記憶する。記憶回路122は、インタフェース回路121によって受信されたMRデータや、後述の撮像機能123dによってk空間に配置された時系列データ、後述する画像生成機能123eによって生成された磁気共鳴画像などを記憶する。また、記憶回路122は、各種のプログラムを記憶する。記憶回路122は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。なお、記憶回路122は、ハードウェアによる非一過性の記憶媒体としても用いられる。
入力インタフェース124は、医師または診療放射線技師等の操作者からの各種指示や情報入力を受け付ける。入力インタフェース124は、例えば、トラックボール、スイッチボタン、マウス、キーボード等によって実現される。入力インタフェース124は、処理回路123に接続されており、操作者から受け取った入力操作を電気信号に変換して処理回路123へと出力する。
ディスプレイ125は、処理回路123による制御のもと、各種GUI(Graphical User Interface)や、MR(Magnetic Resonance)画像等を表示する。
処理回路123は、磁気共鳴イメージング装置100の全体制御を行う。より詳細には、処理回路123は、収集機能123aと、算出機能123bと、推定機能123cと、撮像機能123dと、画像生成機能123eと、表示制御機能123fとを有する。収集機能123aは、収集部の一例である。また、算出機能123bは、算出部の一例である。推定機能123cは、推定部の一例である。撮像機能123dは、撮像部の一例である。画像生成機能123eは、画像生成部の一例である。表示制御機能123fは、表示制御部の一例である。
ここで、例えば、処理回路123の構成要素である収集機能123a、算出機能123b、推定機能123c、撮像機能123d、画像生成機能123e、および表示制御機能123fの各処理機能は、コンピュータによって実行可能なプログラムの形態で記憶回路122に記憶されている。処理回路123は、各プログラムを記憶回路122から読み出し、読み出した各プログラムを実行することで、各プログラムに対応する機能を実現する。換言すると、各プログラムを読み出した状態の処理回路123は、図1の処理回路123内に示された各機能を有することとなる。なお、図1においては、単一の処理回路123にて、収集機能123a、算出機能123b、推定機能123c、撮像機能123d、画像生成機能123e、および表示制御機能123fの各処理機能が実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路123を構成し、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、およびフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。なお、記憶回路122にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。
収集機能123aは、被検体Pの身体の一部を選択励起して、発生したMR信号を収集する。より詳細には、収集機能123aは、被検体Pの身体の一部を選択励起する撮像シーケンスの実行の指示を、インタフェース回路121を介してシーケンス制御回路110へ送信する。本実施形態においては、収集機能123aは、被検体Pの体軸方向をリードアウト(Read Out:RO)傾斜磁場方向として傾斜磁場を印加するシーケンスの実行を指示する。
また、収集機能123aは、撮像シーケンスの実行結果としてシーケンス制御回路110から送られたMRデータを、インタフェース回路121を介して取得する。このように、収集機能123aは、MR信号がAD変換されたMRデータを収集するが、本実施形態においては、以下、MRデータについても、便宜的に「MR信号」と呼ぶ。
また、本実施形態においては、選択励起される被検体Pの身体の一部を、選択励起範囲という。選択励起範囲は、第1の範囲の一例である。また、収集機能123aによって収集されるMR信号を、第1のMR信号という。
ここで、選択励起範囲について図2を用いて説明する。図2は、本実施形態にかかる選択励起範囲900の一例を示す図である。
本実施形態の選択励起範囲900は、被検体Pの心臓を含まず、被検体Pの体軸方向を長手方向とする範囲である。換言すれば、選択励起範囲900は、被検体Pの心臓を含まないサジタル面のスライスである。図2の左側に示すように、選択励起範囲900は、被検体Pの体軸方向(Z軸方向)に沿った方向を長手方向としている。選択励起範囲900には、一例として、被検体Pの肩、肺、横隔膜、および肝臓が含まれる。被検体Pの心臓を回避するため、例えば、被検体Pの胸部を含む右半身のサジタル断面が選択励起範囲900となる。
なお、選択励起範囲900は、被検体Pの体軸方向(Z軸方向)と完全に並行していなくとも良く、例えば、被検体Pの体軸方向に対して斜めの方向に伸びていても良い。
図3は、選択励起範囲900の撮像イメージの一例である。選択励起範囲900から収集された第1のMR信号を例えば、逆フーリエ変換によって再構成すると、図3に示すように、心臓を含まない胸部のサジタル断面の磁気共鳴画像となる。なお、図3はあくまで選択励起範囲900を説明するためのイメージであり、第1のMR信号は画像化されなくとも良い。
また、図3のイメージでは、呼気時において肺が縮んだ状態を示す。また、吸気時においては、横隔膜が画面の下側(すなわち、被検体Pの足側)に移動することによって、図3に示す状態よりも肺が膨らむ。
また、収集機能123aは、グラディエントエコー(Gradient Echo:GE)法によって選択励起範囲900を励起してFID信号を発生させた後に、傾斜磁場の磁場勾配を反転することによって、第1のMR信号を収集する。なお、グラディエントエコー法は、フィールドエコー(Field Echo:FE)法ともいう。また、収集機能123aによる選択励起のTEは、被検体Pの1回の呼吸周期よりも短い時間とする。例えば、収集機能123aによる選択励起のTEは5~20msとするが、これに限定されるものではない。収集機能123aは、連続的に選択励起範囲900の選択励起およびMR信号の収集を繰り返し実行する。
収集機能123aは、グラディエントエコー法を用いることにより、フリップアングル(FA:Flip Angle)を小さくすることができる。一例として、本実施形態においては、収集機能123aによる選択励起のフリップアングルは、3~10度とするが、これに限定されるものではない。
また、収集機能123aは、後述の撮像機能123dによる撮像処理の実行中は、第1のMR信号の収集を停止する。収集機能123aは、例えば、後述の推定機能123cから、呼気時であることの通知を受けた場合に、撮像機能123dによる撮像処理が開始したと判断して第1のMR信号の収集を停止し、所定の時間の経過後に、第1のMR信号の収集を再開する。また、収集機能123aは、収集した第1のMR信号を算出機能123bに送出する。
図1に戻り、算出機能123bは、第1のMR信号のうち、監視対象領域で発生した第1のMR信号の総和値を算出する。
監視対象領域は、選択励起範囲900の一部であり、被検体Pの肺を含む範囲である。具体的には、本実施形態においては、監視対象領域は、被検体Pの肩から少なくとも横隔膜までを含むものとする。監視対象領域は、本実施形態における第2の範囲の一例である。
算出機能123bは、第1のMR信号をフーリエ変換して周波数エンコード方向(周波数軸方向)の1次元の信号プロファイルを生成し、当該信号プロファイルの結果に基づいて監視対象領域を特定する。このような変換処理は、1次元フーリエ変換ともいう。具体的には、本実施形態の算出機能123bは、高速フーリエ変換(Fast Fourier Transform:FFT)を使用するが、変換の手法はこれに限定されるものではない。
ここで、再び図2を用いて、監視対象領域901について説明する。図2に示す例では、監視対象領域901は、選択励起範囲900のうち、被検体Pの肩から肝臓の一部までを含む範囲である。また、被検体Pの呼気時には、選択励起範囲900に肝臓が含まれなくとも良い。また、監視対象領域901は、被検体Pの肝臓全体は含まないものとする。
監視対象領域901の大きさは被検体Pの体格によって異なる。例えば、肺野の体軸方向の長さは身長の15%程度であると仮定する。この場合、監視対象領域901は、肺野よりも大きいため、監視対象領域901の体軸方向の長さL1は、一例として、身長の20~25%程度となる。このため、算出機能123bは、選択励起範囲900のうち、被検体Pの肩から、身長の20~25%程度の長さを、監視対象領域901の体軸方向の長さL1として算出する。例えば、被検体Pの身長が160cmの場合、監視対象領域901の体軸方向の長さL1は35cmとなる。また、被検体Pの身長が50cmの場合、監視対象領域901の体軸方向の長さL1は12cmとなる。
被検体Pの身長は、例えば、操作者によって入力インタフェース124に入力され、記憶回路122に保存されるものとする。また、予め算出された監視対象領域901の体軸方向の長さL1が記憶回路122に保存されるものとしても良い。なお、上述した監視対象領域901の大きさ、および監視対象領域901の体軸方向の長さL1の算出手法、および体軸方向の長さL1の値は一例であり、これらに限定されるものではない。また、他の手法として、算出機能123bは、“成人男性”、“成人女性”、“小児”、“乳児”等の被検体Pの分類に応じて、監視対象領域901の体軸方向の長さL1を決定しても良い。
また、図2の右側に、高速フーリエ変換された第1のMR信号の信号プロファイルを示す。算出機能123bは、高速フーリエ変換により、第1のMR信号の周波数エンコード方向の発生位置を特定する。選択励起範囲900は被検体Pのサジタル方向のスライスであるため、周波数エンコード方向はZ軸方向および被検体Pの体軸方向と並行になる。
通常、磁気共鳴画像を生成する場合には、MR信号の発生位置は、周波数エンコード方向と位相エンコード方向の2次元の空間上で特定されるが、本実施形態の収集機能123aは、位相エンコードを付与せずにMR信号の収集を行うため、第1のMR信号の位相エンコード方向の発生位置は特定しない。このため、本実施形態の第1のMR信号の発生位置は、被検体Pの体軸方向の1次元上の位置で特定される。なお、図2に示す例では、位相エンコード方向はY軸方向に相当する。
図2に示すように、選択励起範囲900には、被検体Pが含まれない部分がある。第1のMR信号の信号値は、励起の対象となる被検体Pが存在しない領域ではノイズレベルのゼロに近い値となる。算出機能123bは、第1のMR信号の信号値がほぼゼロとみなせる周波数軸上の位置a1を、監視対象領域901の開始位置として特定する。また、算出機能123bは、位置a1から被検体Pの足の方に向かって長さL1分移動した周波数軸上の位置a2を、監視対象領域901の終了位置として特定する。
また、選択励起範囲900のうち、監視対象領域901以外は、フィルタ対象領域902a,902bという。以下、フィルタ対象領域902aとフィルタ対象領域902bとを特に区別しない場合は、単にフィルタ対象領域902という。
算出機能123bは、フィルタ対象領域902から発生した第1のMR信号の信号値をゼロ値化するフィルタ処理をする。また、算出機能123bは、フィルタ処理後の第1のMR信号の信号値を積分する。本実施形態においては、フィルタ処理後の第1のMR信号の信号値の積分値を、監視対象領域901で発生した第1のMR信号の総和値という。
また、肺は空気を多く含むため、肺から発生する第1のMR信号は、他の臓器(横隔膜、または肝臓等)から発生する第1のMR信号よりも少ない。吸気時には肺が膨らむため、監視対象領域901に占める肺の割合が大きくなり、監視対象領域901で発生した第1のMR信号の総和値が低下する。また、呼気時には、肺が縮むため、他の臓器(肝臓等)が監視対象領域901に占める割合が大きくなる。このため、呼気時には、監視対象領域901に占める肺の割合が吸気時よりも小さくなり、監視対象領域901で発生した第1のMR信号の総和値が増大する。
算出機能123bは、監視対象領域901で発生した第1のMR信号の総和値を、収集機能123aによる第1のMR信号の収集ごとに、連続的に算出する。算出機能123bは、算出した総和値を推定機能123cに送出する。
図1に戻り、推定機能123cは、監視対象領域901で発生した第1のMR信号の総和値の時間変動により被検体Pの呼吸周期を推定する。
ここで、監視対象領域901で発生した第1のMR信号の総和値と、被検体Pの呼吸周期との関係について、図4を用いて説明する。図4は、本実施形態にかかる監視対象領域901で発生した第1のMR信号の総和値Sの時系列の推移と、撮像タイミングの一例を示すグラフである。図4の縦軸は総和値Sの値、横軸は時間である。
図4に示す曲線のグラフGは、監視対象領域901で発生した第1のMR信号の総和値Sを示す。グラフGは、被検体Pの呼吸周期に応じて変動する。推定機能123cは、総和値Sが所定の閾値以上である場合に、呼気時であると推定する。ここで、本実施形態における呼気時とは、被検体Pが息を吐き始めたタイミングではなく、肺が収縮状態になったタイミングとする。
所定の閾値は、例えば、監視対象領域901で発生した第1のMR信号の総和値Sの最大値の98%とするが、これに限定されるものではない。所定の閾値は、例えば、操作者によって入力インタフェース124に入力され、記憶回路122に保存される。あるいは、推定機能123cまたは算出機能123bが、被検体Pの身長等に基づいて所定の閾値を決定しても良い。また、推定機能123cまたは算出機能123bが、1回以上の呼吸に相当する時間における総和値Sの最大値から、所定の閾値を算出しても良い。
例えば、図3に示したイメージにおいては、横隔膜が白線80の位置よりも画面上側に位置する場合に、監視対象領域901で発生した第1のMR信号の総和値Sが所定の閾値以上になるものとする。
推定機能123cは、総和値Sが所定の閾値以上であると判断した場合に、撮像機能123dおよび収集機能123aに、呼気時であることを通知する。
図1に戻り、撮像機能123dは、推定された呼吸周期に基づくタイミングで、被検体Pを撮像する。より詳細には、撮像機能123dは、推定された呼吸周期における呼気時に、被検体Pを撮像する。撮像機能123dは、例えば、呼吸周期に基づく撮像タイミングと、入力インタフェース124を介して操作者から入力される撮像条件とに基づいてシーケンス情報を生成し、生成したシーケンス情報をシーケンス制御回路110に送信することによって撮像を制御する。
撮像機能123dは、撮像結果としてシーケンス制御回路110から送られたMRデータを、インタフェース回路121を介して取得する。本実施形態においては、撮像機能123dによる撮像処理によって収集されたMRデータ(AD変換済みのMR信号)を、第2のMR信号という。また、撮像機能123dによる撮像処理は、第2のMR信号の収集処理ともいう。
撮像機能123dによる撮像範囲は、本来の目的の撮像範囲である。以下、撮像機能123dによる撮像範囲を、収集機能123aによる選択励起範囲900等と区別するため、「診断撮像範囲」という。本実施形態においては、診断撮像範囲は、例えば、被検体Pの胸部、肝臓、または腹部内のその他の臓器等とするが、これらに限定されるものではない。また、撮像の際のスライス方向、およびスライス位置についても、特に限定されるものではない。診断撮像範囲は、選択励起範囲900と重複する範囲であっても良い。
再び図4を用いて、撮像機能123dによる第2のMR信号の収集のタイミングについて説明する。図4に示すバー70a~70cは、撮像機能123dによる第2のMR信号の収集の処理が行われている期間を示す。
図4に示す例では、総和値Sは、時間Ta1の時点で所定の閾値に達する。この場合、撮像機能123dは、撮像シーケンスを実行し、撮像結果として発生した第2のMR信号を収集する。また、時間Tb1は、撮像機能123dによる撮像処理の終了のタイミングである。時間Ta1から時間Tb1までの期間が撮像時間である。
本実施形態においては、撮像機能123dによる撮像時間の長さは、例えば、1回の呼吸周期の2分の1以下とし、長くとも1回の呼吸周期の3分の2以下とする。撮像時間の長さを1回の呼吸周期の3分の2以下とすることで、収集機能123aによる第1のMR信号の収集を早期に再開し、次の呼気時を推定することが可能になる。なお、本実施形態における撮像時間の長さは一例であり、これに限定されるものではない。
また、撮像機能123dは、撮像条件に応じて、撮像処理を繰り返す。図4では、撮像機能123dは、時間Ta1から時間Tb1、時間Ta2から時間Tb2、時間Ta3から時間Tb3において、合計3回の撮像処理を実行しているが、撮像処理の回数はこれに限定されるものではない。
また、撮像機能123dは、第2のMR信号を、上述した傾斜磁場により付与された位相エンコード量や周波数エンコード量に従って配列させる。配列されたMRデータは、k空間データと称される。k空間データは、記憶回路122に保存される。また、撮像機能123dは、全ての撮像処理の終了後、処理の終了を画像生成機能123eに通知する。
図1に戻り、画像生成機能123eは、第2のMR信号に基づいて磁気共鳴画像を生成する。画像生成機能123eは、k空間データに例えばフーリエ変換などの再構成処理を行って磁気共鳴画像を生成する。画像生成機能123eは、生成した磁気共鳴画像を、例えば、記憶回路122に保存する。また、画像生成機能123eは、磁気共鳴画像の生成の完了を表示制御機能123fに通知しても良い。
表示制御機能123fは、生成された磁気共鳴画像をディスプレイ125に表示させる。
次に、本実施形態にかかる磁気共鳴イメージング装置100で実行される撮像処理の流れを説明する。図5は、本実施形態にかかる撮像処理の流れの一例を示すフローチャートである。このフローチャートの処理は、例えば、例えば、操作者により入力された撮像開始要求を契機として開始される。
まず、収集機能123aは、被検体Pの選択励起範囲900を選択励起し、選択励起範囲900から発生した第1のMR信号の収集を実行する(S1)。
次に、算出機能123bは、収集された第1のMR信号を周波数方向に高速フーリエ変換する(S2)。
そして、算出機能123bは、高速フーリエ変換によって算出した信号プロファイルに基づいて、監視対象領域901を特定する(S3)。より詳細には、算出機能123bは、第1のMR信号の信号値が“0”になる周波数軸上の位置a1を、監視対象領域901の開始位置として特定する。また、算出機能123bは位置a1から被検体Pの足の方に向かって長さL1分移動した周波数軸上の位置a2を、監視対象領域901の終了位置として特定する。
次に、算出機能123bは、フィルタ対象領域902から発生した第1のMR信号の信号値をゼロ値化するフィルタ処理を実行する(S4)。より詳細には、算出機能123bは、周波数軸上で位置a1から位置a2の間に含まれない第1のMR信号の信号値を、全て“0”に変換する。
そして、算出機能123bは、フィルタ処理後の第1のMR信号の総和値Sを算出する(S5)。S4のフィルタ処理によって、監視対象領域901以外(すなわち、フィルタ対象領域902)から発生した第1のMR信号の信号値は除外されるため、算出機能123bは、フィルタ処理後の第1のMR信号の総和値Sを算出することにより、監視対象領域901から発生した第1のMR信号の総和値Sが求められる。
次に、推定機能123cは、第1のMR信号の総和値Sが、所定の閾値以上であるか否かを判断する(S6)。推定機能123cは、第1のMR信号の総和値Sが所定の閾値未満であると判断した場合は(S6“No”)、呼気時ではないと判定し、S1の処理に戻る。
また、推定機能123cは、第1のMR信号の総和値Sが所定の閾値以上であると判断した場合は(S6“Yes”)、呼気時であると判定する。この場合、撮像機能123dは、診断撮像範囲の撮像処理を開始する(S7)。撮像機能123dは、撮像処理の結果として第2のMR信号を収集する。
次に、収集機能123aは、撮像条件に応じて定められた全ての撮像処理が終了したか否かを判断する(S8)。収集機能123aが、全ての撮像処理が終了していないと判断した場合は(S8“No”)、S1の処理に戻り、第1のMR信号の収集が継続する。
また、収集機能123aが、全ての撮像処理が終了したと判断した場合は(S8“Yes”)、画像生成機能123eは、第2のMR信号に基づいて磁気共鳴画像を生成する(S9)。
そして、表示制御機能123fは、生成された磁気共鳴画像をディスプレイ125に表示させる(S10)。ここで、このフローチャートの処理は終了する。
このように、本実施形態の磁気共鳴イメージング装置100は、被検体Pの選択励起範囲900を選択励起して、発生した第1のMR信号を収集し、第1のMR信号のうち、監視対象領域901で発生した第1のMR信号の総和値Sを算出する。また、本実施形態の磁気共鳴イメージング装置100は、総和値Sの時間変動により被検体Pの呼吸周期を推定し、呼吸周期に基づくタイミングで被検体Pを撮像する。このため、本実施形態の磁気共鳴イメージング装置100によれば、監視対象領域901で発生した第1のMR信号の総和値Sの時間変動により被検体Pの呼吸周期を算出しているため、画像上では判別が困難な微小な第1のMR信号の信号値の変動も踏まえて、被検体Pの呼吸周期を高精度に推定することができる。また、本実施形態の磁気共鳴イメージング装置100は、高精度に推定した呼吸周期に合わせたタイミングで撮像処理を実行することにより、呼吸による肺の伸縮途中に撮像が実施されることを低減することができる。
このため、本実施形態の磁気共鳴イメージング装置100によれば、被検体Pの呼吸に起因するアーチファクトを高精度に低減することができる。
例えば、比較例として、磁気共鳴画像上の横隔膜の動きに基づいて、被検体の呼吸周期を推定する技術がある。このような技術では、横隔膜の上下運動を磁気共鳴画像上の画素単位で検出する。当該比較例においては、被検体の身体が小さい場合、例えば、被検体が乳児である場合は、呼吸による磁気共鳴画像上における横隔膜の位置の変動が微小であるため、背景のノイズと判別することが困難な場合がある。また、分解能を向上させるために画素のサイズを大きくすると、1画素あたりのMR信号が減少し、全体のS/N比の低下によって画質が低下する。このため、このような技術では、被検体の身体が小さい場合や、被検体の呼吸が浅い場合に、吸気と呼気の境界を高精度に判別することが困難な場合があった。
ここで、比較例と本実施形態の手法とを具体的に比較する。一般的な磁気共鳴画像の1画素に相当する撮像対象の被検体の部位の大きさは、縦1mm×横1mm×幅3mm=3mm程度である。また、一般に、被検体が成人の場合は呼吸によって横隔膜の位置は数cm変動する。また、被検体が乳児の場合は、呼吸による横隔膜の位置の変動は数mm程度である。仮に、呼吸による成人の横隔膜の変動を1cmとした場合、磁気共鳴画像上で10画素程度の変動が生じる。また、被検体が乳児の場合、横隔膜の動きが数mmであると仮定すると、磁気共鳴画像上の変動量は数画素程度となる。
これに対して、本実施形態の磁気共鳴イメージング装置100では、画素ではなく、第1のMR信号の総和値Sの変動によって被検体Pの呼吸周期を推定している。例えば、仮に、被検体Pが成人である場合、選択励起範囲900の厚みが10mm、呼吸による横隔膜の変動が1cm、被検体Pの胸板の厚さを10cmとした場合、選択励起範囲900内の監視対象領域901の呼吸による変動量は、10mm×1cm×10cm=10,000mmとなる。これは、1画素に相当する撮像対象の被検体の部位の大きさ3mmの約3300倍となる。このため、上述の比較例における変動量の10画素と比較すると、100倍の感度に相当する。また、被検体Pが乳児等である場合にも、本実施形態では、被検体Pが成人である場合と同様に、呼吸による変動を高精度に検出することができる。なお、上述した比較例または本実施形態における画素の粒度、選択励起範囲、被検体の変動量等の値は一例であり、これらに限定されるものではない。
また、他の比較例としてバルーンを用いた圧力変動検出方式(バルーン方式)があるが、当該比較例においても、被検体の身体が小さい場合や、被検体の呼吸が浅い場合には、呼吸による圧力変動が微小になり、高精度に検出することが困難な場合がある。
また、本実施形態の磁気共鳴イメージング装置100は、被検体Pの選択励起範囲900を選択励起して、発生した第1のMR信号を収集しているため、フェーズドアレイコイルを被検体Pに設置しなくとも、監視対象領域901で発生した第1のMR信号を収集することができる。このため、本来の目的の撮像(撮像機能123dによる撮像)以外に、呼吸同期用のコイルを追加で設置しなくとも良く、撮像準備の負荷を低減することができる。
また、本実施形態の磁気共鳴イメージング装置100は、推定された呼吸周期における呼気時に、被検体Pを撮像する。図4に示したように、呼気時においては、第1のMR信号の総和値Sの変動が少ない期間が、吸気時よりも長く続いている。これは、肺の伸縮による変動が呼気時の方が吸気時よりも少ないためである。このため、本実施形態の磁気共鳴イメージング装置100によれば、呼気時に被検体Pを撮像することにより、撮像時間を確保し、高精度に撮像をすることができる。
また、本実施形態の磁気共鳴イメージング装置100は、被検体Pの1回の呼吸周期よりも短いエコー時間(TE)で、連続的に第1のMR信号を収集する。このため、本実施形態の磁気共鳴イメージング装置100によれば、第1のMR信号の総和値Sの変動を短い間隔で取得できるため、被検体Pの呼気時を高精度に特定することができる。
また、本実施形態の磁気共鳴イメージング装置100は、グラディエントエコー法によって第1のMR信号を収集する。グラディエントエコー法では、例えばスピン・エコー(Spin Echo:SE)法よりも、フリップアングルを小さくすることができる。このため、本実施形態の磁気共鳴イメージング装置100では、選択励起範囲900のプロトンの緩和に要する時間が短くなる。このため、本実施形態の磁気共鳴イメージング装置100によれば、選択励起範囲900と診断撮像範囲とが重複する場合でも、撮像機能123dにおける撮像の際に、選択励起範囲900内に含まれるプロトンからの第2のMR信号の出力の低下を低減することができる。つまり、本実施形態の磁気共鳴イメージング装置100は、呼吸同期のための第1のMR信号の収集によって診断のための撮像の精度が低下することを、低減することができる。
また、本実施形態の磁気共鳴イメージング装置100は、第1のMR信号をフーリエ変換して周波数エンコード方向の1次元の信号プロファイルを生成し、信号プロファイルの結果に基づいて監視対象領域901を特定する。このため、本実施形態の磁気共鳴イメージング装置100によれば、選択励起範囲900のうち呼吸による第1のMR信号の信号値の変動が大きくなる範囲、つまり監視対象領域901を、容易に特定することができる。例えば、選択励起範囲900は、被検体Pのサジタル方向の範囲であるため、呼吸による変動が生じにくい部位、あるいは、被検体Pの呼吸以外の動作による変動が生じやすい部位を含む場合がある。このような部位から発生した第1のMR信号を総和値Sに含めると、呼吸周期の検出精度を向上させることが困難な場合がある。これに対して、本実施形態の磁気共鳴イメージング装置100は、周波数エンコード方向の1次元の信号プロファイルに基づいて、被検体Pの身体と、第1のMR信号の発生位置とを対応付けられるため、第1のMR信号の総和値Sの算出対象である監視対象領域901を限定し、呼吸周期の検出精度を向上させることができる。
また、本実施形態における選択励起範囲900は、被検体Pの心臓を含まず、被検体Pの体軸方向を長手方向とする範囲である。このため、本実施形態の磁気共鳴イメージング装置100によれば、被検体Pの心臓の拍動によるMR信号の変動の影響を低減し、高精度に呼吸周期を推定することができる。また、例えば、選択励起範囲900がコロナル断面である場合は、呼吸による変動のある横隔膜等を含む範囲を選択励起対象とすると、選択励起範囲から心臓を除外することが困難である。これに対して、本実施形態における選択励起範囲900は、被検体Pの体軸方向を長手方向とするサジタル断面であるため、選択励起範囲900に心臓が含まれることを回避しつつ、呼吸による変動のある横隔膜等を選択励起範囲900に含めることができる。
また、本実施形態における監視対象領域901は、総和値Sが所定の閾値以上である場合に、呼気時であると推定する。このため、本実施形態の磁気共鳴イメージング装置100によれば、被検体Pの呼吸周期における呼気時の開始タイミングを高精度に推定することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100 磁気共鳴イメージング装置
122 記憶回路
123 処理回路
123a 収集機能
123b 算出機能
123c 推定機能
123d 撮像機能
123e 画像生成機能
123f 表示制御機能
124 入力インタフェース
125 ディスプレイ
900 選択励起範囲
901 監視対象領域
902,902a,902b フィルタ対象領域
P 被検体
S 総和値

Claims (7)

  1. 被検体の体軸方向を長手方向とするサジタル断面である第1の範囲を選択励起して、発生した第1のMR信号を収集する収集部と、
    前記第1のMR信号のうち、前記第1の範囲の一部であり、前記被検体の肺を含む第2の範囲で発生した前記第1のMR信号の総和値を算出する算出部と、
    前記総和値の時間変動により前記被検体の呼吸周期を推定する推定部と、
    推定された前記呼吸周期に基づくタイミングで、前記被検体を撮像する撮像部と、
    を備え、
    前記収集部は、前記撮像部による撮像処理が開始すると、前記第1のMR信号の収集を停止する、
    磁気共鳴イメージング装置。
  2. 前記撮像部は、推定された前記呼吸周期における呼気時に、1回の前記呼吸周期より短い時間で前記被検体を撮像する、
    請求項1に記載の磁気共鳴イメージング装置。
  3. 前記収集部は、前記被検体の1回の呼吸周期よりも短いエコー時間で、連続的に前記第1のMR信号を収集する、
    請求項1または2に記載の磁気共鳴イメージング装置。
  4. 前記収集部は、グラディエントエコー法によって前記第1のMR信号を収集する、
    請求項1から3のいずれか1項に記載の磁気共鳴イメージング装置。
  5. 前記算出部は、前記第1のMR信号をフーリエ変換して周波数エンコード方向の1次元の信号プロファイルを生成し、前記信号プロファイルの結果に基づいて前記第2の範囲を特定する、
    請求項1から4のいずれか1項に記載の磁気共鳴イメージング装置。
  6. 前記第1の範囲は、前記被検体の心臓を含まず、前記被検体の肩、肺、横隔膜及び肝臓の一部までを含む、
    請求項1から5のいずれか1項に記載の磁気共鳴イメージング装置。
  7. 前記推定部は、前記総和値が所定の閾値以上である場合に、呼気時であると推定する、
    請求項1から6のいずれか1項に記載の磁気共鳴イメージング装置。
JP2019090026A 2019-05-10 2019-05-10 磁気共鳴イメージング装置 Active JP7382736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019090026A JP7382736B2 (ja) 2019-05-10 2019-05-10 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090026A JP7382736B2 (ja) 2019-05-10 2019-05-10 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2020185070A JP2020185070A (ja) 2020-11-19
JP7382736B2 true JP7382736B2 (ja) 2023-11-17

Family

ID=73222927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090026A Active JP7382736B2 (ja) 2019-05-10 2019-05-10 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP7382736B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110152668A1 (en) 2009-11-27 2011-06-23 Alto Stemmer Method to detect a breathing movement of an examination subject corresponding to signal data by magnetic resonance
JP2017153577A (ja) 2016-02-29 2017-09-07 ゼネラル・エレクトリック・カンパニイ 磁気共鳴装置およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277010A (ja) * 1997-04-10 1998-10-20 Toshiba Corp Mri装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110152668A1 (en) 2009-11-27 2011-06-23 Alto Stemmer Method to detect a breathing movement of an examination subject corresponding to signal data by magnetic resonance
JP2017153577A (ja) 2016-02-29 2017-09-07 ゼネラル・エレクトリック・カンパニイ 磁気共鳴装置およびプログラム

Also Published As

Publication number Publication date
JP2020185070A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP5377219B2 (ja) 磁気共鳴画像診断装置および磁気共鳴画像撮像方法
JP4820567B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴信号の収集方法
JP5455974B2 (ja) 磁気共鳴イメージング装置
JP6073570B2 (ja) 磁気共鳴イメージングシステム及び方法
JP5591545B2 (ja) 磁気共鳴映像装置
US9176210B2 (en) Magnetic resonance imaging apparatus
JP6462286B2 (ja) 磁気共鳴イメージング装置
JP5288745B2 (ja) 磁気共鳴イメージング装置
US8909321B2 (en) Diagnostic imaging apparatus, magnetic resonance imaging apparatus, and X-ray CT apparatus
JP4133348B2 (ja) 核磁気共鳴を用いた検査装置
JP5304987B2 (ja) 磁気共鳴イメージング装置
JP6602631B2 (ja) 磁気共鳴イメージング装置
JP2004024669A (ja) 磁気共鳴イメージング装置
JP7382736B2 (ja) 磁気共鳴イメージング装置
US11154213B2 (en) Detection of position and frequency of a periodically moving organ in an MRI examination
JP2004305454A (ja) 磁気共鳴イメージング装置
CN113495239B (zh) 医学图像的成像方法、装置和系统
JP5851283B2 (ja) 磁気共鳴イメージング装置
JP5371620B2 (ja) 核磁気共鳴イメージング装置
JP5575695B2 (ja) Mri装置
JP2020039869A (ja) 磁気共鳴イメージング装置
JP5421600B2 (ja) 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法
JP2021029408A (ja) 励起領域の設定方法および磁気共鳴イメージング装置
KR101759083B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 획득 방법
JP2020014552A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7382736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150