JP7367733B2 - 鋼素材の表面欠陥推定方法および装置、鋼素材の製造仕様決定支援方法および装置、ならびに鋼素材の製造方法 - Google Patents

鋼素材の表面欠陥推定方法および装置、鋼素材の製造仕様決定支援方法および装置、ならびに鋼素材の製造方法 Download PDF

Info

Publication number
JP7367733B2
JP7367733B2 JP2021100631A JP2021100631A JP7367733B2 JP 7367733 B2 JP7367733 B2 JP 7367733B2 JP 2021100631 A JP2021100631 A JP 2021100631A JP 2021100631 A JP2021100631 A JP 2021100631A JP 7367733 B2 JP7367733 B2 JP 7367733B2
Authority
JP
Japan
Prior art keywords
defect
steel
occurrence rate
defect occurrence
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100631A
Other languages
English (en)
Other versions
JP2022014435A (ja
Inventor
純平 丸山
典子 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022014435A publication Critical patent/JP2022014435A/ja
Application granted granted Critical
Publication of JP7367733B2 publication Critical patent/JP7367733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼の連続鋳造において、鋳型内の溶鋼の三次元での流動状態をオンラインで推定する方法を用いた鋼素材の表面欠陥を推定する技術に関する。
鋼の連続鋳造における鋳型内の溶鋼流動状態が起因となる鋼素材の表面欠陥の削減は,製品の品質を担保するうえでの大きな課題である。この表面欠陥は、溶鋼内の介在物が凝固シェルに捕捉されることによる介在物性欠陥と、溶鋼湯面で液化したパウダーを巻込むことにより発生するパウダー性欠陥に大別される。前者は洗浄流速と呼ばれるシェル近傍の溶鋼流速の低下によって引き起こされ、後者はメニスカス付近における溶鋼流速の増大、界面不安定性や渦の発生によって引き起こされると考えられている。
たとえば、特許文献1には、外乱によるノズル吐出流の偏流現象を考慮したリアルタイム流動解析を実施することで、鋳型内の溶鋼流動状態をオンラインで推定する技術が開示されている。また、特許文献2には、鋳型内の測温に基づいて溶鋼流速に影響される熱伝達係数を取得し、それを溶鋼流速の指標とし、その指標と鋳型内の凝固シェルの厚みの推定値とに基づいて、鋳片に欠陥が発生するか否かを判定する方法が開示されている。
特開2017-159363号公報 特開2020-69494号公報
しかしながら、上記従来の技術には、未だ解決すべき以下のような問題があった。
上記特許文献1に記載された技術では、推定された溶鋼の流動状態を基礎に表面欠陥の発生率を推定することが考えられるが、オンラインを前提とした流体解析での高精度な計算は不可能であり、実際に欠陥が発生する様子を詳細にシミュレートすることはできない。また、偏流場の流動状態と欠陥発生率に関する紐付や相関関係の解明はされていない。そのため、欠陥発生率を推定する際には流動状態と実際の表面欠陥の発生を比較した統計的方法に頼らざるを得ない。しかしながら、この方法では欠陥発生のメカニズムが考慮されていないことから、設備仕様を変更する度に溶鋼流動解析の計算結果と表面欠陥の発生の紐付けが必要となるため、膨大な欠陥データを収集し直さなくてはならない。
特許文献2の技術は、鋳型温度だけを用いて凝固シェル近傍の流速を推定するものであり、凝固シェルにトラップされる気泡や介在物性欠陥の評価しかできない問題がある。特許文献2の技術では、パウダーの巻き込み等によるパウダー性欠陥の発生を推定できない。また、欠陥の判定を後工程の欠陥除去工程に活用するのみであり、操業条件と欠陥の発生の関係を紐付けていないので、どのような操業をすれば、欠陥を低減できるかについては考慮されていない。
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、鋼の連続鋳造において、溶鋼流動が起因となる鋼素材の表面欠陥の発生をオンラインで推測することができる表面欠陥推定方法および装置を提供し、その方法を基に鋼素材の製造仕様決定支援方法および装置を提供し、ならびに鋼素材の製造方法を提案することにある。
発明者らは、上記課題を解決する手法について鋭意究明した。
上記課題を解決し、上記の目的を実現するため開発した本発明にかかる鋼素材の表面欠陥推定方法は、鋼の連続鋳造機の鋳型内の溶鋼流動状態を用いて鋼素材の欠陥発生を推定する方法であって、前記鋳型に設けられたセンサーから取得した温度を含むセンサーデータと、時系列的に得られる操業条件とを用いて所定時間内の鋳型内における三次元の溶鋼の流動状態をリアルタイムで推定する流動状態推定ステップと、前記推定された溶鋼の流動状態のデータの一部若しくは全部をそのまま、あるいは加工して欠陥発生率推定用データとする推定用データ取得ステップと、前記欠陥発生率推定用データとあらかじめ求められた欠陥推定モデルとを比較して欠陥発生率を推定する欠陥発生率推定ステップと、推定した欠陥発生率を出力するステップと、を有するものである。
上記課題を解決し、上記の目的を実現するため開発した本発明にかかる表面欠陥推定装置は、流動状態解析装置と、欠陥発生率推定装置とを備える鋼素材の表面欠陥推定装置であって、前記流動状態解析装置は、鋳型に設けられたセンサーから取得した温度を含むセンサーデータと、時系列的に得られる操業条件とを情報として取得する情報収集部と、収集した前記情報をもとに所定時間内の鋳型内における三次元の溶鋼の流動状態をリアルタイムで推定する溶鋼流動推定部と、前記推定された溶鋼の流動状態を、前記欠陥発生率推定装置に出力する第1出力部と、を有し、前記欠陥発生率推定装置は、入力された前記推定された溶鋼の流動状態を欠陥発生率推定用データに加工するデータ加工部と、前記欠陥発生率推定用データとあらかじめ求められた欠陥推定モデルとを比較して欠陥発生率を推定する欠陥発生率推定部と、推定した欠陥発生率を出力する第2出力部と、を有するものである。
また、本発明にかかる鋼素材の製造仕様決定支援方法は、上記鋼素材の表面欠陥推定方法によって推定した欠陥発生率を低減する鋼素材の製造仕様を探索するステップと、探索した鋼素材の製造仕様を出力するステップと、を含むものである。
また、本発明にかかる鋼素材の製造仕様決定支援装置は、上記鋼素材の表面欠陥推定装置を用いた、鋼素材の製造仕様決定支援装置であって、前記欠陥発生率推定部が、推定された欠陥発生率を低減する鋼素材の製造仕様を探索する機能を有し、前記第2出力部が、探索された鋼素材の製造仕様を出力する機能を有するものである。
また、本発明にかかる第一の鋼素材の製造方法は、上記鋼素材の表面欠陥推定方法によって出力した欠陥発生率に基づき鋼の連続鋳造にかかる操業条件を変更するステップを含むものである。また、本発明にかかる第二の鋼素材の製造方法は、上記鋼素材の製造仕様決定支援方法を用いて探索した鋼素材の製造仕様に基づき鋼の連続鋳造にかかる操業条件を変更するステップを含むものである。
以上説明したように、本発明にかかる鋼素材の表面欠陥推定方法および表面欠陥推定装置によれば、鋼の連続鋳造機の鋳型内の溶鋼流動状態が起因となる鋳片の欠陥発生率をオンラインで推定することができるので、鋼素材の表面欠陥の発生を防止して、高品質の鋼素材を製造できる。特に、推定する鋼素材の表面欠陥がパウダー性欠陥を含む場合に適用して好適である。
本発明の第1の実施形態にかかる鋼素材の表面欠陥推定装置を説明するブロック図である。 上記実施形態にかかる鋼素材の表面欠陥推定方法の流れを示すフロー図である。 従来の方法と本発明による方法における欠陥発生予測の的中率を比較したグラフである。 本発明の第2の実施形態にかかる鋼素材の製造仕様決定支援装置を説明するブロック図である。
以下、本発明の第1の実施形態にかかる鋼素材の表面欠陥推定装置および表面欠陥推定方法について図面を参照して説明する。
図1は、本発明の第1の実施形態にかかる表面欠陥推定装置を説明するブロック図である。本実施形態の表面欠陥推定装置1は溶鋼の流動状態推定装置2と表面欠陥の欠陥発生率推定装置3とを備える。それぞれの装置2、3は中央演算処理装置(CPU等)、メモリー(RAMやROM等)、記憶領域(ストレージ)を有するパソコン等の装置によって実現されるものとし、CPUの補助に画像処理装置(GPU)を用いても良い。また、表面欠陥推定装置1に記憶装置4を備えることが好ましい。図2は本実施形態にかかる鋼素材の表面欠陥推定方法の流れを示すフロー図である。
本実施形態では、流動状態解析装置2は、情報収集部21、溶鋼流動推定部22および第1出力部23を有する。まず、情報収集部21が、鋼の連続鋳造中の時系列的に得られる操業条件や鋳型に設けられたセンサーから取得した温度を含むセンサーデータの情報を取得する。取得する操業条件には、鋳造速度、電磁流動制御用コイル電流値、浸漬ノズル深さ、鋳型の形状、鋳片の幅、厚みの内の少なくとも1つが含まれる。鋳型内に設置した温度センサーのデータを取得してもよい。収集した情報をもとに、溶鋼流動推定部22は、鋳型内溶鋼の三次元流動解析、その他の鋳型内全体の三次元での溶鋼の流動状態をオンラインで推定することが可能な溶鋼の流動状態推定方法を用いて、三次元での溶鋼の流動状態を推定する。ここで、溶鋼の流動状態とは、鋳型内の溶鋼の三次元空間のそれぞれの計算点における位置情報、流速を含む数値データを指す。第1出力部23は、溶鋼流動推定部22が推定した溶鋼の流動状態を表すデータを欠陥発生率推定装置3に伝送する。また、第1出力部23は、そのデータを記憶装置4が有する記憶領域41に伝送することができる。
次に、欠陥発生率推定装置3は、入力部31、データ加工部32、欠陥発生率推定部33および第2出力部34からなる。入力部31は流動状態解析装置2の第1出力部23から溶鋼の流動状態にかかるデータを受け取り、データ加工部32に渡す。データ加工部32は、溶鋼の流動状態にかかるデータの一部若しくは全部をそのまま、あるいは加工して欠陥発生率推定用データとし、欠陥発生率推定部33に渡す。ここでいう加工とは、流動状態のデータ数の間引き、内挿、座標や単位、データ構造の変換の内、少なくとも1つを実施することを意味する。欠陥発生率推定部33は、加工された欠陥発生率推定用データとあらかじめ用意しておいた欠陥推定モデルと比較し、欠陥発生率および欠陥の種類や欠陥位置を推定し、第2出力部34に渡す。ここで、溶鋼の流動状態にかかるデータを欠陥発生率推定用データに変える目的は、後述する欠陥推定モデルと比較するうえで必要となる、たとえば、位置座標や単位、データ構造を揃えるためである。
欠陥発生率および欠陥の種類や欠陥位置の推定には、下記式のモデルを用いることができる。
Estimation(A)=Incidence [%]
ここで、Aは加工された流動状態であり、各計算点における位置情報、三次元方向の流速等を列ベクトルの成分に含む、物理量数×計算点数の二次元行列である。Incidenceは欠陥の発生率または欠陥の種類や欠陥位置を表す。関数Estimationの構築には、別途数値流体解析によって得られた解析結果を用いる。解析には、オンラインの数値流体解析モデルと比較して、より高精度の数値流体解析モデルを用いる。ここで高精度とは、計算点数の増加やクーラン数の縮小、LES(Large Eddy Simulation)等に代表される鋳型内の流動解析を実施する際のより高度な物理モデル化を行う等、離散化誤差やモデル化誤差が小さい解析を指す。
ここで用いられる加工前の流動状態Aは鋳型温度を境界条件として収束計算された鋳型内全域の溶鋼流動の三次元流速場である。したがって、欠陥発生位置を問わず鋳型内の流動状況が起因する全ての欠陥に対して対応することができる。例えば、境界条件の鋳型温度だけを用いて熱伝達係数を求めても凝固シェル近傍の流速しか推定できない。その流速の大きさから凝固シェルにトラップされる気泡や介在物性欠陥は評価できる。一方、本実施形態では、三次元的に収束計算することによってメニスカス付近の流速分布も取得できるため、パウダーの巻き込み等によるパウダー性欠陥の発生率を直接評価できる。
なお、凝固シェルにトラップされる気泡や介在物の評価をしたい場合は、加工された流動状態Aとして凝固シェル付近の流速二次元データAに加工して取得すればよい。また、メニスカスにおけるパウダー巻き込みを評価したい場合はメニスカス付近の流速の二次元データにAを加工して取得すればよい。
この推定モデルの例として、例えば、加工された流動状態Aは、推定された流動状態から着目する部分を取り出すことで加工された二次元データとして抽出し、部分的に詳細な解析を実施する方法が挙げられる。この方法によってパウダー性欠陥の評価を行う場合は、着目する部分を湯面近傍のみとして流動状態を加工し、これを境界条件としてSPH(Smoothed Particle Hydrodynamics)法による異相界面流動の解析をすることで欠陥率を推定できる。また、同様に介在物性欠陥の評価については、着目する部分をシェル近傍とし、有限体積法とDPM(discrete phase model)を用いた流体-凝固連成解析を実施しても良い。総括的に欠陥の発生率を知りたい場合には、流動状態を間引かずに、スーパーコンピュータ等で予め解析されたデータを利用して欠陥推定モデルを構築しても良い。この場合には、解析結果テーブルの参照や、機械学習による実装が可能である。機械学習の方法としては、例えば、シミュレーションにおける欠陥の発生有無を教師データ、その際の流動状態を入力データとすることで畳み込みニューラルネットワークを構築する方法や、決定木を構築する方法、流動状態を時系列データとすることで再起型ニューラルネットワークを構築する方法がある。
例えばSPH法によってパウダーの巻き込みリスクを判定する場合には、事前に高解像度な溶鋼-パウダー二相流の解析を実施する。解析範囲は鋳型全体であり、解析条件は実際の操業条件、解析時間は例えば1分程とする。この解析を操業条件毎に実施し、1分間で巻き込まれたパウダーの量(mL)とメニスカスから例えば鋳造方向に50mmの範囲の平均流速場を取得する。流速場は三次元位置、3方向の流速場であり、例えばメニスカスから鋳造方向に50mmの範囲の5mm刻みで分割した各格子点における3方向の流速である。すなわち、ある操業条件についてパウダー巻き込み量1つと格子点数N×3方向の流速の合計1+3Nのデータを取得する。これを実機で想定される操業条件Mパターンについて解析するため、合計で(1+3N)・Mのデータセットが得られる。次に、解析で得られた各操業条件におけるパウダー巻き込み量を目的変数とし、流速場を説明変数としてディープニューラルネットワーク等の機械学習手法によって学習を行う。その結果、流速場を入力としてパウダー巻き込み量を出力するモデルが構築される。操業中にこのモデルを利用してパウダー巻き込み量を推測する際には、前述のオンライン流動解析モデルによって得られた流速場をモデルのインプットとすれば良い。その際に、SPH法による出力データと同様に、オンラインモデルによって得られた流速場をメニスカスから鋳造方向に50mmの範囲で5mm刻みの格子点数N×3方向の流速データに変換する必要がある。オンラインモデルの格子刻み幅が5mmとは限らないので、上述したようにデータ加工部32により解析結果を内挿、外挿することで格子点数N×3方向の流速データに変換する。これによって、操業中にリアルタイムでパウダー巻き込みリスクを推測することができる。
上記の推定方法により欠陥発生率を算出する際には、1つ、もしくは複数のCPUを使用し、計算の補助に1つ、もしくは複数のGPUを用いても良い。
第2出力部34は、上記の推定方法により欠陥発生率推定部33が推定した欠陥発生率および欠陥種類や欠陥位置を運用者の利用に供するために表示または印刷して出力する。また、第2出力部34は、上記欠陥発生率および欠陥種類や欠陥位置を記憶装置4の記憶領域41に伝送することができる。欠陥発生率の出力方法は、上記方法によって算出された0(欠陥が発生しにくい)、1(欠陥が発生しやすい)の2bitのデータをそのまま出力するか、人間が理解しやすい文字列に変換して出力する方法、また、欠陥発生率を0から1の間の実数で算出し、人間が理解しやすい単位、表記法に直して出力する方法がある。
記憶装置4は、記憶領域41を備えており、流動状態解析装置2が推定した溶鋼の流動状態にかかるデータおよび欠陥発生率推定装置3が推定した欠陥発生率および欠陥の種類や欠陥位置を保存する。
次に、本発明の第2の実施形態にかかる鋼素材の製造仕様決定支援装置および鋼素材の製造仕様決定支援方法について、図面を参照しながら説明する。図4は、本発明の第2の実施形態にかかる鋼素材の製造仕様決定支援装置を示すブロック図である。この製造仕様決定支援装置100は上記表面欠陥推定装置1を利用するものであり、重複する記載については省略する。
本実施形態の鋼素材の製造仕様決定支援装置100は、上記鋼素材の表面欠陥推定装置1を用いて構成される。上記流動解析装置2の情報収集部21において、さらに、設備・操業特性として、設備上の制約条件や当該鋼種の鋼素材を製造するうえでの制約条件、つまり、鋳造速度の上下限、電磁流動制御用コイル電流値の上下限や浸漬ノズル深さの上下限などを収集し、第1出力部23に伝達する。第1出力部は、さらに、収集した設備・操業特性を欠陥発生率推定装置3の入力部31に伝達する。欠陥発生率推定装置3では、上記欠陥発生率推定部33において、所定の欠陥発生率と推定された表面欠陥につき、その欠陥発生率を低減する溶鋼の流動状態を実現する製造仕様、たとえば、連続鋳造の操業条件のうち、操業中に変更可能な因子である、鋳造速度や電磁流動制御用コイル電流値、浸漬ノズル深さを探索し、たとえば、欠陥発生率が所定の範囲となる鋼素材の製造仕様を前記欠陥推定モデルの逆解析により決定する。鋼素材の製造仕様の探索に当たっては、収集し伝達された設備・操業特性を考慮し、変更可能な操業条件の範囲内で欠陥発生率を低減する、たとえば、欠陥発生率が所定の範囲となる鋼素材の製造仕様を決定する。変更すべき操業条件が複数ある場合には、あらかじめ出力する優先順位を与えておいてもよい。本実施形態では、探索された鋼素材の製造仕様を前記第2出力部34の出力に加える。
鋼素材の製造にあたっては、本実施形態の鋼素材の表面欠陥推定方法によって出力した欠陥発生率が、所定の閾値を超えたと判断した場合に、たとえば、アラーム出力として、鳴動や操業監視画面に表示点滅等により、運用者に注意喚起し、溶鋼の流動制御ほかの操業条件の変更を促すことが好ましい。また、保存した欠陥発生率および溶鋼の流動状態にかかるデータ、くわえて、欠陥発生率を低減させるように探索した鋼素材の製造仕様は鋳型内の流動制御に用いることが出来る。たとえば、加工した流動状態として湯面付近を抜出し、SPH法による解析でパウダー性欠陥が発生しやすい流動状態と判定された場合、パウダー性欠陥が発生しづらい方向へ溶鋼の電磁流動制御を行っても良い。
また、鋼素材の製造中に所定の欠陥発生率となった鋳片を追跡し、後工程への搬送から外して、表面欠陥を取り除いたり、制限の厳しくない向け先に変更したりすることによって、鋼素材を効率的に生産できる効果も得られる。加えて、後工程により、表面欠陥の発生程度、表面欠陥の種類や位置が把握できた場合には、上記欠陥推定モデルに学習し、推定精度を向上させることが好ましい。
本発明の効果を確認するため、図1に示す鋼素材の表面欠陥推定装置1を用い、実際の鋼の連続鋳造における操業条件および鋳型銅板温度センサーからの温度情報を取得し、パウダー性欠陥の発生率を推定した。
まず、オフラインでSPH法による溶鋼流動解析を実施した。ここでは、弱圧縮解析モデルを使用した。初期粒子間距離は1mmとし、smoothing lengthは3.2mm、タイムステップは10‐5sに設定した。圧力計算にはTaitの状態方程式を用い、溶鋼-パウダー間の界面張力はCSF(Continuum Surface Force)モデルを用いた。解析条件は実機と同スケールおよび同物性値とし、鋳造速度、電磁流動制御用コイル電流値、浸漬ノズル深さ、鋳片の幅、厚みを入力値として与えた。これらの入力値をそれぞれ10通りずつ用意することで、計10通りの入力パターンを得た。また、鋳型内の偏流を再現するために、実際のノズル詰りに基づいたノズル吐出口閉塞パターンを10通り用意した。最終的に、計10通りの解析パターンを得た。これらの解析パターンに対し、SPH法による非定常解析をそれぞれ1分間実施し、メニスカスから200mm深さまでの領域の三次元流速度場の時間平均値を1mm間隔で表に出力した。更に、解析時間中にパウダー巻込みが一度でも発生すれば「欠陥発生可能性有」と判定し、速度場とともに表形式で記録し、欠陥推定モデルを構築した。
オンライン溶鋼流動解析のための溶鋼流動推定部22には特許文献1記載の技術を用いた。入力は操業中に得られる時系列データを動的に読み込ませた。特に、初期条件では鋳造速度1.6m/min、電磁流動制御用コイル電流値270mA、浸漬ノズル深さ280mm、鋳片の幅1500mm、厚み220mmであった。また、鋳型の銅板温度を用いた流動状態の補正を行うため、鋳型銅板内の熱電対温度も入力データとして加えた。これらの入力条件を用いて三次元の非定常解析を行った。解析によって得られた流動状態は計算点の位置情報、流速を含むものとし、記憶装置4の記憶領域41に保存するとともに、欠陥発生率推定装置3に受け渡した。
欠陥発生率推定装置3では前述のSPH法による解析データを用いて欠陥発生率の推定を実施した。まず、流動状態解析装置2から受け渡された流動状態データを加工する。ここでは、湯面近傍に着目した解析を実施するため、湯面から鋳造方向に200mm以上離れたデータは破棄した。SPH法解析データは1mm間隔の流速場であり、流動状態解析装置2で用いたメッシュデータと比較して計算点間隔が非常に小さいため、計算点間の値を内挿して、加工を終えた。そして、SPH法を用いて事前に作成した欠陥推定モデルとしての表を参照して欠陥発生可能性の有無を得た。新たに解析を行う必要はないため、高速に欠陥発生可能性を判断することが出来た。
上記した本実施形態の方法で操業30分間の欠陥率を推定した場合と、オンライン解析モデルと実際の欠陥率を統計的に紐付けた従来の方法で欠陥発生の的中率を測定した結果を図3に示す。上記方法によれば、従来の方法と比較して的中率が20%高いことがわかる。ここで、的中率とは、パウダー性表面欠陥があると推定された鋳片に対する、その鋳片が薄鋼板に圧延されたのち、表面欠陥計によって、パウダー性表面欠陥があると判定された鋼板に対応する鋳片の割合を百分率で表したものである。
1 表面欠陥推定装置
2 流動状態解析装置
21 情報収集部
22 溶鋼流動推定部
23 第1出力部
3 欠陥発生率推定装置
31 入力部
32 データ加工部
33 欠陥発生率推定部
34 第2出力部
4 記憶装置
41 記憶領域
100 鋼素材の製造仕様決定支援装置

Claims (8)

  1. 鋼の連続鋳造機の鋳型内の溶鋼流動状態を用いて鋼素材の欠陥発生を推定する方法であって、
    前記鋳型に設けられたセンサーから取得した温度を含むセンサーデータと、時系列的に得られる操業条件とを用いて所定時間内の鋳型内における三次元の溶鋼の流動状態をリアルタイムで推定する流動状態推定ステップと、
    前記推定された溶鋼の流動状態のデータの一部若しくは全部をそのまま、あるいは加工して欠陥発生率推定用データとする推定用データ取得ステップと、
    前記欠陥発生率推定用データとあらかじめ求められた欠陥推定モデルとを比較して欠陥発生率を推定する欠陥発生率推定ステップと、
    推定した欠陥発生率を出力するステップと、を有し、
    前記三次元の溶鋼の流動状態として、メニスカスから鋳造方向に所定の位置までの範囲を所定長さで分割した格子点の流速分布を用い、
    ここで、鋳造方向に所定の位置とはメニスカスから50~200mmの範囲の位置とし、所定長さとは1~5mmの範囲の長さとする、鋼素材の表面欠陥推定方法。
  2. 推定する鋼素材の表面欠陥がパウダー性欠陥を含む、請求項1に記載の鋼素材の表面欠陥推定方法。
  3. 流動状態解析装置と、欠陥発生率推定装置とを備える鋼素材の表面欠陥推定装置であって、
    前記流動状態解析装置は、
    鋳型に設けられたセンサーから取得した温度を含むセンサーデータと、時系列的に得られる操業条件とを情報として取得する情報収集部と、
    収集した前記情報をもとに所定時間内の鋳型内における三次元の溶鋼の流動状態をリアルタイムで推定する溶鋼流動推定部と、
    前記推定された溶鋼の流動状態を、前記欠陥発生率推定装置に出力する第1出力部と、を有し、
    前記欠陥発生率推定装置は、
    入力された前記推定された溶鋼の流動状態を欠陥発生率推定用データに加工するデータ加工部と、
    前記欠陥発生率推定用データとあらかじめ求められた欠陥推定モデルとを比較して欠陥発生率を推定する欠陥発生率推定部と、
    推定した欠陥発生率を出力する第2出力部と、を有し、
    前記三次元の溶鋼の流動状態が、メニスカスから鋳造方向に所定の位置までの範囲を所定長さで分割した格子点の流速分布であり、
    ここで、鋳造方向に所定の位置とはメニスカスから50~200mmの範囲の位置であり、所定長さとは1~5mmの範囲の長さであ鋼素材の表面欠陥推定装置。
  4. 推定する鋼素材の表面欠陥がパウダー性欠陥を含む、請求項に記載の鋼素材の表面欠陥推定装置。
  5. 請求項1または2に記載された鋼素材の表面欠陥推定方法によって推定した欠陥発生率を低減する鋼素材の製造仕様を探索するステップと、
    探索した鋼素材の製造仕様を出力するステップと、を含む、鋼素材の製造仕様決定支援方法。
  6. 請求項3または4に記載の鋼素材の表面欠陥推定装置を用いた、鋼素材の製造仕様決定支援装置であって、
    前記欠陥発生率推定部が、推定された欠陥発生率を低減する鋼素材の製造仕様を探索する機能を有し、
    前記第2出力部が、探索された鋼素材の製造仕様を出力する機能を有する、鋼素材の製造仕様決定支援装置。
  7. 請求項1または2に記載された鋼素材の表面欠陥推定方法によって出力した欠陥発生率に基づき鋼の連続鋳造にかかる操業条件を変更するステップを含む、鋼素材の製造方法。
  8. 請求項に記載の鋼素材の製造仕様決定支援方法を用いて探索した鋼素材の製造仕様に基づき鋼の連続鋳造にかかる操業条件を変更するステップを含む、鋼素材の製造方法。
JP2021100631A 2020-07-06 2021-06-17 鋼素材の表面欠陥推定方法および装置、鋼素材の製造仕様決定支援方法および装置、ならびに鋼素材の製造方法 Active JP7367733B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116082 2020-07-06
JP2020116082 2020-07-06

Publications (2)

Publication Number Publication Date
JP2022014435A JP2022014435A (ja) 2022-01-19
JP7367733B2 true JP7367733B2 (ja) 2023-10-24

Family

ID=80185378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100631A Active JP7367733B2 (ja) 2020-07-06 2021-06-17 鋼素材の表面欠陥推定方法および装置、鋼素材の製造仕様決定支援方法および装置、ならびに鋼素材の製造方法

Country Status (1)

Country Link
JP (1) JP7367733B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024058755A (ja) * 2022-10-17 2024-04-30 Jfeスチール株式会社 欠陥発生要因推定装置、欠陥発生要因推定方法、欠陥発生要因推定モデルの学習方法、操業条件決定方法および鉄鋼製品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181609A (ja) 1999-03-02 2003-07-02 Jfe Engineering Kk 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置
JP2015522428A (ja) 2012-07-24 2015-08-06 ポスコ 鋳片品質の予測装置及びその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181609A (ja) 1999-03-02 2003-07-02 Jfe Engineering Kk 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置
JP2015522428A (ja) 2012-07-24 2015-08-06 ポスコ 鋳片品質の予測装置及びその方法

Also Published As

Publication number Publication date
JP2022014435A (ja) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6816794B2 (ja) 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法
JP5003483B2 (ja) 圧延ラインの材質予測および材質制御装置
CN104493121A (zh) 一种大方坯连铸生产过程的凝固末端位置在线检测方法
JP6443165B2 (ja) 状態推定方法および状態推定装置
JP7367733B2 (ja) 鋼素材の表面欠陥推定方法および装置、鋼素材の製造仕様決定支援方法および装置、ならびに鋼素材の製造方法
Oerlemans Estimating response times of Vadret da Morteratsch, Vadret da Palü, Briksdalsbreen and Nigardsbreen from their length records
JP6536384B2 (ja) 状態推定方法、湯面レベル制御方法、プログラム及び状態推定装置
Renukananda et al. Multi-gate systems in casting process: comparative study of liquid metal and water flow
CN101890488A (zh) 连铸坯液芯凝固末端位置确定方法
CN110750868A (zh) 一种在线预测连铸过程宏观偏析的方法及系统
CN107052292A (zh) 一种基于热物性参数分布计算的连铸坯热跟踪计算方法
Hibbeler et al. A reduced-order model of mould heat transfer in the continuous casting of steel
WO2020195599A1 (ja) 鋳型内凝固シェル厚推定装置及び鋳型内凝固シェル厚推定方法
Bhatt et al. A systematic review on methods of optimizing riser and gating system based on energy Nexus approach
JP6372217B2 (ja) 連続鋳造鋳型内の湯面変動の状態推定方法、及び、装置
JP2019217510A (ja) 連続鋳造鋳型内可視化装置、方法、およびプログラム
Malinowski Casting production management system
TKADLEČKOVÁ et al. Testing of numerical model settings for simulation of steel ingot casting and solidification
JP6471632B2 (ja) 鋳型内湯面形状推定方法、湯面レベル制御方法および装置
CN115481554A (zh) 炸药熔铸固化过程热扩散数字孪生模型、温度场实时优化控制模型及方法
JP6464949B2 (ja) 状態推定方法、湯面レベル制御方法および状態推定装置
CN115034121A (zh) 一种基于组织性能智能预报模型的带钢工艺调控方法
Sata et al. Foundry data analytics to identify critical parameters affecting quality of investment castings
JP2018099701A (ja) 湯面形状推定方法及び湯面形状推定装置
KR101514879B1 (ko) 제조설비 시뮬레이션 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150