JP7377101B2 - 放熱経路診断装置 - Google Patents

放熱経路診断装置 Download PDF

Info

Publication number
JP7377101B2
JP7377101B2 JP2019236441A JP2019236441A JP7377101B2 JP 7377101 B2 JP7377101 B2 JP 7377101B2 JP 2019236441 A JP2019236441 A JP 2019236441A JP 2019236441 A JP2019236441 A JP 2019236441A JP 7377101 B2 JP7377101 B2 JP 7377101B2
Authority
JP
Japan
Prior art keywords
temperature
heat
temperature behavior
radiation path
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019236441A
Other languages
English (en)
Other versions
JP2021105541A (ja
Inventor
稔 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019236441A priority Critical patent/JP7377101B2/ja
Publication of JP2021105541A publication Critical patent/JP2021105541A/ja
Application granted granted Critical
Publication of JP7377101B2 publication Critical patent/JP7377101B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、放熱経路診断装置に関する。
電子部品等で構成されたシステムは、様々な分野、用途に利用されている。システムの温度上昇はシステムを構成する電子部品、機械部品等の熱ストレスの要因となり、システムの特性や、システムを搭載した製品の寿命に影響を及ぼすことが一般的に知られている。
そのため、使用時に温度上昇が予想されるシステムでは、システムで発生した熱をシステム外に放熱するための放熱経路を設けることで、システムの特性や製品寿命に影響を及ぼさないような設計がなされている。しかし、放熱経路は定常的に熱がかかる部位であり、用いられる部材に熱特性の変化が起こりやすいことが知られている。
また、システムの温度変化により、放熱経路上にある部材間の熱膨張係数差に起因する機械的ストレスや、外力による機械的ストレスなどが発生する。このようなストレスが発生すると、放熱経路上の部材間の接触圧力や接触面積が変化した場合にも熱特性の変化が起こりやすくなることが知られている。これらの要因により、部材の熱特性が変化した際は、システムの放熱特性が変わり、システムの特性、製品寿命に影響を及ぼす可能性があるため、特に自動車用など高信頼性が要求される分野では大きな課題となっている。
システムに設けられる放熱経路の異常を検出するため、例えば、特許文献1に開示された技術が知られていた。この特許文献1には、「絶縁配線基板上に複数のパワー半導体素子を実装して構成されるパワーモジュールにおいて、パワー半導体素子の表面中央部及び表面周辺部の2箇所の温度を検出する温度検出手段と、温度検出手段によって検出された温度を基にして温度勾配を監視する温度勾配監視手段と、パワー半導体素子の動作状態を検出する動作状態検出手段と、表面周辺部の温度が表面中央部の温度以上となる温度勾配を温度勾配監視手段が検出し、かつ、パワー半導体素子が動作していることを動作状態検出手段が検出したとき、寿命信号を出力する寿命推定手段とを備える」と記載されている。
特開2011-23569号公報
近年、半導体製造プロセスの微細化が進み、半導体チップサイズが小さくなるにつれて、半導体を用いた電子部品は小型化、高集積化が進む傾向がある。自動車用の電子部品は、ECUユニット内の各種IC,インバータ駆動用IC,ソレノイド駆動用ドライバIC,インジェクタ用IC,イグナイタ用ICなど、様々な用途に利用されている。近年、自動車の電装ユニット設置エリアの省スペース化や特性向上などの要請から、これらの電子部品が、エンジンやモーターなど熱源となるアクチュエータ近傍に配置される傾向がある。この傾向に伴い、半導体チップ自体の高温化に対応するため、SiC材料を用いた半導体チップの開発も進んでいる。これらの背景から、自動車に搭載される電子部品等で構成されるシステムは、今後さらなる高温条件下や温度変化が大きい環境での使用が予想され、構成部品への熱ストレス軽減のため、システムの放熱経路の状態を正しく診断することが重要となってきている。
従来の方式では、半導体プロセスで製造された半導体チップ内部に設置した電極や温度素子の電気特性から、半導体チップ内の温度監視や放熱に関わる接合部の寿命予測を行うことで、放熱経路の異常有無を確認することができると考えられていた。しかし、従来方式では、電子部品などの能動素子直近に設けられた温度素子や電極等の電気特性の測定結果から、能動素子の近辺で放熱経路となる接合部の寿命を推定することが可能であっても、システム全体の放熱経路をリアルタイムに診断することはできなかった。
また、特許文献1に開示された技術では、パワー半導体素子がオンされている時しか温度勾配を監視していない。このため、パワー半導体素子がオフされてからの温度変化がパワー半導体素子の寿命に与える影響が考慮されていなかった。
本発明はこのような状況に鑑みて成されたものであり、システム全体の放熱経路の状態を診断し、放熱経路の異常を検知することを目的とする。
本発明に係る放熱経路診断装置は、熱源となる発熱部品を内部に有するシステムにおいて、発熱部品から発生した熱が放熱される放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせをシステムの第1熱回路モデルとして記憶する記憶素子と、記憶素子から読み出した第1熱回路モデルに基づいて、発熱部品がオン又はオフされてからシステムの全体の温度が平衡状態に達するまでのシステムの所定部位における温度挙動を予測する温度挙動予測部と、予測された温度挙動と、所定部位で計測された温度の温度情報から求めた温度挙動とを比較して比較結果を出力する温度挙動比較部と、比較結果に基づいて、システムの所定部位ごとの状態を診断した診断結果を出力する診断結果出力部と、発熱部品の消費電力を表す内部熱源消費電力情報を入力とし、発熱部品の発熱開始からの経過時間を計測するタイマと、を備え、システムの外部からシステムの内部に熱が伝わる外部熱源が設けられ、外部熱源から発生した熱を放熱するための放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせが第2熱回路モデルとして記憶素子に記憶され、温度挙動予測部は、外部熱源の消費電力を表す外部熱源消費電力情報、及び内部熱源消費電力情報を入力とし、記憶素子から読み出した第2熱回路モデルに基づいて、発熱部品及び外部熱源がオン又はオフされてからシステムの全体の温度が平衡状態になるまでのシステムの所定部位における温度挙動を予測し、温度挙動比較部は、内部熱源消費電力情報が入力された時点を経過時間の開始として、放熱経路における所定部位での温度挙動をリアルタイムに比較し、診断結果出力部は、温度挙動比較部により比較された、温度挙動予測部が予測した所定部位の温度挙動と、所定部位から提供された温度情報から算出される温度挙動とが異なる場合に、所定部位に異常が発生したと診断する。
また、本発明に係る放熱経路診断装置は、熱源となる発熱部品を内部に有するシステムにおいて、発熱部品から発生した熱が放熱される放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせをシステムの第1熱回路モデルとして記憶する記憶素子と、記憶素子から読み出した第1熱回路モデルに基づいて、発熱部品がオン又はオフされてからシステムの全体の温度が平衡状態に達するまでのシステムの所定部位における温度挙動を予測する温度挙動予測部と、予測された温度挙動と、所定部位で計測された温度の温度情報から求めた温度挙動とを比較して比較結果を出力する温度挙動比較部と、比較結果に基づいて、システムの所定部位ごとの状態を診断した診断結果を出力する診断結果出力部と、発熱部品の消費電力を表す内部熱源消費電力情報を入力とし、発熱部品の発熱開始からの経過時間を計測するタイマと、を備え、所定部位は、発熱部品及びシステムの構成部品の、境界又は内部であり、システムには、温度を計測して温度挙動比較部に温度情報を提供する温度素子が複数の所定部位に設けられ、システムの外部からシステムの内部に熱が伝わる外部熱源が設けられ、外部熱源から発生した熱を放熱するための放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせが第2熱回路モデルとして記憶素子に記憶され、温度挙動予測部は、外部熱源の消費電力を表す外部熱源消費電力情報、及び内部熱源消費電力情報を入力とし、記憶素子から読み出した第2熱回路モデルに基づいて、発熱部品及び外部熱源がオン又はオフされてからシステムの全体の温度が平衡状態になるまでのシステムの所定部位における温度挙動を予測し、温度挙動比較部は、内部熱源消費電力情報が入力された時点を経過時間の開始として、放熱経路における所定部位での温度挙動をリアルタイムに比較し、診断結果出力部は、温度挙動比較部により比較された、温度挙動予測部が予測した所定部位の温度挙動と、所定部位から提供された温度情報から算出される温度挙動とが異なる場合に、所定部位に異常が発生したと診断する。
本発明によれば、発熱部品がオン又はオフされてからシステムの全体の温度が平衡状態に達するまでのシステム全体の放熱経路の状態を診断し、放熱経路の異常を検知することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
本発明の第1の実施の形態に係る放熱経路診断装置の構成図である。 本発明の第1の実施の形態に係る演算ユニットの内部構成例を示すブロック図である。 本発明の第1の実施の形態に係る計算機のハードウェア構成例を示すブロック図である。 本発明の第1の実施の形態に係るシステムの熱回路モデルの一例を示した図である。 本発明の第1の実施の形態に係る半導体部品がオフからオンされた時における、システムに設けられた各温度素子の理想的な温度変化の例を示した概念図である。 本発明の第1の実施の形態に係るシステムにおいて、熱伝導材からヒートシンクの間の放熱経路に異常が生じた際の各温度素子の温度変化の例を示した概念図である。 本発明の第1の実施の形態に係る半導体部品がオンからオフされた時における、システムに設けられた各温度素子の理想的な温度変化の例を示した概念図である。 本発明の第2の実施の形態に係る放熱経路診断装置の構成図である。 本発明の第2の実施の形態に係るシステムの熱回路モデルの一例を示した図である。 本発明の第2の実施の形態に係る半導体部品がオフからオンされた時における、システムに設けられた各温度素子の理想的な温度変化の例を示した概念図である。 本発明の第3の実施の形態に係る放熱経路診断装置の構成図である。
以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る放熱経路診断装置1の構成図である。
本実施の形態に係る放熱経路診断装置1は、電子部品等で構成されたシステム100の放熱経路の異常又は正常を含む放熱経路の状態を診断する。システム100として、例えば、自動車等に搭載される電子制御装置(Electronic Control Unit)が想定される。そして、放熱経路診断装置1は、放熱経路が何らかの要因により変化した際の熱挙動を検知することで、システム100全体の特性変動や製品寿命の短化に至る前に放熱経路の異常を検出可能な放熱経路の診断方法を提供する。
電子部品等で構成されたシステム100の熱の流入と流出に関わる放熱経路は、既知の熱評価方法により熱抵抗、熱容量等で表現された熱回路としてモデル化が可能である。そこで、モデル化された熱回路(以下、「熱回路モデル」という)に対応する熱源となるシステム100の内部に構成される電子部品の発熱情報を放熱経路診断装置1が入手可能な構成とする。また放熱経路上の複数個所に温度監視用の温度素子(熱電対等)を設ける。温度素子は、熱回路モデルの熱抵抗や熱容量の温度に対応するように構成する。
システム100の内部には、システム100の機能を実現するための半導体部品101を有する。半導体部品101は電子部品であるので、電気的な動作により必然的に熱の発生を伴う。そこで、半導体部品101の内部には、半導体部品101の内部温度を計測するための温度素子102が設置される。温度素子102が計測した半導体部品101の内部温度の温度情報107は、演算ユニット111に提供される。
また、半導体部品101に印加される電圧、電流等の消費電力情報110についても、演算ユニット111に提供される。
また、半導体部品101には、放熱用の熱伝導材103が設置されている。熱伝導材103の内部又はその近傍には熱伝導材103の温度を計測するための温度素子104が設置されており、温度素子104が計測した熱伝導材103の温度の温度情報108は、演算ユニット111に提供される。
熱伝導材103の半導体部品101と接する面の反対側の面には、放熱用のヒートシンク105が設置されている。ヒートシンク105の内部には、ヒートシンク105の温度を計測するための温度素子106が設置されており、温度素子106が計測したヒートシンク105の温度の温度情報109は、演算ユニット111に提供される。
なお、温度素子102は、半導体部品101と熱伝導材103との境界に設置され、この境界の温度が温度情報107として演算ユニット111に提供されてもよい。また、温度素子104は、熱伝導材103とヒートシンク105との境界に設置され、この境界の温度が温度情報108として演算ユニット111に提供されてもよい。また、温度素子106は、ヒートシンク105と外部環境との境界(例えば、ヒートシンク105とシステム100の筐体との間)に設置され、この境界の温度が温度情報109として演算ユニット111に提供されてもよい。
システム100の熱特性は既知の熱評価測定等により熱回路モデル112として定義される。不揮発性の記憶素子(記憶素子113)は、システム(システム100)の第1熱回路モデル(熱回路モデル112)を記憶する。熱回路モデル112は、演算ユニット111が、発熱情報(例えば、消費電力情報110)を入力とした数値演算により、放熱経路上の所定部位における理想的な温度挙動を求めるために用いられる。所定部位は、発熱部品(半導体部品101)及びシステム(システム100)の構成部品の境界又は内部である。すなわち、所定部位は、発熱部品(半導体部品101)の内部、システム(システム100)の構成部品の内部、発熱部品(半導体部品101)とシステム(システム100)の構成部品との境界、又は複数のシステム(システム100)の構成部品との境界が想定される。上述したように、システム(システム100)には、温度を計測して温度挙動比較部(後述する図2に示す温度挙動比較部13)に温度情報を提供する温度素子(温度素子102,104,106)が複数の所定部位に設けられる。
第1熱回路モデル(熱回路モデル112)は、熱源となる発熱部品(半導体部品101)を内部に有するシステム(システム100)において、発熱部品(半導体部品101)から発生した熱が放熱される放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせで構成される。

熱容量は、例えば、温度が1℃変化するのに要するエネルギーを表し、熱抵抗は、熱の伝わりにくさ(熱の遅延)を表す。熱回路モデル112の詳細な構成は、後述する図4にて説明する。そして、記憶素子113から読み出された熱回路モデル112が演算ユニット111に提供される。
演算ユニット111は、システム100の熱回路モデル112と、システム100の熱源である半導体部品101の消費電力情報110とを入力とした数値演算を行う。そして、演算ユニット111は、熱回路モデル112で定義されている放熱経路上の所定部位における理想的な温度挙動(時間変化)を予測する。
その後、演算ユニット111は、熱回路モデル112に基づく演算により予測した放熱経路上の理想的な温度挙動と、複数の所定部位における温度情報107~109から算出した実際の温度挙動とを比較することで、システム100の現在の発熱状態における放熱経路をリアルタイムに監視する放熱経路の異常診断を行う。そして、演算ユニット111は、放熱経路の異常有無を診断した放熱経路診断結果114を作成する。放熱経路診断結果114には、例えば、異常フラグ、アラーム情報等が含まれる。この放熱経路診断結果114は、演算ユニット111によりシステム100及び外部システム120に提供される。
演算ユニット111から診断結果(放熱経路診断結果114)を受け取ったシステム(システム100)は、発熱部品(半導体部品101)を低動作又は停止させる等のフェールセーフ制御を行う。
外部システム120は、例えば、システム100として構成される電子制御装置以外の他の装置が想定される。演算ユニット111から診断結果(放熱経路診断結果114)を受け取った外部システム(システム120)は、異常を報知する。例えば、外部システム120は、システム100に異常が発生したことを運転者等に報知する。この際、外部システム120は、放熱経路診断結果114から取り出した異常の内容に基づいて、車内に設けられた不図示のモニタにアラームの発生や、異常フラグで指定された部位の異常発生を表示したり、車内の警報ランプを点灯させたりする。
次に、演算ユニット111の機能構成について説明する。
図2は、演算ユニット111の内部構成例を示すブロック図である。
演算ユニット111は、温度挙動予測部11、発熱開始タイマ12、温度挙動比較部13及び診断結果出力部14を備える。
温度挙動予測部(温度挙動予測部11)は、記憶素子(記憶素子113)から読み出した第1熱回路モデル(熱回路モデル112)に基づいて、発熱部品(半導体部品101)がオン又はオフされてからシステム(システム100)の全体の温度が平衡状態に達するまでのシステム(システム100)の所定部位における温度挙動を予測する。この際、温度挙動予測部11は、半導体部品101から提供される消費電力情報110と、記憶素子113から読み出した熱回路モデル112に規定される、システム100の所定部位における熱容量及び熱抵抗に基づいて、各所定部位での温度挙動を予測する。
タイマ(発熱開始タイマ12)は、半導体部品101から提供され、発熱部品(半導体部品101)の消費電力を表す内部熱源消費電力情報(消費電力情報110)を入力とし、発熱部品(半導体部品101)の発熱開始からの経過時間を計測する。なお、半導体部品101の発熱開始からの時間は、システム100が動作開始してからの時間としてもよい。発熱開始タイマ12が計測した時間を示す時間情報は、温度挙動比較部13に出力される。
温度挙動比較部(温度挙動比較部13)は、温度挙動予測部11により予測された温度挙動と、所定部位で計測された温度の温度情報(温度情報107~109)から求めた温度挙動とを比較して比較結果を出力する。ここで、温度挙動比較部13は、温度挙動を比較する際に、消費電力情報110に基づいて半導体部品101がオン又はオフされたことを検出する。そして、温度挙動比較部(温度挙動比較部13)は、内部熱源消費電力情報(消費電力情報110)が入力された時点を経過時間の開始として、放熱経路における所定部位での温度挙動をリアルタイムに比較する。その後、温度挙動比較部13は、温度情報の比較結果を診断結果出力部14に出力する。
診断結果出力部(診断結果出力部14)は、温度挙動比較部13から入力した温度挙動の比較結果に基づいて、システム(システム100)の部位ごとの状態を診断した診断結果を出力する。この際、診断結果出力部(診断結果出力部14)は、温度挙動比較部(温度挙動比較部13)により比較された、温度挙動予測部(温度挙動予測部11)が予測した所定部位の温度挙動と、所定部位から提供された温度情報から算出される温度挙動とが異なる場合に、所定部位に異常が発生したと診断する。
例えば、後述する図6に示すように、診断結果出力部14は、熱回路モデル112から予測される時間毎に各温度素子の温度変化を示すグラフの傾きが、各温度素子が実際に計測して描画されるグラフに現れない場合に、システム100に異常が発生したと検知する。診断結果出力部(診断結果出力部14)は、システム(システム100)に異常が発生したと診断した場合に、異常フラグをセットした診断結果(放熱経路診断結果114)をシステム(システム100)及び外部システム(システム120)に出力する。なお、診断結果出力部14がシステム100を正常と診断した場合、特段の処理は行われず、引き続きシステム100の温度監視が行われる。
次に、放熱経路診断装置1を構成する計算機20のハードウェア構成を説明する。
図3は、計算機20のハードウェア構成例を示すブロック図である。計算機20は、放熱経路診断装置1として動作可能なコンピューターとして用いられるハードウェアの一例である。
計算機20は、バス24にそれぞれ接続されたCPU(Central Processing Unit)21、ROM(Read Only Memory)22、RAM(Random Access Memory)23及びバス24を備える。さらに、計算機20は、不揮発性ストレージ25及びネットワークインターフェイス26を備える。
CPU21は、本実施の形態に係る各機能を実現するソフトウェアのプログラムコードをROM22から読み出してRAM23にロードし、実行する。RAM23には、CPU21の演算処理の途中で発生した変数やパラメーター等が一時的に書き込まれ、これらの変数やパラメーター等がCPU21によって適宜読み出される。ただし、CPU21に代えてMPU(Micro Processing Unit)を用いてもよい。図2に示した温度挙動予測部11、温度挙動比較部13、発熱開始タイマ12及び診断結果出力部14の機能は、CPU21が実行するプログラムによって実現される。
不揮発性ストレージ25としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ又は不揮発性のメモリ等が用いられる。この不揮発性ストレージ25には、OS(Operating System)、各種のパラメーターの他に、計算機20を機能させるためのプログラムが記録されている。ROM22及び不揮発性ストレージ25は、計算機20によって実行されるプログラムを格納したコンピューター読取可能な非一過性の記録媒体の一例として用いられる。図1と図2に示した熱回路モデル112は、不揮発性ストレージ25に構成される。
ネットワークインターフェイス26には、例えば、NIC(Network Interface Card)等が用いられ、NICの端子に接続されネットワークを介して各種のデータを装置間で送受信することが可能である。例えば、ネットワークインターフェイス26を介して演算ユニット111に温度情報107~109、消費電力情報110が入力され、異常判定時のデータ等が出力される。また、ネットワークインターフェイス26を介して、システム100、外部システム120に放熱経路診断結果114が出力される。
図4は、システム100の熱回路モデル112の一例を示した図である。
半導体部品101が通電されていない(オフ)時は、半導体部品101が発熱していないため、システム100全体の温度も外部環境温度に等しい。外部環境温度とは、システム100が稼働する環境の温度であり、例えば、外気温に相当する。半導体部品101が通電されると(オン)、半導体部品101が発熱する。半導体部品101で発生した熱は、放熱経路に沿って移動するため、半導体部品101以外の構成部品の温度も上昇する。
熱回路モデル112は、熱抵抗Rth1~Rth3、及び熱容量Cth1~Cth3により構成される。
熱抵抗Rth1、熱容量Cth1は、それぞれ半導体部品101から熱伝導材103までの熱抵抗及び熱容量に相当する。半導体部品101と熱抵抗Rth1の間の温度情報107に相当する温度情報が演算ユニット111に提供される。
熱抵抗Rth2、熱容量Cth2は、それぞれ熱伝導材103からヒートシンク105までの熱抵抗及び熱容量に相当する。熱抵抗Rth1と熱抵抗Rth2の間の温度情報108に相当する温度情報が演算ユニット111に提供される。
また、熱抵抗Rth3、熱容量Cth3は、それぞれヒートシンク105から外部環境までの熱抵抗及び熱容量に相当する。熱抵抗Rth2と熱抵抗Rth3の間の温度情報109に相当する温度情報が演算ユニット111に提供される。
これら熱抵抗Rth1~Rth3、及び熱容量Cth1~Cth3は、いずれも既知の熱特性評価により事前に得られた情報が用いられる。
図5は、半導体部品101がオフからオンされた時における、システム100に設けられた各温度素子の理想的な温度変化の例を示した概念図である。図5の最下部に示すように、半導体部品101が時間t=t0でオンされ、発熱を開始し、半導体部品101の発熱が維持されているものとする。
半導体部品101内部に設けられた温度素子102の温度上昇のグラフに現れる領域(1)は、発熱開始直後の温度情報から示される温度の変化(t0≦t<t1)を表す。温度素子102から提供される温度情報107は、熱抵抗Rth1と熱容量Cth1の影響が支配的である。概念的には、熱容量Cth1に十分に熱が溜まってから熱抵抗Rth1を通して熱伝導が開始される。このため、t0≦t<t1の範囲においては、半導体部品101から離れた温度素子104、106に半導体部品101の発熱の影響は伝わっておらず、温度変化はほとんど見られない。
熱伝導材103の内部又はその近傍に設けられた温度素子104の温度上昇のグラフに現れる領域(2)は、温度素子104の温度情報から示される温度の変化(t1≦t<t2)を表す。時間が経過し、発熱開始からの時間がt1≦t<t2の範囲では、熱容量Cth1が熱飽和し、温度素子104に半導体部品101の発熱が伝わり始め、熱抵抗Rth2と熱容量Cth2の影響が支配的となる。t1≦t<t2の範囲で温度が上昇しても熱容量Cth2が飽和していないので、温度素子106には半導体部品101の発熱の影響は伝わっていない。
ヒートシンク105の内部に設けられた温度素子106の温度上昇のグラフに現れる領域(3)は、温度素子106の温度情報から示される温度の変化(t2≦t<t3)を表す。さらに時間が経過し、t2≦t<t3の範囲では、熱容量Cth2が飽和し、熱抵抗Rth3と熱容量Cth3の影響が支配的となるので、ヒートシンク105から外部環境に熱が伝わり始める。
また、領域(4)は、温度素子106の温度情報から示される温度の変化(t3≦t)を表す。t3≦tの範囲では、熱容量Cth3が飽和し、システム100全体の温度が平衡状態に達し、システム100全体が温度飽和している。このため、t3≦t以降は、システム100の各部位の温度は変化しない。
上述したように演算ユニット111は、システム100の熱回路モデル112、半導体部品101の消費電力情報110から、熱回路モデルとして定義された経路上の理想的な温度挙動を求めることが可能である。そして、演算ユニット111は、演算した理想的な熱挙動と、各温度素子から得られた実際の温度情報107~109から演算される熱挙動を比較し、両者の熱挙動に差異が生じた場合に異常フラグを立てた放熱経路診断結果114を出力する。ここで、実際の温度情報107~109から演算される熱挙動が、理想的な熱挙動と差異が生じる様子について、図6を参照して説明する。
図6は、システム100において、熱伝導材103からヒートシンク105の間の放熱経路に異常が生じた際の各温度素子の温度変化の例を示した概念図である。図6に破線で示す各温度素子の温度変化は、図5に示した各温度素子の理想的な温度変化を重ねて表示したものである。つまり、本実施の形態における温度挙動の差異とは、各所定部位における時間当たりの温度勾配の違いを表す。
領域(1)は、発熱開始直後の温度情報から示される温度の変化(t0≦t<t1)のを表す。領域(1)における熱挙動は、図5に示した領域(1)における熱挙動と同様である。
領域(2)は、温度素子104の温度情報から示される温度の変化(t1≦t<t2’)を表す。領域(2)以降は、図5に示した領域(2)以降の熱挙動と異なる。領域(2)以降の熱挙動を図4の熱回路モデル112に当てはめると、領域(2)の温度上昇は、熱抵抗Rth2が増大したことに相当する。
領域(3)は、温度素子106の温度情報から示される温度の変化(t2’≦t<t3’)を表す。図6の領域(3)に示すように、温度素子106は、図5に示した時間(t=t2)より遅い時間(t=t2’)で温度上昇を開始する。このように温度素子106の温度上昇が遅れたのは、熱伝導材103からヒートシンク105の間の放熱経路に異常が生じたためである。
領域(4)は、温度素子106の温度情報から示される温度の変化(t3’≦t)を表す。t3’≦tの範囲では、熱容量Cth3が飽和し、システム100全体の温度が平衡状態に達し、システム100全体が温度飽和している。
演算ユニット111は、熱回路モデル112の領域(2)に対応する部位において、熱伝導材103の材料特性の変化による放熱経路異常、又は熱伝導材103からヒートシンク105の間の放熱経路に異常が生じたことを検知可能である。このように演算ユニット111は、図5に示した各温度素子の理想的な温度挙動と、図6に示した実際の熱挙動とに基づいて、放熱経路上のどの場所の状態が変化し、放熱経路に異常が発生したかを検出できる。
図7は、半導体部品101がオンからオフされた時における、システム100に設けられた各温度素子の理想的な温度変化の例を示した概念図である。
図7の最下部に示すように、半導体部品101が時間t=t20でオフされると、消費電力情報110に示される半導体部品101の消費電力もゼロとなる。そして、半導体部品101が発熱を停止し、冷え始めるため、システム100の温度も全体に下降していく。
図7に示す各温度素子の理想的な温度変化は、図5に示した各温度素子の理想的な温度変化をほぼ対称に表現したものとなる。つまり、温度素子102、温度素子104、温度素子106の順に温度が下降する。
図2に示した温度挙動予測部11は、熱回路モデル112に基づいて、半導体部品101がオフされたときの各部位の温度変化を予測することができる。このため、温度挙動比較部13は、半導体部品101がオフされたときに予測した各部位の理想的な温度挙動と、各温度素子が計測した温度情報から求めた各部位の温度挙動とを比較し、比較結果を診断結果出力部14に出力する。診断結果出力部14は、比較結果に基づいて、半導体部品101がオフされたときのシステム100の各部の正常又は異常を診断することが可能となる。
以上説明した第1の実施の形態に係る放熱経路診断装置1では、電子部品等で構成されるシステム100の発熱部(半導体部品101)から放熱部(外部環境)に至る放熱経路上の熱回路モデル112から演算した温度挙動と、実際に計測された温度情報から演算した温度挙動とに基づいて、システム100全体の放熱経路状態をリアルタイムに監視し、放熱経路の異常を検知する構造及び手法を提供することが可能となる。
この際、放熱経路診断装置1の演算ユニット111では、熱回路モデル112から予測された温度挙動と、システム100内に設置された各温度素子から提供される温度情報107~109から算出した温度挙動とを比較する。そして、演算ユニット111は、消費電力情報110により半導体部品101が発熱状態であるときの放熱経路の状態をリアルタイムに監視することが可能となる。診断結果に異常があると判断された場合は、外部システム120やシステム100に放熱経路診断結果114を伝達することで、システム100に異常情報を発信したり、システム100に低動作指示等を行い、システム100を安全動作に移行させたりすることで、システム100の機能安全を提供する。
また、放熱経路診断装置1は、半導体部品101がオンされた時の放熱経路における温度上昇の様子から放熱経路を診断するだけでなく、半導体部品101がオフされた時の放熱経路における温度下降の様子から放熱経路を診断することが可能である。
[第2の実施の形態]
次に、本発明の第2の実施の形態に係る放熱経路診断装置1Aの構成例及び動作例について、図8~図10を参照して説明する。
図8は、本発明の第2の実施の形態に係る放熱経路診断装置1Aの構成図である。第2の実施の形態に係る放熱経路診断装置1Aでは、第1の実施の形態に係るシステム100の外部に、モーターなどのアクチュエータを想定した外部熱源200が隣接した状態を想定する。このため、外部熱源(外部熱源200)で発生した熱が、システム(システム100)の外部からシステム(システム100)の内部に伝わる。
システム100に設置される温度素子201は、外部熱源200が発生した熱がシステム100に最も影響を及ぼすと想定される箇所近傍におけるシステム100の温度を計測する。そして、温度素子201が計測した温度の温度情報202は演算ユニット111に提供される。また、外部熱源200の稼働状況を表す電圧、電流等の消費電力情報203についても演算ユニット111に提供される。このため、本実施の形態では、熱源の発熱情報として、半導体部品101の消費電力情報110に加えて、外部熱源200の消費電力情報203も含まれる。なお、発熱情報としては、例えば、外部熱源200がオンされたことを示す情報であってもよい。
記憶素子(記憶素子113)には、外部熱源(外部熱源200)から発生した熱を放熱するための放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせが第2熱回路モデル(熱回路モデル112A)として記憶される。
図2に示すように、演算ユニット111の温度挙動予測部11は、システム100及び外部熱源200の熱回路モデル112Aと、温度情報107~19及び消費電力情報110、203とを入力として、熱回路モデル112Aで定義されている放熱経路上の各所定部位における理想的な温度挙動を予測する。この際、温度挙動予測部(温度挙動予測部11)は、外部熱源(外部熱源200)の消費電力を表す外部熱源消費電力情報(消費電力情報203)、及び内部熱源消費電力情報(消費電力情報110)を入力とし、記憶素子(記憶素子113)から読み出した第2熱回路モデル(熱回路モデル112A)に基づいて、発熱部品(半導体部品101)及び外部熱源(外部熱源200)がオン又はオフされてからシステム(システム100)の全体の温度が平衡状態になるまでのシステム(システム100)の所定部位における温度挙動を予測する。
そして、演算ユニット111の温度挙動比較部13は、予測された理想的な温度挙動と、システム100内に設置された各温度素子からの温度情報107~109、202で示される温度挙動とを比較する。そして、診断結果出力部14は、半導体部品101、外部熱源200のそれぞれの発熱状態における放熱経路の状態をリアルタイムに監視することが可能となる。
ここで、診断結果出力部14が、比較結果に基づいて放熱経路に異常があると判断した場合、外部システム120やシステム100、外部熱源200に放熱経路診断結果114を提供する。診断結果出力部14が、放熱経路診断結果114を提供することで、システム100及び外部システム120に異常情報を発信したり、システム100に低動作指示等を行って、システム100を安全動作に移行させたりすることで、システム100の機能安全を提供する。
なお、図8に示すように、第2の実施の形態に係る熱源は、半導体部品101、外部熱源200の2つである。そこで、放熱経路として、半導体部品に取り付けられたヒートシンク105から外部環境への第1放熱経路、システム100の基板自体から外部環境への第2放熱経路、外部熱源200筐体から外部環境への第3放熱経路、の3通りが設定される。各放熱経路は、放熱の影響を互いに受ける。
次に、図8に示すシステム100及び外部熱源200の熱回路モデル112Aについて説明する。
図9は、図8の熱回路モデル112Aの一例を示したものである。
ここでは、熱回路モデル112Aについて、第1放熱経路、第2放熱経路、第3放熱経路の順に説明する。
第1放熱経路は、図4に示した熱回路モデル112と同様の放熱経路を表す。第1放熱経路に含まれる、熱抵抗Rth1、熱容量Cth1は、それぞれ半導体部品101から熱伝導材103までの熱抵抗及び熱容量に相当する。半導体部品101と熱抵抗Rth1の間は、温度情報107に相当する温度情報が演算ユニット111に提供される。
同様に、熱抵抗Rth2、熱容量Cth2は、それぞれ熱伝導材103からヒートシンク105までの熱抵抗及び熱容量に相当する。熱抵抗Rth1と熱抵抗Rth2の間は、温度情報108に相当する温度情報が演算ユニット111に提供される。
熱抵抗Rth3、熱容量Cth3は、それぞれヒートシンク105から外部環境までの熱抵抗及び熱容量に相当する。熱抵抗Rth2と熱抵抗Rth3の間は、温度情報109に相当する温度情報が演算ユニット111に提供される。
第2放熱経路では、熱抵抗Rth4~Rth9、熱容量Cth4~Cth6,Cth8,Cth9が構成される。
熱抵抗Rth4は、外部熱源200の筐体の熱抵抗を表す。
熱抵抗Rth5は、外部熱源200とシステム100との境界の熱抵抗を表し、熱抵抗Rth6は、システム100の基板の一部の熱抵抗を表す。
熱抵抗Rth7は、半導体部品101の一部の熱抵抗を表し、熱抵抗Rth8は、システム100の基板の一部の熱抵抗を表す。
そして、熱抵抗Rth9は、システム100の基板から外部環境への熱抵抗を表す。
外部熱源200と熱抵抗Rth4との間に熱容量Cth4が設けられ、熱抵抗Rth4と熱抵抗Rth5との間に熱容量Cth5が設けられる。
また、熱抵抗Rth5と熱抵抗Rth6との間に熱容量Cth6が設けられ、温度情報202に相当する温度情報が演算ユニット111に提供される。
熱抵抗Rth7と熱抵抗Rth8との間に熱容量Cth8が設けられる。
また、熱抵抗Rth6及び熱抵抗Rth8と、熱抵抗Rth9との間に熱容量Cth9が設けられる。なお、熱抵抗Rth6、Rth8及びRth9は、共に接続され、互いに熱の影響が及ぶ。
第3放熱経路では、熱抵抗Rth10が設けられる。
熱抵抗Rth10は、外部熱源200の筐体から外部環境までの熱抵抗を表す。なお、熱抵抗Rth4、Rth5及びRth10は、共に接続され、互いに熱の影響が及ぶ。
これら熱抵抗Rth1~Rth10、及び熱容量Cth1~Cth6,Cth8,Cth9は、いずれも既知の熱特性評価により事前に得られた情報が用いられる。
図10は、半導体部品101がオフからオンされた時における、システム100に設けられた各温度素子の理想的な温度変化の例を示した概念図である。図10の最下部と、その一つ上に示すように、半導体部品101が時間t=t0でオンされ、発熱を開始し、外部熱源200が時間t=t2_3で発熱を開始する。その後、半導体部品101及び外部熱源200の発熱が維持されているものとする。
領域(1)~(3)までの時間(t0≦t<t3)の各部位における熱挙動は、システム100に外部熱源200が無い場合における図5に示した熱挙動と同じである。
時間t=t2_3で外部熱源200が発熱を開始すると、外部熱源200の熱が熱容量Cth4、熱抵抗Rth4及び熱容量Cth5を経由して、第2放熱経路及び第3放熱経路に分岐する。すなわち、外部熱源200の熱の一部は、熱抵抗Rth5を経由して温度素子201に到達する。また、外部熱源200の熱の他の一部は、熱抵抗Rth10を経由する第3放熱経路を通して外部環境に放熱される。
放熱経路上に設けられた熱抵抗及び熱容量の関係から、外部熱源200の発熱開始(t=t2_3)から温度素子201に熱が伝わるまでには熱抵抗Rth4、Rth5、熱容量Cth4、Cth5を経由するため、一定の遅延が生じる。ここではt=t4で温度素子201に熱が到達すると想定した。このため、温度素子201の温度上昇のグラフに現れる領域(4)に示すt2_3≦t<t4の範囲の熱挙動は変化しない。
温度素子201の温度上昇のグラフに現れる領域(5)に示すt4≦t<t5の範囲の熱挙動は、熱抵抗Rth6と熱容量Cth6の影響が支配的となる。このため、領域(7)に示すt4≦t<t10の範囲では、温度素子102の温度があまり変化しない。
しかし、領域(6)に示すt5≦t<t6の範囲では、熱容量Cth6が飽和し、熱抵抗Rth9、Rth8及び熱容量Cth9の影響が支配的となる。この時、温度素子102がわずかに温度上昇する。その後は、熱容量Cth5,Cth6が飽和し、t=t6以降は温度素子201の温度は変化しなくなる。
上述したように外部熱源200から伝達される熱の一部は、第2放熱経路を通して外部環境に放熱される。また、外部熱源200から伝達される熱の他の一部は、熱抵抗Rth8、Rth7と熱容量Cth8を経由するため、一定の遅延が生じる。ここでは、外部熱源200からの熱の他の一部が、半導体部品101の第1放熱経路上の温度素子102に時間t=10で到達する。
また、温度素子104の温度上昇のグラフに現れる領域(8)に示すt10≦t<t11の範囲では、外部熱源200からの熱の他の一部が、熱抵抗Rth2、熱容量Cth2を経由するため、一定の遅延が生じる。そして、外部熱源200からの熱の他の一部が、時間t=t11で温度素子104に到達し、温度素子104の温度が上昇する。
また、温度素子106の温度上昇のグラフに現れる領域(9)に示すt11≦t<t12の範囲では、外部熱源200からの熱の他の一部が、熱抵抗Rth3、熱容量Cth3を経由するため、一定の遅延が生じる。そして、外部熱源200からの熱の他の一部が、時間t=t12で温度素子106に到達し、温度素子106の温度が上昇する。
なお、第2の実施の形態においても、外部熱源200の発熱が停止し、半導体部品101がオンからオフされると、システム100全体の温度が外部環境温度まで下降する。このときのグラフは、図10に示した各温度素子の理想的な温度変化をほぼ対称に表現したものとなる。このため、第2の実施の形態では、第1の実施の形態で示した半導体部品101がオンからオフされた時における、システム100に設けられた各温度素子の理想的な温度変化の例に対応する図の記載は省略する。
以上説明した第2の実施の形態に係る放熱経路診断装置1Aでは、システム100の外部に隣接した外部熱源200を加えた熱回路モデル112A及び各温度素子の理想的な温度変化に基づいて、半導体部品101及び外部熱源200の発熱に応じた各温度素子の温度変化の様子を比較することができる。この際、演算ユニット111は、外部熱源200の消費電力情報203に基づいて、外部熱源200の発熱によるシステム100への影響を診断可能である。
[第3の実施の形態]
次に、本発明の第3の実施の形態に係る放熱経路診断装置1Bの構成例について、図11を参照して説明する。
図11は、本発明の第3の実施の形態に係る放熱経路診断装置1Bの構成図である。
本実施の形態に係るシステム100は、半導体部品101A、熱伝導材103、ヒートシンク105及び温度素子102,104,106を備える。
そして、半導体部品101Aは、内部に放熱経路診断装置1Bを備える。放熱経路診断装置1Bは、図1に示した第1の実施の形態に係る演算ユニット111、及び不揮発性の記憶素子113を有する。このため、システム(システム100)には、記憶素子(記憶素子113)、温度挙動予測部(温度挙動予測部11)、温度挙動比較部(温度挙動比較部13)及び診断結果出力部(診断結果出力部14)が搭載されるように構成される。
そして、半導体部品101A自体で、放熱経路の診断を行い、異常診断時には異常フラグをセットした放熱経路診断結果114を外部システム120に提供したり、放熱経路診断結果114に基づく低動作処理を行ったりすることが可能である。半導体部品101Aが演算ユニット111、及び不揮発性の記憶素子113を備える構成とした以外の、各部の構成及び動作については、第1の実施の形態に係る放熱経路診断装置1と同様である。
このように放熱経路診断装置1Bを構成したことで、システム100全体を小型化することが可能となる。
なお、第2の実施の形態と同様に、システム100に隣接して外部熱源200が設けられた場合、演算ユニット111は、外部熱源200から提供される消費電力情報203により、外部熱源200の発熱に応じた、温度挙動の比較処理、及びシステム100の診断を行ってもよい。
[変形例]
上述した各実施の形態に係る放熱経路診断装置は、自動車の各部を制御する電子制御装置の他に、例えば、エンジンの動作を制御するエンジン制御装置(ECU:Engine Control Unit)に搭載されてもよい。また、放熱経路診断装置は、これらの制御装置に限らず、様々な装置の放熱経路を診断可能に構成してよい。
また、上述した各実施の形態に係る放熱経路診断装置は、リアルタイムに放熱経路の状態を診断するものとしたが、システム100の各温度素子から提供される温度情報を蓄積し、バッチ処理にて放熱経路の状態を診断してもよい。
また、上述した各実施の形態に係る放熱経路診断装置が診断対象とするシステム100は一つに限らない。複数のシステム100に対して予め構築された複数の熱回路モデル112,112Aを記憶素子113に記憶することで、演算ユニット111は、複数のシステム100の放熱経路を診断してもよい。
なお、本発明は上述した各実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
例えば、上述した各実施の形態は本発明を分かりやすく説明するために放熱経路診断装置の構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…放熱経路診断装置、11…温度挙動予測部、12…発熱開始タイマ、13…温度挙動比較部、14…診断結果出力部、100…システム、101…半導体部品、102…温度素子、103…熱伝導材、104…温度素子、105…ヒートシンク、106…温度素子、107~109…温度情報、110…消費電力情報、111…演算ユニット、112…熱回路モデル、113…記憶素子、114…放熱経路診断結果

Claims (4)

  1. 熱源となる発熱部品を内部に有するシステムにおいて、前記発熱部品から発生した熱が放熱される放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせを前記システムの第1熱回路モデルとして記憶する記憶素子と、
    前記記憶素子から読み出した前記第1熱回路モデルに基づいて、前記発熱部品がオン又はオフされてから前記システムの全体の温度が平衡状態に達するまでの前記システムの所定部位における温度挙動を予測する温度挙動予測部と、
    予測された前記温度挙動と、前記所定部位で計測された温度の温度情報から求めた温度挙動とを比較して比較結果を出力する温度挙動比較部と、
    前記比較結果に基づいて、前記システムの前記所定部位ごとの状態を診断した診断結果を出力する診断結果出力部と、
    前記発熱部品の消費電力を表す内部熱源消費電力情報を入力とし、前記発熱部品の発熱開始からの経過時間を計測するタイマと、を備え
    前記システムの外部から前記システムの内部に熱が伝わる外部熱源が設けられ、前記外部熱源から発生した熱を放熱するための放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせが第2熱回路モデルとして前記記憶素子に記憶され、
    前記温度挙動予測部は、前記外部熱源の消費電力を表す外部熱源消費電力情報、及び前記内部熱源消費電力情報を入力とし、前記記憶素子から読み出した前記第2熱回路モデルに基づいて、前記発熱部品及び前記外部熱源がオン又はオフされてから前記システムの全体の温度が平衡状態になるまでの前記システムの所定部位における温度挙動を予測し、
    前記温度挙動比較部は、前記内部熱源消費電力情報が入力された時点を前記経過時間の開始として、前記放熱経路における前記所定部位での温度挙動をリアルタイムに比較し、
    前記診断結果出力部は、前記温度挙動比較部により比較された、前記温度挙動予測部が予測した前記所定部位の前記温度挙動と、前記所定部位から提供された前記温度情報から算出される温度挙動とが異なる場合に、前記所定部位に異常が発生したと診断する
    放熱経路診断装置。
  2. 熱源となる発熱部品を内部に有するシステムにおいて、前記発熱部品から発生した熱が放熱される放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせを前記システムの第1熱回路モデルとして記憶する記憶素子と、
    前記記憶素子から読み出した前記第1熱回路モデルに基づいて、前記発熱部品がオン又はオフされてから前記システムの全体の温度が平衡状態に達するまでの前記システムの所定部位における温度挙動を予測する温度挙動予測部と、
    予測された前記温度挙動と、前記所定部位で計測された温度の温度情報から求めた温度挙動とを比較して比較結果を出力する温度挙動比較部と、
    前記比較結果に基づいて、前記システムの前記所定部位ごとの状態を診断した診断結果を出力する診断結果出力部と、
    前記発熱部品の消費電力を表す内部熱源消費電力情報を入力とし、前記発熱部品の発熱開始からの経過時間を計測するタイマと、を備え、
    前記所定部位は、前記発熱部品及び前記システムの構成部品の、境界又は内部であり、
    前記システムには、温度を計測して前記温度挙動比較部に前記温度情報を提供する温度素子が複数の前記所定部位に設けられ、
    前記システムの外部から前記システムの内部に熱が伝わる外部熱源が設けられ、前記外部熱源から発生した熱を放熱するための放熱経路に沿って設けられる熱抵抗及び熱容量の組み合わせが第2熱回路モデルとして前記記憶素子に記憶され、
    前記温度挙動予測部は、前記外部熱源の消費電力を表す外部熱源消費電力情報、及び前記内部熱源消費電力情報を入力とし、前記記憶素子から読み出した前記第2熱回路モデルに基づいて、前記発熱部品及び前記外部熱源がオン又はオフされてから前記システムの全体の温度が平衡状態になるまでの前記システムの所定部位における温度挙動を予測し、
    前記温度挙動比較部は、前記内部熱源消費電力情報が入力された時点を前記経過時間の開始として、前記放熱経路における前記所定部位での温度挙動をリアルタイムに比較し、
    前記診断結果出力部は、前記温度挙動比較部により比較された、前記温度挙動予測部が予測した前記所定部位の前記温度挙動と、前記所定部位から提供された前記温度情報から算出される温度挙動とが異なる場合に、前記所定部位に異常が発生したと診断する
    放熱経路診断装置。
  3. 前記診断結果出力部は、前記システムに前記異常が発生したと診断した場合に、異常フラグをセットした前記診断結果を前記システム及び外部システムに出力し、
    前記診断結果を受け取った前記システムは、前記発熱部品を低動作又は停止させ、
    前記診断結果を受け取った前記外部システムは、前記異常を報知する
    請求項1又は2に記載の放熱経路診断装置。
  4. 前記記憶素子、前記温度挙動予測部、前記温度挙動比較部前記診断結果出力部及び前記タイマが前記システムに搭載される
    請求項1又は2に記載の放熱経路診断装置。
JP2019236441A 2019-12-26 2019-12-26 放熱経路診断装置 Active JP7377101B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236441A JP7377101B2 (ja) 2019-12-26 2019-12-26 放熱経路診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236441A JP7377101B2 (ja) 2019-12-26 2019-12-26 放熱経路診断装置

Publications (2)

Publication Number Publication Date
JP2021105541A JP2021105541A (ja) 2021-07-26
JP7377101B2 true JP7377101B2 (ja) 2023-11-09

Family

ID=76919410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236441A Active JP7377101B2 (ja) 2019-12-26 2019-12-26 放熱経路診断装置

Country Status (1)

Country Link
JP (1) JP7377101B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048743A (ja) 2000-08-01 2002-02-15 Kansai Tlo Kk 微細構造物中の欠陥を検出する方法
JP2003014552A (ja) 2001-06-29 2003-01-15 Nissan Motor Co Ltd 温度検知装置
JP2009075023A (ja) 2007-09-24 2009-04-09 Toyota Motor Corp 多層型電子部品モジュールの接合部検査方法
JP2014187789A (ja) 2013-03-22 2014-10-02 Fanuc Ltd 異常検出機能を備えたモータ駆動装置
JP2014222205A (ja) 2013-05-14 2014-11-27 株式会社ジェイテクト 光学非破壊検査方法及び光学非破壊検査装置
US20190094165A1 (en) 2017-09-20 2019-03-28 Aiq Dienstleistungen Ug (Haftungsbeschränkt) Condition Monitoring of an Object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250719A (ja) * 1987-04-07 1988-10-18 Fujitsu Ltd 情報処理装置の異常状態検出方式

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048743A (ja) 2000-08-01 2002-02-15 Kansai Tlo Kk 微細構造物中の欠陥を検出する方法
JP2003014552A (ja) 2001-06-29 2003-01-15 Nissan Motor Co Ltd 温度検知装置
JP2009075023A (ja) 2007-09-24 2009-04-09 Toyota Motor Corp 多層型電子部品モジュールの接合部検査方法
JP2014187789A (ja) 2013-03-22 2014-10-02 Fanuc Ltd 異常検出機能を備えたモータ駆動装置
JP2014222205A (ja) 2013-05-14 2014-11-27 株式会社ジェイテクト 光学非破壊検査方法及び光学非破壊検査装置
US20190094165A1 (en) 2017-09-20 2019-03-28 Aiq Dienstleistungen Ug (Haftungsbeschränkt) Condition Monitoring of an Object

Also Published As

Publication number Publication date
JP2021105541A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
US7346468B2 (en) Method and apparatus for detecting heat sink faults
CN102298102B (zh) 电路的冷却部的异常检查系统
US8340923B2 (en) Predicting remaining useful life for a computer system using a stress-based prediction technique
US20070213882A1 (en) Thermal Management system
US7734440B2 (en) On-chip over-temperature detection
JP6360387B2 (ja) プロセッサシステム、エンジン制御システム及び制御方法
US10453767B2 (en) Control device and method for monitoring a function of a semiconductor component during the operation thereof and electrical assembly having a control device
JP5820001B2 (ja) Cpuの異常検出機能を備えた制御装置
EP3840070B1 (en) Printed circuit board assembly embedded thermal management system using thin-film thermoelectric coolers
US8449173B1 (en) Method and system for thermal testing of computing system components
JP7377101B2 (ja) 放熱経路診断装置
US7954007B2 (en) Detecting faulty CPU heat sink coupling during system power-up
US6754607B2 (en) Failure diagnosis method for control apparatus
CN110892277B (zh) 用于集成电路的预测性维护的方法和系统
JP2011252842A (ja) 素子寿命予測方法及び素子寿命予測機能を備えた回路基板
JP3069882B2 (ja) 半導体装置
EP3502720B1 (en) An apparatus for prediction of failure of a functional circuit
US8742779B2 (en) Semiconductor device and abnormality prediction method thereof
WO2005114122A1 (en) Thermal protection for a vlsi chip through reduced c4 usage
US20090206842A1 (en) Method and apparatus for determining whether a cooling device in a computer system is responsive to control signals
Gromala et al. Concept of the 3 rd Generation of Reliability for Electronic Smart Systems
CN107735744A (zh) 阀故障预测
JP2021157808A (ja) 制御装置の診断
CN113303037B (zh) 焊料接合部的寿命预测部件及焊料接合部的寿命预测方法
JP2021079733A (ja) 車載電子制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7377101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150