JP7369485B2 - ドローン及びドローンの制御方法 - Google Patents

ドローン及びドローンの制御方法 Download PDF

Info

Publication number
JP7369485B2
JP7369485B2 JP2022501389A JP2022501389A JP7369485B2 JP 7369485 B2 JP7369485 B2 JP 7369485B2 JP 2022501389 A JP2022501389 A JP 2022501389A JP 2022501389 A JP2022501389 A JP 2022501389A JP 7369485 B2 JP7369485 B2 JP 7369485B2
Authority
JP
Japan
Prior art keywords
drone
distance
state
optical sensor
downward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022501389A
Other languages
English (en)
Other versions
JPWO2021166008A1 (ja
Inventor
敦規 西東
千大 和氣
宏記 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nileworks Inc
Original Assignee
Nileworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nileworks Inc filed Critical Nileworks Inc
Publication of JPWO2021166008A1 publication Critical patent/JPWO2021166008A1/ja
Application granted granted Critical
Publication of JP7369485B2 publication Critical patent/JP7369485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、ドローン及びドローンの制御方法に関する。
ドローンの飛行制御では高度情報を用いることがある。特許文献1では、無人飛行体1の下方にレーザビーム又は超音波信号を放射して反射波から高度を示す出力を生じる高度計36が用いられる([0019])。
特開2018-192932号公報
上記のように、特許文献1では、無人飛行体1の下方にレーザビーム又は超音波信号を放射して反射波から高度を示す出力を生じる高度計36が用いられる([0019])。ここでの高度計36は、レーザビーム又は超音波信号の一方のみを用いることが想定されているように見受けられる。
しかしながら、レーザビーム等を用いる光センサの場合、鏡面状の対象(例えば反射率の高い水面)からの反射光を受信すると、受光量が多すぎて測定レンジ(ダイナミックレンジ)が飽和して検出精度が下がる場合があり得る。また、測定レンジが可変な光センサの場合でも、暗い場所(日陰等)から明るい場所(日向等)に急に移動すると、測定レンジの変化に遅れが生じ、検出精度が低下するおそれがある。
さらに、超音波は、音を吸収し易い柔らかい対象からの反射が弱いため、そのような対象が存在する場合、検出精度が下がるおそれがある。
本発明は上記のような課題を考慮してなされたものであり、地面等の下方対象の変化に頑健なドローン及びその制御方法を提供することを目的とする。
本発明に係るドローンは、
下方対象までの第1距離を検出する光センサと
前記下方対象までの第2距離を検出する超音波センサと
を備えるものであって、
前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行う飛行制御部をさらに有する
ことを特徴とする。
本発明によれば、光センサが検出した下方対象(地面等)までの第1距離と超音波センサが検出した下方対象までの第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いてドローンの飛行制御を行う。これにより、光センサ及び超音波センサの長所及び短所を踏まえてドローンを飛行させることが可能になる。従って、地面等の下方対象の変化に対する頑健さを向上することが可能となる。なお、光センサとしては、例えば、レーザ式を用いることができる。
前記光センサは、例えば、タイム・オブ・フライト(Time-of-Flight)式のセンサ(TOFセンサ)を用いてもよい。他の種類の光センサ(位相差検出方式、三角測距方式等)と比較して、TOFセンサは重量が軽いことが多く、TOFセンサを用いることでドローンの軽量化を図ることが可能となる。
前記光センサと前記超音波センサは、前記ドローンの横方向に並んで配置されてもよい。また、前記光センサによる光の照射方向と、前記超音波センサによる超音波の照射方向は、前記光センサによる前記光の照射範囲と、前記超音波センサによる前記超音波の照射範囲の少なくとも一部が重なるように設定されてもよい。ドローンは進行方向に向かって前傾姿勢で前進する場合がある。光センサと超音波センサがドローンの横方向に配置されていれば、そのような前傾姿勢の場合であっても、両センサの検出値には互いのずれが生じ難くなる。そのため、光センサによる第1距離と超音波センサによる第2距離との乖離を抑制することが可能となる。
前記ドローンは、前記ドローンの本体から下方に突出して前記光センサ及び前記超音波センサを支持する支持部材を有してもよい。これにより、ドローンの本体内に発熱源(配電基板、インバータ、電源、カメラの画像処理部等)が存在する場合でも、光センサ及び超音波センサを発熱源から遠ざけて配置することができる。従って、発熱源からの熱により光センサ及び超音波センサが影響を受けることを抑制することが可能となる。
前記ドローンは、散布物を保管するタンクと、前記散布物を散布する吐出口(ノズル等)とを備えてもよい。また、前記光センサ及び前記超音波センサは、前記吐出口よりも上方に配置されてもよい。さらに、前記光センサ及び前記超音波センサは、前記吐出口よりも前側に配置されてもよい。これらにより、ドローンの飛行中に吐出口から散布される散布物による、光センサ又は超音波センサの測定に対する影響を抑制することが可能となる。
前記ドローンは、前記下方対象を撮像するカメラと、前記カメラの画像に基づいて、前記下方対象の状態を判定する下方状態判定部とをさらに備えてもよい。前記飛行制御部は、前記下方状態判定部が判定した前記下方対象の状態が、前記光センサの検出精度が低下する光センサ精度低下状態でない場合(通常時)、前記光センサが検出した前記第1距離を選択して又は前記超音波センサが検出した前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定してもよい。また、前記飛行制御部は、前記下方対象の状態が前記光センサ精度低下状態である場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定してもよい。
これにより、通常時には光センサの方が超音波センサよりも検出精度が高い場合において、光センサの検出精度が低下する場面では超音波センサを優先して用いることで、ドローンの飛行を高精度に制御することが可能となる。
光センサ精度低下状態は、前記下方対象が鏡面若しくは白色である状態、又は前記下方対象に日陰と日向の境界が存在し、前記光センサの測定位置が前記境界を跨ぐ状態が含まれてもよい。ここにいう測定位置とは、光センサから照射された光が下方対象に当たって反射する位置を意味する。
前記光センサ精度低下状態は、前記下方対象に日陰と日向の境界が存在し、前記光センサの測定位置が前記境界を跨ぐ状態である場合、前記飛行制御部は、前記光センサの測定位置が前記日陰と日向の境界を跨ぐ手前で、前記ドローンの飛行速度を低下させてもよい。
光センサには、検出精度を高めるために受光量のダイナミックレンジを可変とするものが存在する。そのような光センサの場合、日陰から日向への境界を測定位置が跨ぐ場合、急激な受光量の増加によりダイナミックレンジが一時的に飽和し、その後、ダイナミックレンジの調整により、日向でも高精度な測定が可能となる。本発明では、光センサの測定位置が日陰から日向への境界を跨ぐ手前で、ドローンの飛行速度を低下させる。これにより、光センサの受光量が飽和している状態でドローンが進む距離を短くすることができる。従って、光センサの適用範囲を広げることが可能となり、地面等の下方対象の変化に対する頑健さを向上可能となる。
また、超音波は、光よりも大幅に低速であり、ドローンの移動に伴うドップラー効果の影響が大きい。そのため、超音波センサの検出値(第2距離)を利用する際には光センサの検出値(第1距離)を利用する場合よりも、飛行速度を低下させることでドップラー効果による検出精度の低下を抑制することが可能となる。
さらに、日向から日陰への境界を測定位置が跨ぐ場合も、ダイナミックレンジの関係で、測定精度が一時的に下がり得る。本発明の場合、そのような場合にも対応させてもよい。
本発明に係るドローンは、
下方対象までの第1距離を検出する光センサと、
前記第1距離を制御用高度として用いて前記ドローンの飛行制御を行う飛行制御部と、
前記下方対象の表面状態を判定する下方状態判定部と
を備えるものであって、
前記下方状態判定部が判定した前記下方対象の表面状態が、前記光センサの検出精度が低下する光センサ精度低下状態である場合、前記飛行制御部は、前記ドローンの飛行速度を低下させる
ことを特徴とする。
上記のような構成でも、光センサの適用範囲を広げることが可能となり、地面等の下方対象の変化に対する頑健さを向上可能となる。
本発明に係るドローンの制御方法は、
下方対象までの第1距離を検出する光センサと
前記下方対象までの第2距離を検出する超音波センサと
を備えるドローンの制御方法であって、
飛行制御部が、前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行う
ことを特徴とする。
本発明に係るドローンの制御方法は、
下方対象までの第1距離を検出する光センサと、
前記第1距離を制御用高度として用いて前記ドローンの飛行制御を行う飛行制御部と、
前記下方対象の表面状態を判定する下方状態判定部と
を備えるドローンの制御方法であって、
前記下方状態判定部が判定した前記下方対象の表面状態が、前記光センサの検出精度が低下する光センサ精度低下状態である場合、前記飛行制御部は、前記ドローンの飛行速度を低下させる
ことを特徴とする。
本発明によれば、地面等の下方対象の変化に対する頑健性を向上可能となる。
本発明の一実施形態に係るドローンを含む作物育成システムの概要を示す全体構成図である。 前記実施形態に係る前記ドローンの構成を簡略的に示す構成図である。 前記実施形態に係る前記ドローンの外観斜視図である。 前記実施形態に係る前記ドローンの底面図である。 前記実施形態に係る前記ドローンの本体の内部構成及びその周辺の配置を簡略的に示す平面図である。 前記実施形態に係る前記ドローンの本体の内部構成及びその周辺の配置を簡略的に示す側面図である。 前記実施形態の高度関連制御のフローチャートである。 変形例に係るドローンの本体の内部構成及びその周辺の配置を簡略的に示す側面図である。 変形例に係る高度関連制御のフローチャートである。
A.一実施形態
<A-1.構成>
[A-1-1.全体構成]
図1は、本発明の一実施形態に係るドローン24を含む作物育成システム10の概要を示す全体構成図である。作物育成システム10(以下「システム10」ともいう。)は、圃場500に生育する作物502の生育診断を行うと共に、作物502に薬剤を散布することができる。本実施形態の作物502は、イネ(水稲)であるが、その他の作物(例えば、陸稲、小麦、大麦)であってもよい。
図1に示すように、システム10は、ドローン24に加えて、圃場センサ群20と、生育診断サーバ22と、ユーザ端末26とを有する。圃場センサ群20、ドローン24及びユーザ端末26は、通信ネットワーク30(無線基地局32を含む。)を介して互いに無線通信が可能であると共に、生育診断サーバ22と通信可能である。無線通信としては、無線基地局32を介さない通信(例えば、LTE(Long Term Evolution)、WiFi等)を用いることができる。
[A-1-2.圃場センサ群20]
圃場センサ群20は、水田としての圃場500に設置されて圃場500における各種データを検出して生育診断サーバ22等に提供する。圃場センサ群20には、例えば、水温センサ、温度センサ、降水量センサ、照度計、風速計、気圧計及び湿度計が含まれる。水温センサは、水田である圃場500の水温を検出する。温度センサは、圃場500の気温を検出する。降水量センサは、圃場500の降水量を検出する。照度計は、圃場500の日照量を検出する。風速計は、圃場500の風速を検出する。気圧計は、圃場500の気圧を検出する。湿度計は、圃場500の湿度を検出する。これらのセンサの値の一部は、図示しない気象情報提供サーバ等から取得してもよい。
[A-1-3.生育診断サーバ22]
生育診断サーバ22(以下「診断サーバ22」ともいう。)は、生育診断モデルを用いた生育診断を行い、診断結果に基づいてユーザ600等に作業指示を行う。作業指示には、施肥のタイミング、肥料の種類・量、農薬の散布タイミング、農薬の種類・量等が含まれる。診断サーバ22は、入出力部、通信部、演算部及び記憶部(いずれも図示せず)を有する。また、診断サーバ22は、生育診断モデルを用いた生育診断を行う生育診断制御、ドローン24の飛行(飛行タイミング、飛行経路等)を管理する飛行管理制御等を実行する。
[A-1-4.ドローン24]
(A-1-4-1.概要)
図2は、本実施形態に係るドローン24の構成を簡略的に示す構成図である。図3は、本実施形態に係るドローン24の外観斜視図である。図4は、本実施形態に係るドローン24の底面図である。図5は、本実施形態に係るドローン24の本体50の内部構成及びその周辺の配置を簡略的に示す平面図である。図6は、本実施形態のドローン24の本体50の内部構成及びその周辺の配置を簡略的に示す側面図である。本実施形態のドローン24は、圃場500(作物502)の画像を取得する手段として機能すると共に、作物502に対する薬液(液体肥料を含む。)を散布する手段としても機能する。ドローン24は、発着地点510(図1)において離着陸する。
図2に示すように、ドローン24は、ドローンセンサ群60と、通信部62と、飛行機構64と、撮影機構66と、散布機構68と、ドローン制御部70と、電源部72とを有する。
(A-1-4-2.ドローンセンサ群60)
ドローンセンサ群60は、グローバル・ポジショニング・システム・センサ(以下「GPSセンサ」という。)、ジャイロセンサ、液量センサ(いずれも図示せず)、速度計80、高度計82等を有する。GPSセンサは、ドローン24の現在位置情報を出力する。ジャイロセンサは、ドローン24の角速度を検出する。液量センサは、散布機構68のタンク180(図4)内の液量を検出する。速度計80は、ドローン24の飛行速度Vfを検出する。
高度計82は、ドローン24下方に位置する対象(以下「下方対象Tlow」という。)に対する距離(いわゆる対地高度)を検出する。下方対象Tlowには、地面520(図1)、作物502等が含まれる。本実施形態の高度計82は、TOFセンサ100及び超音波センサ102を含む。TOFセンサ100は、レーザを用いるタイム・オブ・フライト(Time-of-Flight)式で距離を検出する光センサである。TOFセンサ100は、ドローン24の下方を向いており、地面520(図1)、作物502等の下方対象Tlowまでの距離(以下「第1距離D1」又は「検出値D1」ともいう。)を検出する。TOFセンサ100は、検出精度を高めるために受光量のダイナミックレンジを可変とする。
超音波センサ102は、超音波を用いて距離を検出するセンサである。超音波センサ102は、ドローン24の下方を向いており、地面520、作物502等の下方対象Tlowまでの距離(以下「第2距離D2」又は「検出値D2」ともいう。)を検出する。TOFセンサ100による光の照射方向と、超音波センサ102による超音波の照射方向は、両センサの測定領域において、TOFセンサ100による光の照射範囲と、超音波センサ102による超音波の照射範囲の少なくとも一部が重なるように設定される。例えば、TOFセンサ100による光の照射方向と、超音波センサ102による超音波の照射方向は、略同一(照射方向における中心軸が略並行)である。
図5に示すように、TOFセンサ100及び超音波センサ102は、ドローン24の本体50を構成する底面部52に設けられる。より具体的には、TOFセンサ100及び超音波センサ102は、底面部52の前側においてカメラ160(後述)の左右に配置される。換言すると、TOFセンサ100及び超音波センサ102は、ドローン24の横方向に並んで配置される。TOFセンサ100及び超音波センサ102は、ノズル186l1、186l2、186r1、186r2よりも上方且つ前側に配置される(図3及び図4参照)。
(A-1-4-3.通信部62)
通信部62(図2)は、通信ネットワーク30(図1)を介しての電波通信が可能であり、例えば、電波通信モジュールを含む。通信部62は、通信ネットワーク30(無線基地局32を含む。)を介することで、圃場センサ群20、診断サーバ22、ユーザ端末26等との通信が可能である。通信部62を構成する電波通信モジュールは、制御基板110(図5)内に配置される。
(A-1-4-4.飛行機構64)
飛行機構64は、ドローン24を飛行させる機構である。図3及び図4に示すように、飛行機構64は、複数のプロペラ130flu、130fll、130fru、130frl、130rlu、130rll、130rru、130rrl(以下「プロペラ130」と総称する。)と、複数のプロペラアクチュエータ132flu、132fll、132fru、132frl、132rlu、132rll、132rru、132rrl(以下「プロペラアクチュエータ132」と総称する。)と、プロペラガード134fl、134fr、134rl、134rr(以下「プロペラガード134」と総称する。)とを有する。
また、飛行機構64は、複数のインバータ136(図5)を有する。図3~図6の矢印Aは、ドローン24の進行方向を示している。図3に示すように、本実施形態のプロペラ130は、いわゆる二重反転式であり、2つのプロペラ130(例えば、プロペラ130flu、130fll)を同軸に配置し、上下のプロペラ130を相互に逆方向回転させる。本実施形態では、二重反転式のプロペラ130の組が4つある。
図3及び図4に示すように、各プロペラ130は、ドローン24の本体50から延び出たアーム138u、138l、140ru、140rl、140ru、140rlにより本体50の四方に配置されている。すなわち、左前方にプロペラ132flu、132fllが、右前方にプロペラ132fru、132frlが、左後方にプロペラ132rlu、132rllが、右後方にプロペラ132rru、132rrlがそれぞれ配置されている。プロペラ130の回転軸から下方には、それぞれ棒状の足142fl、142fr、142rl、142rr(以下「足142」と総称する。)が延在する。
プロペラアクチュエータ132は、プロペラ130を回転させる手段であり、プロペラ130毎に設けられる。本実施形態のプロペラアクチュエータ132は、電動モータであるが、発動機等であってもよい。1組の上下のプロペラ130(例えば、プロペラ130flu、130fll)及びそれらに対応するプロペラアクチュエータ132(例えば、プロペラアクチュエータ132flu、132fll)は同軸上にある。1組の上下のプロペラアクチュエータ132は、互いに反対方向に回転する。
インバータ136は、電源部72からの直流を交流に変換してプロペラアクチュエータ132に供給するものであり、いわゆるESC(Electric Speed Controller)である。インバータ136は、プロペラアクチュエータ132毎に8つ設けられている。図5に示すように、インバータ136は、ドローン24の本体50を構成する底面部52に設けられる。インバータ136は、制御基板110の左右において前後方向に並んで配置される。
(A-1-4-5.撮影機構66)
撮影機構66(図2)は、圃場500又は作物502の画像を撮影する機構であり、カメラ160(図2、図4~図6)を有する。本実施形態のカメラ160は、マルチスペクトルカメラであり、特に作物502の生育状況を分析できる画像を取得する。撮影機構66は、圃場500に対して特定の波長の光線を照射する照射部をさらに備え、当該光線に対する圃場500からの反射光を受光可能になっていてもよい。特定の波長の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)であってもよい。当該光線の反射光を分析することで、作物502の窒素吸収量を推定し、推定した窒素吸収量に基づいて作物502の生育状況を分析することができる。
図5に示すように、カメラ160は、ドローン24の本体50を構成する底面部52に設けられる。より具体的には、カメラ160は、底面部52の前側においてTOFセンサ100と超音波センサ102の間に配置される。カメラ160は、下向きに配置されており、地面520、作物502等の下方対象Tlowを撮像する。
カメラ160は、ドローン24の周辺を撮影した周辺画像に関する画像データを出力する。カメラ160は、動画を撮影するビデオカメラである。或いは、カメラ160は、動画及び静止画の両方又は静止画のみを撮影可能としてもよい。
カメラ160は、図示しないカメラアクチュエータにより向き(ドローン24の本体50に対するカメラ160の姿勢)を調整可能である。或いは、カメラ160は、ドローン24の本体50に対する位置が固定されてもよい。
(A-1-4-6.散布機構68)
散布機構68(図2)は、薬剤(液体肥料を含む。)を散布する機構である。図4等に示すように、散布機構68は、タンク180、ポンプ182、配管184、流量調整弁(図示せず)及び薬剤ノズル186l1、186l2、186r1、186r2(以下「ノズル186」と総称する。)を有する。
タンク180は、散布される薬剤(散布物)を保管する。ポンプ182は、タンク180内の薬剤を配管184に押し出す。配管184は、タンク180と各ノズル186とを接続する。配管184は、硬質の素材から成り、ノズル186を支持する役割を兼ねていてもよい。
各ノズル186は、薬剤を下方に向けて散布するための手段(吐出口)である。ノズル186を設ける代わりに、配管184に1つ又は複数の貫通孔を設けることで吐出口を形成してもよい。
(A-1-4-7.ドローン制御部70)
ドローン制御部70(図2)は、ドローン24の飛行、撮影、薬剤の散布等、ドローン24全体を制御する。図2に示すように、ドローン制御部70は、入出力部190、演算部192及び記憶部194を含む。入出力部190、演算部192及び記憶部194は、制御基板110(図5)に配置される。図5に示すように、制御基板110は、本体50を構成する底面部52上において、底面部52の中央付近に配置される。
入出力部190は、ドローン24の各部との信号の入出力を行う。演算部192は、中央演算装置(CPU)を含み、記憶部194に記憶されているプログラムを実行することにより動作する。演算部192が実行する機能の一部は、ロジックIC(Integrated Circuit)を用いて実現することもできる。演算部192は、前記プログラムの一部をハードウェア(回路部品)で構成することもできる。前述した診断サーバ22の演算部、後述するユーザ端末26の演算部等も同様である。
図2に示すように、演算部192は、飛行制御部200、撮影制御部202及び散布制御部204を有する。飛行制御部200は、飛行機構64を介してドローン24の飛行を制御する。また、飛行制御部200は、ドローン24の対地高度(以下「高度H」ともいう。)に関連する高度関連制御の一部を実行する。撮影制御部202は、撮影機構66を介してドローン24による撮影を制御する。撮影制御部202も高度関連制御の一部を実行する。散布制御部204は、散布機構68を介してドローン24による薬剤散布を制御する。
記憶部194は、演算部192が用いるプログラム及びデータを記憶するものであり、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、ハードディスク、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶部194は、RAMに加え、リード・オンリー・メモリ(ROM)を有してもよい。前述した診断サーバ22の記憶部、後述するユーザ端末26の記憶部等も同様である。
(A-1-4-8.電源部72)
電源部72は、ドローン24の各部に電力を供給する。電源部72は、電源210(図6)と、電源回路212(図5及び図6)とを有する。電源210は、例えば、リチウムイオン電池等の二次電池からなる。電源回路212は、コンバータ等を含み、電源210からの電力をドローン24の各部に振り分ける。
図5及び図6に示すように、電源回路212は、ドローン24の本体50を構成する底面部52の後ろ側に設けられる。また、図6に示すように、電源210は、電源回路212の上方に配置される。本体50は、取り外し可能なカバー214を有している。電源210は、カバー214を取り外した状態で着脱又は交換することが可能である。
[A-1-5.ユーザ端末26]
ユーザ端末26(図1)は、圃場500において、操作者としてのユーザ600(図1)の操作によりドローン24を制御すると共に、ドローン24から受信した情報(例えば、位置、薬剤量、電池残量、カメラ映像等)を表示する携帯情報端末である。なお、本実施形態では、ドローン24の飛行状態(高度、姿勢等)は、ユーザ端末26が遠隔制御するのではなく、ドローン24が自律的に制御する。従って、ユーザ端末26を介してユーザ600からドローン24に飛行指令が送信されると、ドローン24は自律飛行を行う。但し、離陸や帰還等の基本操作時、及び緊急時にはマニュアル操作が行なえるようになっていてもよい。ユーザ端末26は、図示しない入出力部(タッチパネル等を含む。)、通信部、演算部及び記憶部を備え、例えば、一般的なタブレット端末により構成される。
また、本実施形態のユーザ端末26は、生育診断サーバ22からの作業指示等を受信して表示する。ドローン24のコントローラとしてのユーザ端末26に加えて、操作者(ユーザ600)以外の別ユーザが用いる別のユーザ端末を設けてもよい。当該別のユーザ端末は、ドローン24の飛行情報(現在の飛行状況、飛行終了予定時刻等)、ユーザ602に対する作業指示、生育診断の情報等を、診断サーバ22又はドローン24から受信して表示する携帯情報端末とすることができる。或いは、当該別のユーザ端末は、圃場500以外の場所(例えば、ユーザ600が所属する会社)において、生育診断サーバ22による生育診断を利用するためにユーザ600等が用いる端末であってもよい。
<A-2.本実施形態の制御>
[A-2-1.概要]
本実施形態の診断サーバ22では、生育診断制御及び飛行管理制御が行われる。生育診断制御は、生育診断モデルを用いた生育診断を行う制御である。ここに言う生育診断には、例えば、圃場500毎の収量の推定値(推定収量)が含まれる。また、生育診断制御では、水田としての圃場500の水管理、施肥、薬剤散布等に関する作業指示も行われる。作業指示は、例えば、ユーザ端末26の表示部等に表示される。生育診断モデルでは、作物502(水稲)の収量、赤色光吸収率、籾数、有効受光面積率、籾内の蓄積デンプン量及び籾内のタンパク質含有率を算出することができる。
飛行管理制御は、ドローン24の飛行を管理する制御である。飛行管理制御では、生育診断制御での作業指示等に基づいて、ドローン24の飛行タイミング、飛行経路、目標速度、目標高度、撮影機構66の撮影方法、散布機構68の散布方法等が設定される。
本実施形態のドローン10では、飛行制御、撮影制御及び薬液散布制御が行われる。飛行制御は、撮影、薬剤散布等のため圃場500においてドローン24を飛行させる制御である。飛行制御では、飛行制御部200が、診断サーバ22からの指令に基づいて飛行機構64を制御する。本実施形態では、飛行制御の一部としての高度関連制御が実行される。高度関連制御の詳細については、図7を参照して後述する。
撮影制御は、ドローン24のカメラ160により圃場500(又は作物502)の画像を取得し、診断サーバ22に送信する制御である。撮影制御では、撮影制御部202が、診断サーバ22からの指令に基づいて撮影機構66を制御する。診断サーバ22に送信された圃場画像は、画像処理されて生育診断に用いられる。薬剤散布制御は、ドローン24を用いて薬液(液体肥料を含む。)を散布する制御である。薬剤散布制御では、散布制御部204が、診断サーバ22からの指令に基づいて散布機構68を制御する。
[A-2-2.高度関連制御]
(A-2-2-1.概要)
上記のように、高度関連制御は、ドローン24の高度Hに関連する制御であり、飛行制御の一部である。上記のように、本実施形態では、ドローン24の高度Hを検出するセンサとして、TOFセンサ100と超音波センサ102を有する(図2、図4及び図5)。本実施形態の高度関連制御において、ドローン制御部70は、ドローン24の飛行制御で用いる高度H(以下「制御用高度Hc」又は「検出高度Hc」ともいう。)をTOFセンサ100と超音波センサ102の検出値(第1距離D1、第2距離D2)に基づいて設定する。本実施形態では、基本的にTOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして用いる。また、特殊な状況では、超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして用いる。さらに、ドローン制御部70は、特殊な状況ではドローン24の飛行速度Vfを低下させる。検出高度Hcは、目標高度と比較されて、ドローン24の高度制御に用いられる。
(A-2-2-2.具体的な流れ)
図7は、本実施形態の高度関連制御のフローチャートである。本実施形態の高度関連制御は、基本的に、ドローン24のドローン制御部70(図2)が実行する。図7に示す高度関連制御の一部は、飛行制御における他の制御と重複し得ることに留意されたい。
ステップS11において、ドローン制御部70(撮影制御部202)は、カメラ160の下方画像Ilow(地面520等の画像)を取得する。ステップS12において、ドローン制御部70(撮影制御部202)は、下方画像Ilowを画像処理して下方対象Tlow(地面520等)の状態(下方状態Slow)を判定する。ここでの下方状態Slowには、例えば、下方対象Tlowが鏡面又は白色である状態、下方対象Tlowに日陰から日向への境界が存在し、TOFセンサ100の測定位置が境界を跨ぐ状態が含まれる。
下方対象Tlowが鏡面又は白色であるか否かの判定は、例えば、カメラ160の受光素子の受光量が飽和している領域のパターン判定により行う。同様に、日陰から日向への境界の判定は、例えば、カメラ160の受光素子の受光量が飽和している領域のパターン判定により行う。判定された下方状態Slowは、撮影制御部202から飛行制御部200に通知される。
ステップS13において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出精度が低下する状態(TOFセンサ精度低下状態)でないか否かを、下方状態Slowに基づいて判定する。TOFセンサ精度低下状態としては、下方対象Tlowが鏡面又は白色である状態、及びドローン24が日陰から日向への境界を跨ぐ状態が含まれる。それら以外の場合、TOFセンサ精度低下状態ではないと判定される。TOFセンサ精度低下状態でない場合(S13:真)、ドローン制御部70は、通常時であると判定して、ステップS14に進む。
ステップS14において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして設定する。
TOFセンサ精度低下状態である場合(S13:偽)、ステップS15に進む。ステップS15において、ドローン制御部70(飛行制御部200)は、成立したTOFセンサ精度低下状態が、日陰から日向への境界を跨ぐ状態であるか否か(換言すると、ドローン24が当該境界を通過中であるか否か)を判定する。日陰から日向への境界を通過中である場合(S15:真)、ステップS16に進む。
ステップS16において、ドローン制御部70(飛行制御部200)は、ドローン24の飛行速度Vfを所定値(境界飛行速度THvf)まで低下させる飛行速度低下制御を実行する。上記のように、本実施形態のTOFセンサ100は、検出精度を高めるために受光量のダイナミックレンジを可変とする。そのため、日陰から日向への境界を測定位置が跨ぐ場合、急激な受光量の増加によりダイナミックレンジが一時的に飽和し、その後、ダイナミックレンジの調整により、日向でも高精度な測定が可能となる。
そこで、本実施形態では、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ手前で、ドローン24の飛行速度Vfを境界飛行速度THvfまで低下させる。これにより、TOFセンサ100の受光量が飽和している状態でドローン24が進む距離を短くすることができる。従って、TOFセンサ100の適用範囲を広げることが可能となる。飛行速度Vfが境界飛行速度THvfまで低下した後は、飛行速度Vfを境界飛行速度THvfで維持する。
ステップS17において、ドローン制御部70(飛行制御部200)は、超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして設定する。ステップS18、S19は、ステップS11、S12と同様である。
ステップS20において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の測定位置が、日陰から日向への境界の通過を終了したか否かを判定する。当該判定は、TOFセンサ100の測定位置が日陰から日向への境界線を通過した後、当該境界線から所定距離離れたか否かを下方画像Ilowに基づいて判定することで行う。或いは、TOFセンサ100の測定位置が日陰から日向への境界線を通過したと下方画像Ilowに基づいて判定した後、TOFセンサ100の検出値D1と超音波センサ102の検出値D2とを比較することで行う。より具体的には、TOFセンサ100の測定位置が日陰から日向への境界線を通過したと下方画像Ilowに基づいて判定した後、検出値D1、D2の差分の絶対値又は差分の割合が所定の閾値以下となったか否かに基づいて行う。
測定位置が同境界の通過を終了していない場合(S20:偽)、ステップS16に戻る。測定位置が同境界の通過を終了した場合(S20:真)、ステップS21に進む。ステップS21において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして設定する。
ステップS15に戻り、成立したTOFセンサ精度低下状態が、日陰から日向への境界を通過中であること以外である場合(S15:偽)、成立したTOFセンサ精度低下状態は、下方対象Tlowが鏡面又は白色である状態である。その場合、ステップS22に進む。ステップS22において、ドローン制御部70(飛行制御部200)は、超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして設定する。
ステップS14、S21、S22の後は、ステップS11に戻る。
<A-3.本実施形態の効果>
本実施形態によれば、TOFセンサ100(光センサ)が検出した下方対象Tlow(地面520等)までの第1距離D1と超音波センサ102が検出した下方対象Tlowまでの第2距離D2の一方を選択して設定した制御用高度Hcを用いてドローン24の飛行制御を行う(図7)。これにより、TOFセンサ100及び超音波センサ102の長所及び短所を踏まえてドローン24を飛行させることが可能になる。例えば、TOFセンサ100は、超音波センサ102が苦手な土壌でも検出精度が低下しない。また、超音波センサ102は、TOFセンサ100が苦手とする鏡面物体、白色物体等でも検出精度が低下しない。従って、ドローン24全体として、地面520等の下方対象Tlowの変化に対する頑健さを向上することが可能となる。
本実施形態において、光センサとしてTOFセンサ100を用いる(図2等)。他の種類の光センサ(位相差検出方式、三角測距方式等)と比較して、TOFセンサ100は重量が軽いことが多く、TOFセンサ100を用いることでドローン24の軽量化を図ることが可能となる。
本実施形態において、TOFセンサ100(光センサ)と超音波センサ102は、ドローン24の横方向に並んで配置される(図4、図5)。また、TOFセンサ100による光の照射方向と、超音波センサ102による超音波の照射方向は、両センサの測定領域において、TOFセンサ100による光の照射範囲と、超音波センサ102による超音波の照射範囲の少なくとも一部が重なるように設定される。ドローン24は進行方向(図3等の矢印A)に向かって前傾姿勢で前進する場合がある。TOFセンサ100と超音波センサ102がドローン24の横方向に配置されていれば、そのような前傾姿勢の場合であっても、両センサの検出値(第1距離D1及び第2距離D2)には互いのずれが生じ難くなる。そのため、TOFセンサ100による第1距離D1と超音波センサ102による第2距離D2との乖離を抑制することが可能となる。
本実施形態において、ドローン24は、散布物を保管するタンク180と、散布物を散布するノズル186(吐出口)とを備える(図3及び図4)。また、TOFセンサ100(光センサ)及び超音波センサ102は、ノズル186よりも上方に配置される(図3及び図4)。さらに、TOFセンサ100及び超音波センサ102は、ノズル186よりも前側に配置される(図3及び図4)。これらにより、ノズル186から散布される散布物による、TOFセンサ100又は超音波センサ102の測定に対する影響を抑制することが可能となる。
本実施形態において、ドローン24は、下方対象Tlowを撮像するカメラ160(図2、図4~図6)と、カメラ160の画像に基づいて、下方対象Tlowの状態(下方状態Slow)を判定する撮影制御部202(下方状態判定部。図2)とを備える。飛行制御部200は、光センサ精度低下状態ではない通常時(図7のS13:真)には、TOFセンサ100(光センサ)が検出した第1距離D1を選択して制御用高度Hcを設定する(S14)。また、飛行制御部200は、光センサ精度低下状態の場合(S13:偽)には、超音波センサ102が検出した第2距離D2を選択して制御用高度Hcを設定する(S17、S22)。
これにより、通常時にはTOFセンサ100の方が超音波センサ102よりも検出精度が高い場合において、TOFセンサ100の検出精度が低下する場面では超音波センサ102を優先して用いることで、ドローン24の飛行を高精度に制御することが可能となる。
本実施形態において、光センサ精度低下状態は、下方対象Tlowに日陰から日向への境界が存在し、TOFセンサ100(光センサ)の測定位置が境界を跨ぐ状態を含む(図7のS13、S15)。飛行制御部200は、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ手前で、ドローン24の飛行速度Vfを低下させる(S16)。
TOFセンサ100は、検出精度を高めるために受光量のダイナミックレンジを可変とする。そのため、日陰から日向への境界を測定位置が跨ぐ場合、急激な受光量の増加により測定レンジが一時的に飽和し、その後、ダイナミックレンジの調整により、日向でも高精度な測定が可能となる。本実施形態では、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ手前で、ドローン24の飛行速度Vfを低下させる。これにより、TOFセンサ100の受光量が飽和している状態でドローン24が進む距離を短くすることができる。従って、TOFセンサ100の適用範囲を広げることが可能となり、地面520等の下方対象Tlowの変化に対する頑健さを向上可能となる。
また、超音波は、光よりも大幅に低速であり、ドローン24の移動に伴うドップラー効果の影響が大きい。そのため、超音波センサ102の検出値(第2距離D2)を利用する際にはTOFセンサ100の検出値(第1距離D1)を利用する場合よりも、飛行速度Vfを低下させることでドップラー効果による検出精度の低下を抑制することが可能となる。
B.変形例
なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
<B-1.構成>
上記実施形態の作物育成システム10は、図1に示すような構成要素を有していた。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、作物育成システム10は、ドローン24と、ユーザ端末26のみを有するものとしてもよい。その場合、ユーザ端末26によりドローン24の飛行を制御してもよい。
上記実施形態において、ドローン24は、作物502の撮像及び薬液の散布を行った(図1)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、ドローン24は、作物502の撮像及び薬液の散布の一方のみを行うものであってもよい。或いは、ドローン24は、その他の用途(例えば、生育診断以外の空撮)で用いるものであってもよい。
上記実施形態では、光センサとしてTOFセンサ100を用いた。しかしながら、例えば、光センサと超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、TOFセンサ100の代わりに、他の種類の光センサ(位相差検出方式、三角測距方式等)を用いてもよい。
上記実施形態では、TOFセンサ100と超音波センサ102をドローン24の横方向に並べて配置した(図4、図5)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、TOFセンサ100と超音波センサ102をドローン24の前後方向に並べて配置してもよい。
上記実施形態では、TOFセンサ100と超音波センサ102をドローン24の本体50内に配置した(図5及び図6)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、TOFセンサ100と超音波センサ102をドローン24の本体50の外側に配置してもよい。
図8は、変形例に係るドローン24の本体50の内部構成及びその周辺の配置を簡略的に示す側面図である。図8の例では、ドローン24は、本体50から下方に突出してTOFセンサ100、超音波センサ102及びカメラ160を支持する支持部材220を有する。これにより、ドローン24の本体50内に発熱源(制御基板110、インバータ136、電源210等)が存在する場合でも、TOFセンサ100、超音波センサ102及びカメラ160を発熱源から遠ざけて配置することができる。従って、発熱源からの熱によりTOFセンサ100、超音波センサ102及びカメラ160が影響を受けることを抑制することが可能となる。
上記実施形態において、ドローン24が散布する散布物は、液体としての薬剤であった。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、散布物は、薬剤以外のもの(水等)であってもよく、また、気体又は固体(粉体を含む。)であってもよい。
<B-2.制御>
上記実施形態では、下方対象Tlowの状態(下方状態Slow)の判定は、リアルタイムでのカメラ160の下方画像Ilowに基づいて行った(図7のS12、S19)。しかしながら、例えば、下方状態Slowを判定する観点からすれば、これに限らない。例えば、位置座標と下方状態Slowとを予め関連付けて記憶しておき、ドローン24飛行中の位置座標と前記記憶情報とに基づいて下方状態Slowを判定してもよい。或いは、TOFセンサ100、超音波センサ102及びカメラ160以外の手段(例えば、衛星写真とドローン24の位置座標)を用いて下方状態Slowを判定してもよい。
上記実施形態では、TOFセンサ精度低下状態として、下方対象Tlowが鏡面又は白色である状態、及びドローン24が日陰から日向への境界を跨ぐ状態を用いた(図7のS13、S15)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、ドローン24が日向から日陰への境界を跨ぐ状態を用いてもよい。この場合、TOFセンサ100におけるダイナミックレンジの飽和は起こらないが、利用するレンジが狭くなるため、検出精度が低下し得る。そこで、超音波センサ102への切替え及び/又は飛行速度Vfの低下により、下方対象Tlowの変化に対する頑健性を向上することが可能となる。
上記実施形態では、通常時(TOFセンサ精度低下状態以外の場合)にTOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして用い、TOFセンサ精度低下状態の場合に超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして用いた(図7)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らない。例えば、第1距離D1と第2距離D2を組み合わせて制御用高度Hcを算出する構成において、下方対象Tlowの状態(下方状態Slow)に応じて第1距離D1と第2距離D2の重み付け(比率)を変化させてもよい。例えば、通常時は、第1距離D1×0.9+第2距離D2×0.1を制御用高度Hcとし、TOFセンサ精度低下状態の場合、第1距離D1×0.3+第2距離D2×0.7を制御用高度Hcとしてもよい。
或いは、カメラ160の下方画像Ilowを用いずに、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いてもよい。例えば、通常時は、TOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして用い、TOFセンサ100に異常が発生した場合に、超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして用いてもよい。
上記実施形態では、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ際(図7のS15:真)、ドローン24の飛行速度Vfを低下させた(S16)。しかしながら、例えば、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いる観点からすれば、これに限らず、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ際でも飛行速度Vfを維持してもよい。
<B-3.その他>
上記実施形態では、通常時(TOFセンサ精度低下状態でない場合)にTOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして用い、TOFセンサ精度低下状態である場合に超音波センサ102の検出値(第2距離D2)を制御用高度Hcとして用いた(図7)。換言すると、TOFセンサ100と超音波センサ102の検出値D1、D2を制御用高度Hcとして選択的に用いた。しかしながら、TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ際、ドローン24の飛行速度Vfを低下させる観点からすれば、超音波センサ102を用いずにTOFセンサ100の検出値(第1距離D1)のみを制御用高度Hcとして用いることも可能である。
図9は、変形例に係る高度関連制御のフローチャートである。図9の高度関連制御では、超音波センサ102を用いずにTOFセンサ100の検出値(第1距離D1)のみを制御用高度Hcとして用いる。
図9のステップS31、S32は、図7のS11、S12と同様である。ステップS33において、ドローン制御部70(飛行制御部200)は、下方状態Slowが通常であるか否か(TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ場合以外であるか否か)を判定する。下方状態Slowが通常である場合(通常時である場合)(S33:真)、ステップS34に進む。ステップS34において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値D1を制御用高度Hcとして設定する。TOFセンサ100の測定位置が日陰から日向への境界を跨ぐ場合(S33:偽)、ステップS35に進む。
ステップS35は、図7のステップS16と同様である。続くステップS37において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値D1を制御用高度Hcとして設定する。すなわち、ドローン制御部70(飛行制御部200)は、検出値D1を制御用高度Hcとして利用し続ける。ステップS37、S38、S39は、図7のステップS18、S19、S20と同様である。
TOFセンサ100の測定位置が、日陰から日向への境界の通過を終了していない場合(S39:偽)、ステップS35に戻る。測定位置が同境界の通過を終了した場合(S39:真)、ステップS40に進む。ステップS40において、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値D1を制御用高度Hcとして設定する。
以上のように、図9の高度関連制御では、ドローン制御部70(飛行制御部200)は、TOFセンサ100の検出値(第1距離D1)を制御用高度Hcとして利用し続ける。なお、図9の制御を、ドローン24の飛行速度Vfの制御と捉える場合、制御用高度Hcの処理(S34、S36、S40)は、別の制御として位置付けてもよい。また、図9の制御では、日陰から日向への境界の通過時のみを光センサ精度低下状態として用いたが(S13)、上記のように、日向から日陰への境界の通過時を光センサ精度低下状態に含めてもよい。
上記実施形態の高度関連制御では図7に示すフローを用い、上記変形例の高度関連制御では図9に示すフローを用いた。しかしながら、例えば、本発明の効果を得られる場合、フローの内容(各ステップの順番)は、これに限らない。例えば、図4のステップS16とS17の順番を入れ替えることが可能である。
24…ドローン 100…TOFセンサ(光センサ)
102…超音波センサ 160…カメラ
180…タンク
186l1、186l2、186r1、186r2…ノズル(吐出口)
200…飛行制御部
202…撮影制御部(下方状態判定部)
220…支持部材 D1…第1距離
D2…第2距離 Hc…制御用高度
Tlow…下方対象 Vf…飛行速度

Claims (13)

  1. 下方対象までの第1距離を検出する光センサと
    前記下方対象までの第2距離を検出する超音波センサと、
    前記下方対象を撮像するカメラと
    を備えるドローンであって、
    前記ドローンは、
    前記カメラの画像に基づいて、前記下方対象の状態を判定する下方状態判定部と、
    前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行う飛行制御部と
    をさらに有し、
    前記飛行制御部は、
    前記下方状態判定部が判定した前記下方対象の状態が、前記光センサの検出精度が低下する光センサ精度低下状態でない場合、前記光センサが検出した前記第1距離を選択して又は前記超音波センサが検出した前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定し、
    前記下方対象の状態が前記光センサ精度低下状態である場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定すると共に、前記ドローンの飛行速度を低下させて移動を継続させ
    ことを特徴とするドローン。
  2. 下方対象までの第1距離を検出する光センサと
    前記下方対象までの第2距離を検出する超音波センサと
    前記下方対象を撮像するカメラと
    を備えるドローンであって、
    前記ドローンは、
    前記カメラの画像に基づいて、前記下方対象の状態を判定する下方状態判定部と、
    前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行う飛行制御部
    をさらに有し、
    前記飛行制御部は、
    前記下方状態判定部が判定した前記下方対象の状態が、前記光センサの検出精度が低下する光センサ精度低下状態でない場合、前記光センサが検出した前記第1距離を選択して又は前記超音波センサが検出した前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定し、
    前記下方対象の状態が前記光センサ精度低下状態である場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定し、
    前記光センサは、受光量のダイナミックレンジが可変であり、
    前記光センサ精度低下状態は、前記受光量のダイナミックレンジが一時的に飽和する状態を含み、
    さらに、前記飛行制御部は、
    前記下方対象の状態が、前記受光量のダイナミックレンジが一時的に飽和する状態になった場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定し、
    前記受光量のダイナミックレンジの調整により一時的な飽和が収まった場合、前記第1距離を選択して又は前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定する
    ことを特徴とするドローン。
  3. 請求項1又は2に記載のドローンにおいて、
    前記光センサは、タイム・オブ・フライト式のセンサである
    ことを特徴とするドローン。
  4. 請求項1~3のいずれか1項に記載のドローンにおいて、
    前記光センサと前記超音波センサは、前記ドローンの横方向に並んで配置され、
    前記光センサによる光の照射方向と、前記超音波センサによる超音波の照射方向は、前記光センサによる前記光の照射範囲と、前記超音波センサによる前記超音波の照射範囲の少なくとも一部が重なるように設定される
    ことを特徴とするドローン。
  5. 請求項1~4のいずれか1項に記載のドローンにおいて、
    前記ドローンの本体から下方に突出して前記光センサ及び前記超音波センサを支持する支持部材を有する
    ことを特徴とするドローン。
  6. 請求項1~5のいずれか1項に記載のドローンにおいて、
    前記ドローンは、
    散布物を保管するタンクと、
    前記散布物を散布する吐出口と
    を備え、
    前記光センサ及び前記超音波センサは、前記吐出口よりも上方に配置される
    ことを特徴とするドローン。
  7. 請求項6に記載のドローンにおいて、
    前記光センサ及び前記超音波センサは、前記吐出口よりも上方及び前側に配置される
    ことを特徴とするドローン。
  8. 請求項1~5のいずれか1項に記載のドローンにおいて、
    前記ドローンは、
    散布物を保管するタンクと、
    前記散布物を散布する吐出口と
    を備え、
    前記光センサ及び前記超音波センサは、前記吐出口よりも前側に配置される
    ことを特徴とするドローン。
  9. 請求項1又はに記載のドローンにおいて、
    前記光センサ精度低下状態は、前記下方対象が鏡面若しくは白色である状態、又は前記下方対象に日陰と日向の境界が存在し、前記光センサの測定位置が前記境界を跨ぐ状態が含まれる
    ことを特徴とするドローン。
  10. 下方対象までの第1距離を検出する光センサと、
    前記下方対象までの第2距離を検出する超音波センサと、
    前記下方対象を撮像するカメラと
    を備えるドローンであって、
    前記ドローンは、
    前記カメラの画像に基づいて、前記下方対象の状態を判定する下方状態判定部と、
    前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行う飛行制御部と
    をさらに有し、
    前記飛行制御部は、
    前記下方状態判定部が判定した前記下方対象の状態が、前記光センサの検出精度が低下する光センサ精度低下状態でない場合、前記光センサが検出した前記第1距離を選択して又は前記超音波センサが検出した前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定し、
    前記下方対象の状態が前記光センサ精度低下状態である場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定し、
    前記光センサ精度低下状態は、前記下方対象に日陰と日向の境界が存在し、前記光センサの測定位置が前記境界を跨ぐ状態であり、
    前記飛行制御部は、前記光センサの測定位置が前記日陰と日向の境界を跨ぐ手前で、前記ドローンの飛行速度を低下させる
    ことを特徴とするドローン。
  11. 下方対象までの第1距離を検出する光センサと、
    前記第1距離を制御用高度として用いてドローンの飛行制御を行う飛行制御部と、
    前記下方対象の表面状態を判定する下方状態判定部と
    を備えるドローンであって、
    前記下方状態判定部が判定した前記下方対象の表面状態が、前記光センサの検出精度が低下する光センサ精度低下状態である場合、前記飛行制御部は、前記ドローンの飛行速度を低下させて移動を継続させ
    ことを特徴とするドローン。
  12. 下方対象までの第1距離を検出する光センサと
    前記下方対象までの第2距離を検出する超音波センサと
    前記下方対象を撮像するカメラと
    を備えるドローンの制御方法であって、
    下方状態判定部が、前記下方対象を撮像するカメラの画像に基づいて、前記下方対象の状態を判定し、
    飛行制御部が、前記第1距離及び前記第2距離の一方を選択して又は両方を組み合わせて設定した制御用高度を用いて前記ドローンの飛行制御を行い、
    前記飛行制御部は、
    前記下方状態判定部が判定した前記下方対象の状態が、前記光センサの検出精度が低下する光センサ精度低下状態でない場合、前記光センサが検出した前記第1距離を選択して又は前記超音波センサが検出した前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定し、
    前記下方対象の状態が前記光センサ精度低下状態である場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定し、
    前記光センサは、受光量のダイナミックレンジが可変であり、
    前記光センサ精度低下状態は、前記受光量のダイナミックレンジが一時的に飽和する状態を含み、
    さらに、前記飛行制御部は、
    前記下方対象の状態が、前記受光量のダイナミックレンジが一時的に飽和する状態になった場合、前記第2距離を選択して又は前記第1距離よりも前記第2距離の重み付けを大きくして前記制御用高度を設定し、
    前記受光量のダイナミックレンジの調整により一時的な飽和が収まった場合、前記第1距離を選択して又は前記第2距離よりも前記第1距離の重み付けを大きくして前記制御用高度を設定する
    ことを特徴とするドローンの制御方法。
  13. 下方対象までの第1距離を検出する光センサと、
    前記第1距離を制御用高度として用いてドローンの飛行制御を行う飛行制御部と、
    前記下方対象の表面状態を判定する下方状態判定部と
    を備えるドローンの制御方法であって、
    前記下方状態判定部が判定した前記下方対象の表面状態が、前記光センサの検出精度が低下する光センサ精度低下状態である場合、前記飛行制御部は、前記ドローンの飛行速度を低下させて移動を継続させ
    ことを特徴とするドローンの制御方法。
JP2022501389A 2020-02-17 2020-02-17 ドローン及びドローンの制御方法 Active JP7369485B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005932 WO2021166008A1 (ja) 2020-02-17 2020-02-17 ドローン及びドローンの制御方法

Publications (2)

Publication Number Publication Date
JPWO2021166008A1 JPWO2021166008A1 (ja) 2021-08-26
JP7369485B2 true JP7369485B2 (ja) 2023-10-26

Family

ID=77391473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022501389A Active JP7369485B2 (ja) 2020-02-17 2020-02-17 ドローン及びドローンの制御方法

Country Status (2)

Country Link
JP (1) JP7369485B2 (ja)
WO (1) WO2021166008A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609278B (zh) * 2023-07-21 2023-10-17 华东交通大学 一种农田重金属光谱数据的采集方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529616A (ja) 2015-03-31 2017-10-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォームの制御方法およびシステム
WO2018189848A1 (ja) 2017-04-12 2018-10-18 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
WO2019168042A1 (ja) 2018-02-28 2019-09-06 株式会社ナイルワークス ドローン、その制御方法、および、プログラム
JP2019219778A (ja) 2018-06-18 2019-12-26 カシオ計算機株式会社 飛行装置、飛行方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101087A (ko) * 2016-02-26 2017-09-05 (주)스마트모션 복합센서를 이용한 드론 제어 장치 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529616A (ja) 2015-03-31 2017-10-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォームの制御方法およびシステム
WO2018189848A1 (ja) 2017-04-12 2018-10-18 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
WO2019168042A1 (ja) 2018-02-28 2019-09-06 株式会社ナイルワークス ドローン、その制御方法、および、プログラム
JP2019219778A (ja) 2018-06-18 2019-12-26 カシオ計算機株式会社 飛行装置、飛行方法及びプログラム

Also Published As

Publication number Publication date
JPWO2021166008A1 (ja) 2021-08-26
WO2021166008A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
US10189568B2 (en) Agricultural crop analysis drone
US11771076B2 (en) Flight control method, information processing device, program and recording medium
JP6621140B2 (ja) 無人飛行体による薬剤散布方法、および、プログラム
CN110525650B (zh) 无人机及其控制方法
JP2017206066A (ja) 薬液散布用無人航空機
JP2017015527A (ja) 広域センサシステム、飛行検出方法およびプログラム
JP6948917B2 (ja) 散布作業機
JP7176785B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP7369485B2 (ja) ドローン及びドローンの制御方法
JP7353630B2 (ja) ドローンの制御システム、ドローンの制御方法およびドローン
JP2019062793A (ja) コンバインの制御システム
JP2018043696A (ja) 空中散布装置
JP6887142B2 (ja) 圃場画像分析方法
WO2021152797A1 (ja) 農作物育成システム
JPWO2019058505A1 (ja) 航空機
US20230119310A1 (en) System and method for performing spraying operations with an agricultural applicator
JPWO2020085239A1 (ja) 運転経路生成装置、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JPWO2020022259A1 (ja) 圃場撮影用カメラ
WO2021255885A1 (ja) 散布システム、散布方法、およびドローン
WO2021166175A1 (ja) ドローンシステム、操作器および作業エリアの定義方法
JP7045122B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
JP7411259B2 (ja) 植物の病理診断システム、植物の病理診断方法、植物の病理診断装置、およびドローン
JP7011233B2 (ja) 散布システムおよび散布管理装置
CN110299030B (zh) 手持终端、飞行器及其空域测量方法、控制方法
WO2021152741A1 (ja) 農作物育成システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7369485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150