JP7361266B2 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP7361266B2
JP7361266B2 JP2019124568A JP2019124568A JP7361266B2 JP 7361266 B2 JP7361266 B2 JP 7361266B2 JP 2019124568 A JP2019124568 A JP 2019124568A JP 2019124568 A JP2019124568 A JP 2019124568A JP 7361266 B2 JP7361266 B2 JP 7361266B2
Authority
JP
Japan
Prior art keywords
antenna
array antenna
transmitting
radar
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124568A
Other languages
English (en)
Other versions
JP2020056780A (ja
Inventor
健太 岩佐
英邦 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to DE102019125973.8A priority Critical patent/DE102019125973A1/de
Priority to US16/584,278 priority patent/US11448725B2/en
Priority to CN201910923932.6A priority patent/CN110967671B/zh
Publication of JP2020056780A publication Critical patent/JP2020056780A/ja
Priority to US17/887,053 priority patent/US20230147240A1/en
Application granted granted Critical
Publication of JP7361266B2 publication Critical patent/JP7361266B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、レーダ装置に関する。
近年、高分解能が得られるマイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いたレーダ装置の検討が進められている。また、屋外での安全性を向上させるために、車両以外にも、歩行者を含む物体(ターゲット)を広角範囲で検知するレーダ装置(広角レーダ装置)の開発が求められている。
また、レーダ装置として、受信ブランチに加え、送信ブランチにも複数のアンテナ素子(アレーアンテナ)を備え、送受信アレーアンテナを用いた信号処理によりビーム走査を行う構成(MIMO(Multiple Input Multiple Output)レーダと呼ぶこともある)が提案されている。
MIMOレーダでは、送受信アレーアンテナにおけるアンテナ素子の配置を工夫することにより、最大で送信アンテナ素子数と受信アンテナ素子数との積に等しい仮想的な受信アレーアンテナ(以下、仮想受信アレー、または仮想受信アレーアンテナと呼ぶ)を構成できる。これにより、少ない素子数によってアレーアンテナの実効的な開口長を増大させる効果がある。
米国特許第9869762号明細書
本開示の一態様は、アンテナ1素子あたりの開口長および仮想受信アレーアンテナの開口長を拡大できる、改善されたレーダ装置の提供に資する。
本開示の一態様に係るレーダ装置は、レーダ信号を送信アレーアンテナから送信するレーダ送信回路と、前記レーダ信号がターゲットにおいて反射された反射波信号を受信アレーアンテナから受信するレーダ受信回路と、を具備し、前記送信アレーアンテナ及び前記受信アレーアンテナの一方は、m個のアンテナ素子の位相中心が第1軸方向に沿って第1の間隔Dで等間隔に配置される第1のアンテナ素子群を含み(mは1以上の整数)、前記送信アレーアンテナ及び前記受信アレーアンテナの他方は、(n+1)個のアンテナ素子の位相中心が前記第1軸方向に沿って第2の間隔Dr(n)で配置される第2のアンテナ素子群を含む(nは1以上の整数)、前記第1の間隔Dは式(1a)を満たし、
Figure 0007361266000001
ここで、dは第1の基本間隔を示し、nは1以上の整数、
前記第2の間隔Dr(n)は、式(1b)を満たし、
Figure 0007361266000002
ここで、Nは、1≦n<Na-1を満たす整数であり、
は、式(1c)を満たす、
Figure 0007361266000003
構成を採る。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示の一態様によれば、アンテナ1素子あたりの開口長および仮想受信アレーアンテナの開口長を拡大できる、改善されたレーダ装置を提供できる。
本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
実施の形態1に係るレーダ装置の構成の一例を示すブロック図 実施の形態1に係るレーダ送信部の構成の一例を示すブロック図 実施の形態1に係るレーダ送信信号の一例を示す図 実施の形態1に係る制御部による送信アンテナの時分割切替動作の一例を示す図 実施の形態1に係るレーダ送信信号生成部の他の構成の一例を示すブロック図 実施の形態1に係るレーダ受信部の構成の一例を示すブロック図 実施の形態1に係るレーダ装置のレーダ送信信号の送信タイミング、及び、測定範囲の一例を示す図 実施の形態1に係る方向推定部の動作説明に用いる三次元座標系を示す図 実施の形態1に係るアンテナ配置の一例を示す図 実施の形態1に係るサブアレーアンテナ構成の一例を示す図 実施の形態1のバリエーション1に係るアンテナ配置の一例を示す図 実施の形態1のバリエーション1に係る仮想受信アレーアンテナによる1次元ビームによる指向性パターンの一例を示す図 実施の形態1のバリエーション1に係る仮想受信アレーアンテナにウエイトをかけた場合の1次元ビームによる指向性パターンの一例を示す図 実施の形態1の比較例1に係るアンテナの配置の一例を示す図 実施の形態1のバリエーション1に係る仮想受信アレーアンテナによる1次元ビームによる指向性パターンの一例と比較例1に係る仮想受信アレーアンテナによる1次元ビームによる指向性パターンの一例との比較を示す図 実施の形態1のバリエーション1に係る仮想受信アレーアンテナにウエイトをかけた場合の1次元ビームによる指向性パターンの一例と比較例1に係る仮想受信アレーアンテナによる1次元ビームによる指向性パターンの一例との比較を示す図 実施の形態1のバリエーション2に係るアンテナ配置の一例を示す図 実施の形態1のバリエーション3に係るアンテナ配置の一例を示す図 実施の形態1のバリエーション4に係るアンテナ配置の一例を示す図 実施の形態1のバリエーション5に係るアンテナ配置の一例を示す図 実施の形態1のバリエーション5に係る仮想受信アレーアンテナによる1次元ビームによる指向性パターンの一例を示す図 実施の形態2に係るアンテナ配置の一例を示す図 実施の形態2に係る各アンテナ素子のサイズの一例を示す図 実施の形態2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例を示す図 実施の形態2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例を示す図 実施の形態2の比較例2に係るアンテナの配置の一例を示す図 実施の形態2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例と比較例2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例との比較を示す図 実施の形態2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例と比較例2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例との比較を示す図 実施の形態2のバリエーション1に係る送信アレーアンテナおよび受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション1に係る仮想受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション1に係るアンテナ素子のサイズの一例を示す図 実施の形態2のバリエーション1に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例を示す図 実施の形態2のバリエーション1に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例を示す図 実施の形態2のバリエーション2に係る送信アレーアンテナおよび受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション2に係る仮想受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション2に係るアンテナ素子のサイズの一例を示す図 実施の形態2のバリエーション2に係るアンテナ素子のサイズがアンテナ素子毎に異なる場合の一例を示す図 実施の形態2のバリエーション2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例を示す図 実施の形態2のバリエーション2に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例を示す図 実施の形態2のバリエーション3に係る送信アレーアンテナおよび受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション3に係る仮想受信アレーアンテナの配置の一例を示す図 実施の形態2のバリエーション3に係るアンテナ素子のサイズの一例を示す図 実施の形態2のバリエーション3に係るアンテナ素子のサイズがアンテナ素子毎に異なる場合の一例を示す図 実施の形態2のバリエーション3に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例を示す図 実施の形態2のバリエーション3に係る仮想受信アレーアンテナによる2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例を示す図 実施の形態3に係る送受信アレーアンテナの配置及び仮想受信アレーアンテナの配置の一例を示す図 実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図 実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図 実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図 実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図 実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図 実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図 実施の形態4に係るレーダ装置の構成の一例を示すブロック図 実施の形態5に係るレーダ装置の構成の一例を示すブロック図 実施の形態5に係るレーダ装置が用いるチャープパルスの一例を示す図
例えば、レーダ装置として、パルス波を繰り返し発信するパルスレーダ装置が知られている。広角範囲において車両/歩行者を検知する広角パルスレーダの受信信号は、近距離に存在するターゲット(例えば車両)と、遠距離に存在するターゲット(例えば歩行者)とからの複数の反射波が混合された信号となる。このため、(1)レーダ送信部では、低いレンジサイドローブとなる自己相関特性(以下、低レンジサイドローブ特性と呼ぶ)を有するパルス波又はパルス変調波を送信する構成が要求され、(2)レーダ受信部では、広い受信ダイナミックレンジを有する構成が要求される。
広角レーダ装置の構成として、以下の2つの構成が挙げられる。
一つ目の構成は、パルス波又は変調波を狭角(数度程度のビーム幅)の指向性ビームを用いて、機械的又は電子的に走査してレーダ波を送信し、狭角の指向性ビームを用いて反射波を受信する構成である。この構成では、高分解能を得るためには走査回数が増加するので、高速移動するターゲットに対する追従性が劣化する。
二つ目の構成は、受信ブランチにおいて、複数のアンテナ(複数のアンテナ素子)で構成されるアレーアンテナによって反射波を受信し、アンテナ素子間隔に対する受信位相差に基づく信号処理アルゴリズムによって反射波の到来角を推定する手法(Direction of Arrival (DOA) estimation)を用いる構成である。この構成では、送信ブランチでの送信ビームの走査間隔を間引いたとしても、受信ブランチにおいて到来角を推定できるので、走査時間の短縮化を図ることができ、1つ目の構成と比較して追従性が向上する。例えば、到来方向推定方法には、行列演算に基づくフーリエ変換、逆行列演算に基づくCapon法及びLP(Linear Prediction)法、又は、固有値演算に基づくMUSIC(Multiple Signal Classification)及びESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)が挙げられる。
また、受信ブランチに加え、送信ブランチでも複数のアンテナ素子を用いてビーム走査を行うMIMOレーダは、時分割、周波数分割又は符号分割を用いて多重した信号を複数の送信アンテナ素子から送信し、周辺物体で反射された信号を複数の受信アンテナ素子で受信し、受信信号の各々から、多重された送信信号を分離して受信する。
さらに、MIMOレーダでは、送受信アレーアンテナにおけるアンテナ素子の配置を工夫することにより、最大で送信アンテナ素子数と受信アンテナ素子数との積に等しい仮想的な受信アレーアンテナ(仮想受信アレー、又は、仮想受信アレーアンテナ)を構成できる。これにより、送信アンテナ素子数と受信アンテナ素子数との積で示される伝搬路応答を得ることができ、送受信アンテナ素子間隔を適切に配置することで、少ない素子数によってアレーアンテナの実効的な開口長を仮想的に拡大し、角度分解能の向上を図ることができる。
ここで、MIMOレーダにおけるアンテナ素子構成として、1つのアンテナ素子を用いる構成(以下、単体アンテナと呼ぶ)と、複数のアンテナ素子をサブアレー化した構成(以下、サブアレー、またはサブアレーアンテナ構成と呼ぶ)とに大別される。
単体アンテナを用いた場合は、サブアレーを用いた場合と比較して、広い指向性を有する特性となるが、アンテナ利得は相対的に低くなる。そのため、反射波信号の受信SNR(Signal to Noise Ratio)を向上させるためには、受信信号処理において、例えば、より多くの加算処理を行うか、或いは、単体アンテナを複数用いてアンテナを構成することになる。
一方、サブアレーを用いた場合は、単体アンテナを用いた場合と比較して、1つのサブアレーには、複数のアンテナ素子が含まれるため、アンテナとしての物理的なサイズが大きくなり、メインビーム方向のアンテナ利得を向上させることができる。具体的には、サブアレーの物理的なサイズは、送信信号の無線周波数(キャリア周波数)における波長程度以上となる。
また、MIMOレーダは垂直方向又は水平方向の1次元走査を行う場合以外に、垂直方向及び水平方向の2次元のビーム走査を行う場合にも適用可能である(例えば、特許文献1を参照)。
2次元にビーム走査が行われるMIMOレーダとして、例えば、車載用途などに用いられる長距離用のMIMOレーダがある。長距離用のMIMOレーダにおいては、水平方向に1次元にビーム走査を行うMIMOレーダと同等の水平方向の高い分解能が求められるのに加え、垂直方向の角度推定能力も求められる。
例えば、低コスト化等の要請から、MIMOレーダに対して送受信ブランチのアンテナ数の制約(例えば、送信4アンテナ素子程度および/または受信4アンテナ素子程度)がある場合、より多くのアンテナ素子を用いて反射波信号の受信SNRを向上させることが困難である。さらに、2次元にビーム走査が行われるMIMOレーダは、1次元ビーム走査を行うMIMOレーダと比較して、MIMOレーダによる仮想受信アレーアンテナの開口長も制約され、水平方向の分解能が低下する。
垂直方向の角度推定能力を向上させるために、例えば、アレーアンテナを構成するアンテナ素子(以下、アレー素子と呼ぶ)の各々が更に複数のアンテナ素子から構成されるサブアレーアンテナ構成を用いることにより。アレーアンテナの指向性利得を向上させることがある。しかしながら、送信アンテナ素子と受信アンテナ素子とのいずれについても、アンテナ素子を水平方向及び垂直方向に半波長程度で等間隔に配置する場合、隣接するアンテナ素子との間隔も半波長程度となる。したがって、隣接するアンテナ素子との物理的な干渉による物理的制約から、アンテナ素子のサイズを半波長程度よりも大きくすることが困難であり、アンテナ素子をサブアレー化するのが困難である。
一方、アンテナ素子をサブアレー化するためにアンテナを不等間隔に配置し、隣接するアンテナ間の間隔を1波長以上拡げることも可能である(特許文献1を参照)。しかしながら、隣接するアンテナ間の間隔を1波長以上拡げると、仮想受信アレーアンテナの間隔が1波長以上に拡がり、角度方向のグレーティングローブ又はサイドローブ成分が発生し、レーダ装置による誤検出の確率が増大する。
誤検出の少ないMIMOレーダを実現するためには、形成するビームのサイドローブが低くなるような仮想受信アレーアンテナの構成が求められる。サイドローブを低くするために、仮想受信アレーアンテナにおいてアンテナ素子を水平方向および垂直方向に半波長程度で等間隔に配置するのが望ましい。そこで、アンテナ素子を1波長以上の一定間隔で配置しつつ、仮想受信アレーアンテナを半波長の間隔で配置する構成も提案されている(特許文献1を参照)。しかしながら、仮想受信アレーアンテナを半波長の間隔で配置する以上、アンテナ数の制約によって仮想受信アレーアンテナの開口長が制限される。また、アンテナ素子間隔を拡げるほどグレーティングローブがメインローブの近くに発生し、誤検出の確率が増大する。
<実施の形態1>
本開示の一態様によれば、仮想受信アレーアンテナの開口長を拡げつつ、不要なグレーティングローブの発生を抑えることができるレーダ装置が提供される。また、アンテナ素子にサブアレーアンテナ構成を用いて、アンテナ素子の指向性利得を向上できるレーダ装置が提供される。
以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
なお、以下に説明する実施の形態は一例であり、本開示は以下の実施の形態により限定されるものではない。
[レーダ装置10の構成]
図1は、本実施の形態に係るレーダ装置10の構成の一例を示すブロック図である。レーダ装置10は、レーダ送信部(送信ブランチまたはレーダ送信回路とも称する)100と、レーダ受信部(受信ブランチまたはレーダ受信回路とも称する)200と、基準信号生成部(基準信号生成回路)300と、制御部(制御回路)400と、を有する。
レーダ装置10は、例えば、時分割多重方式を用いたMIMOレーダである。即ち、レーダ装置10のレーダ送信部100において、複数の送信アンテナが時分割で切り替えられ、時分割多重された異なるレーダ送信信号が送出される。また、レーダ装置10のレーダ受信部200において、時分割多重された各送信信号を分離することにより受信処理が行われる。しかしながら、レーダ装置10の構成は、これに限定されない。例えば、レーダ装置10のレーダ送信部100において、複数の送信アンテナから周波数分割多重された異なる送信信号が送出され、レーダ受信部100において、周波数分割多重された各送信信号を分離することにより受信処理が行われる構成でもよい。また、同様に、例えば、レーダ装置10のレーダ送信部100において、複数の送信アンテナから符号分割多重された異なる送信信号が送出され、レーダ受信部100において、符号分割多重された各送信信号を分離することにより受信処理が行われる構成でもよい。以下においては、時分割多重方式を用いるレーダ装置10を例にとって説明する。
レーダ送信部100は、基準信号生成部300から受け取る基準信号に基づいて高周波(無線周波数:Radio Frequency)のレーダ信号(レーダ送信信号)を生成する。そして、レーダ送信部100は、複数の送信アンテナ素子#1~#Nを時分割で切り替えて、レーダ送信信号を送信する。
レーダ受信部200は、ターゲット(図示せず)において反射されたレーダ送信信号である反射波信号を、複数の受信アンテナ素子#1~#Nを用いて受信する。レーダ受信部200は、基準信号生成部300から受け取る基準信号を用いて、下記の処理動作を行うことで、レーダ送信部100と同期した処理を行う。レーダ受信部200は、各受信アンテナ素子202において受信した反射波信号を信号処理し、少なくともターゲットの有無検出又は方向推定を行う。なお、ターゲットは、レーダ装置10が検出する対象の物体であり、例えば、車両(2輪、3輪、及び4輪を含む)又は人を含む。
基準信号生成部300は、レーダ送信部100及びレーダ受信部200のそれぞれに接続されている。基準信号生成部300は、基準信号をレーダ送信部100及びレーダ受信部200に供給し、レーダ送信部100及びレーダ受信部200の処理を同期させる。
制御部400は、レーダ送信部100が生成するパルス符号、レーダ送信部100による可変ビーム制御において設定する位相、及び、レーダ送信部100が信号を増幅するレベルを、レーダ送信周期Tr毎に設定する。そして、制御部400は、パルス符号を指示する制御信号(符号制御信号)、位相を指示する制御信号(位相制御信号)、及び、送信信号の増幅レベルを指示する制御信号(送信制御信号)を、レーダ送信部100に出力する。また、制御部400は、レーダ送信部100における送信サブアレー#1~#Nの切替(レーダ送信信号の出力切替)タイミングを指示する出力切替信号を、レーダ受信部200に出力する。
[レーダ送信部100の構成]
図2は、本実施の形態に係るレーダ送信部100の構成の一例を示すブロック図である。レーダ送信部100は、レーダ送信信号生成部(レーダ送信信号生成回路)101と、送信周波数変換部(送信周波数変換回路)105と、電力分配器(電力分配回路)106と、送信増幅部(送信増幅回路)107と、送信アレーアンテナ108と、を有する。
なお、以下では、符号化パルスレーダを用いたレーダ送信部100の構成を一例として示すが、これに限定されず、例えば、FM-CW(Frequency Modulated Continuous Wave)レーダの周波数変調を用いたレーダ送信信号に対しても同様に適用可能である。
レーダ送信信号生成部101は、基準信号生成部300から受け取る基準信号を所定数倍したタイミングクロック(クロック信号)を生成し、生成したタイミングクロックに基づいてレーダ送信信号を生成する。そして、レーダ送信信号生成部101は、制御部400からの所定のレーダ送信周期Tr毎の符号制御信号に基づいて、レーダ送信周期Trにてレーダ送信信号を繰り返し出力する。
レーダ送信信号は、y(kt,M)=I(kT,M)+jQ(kt,M)で表される。ここで、jは虚数単位を表し、kは離散時刻を表し、Mはレーダ送信周期の序数を表す。また、I(kT,M)及びQ(kT,M)は、第M番目のレーダ送信周期における離散時刻kTにおけるレーダ送信信号(kT,M)の同相成分(In-Phase成分)、及び直交成分(Quadrature成分)をそれぞれ表す。
レーダ送信信号生成部101は、符号生成部(符号生成回路)102と、変調部(変調回路)103と、LPF(Low Pass Filter)104とを含む。
符号生成部102は、レーダ送信周期Tr毎の符号制御信号に基づいて、第M番目のレーダ送信周期における符号長Lの符号系列の符号an(M)(n=1,…,L)(パルス符号)を生成する。符号生成部102において生成される符号an(M)には、低レンジサイドローブ特性が得られるパルス符号が用いられる。符号系列としては、例えば、Barer符号、M系列符号、Gold符号が挙げられる。なお、符号生成部102で生成される符号an(M)は、同一の符号であっても、異なる符号が含まれる符号であってもよい。
変調部103は、符号生成部102から出力される符号an(M)に対してパルス変調(振幅変調、ASK(Amplitude Shift Keying)、またはパルスシフトキーイング)又は位相変調(PSK:Phase Shift Keying)を行い、変調信号をLPF104へ出力する。
LPF104は、変調部103から出力される変調信号のうち、所定の制限帯域以下の信号成分を、ベースバンドのレーダ送信信号として送信周波数変換部105へ出力する。
送信周波数変換部105は、LPF104から出力されるベースバンドのレーダ送信信号を、所定のキャリア周波数(RF:Radio Frequency)帯でのレーダ送信信号に周波数変換する。
電力分配器106は、送信周波数変換部105から出力される無線周波数帯のレーダ送信信号をN個に分配し、各送信増幅部107へ出力する。
送信増幅部107(107-1~107-N)は、制御部400から指示されるレーダ送信周期Tr毎の送信制御信号に基づいて、出力されるレーダ送信信号を所定レベルに増幅して出力するか、或いは送信出力をオフとする。
送信アレーアンテナ108は、N個の送信アンテナ素子#1~#N(108-1~108-N)を有する。各送信アンテナ素子#1~#Nは、それぞれ、個別の送信増幅部107-1~107-Nに接続され、個別の送信増幅部107-1~107-Nから出力されるレーダ送信信号を送信する。
図3は、実施の形態1に係るレーダ送信信号の一例を示す図である。各レーダ送信周期Trのうち、符号送信区間Twの間にパルス符号系列が送信され、残りの区間(Tr-Tw)は無信号区間となる。符号送信区間Tw内には符号長Lパルス符号系列が含まれる。1つの符号には、L個のサブパルスが含まれる。また、1つのサブパルスあたり、No個のサンプルを用いたパルス変調が施されることにより、各符号送信区間Tw内には、Nr(=No×L)個のサンプルが含まれる。また、レーダ送信周期Trにおける無信号区間(Tr-Tw)には、Nu個のサンプルが含まれる。
図4は、制御部400による各送信アンテナ素子#1~#Nの時分割切替動作の一例を示す。図4において、制御部400は、レーダ送信周期Tr毎に、送信アンテナ素子#1から送信アンテナ素子#Nまで順に、各送信アンテナ素子からの出力を切り替える指示をする制御信号(符号制御信号、送信制御信号)をレーダ送信部100へ出力する。また、制御部400は、各送信サブアレーの送信出力期間を(Tr×Nb)とし、全ての送信サブアレーの送信出力期間(Tr×Np)=(Tr×Nb×Nt)の切替動作を、Nc回繰り返す制御を行う。また、後述するレーダ受信部200は、制御部400の切替動作に基づいて測位処理を行う。
例えば、送信アンテナ素子#1からレーダ送信信号を送信する場合、制御部400は、送信アンテナ素子#1に接続された送信増幅部107-1に対して、入力信号を所定レベルに増幅するように指示する送信制御信号を出力し、送信アンテナ素子#1に接続されていない送信増幅部107-2~107-Nに対して、送信出力をオフとするように指示する送信制御信号を出力する。
同様に、送信アンテナ素子#2からレーダ送信信号を送信する場合、制御部400は、送信アンテナ素子#2に接続された送信増幅部107-2に対して、入力信号を所定レベルに増幅するように指示する送信制御信号を出力し、送信アンテナ素子#2に接続されていない送信増幅部107に対して、送信出力をオフとするように指示する送信制御信号を出力する。
以降、制御部400は、送信アンテナ素子#3~#Nに対して同様の制御を順に行う。以上、制御部400によるレーダ送信信号の出力切替動作について説明した。
[レーダ送信部100の他の構成]
図5は、実施の形態1に係るレーダ送信信号生成部101の他の構成の一例を示すブロック図である。レーダ送信部100は、レーダ送信信号生成部101の代わりに、図5に示すレーダ送信信号生成部101aを備えてもよい。レーダ送信信号生成部101aは、図2に示される符号生成部102、変調部103及びLPF104を有さず、代わりに図5に示される符号記憶部(符号記憶回路)111及びDA変換部(DA変換回路)112を備える。
符号記憶部111は、図2に示される符号生成部102において生成される符号系列を予め記憶し、記憶している符号系列を巡回的に順次読み出す。
DA変換部112は、符号記憶部111から出力される符号系列(デジタル信号)をアナログのベースバンド信号に変換する。
[レーダ受信部200の構成]
図6は、本実施の形態に係るレーダ受信部200の構成の一例を示すブロック図である。レーダ受信部200は、受信アレーアンテナ202と、N個のアンテナ素子系統処理部(アンテナ素子系統処理回路)201(201-1~201-N)と、方向推定部(方向推定回路)214と、を有する。
受信アレーアンテナ202は、N個の受信アンテナ素子#1~#N(202-1~202-N)を有する。N個の受信アンテナ素子202-1~202-Nは、測定ターゲット(物体)を含む反射物体に反射したレーダ送信信号である反射波信号を受信し、受信した反射波信号を、それぞれ、対応するアンテナ素子系統処理部201-1~201-Nへ受信信号として出力する。
各アンテナ素子系統処理部201(201-1~201-N)は、受信無線部(受信無線回路)203と、信号処理部(信号処理回路)207とを有する。受信無線部203及び信号処理部207は、基準信号生成部300から受け取る基準信号を所定数倍したタイミングクロック(基準クロック信号)を生成し、生成したタイミングクロックに基づいて動作することにより、レーダ送信部100との同期を確保する。
受信無線部203は、増幅器(増幅回路)204と、周波数変換器(周波数変換回路)205と、直交検波器(直交検波回路)206と、を有する。具体的には、第z番目の受信無線部203において、増幅器204は、第z番目の受信アンテナ素子#zから受け取る受信信号を所定レベルに増幅する。ここで、z=1,…,Nrである。次いで、周波数変換器205は、高周波帯域の受信信号をベースバンド帯域に周波数変換する。次いで、直交検波器206は、ベースバンド帯域の受信信号を、I信号及びQ信号を含むベースバンド帯域の受信信号に変換する。
各信号処理部207は、第1のAD変換部(AD変換回路)208、第2のAD変換部(AD変換回路)209と、相関演算部(相関演算回路)210と、加算部(加算回路)211と、出力切替部(出力切替回路)212と、N個のドップラ解析部(ドップラ解析回路)213-1~213-Nと、を有する。
第1のAD変換部208は、直交検波器206からI信号を入力する。第1のAD変換部208は、I信号を含むベースバンド信号に対して、離散時間でのサンプリングを行うことにより、I信号をデジタルデータに変換する。
第2のAD変換部209は、直交検波器206からQ信号を入力する。第2のAD変換部209は、Q信号を含むベースバンド信号に対して、離散時間でのサンプリングを行うことにより、Q信号をデジタルデータに変換する。
ここで、第1のAD変換部208及び第2のAD変換部209のサンプリングでは、レーダ送信信号における1つのサブパルスの時間Tp(=Tw/L)あたり、Ns個の離散サンプルが行われる。すなわち、1サブパルスあたりのオーバーサンプル数はNsとなる。
図7は、実施の形態1に係るレーダ装置10のレーダ送信信号の送信タイミング、及び、測定範囲の一例を示す。以下の説明では、I信号Iz(k,M)及びQ信号Qz(k,M)を用いて、第1のAD変換部208及び第2のAD変換部209の出力としての第M番目のレーダ送信周期Tr[M]の離散時間kにおけるベースバンドの受信信号を複素数信号xz(k,M)=Iz(k,M)+jQz(k,M)と表す。また、以下では、離散時刻kは、レーダ送信周期(Tr)の開始するタイミングを基準(k=1)とし、信号処理部207は、レーダ送信周期Trが終了する前までのサンプル点であるk=(Nr+Nu)Ns/Noまで周期的に計測を行う。すなわち、k=1,…,(Nr+Nu)Ns/Noとなる。ここでjは虚数単位である。
第z番目の信号処理部207において、相関演算部210は、レーダ送信周期Tr毎に、第1のAD変換部208及び第2のAD変換部209から受け取る離散サンプル値xz(k,M)と、レーダ送信部100において送信される符号長Lのパルス符号an(M)(ただし、z=1,…,Na、n=1,…,L)との相関演算を行う。例えば、相関演算部210は、離散サンプル値xz(k,M)と、パルス符号an(M)とのスライディング相関演算を行う。例えば、第M番目のレーダ送信周期Tr[M]における離散時刻kのスライディング相関演算の相関演算値ACz(k,M)は、式(1)に基づき算出される。
Figure 0007361266000004
式(1)において、アスタリスク(*)は複素共役演算子を表す。
相関演算部210は、例えば、式(1)に従って、k=1,…,(Nr+Nu)Ns/Noの期間に亘って相関演算を行う。
なお、相関演算部210は、k=1,…,(Nr+Nu)Ns/Noに対して相関演算を行う場合に限定されず、レーダ装置10の測定対象となるターゲットの存在範囲に応じて、測定レンジ(すなわち、kの範囲)を限定してもよい。限定することにより、相関演算部210における演算処理量が低減される。例えば、相関演算部210は、k=Ns(L+1),…,(Nr+Nu)Ns/No-NsLに測定レンジを限定してもよい。この場合、図7に示されるように、レーダ装置10は、符号送信区間Twに相当する時間区間では測定を行わない。
上述の構成により、レーダ送信信号がレーダ受信部200に直接的に回り込むような場合でも、レーダ送信信号が回り込む期間(少なくともτ1未満の期間)では相関演算部210による処理が行われない。したがって、レーダ装置10は、回り込みの影響を排除して測定できる。また、測定レンジ(kの範囲)を限定する場合、以下で説明する加算部211、出力切替部212、ドップラ解析部213、及び方向推定部214の処理に対しても、同様に測定レンジ(kの範囲)を限定した処理を適用すればよい。これにより、各構成部での処理量を削減でき、レーダ受信部200における消費電力を低減できる。
第z番目の信号処理部207において、加算部211は、制御部400から出力される出力切替信号に基づいて、第ND番目の送信アンテナ素子#Nから連続的に送信されるレーダ送信周期Trの複数回Nbの期間(Tr×Nb)を単位として、離散時刻k毎に相関演算部210から受け取る相関演算値ACz(k,M)を用いて、加算(コヒーレント積分)処理を行う。ここで、ND=1,…,Nt、z=1,…,Naである。
期間(Tr×Nb)に亘る加算(コヒーレント積分)処理は次の式(2)で表される。
Figure 0007361266000005
ここで、CIz (ND)(k,m)は相関演算値の加算値(以下、相関加算値と呼ぶ)を表し、mは加算部211における加算回数の序数を示す1以上の整数である。また、z=1,…, Naである。
なお、理想的な加算利得を得るためには、相関演算値の加算区間において、相関演算値の位相成分がある程度の範囲で揃うことが条件となる。つまり、加算回数は、測定対象となるターゲットの想定最大移動速度に基づいて設定されることが好ましい。これは、ターゲットの想定最大移動速度が大きいほど、ターゲットからの反射波に含まれるドップラ周波数の変動量が大きく、高い相関を有する時間期間が短くなるため、Np(=N×Nb)は小さい値となり、加算部211での加算による利得向上効果が小さくなるためである。
第z番目の信号処理部207において、出力切替部212は、制御部400から出力される出力切替信号に基づいて、第NDの送信アンテナ素子から連続的に送信されるレーダ送信周期Trの複数回Nbの期間(Tr×Nb)を単位に加算した、離散時間k毎の加算結果CIz (ND)(k,m)を、第NDのドップラ解析部213-Nに択一的に切り替えて出力する。ここで、ND=1,…,Nt、z=1,…,Naである。
各信号処理部207は、送信アンテナ素子#1~#Nと同数のN個のドップラ解析部213-1~213-Nを有する。ドップラ解析部213(213-1~213-N)は、離散時間k毎に得られた加算部211のNc個の出力であるCIz (ND)(k,NC(w-1)+1)~CIz (ND)(k,NC×w)を一単位として、離散時間kのタイミングを揃えてコヒーレント積分を行う。例えば、ドップラ解析部213は、以下の式(3)に示すように、2Nf個の異なるドップラ周波数fsΔΦに応じた位相変動Φ(fs)=2πfs(Tr×Nb)ΔΦを補正した後に、コヒーレント積分を行う。
Figure 0007361266000006
ここで、FT_CIz (ND)(k,fs,w)は、第z番目の信号処理部207における第ND番目のドップラ解析部213-Nにおける第w番目の出力であり、加算部211の第ND番目の出力に対する、離散時間kでのドップラ周波数fsΔΦのコヒーレント積分結果を示す。ただし、ND=1,…,Ntであり、fs=-Nf+1,…,0,Nfであり、k=1,…,(Nr+Nu)Ns/Noであり、wは自然数であり、ΔΦは位相回転単位であり、jは虚数単位であり、z=1,…,Naである。
これにより、各信号処理部207は、離散時間k毎の2Nf個のドップラ周波数成分に応じたコヒーレント積分結果であるFT_CIz (ND)(k,-Nf+1,w),…,FT_CIz (ND)(k,Nf-1,w)を、レーダ送信周期間Trの複数回Nb×Ncの期間(Tr×Nb×Nc)毎に得る。
ΔΦ=1/Ncとした場合、上述したドップラ解析部213の処理は、サンプリング間隔Tm=(Tr×Np)、サンプリング周波数fm=1/Tmで加算部211の出力を離散フーリエ変換(DFT)処理していることと等価である。
また、Nfを2のべき乗の数に設定することで、ドップラ解析部213は、高速フーリエ変換(FFT:Fast Fourier Transform)処理を適用でき、演算処理量を削減できる。なお、Nf>Ncでは、q>Ncとなる領域においてCIz (ND)(k,Nc(w-1)+1)=0とするゼロ埋め処理を行うことで、ドップラ解析部213は、同様にFFT処理を適用でき、演算処理量を削減できる。
また、ドップラ解析部213において、FFT処理の代わりに、上述の式(3)に示す積和演算を逐次的に演算する処理を行ってもよい。つまり、ドップラ解析部213は、離散時刻k毎に得られた加算部211のNc個の出力であるCIz (ND)(k,Nc(w-1)+q+1)に対して、fs=-Nf+1,…,0,Nf-に対応する係数exp[-j2πfsTrNbqΔΦ]を生成し、逐次的に積和演算処理してもよい。ここで、q=0,…,Nc-1である。
なお、以下の説明では、第1番目のアンテナ素子系統処理部201-1の信号処理部207から第N番目のアンテナ系統処理部201-Nの信号処理部207の各々において同様の処理を施して得られた第w番目の出力FT_CIz (1)(k,fs,w),…,FT_CIz (Na)(k,fs,w)を、次の式(4)(又は式(5))のように仮想受信アレー相関ベクトルh(k,fs,w)として表記する。
Figure 0007361266000007
Figure 0007361266000008
仮想受信アレー相関ベクトルh(k,fs,w)は、送信アンテナ素子#1~#Nの数Ntと受信アンテナ素子#1~#Nの数Nとの積であるNt×Na個の要素を含む。仮想受信アレー相関ベクトルh(k,fs,w)は、後述する、ターゲットからの反射波信号に対して受信アンテナ素子#1~#N間の位相差に基づく方向推定を行う処理の説明に用いる。ここで、z=1,…,Naであり、ND=1,…,Ntである。
また、上述の式(4)及び式(5)では、各送信サブアレーからの送信時間差に起因するドップラ周波数(fsΔΦ)毎の位相回転が補正されている。すなわち、第1の送信サブアレー(ND=1)を基準として、第NDの送信サブアレーからのドップラ周波数(fsΔΦ)成分の受信信号FT_CIz (Na)(k,fs,w)に対し、exp[-j2πfsΔΦ(ND-1)TrNb]が乗算されている。
以上、信号処理部207の各構成部における処理について説明した。
方向推定部214は、第1番目のアンテナ素子系統処理部201-1の信号処理部207ないし第N番目のアンテナ素子系統処理部201-Nの信号処理部207から出力されるw番目のドップラ解析部213の仮想受信アレー相関ベクトルh(k,fs,w)に対して、以下の式(6)で表されるように、送信アレーアンテナ108間及び受信アレーアンテナ202間の移相偏差及び振幅偏差を補正するアレー補正値hcal[b]を乗算することで、アンテナ間偏差を補正した仮想受信アレー相関ベクトルh_after_cal(k,fs,w)を算出する。なお、b=1,…,(Nt×Na)である。
Figure 0007361266000009
アンテナ間偏差を補正した仮想受信アレー相関ベクトルh_after_cal(k,fs,w)は、Na×Nr個の要素からなる列ベクトルである。以下では、仮想受信アレー相関ベクトルh_after_cal(k,fs,w)の各要素をh1(k,fs,w),…,hNa×Nr(k,fs,w)と表記して、方向推定処理の説明に用いる。
次いで、方向推定部214は、仮想受信アレー相関ベクトルh_after_cal(k,fs,w)を用いて、受信アレーアンテナ202間の反射波信号の位相差に基づいて反射波信号の到来方向の推定処理を行う。
方向推定部214は、方向推定評価関数値PH(θ,k,fs,w)における方位方向θを所定の角度範囲内で可変として空間プロファイルを算出し、算出した空間プロファイルの極大ピークを大きい順に所定数抽出し、極大ピークの方位方向を到来方向の推定値とする。
なお、評価関数値PH(θ,k,fs,w)は、到来方向推定アルゴリズムによって各種のものがある。例えば、公知のアレーアンテナを用いた推定方法を用いてもよい。
例えば、ビームフォーマ法は、以下の式(7)及び式(8)のように表すことができる。
Figure 0007361266000010
Figure 0007361266000011
ここで、上付き添え字Hはエルミート転置演算子である。また、aHu)は、方位方向θuの到来波に対する仮想受信アレーアンテナの方向ベクトルを示すまた、θuは到来方向推定を行う方位範囲内を所定の方位間隔β1で変化させたものである。例えば、θuは以下のように設定される。
Figure 0007361266000012
ここでfloor(x)は、実数xを超えない最大の整数値を返す関数である。
なお、ビームフォーマ法に代えて、Capon、MUSICといった手法も同様に適用可能である。
図8は、実施の形態1に係る方向推定部214の動作説明に用いる三次元座標系を示す。方向推定部214の処理を図8に示される三次元座標系に適応することにより2次元方向に推定処理を行う場合について、以下説明する。
図8において、原点Oを基準とした物標(ターゲット)PTの位置ベクトルをrPTと定義する。また、図8では、物標PTの位置ベクトルrPTをXZ平面に射影した射影点をPT’とする。この場合、方位角θは、直線O-PT’とZ軸とのなす角度と定義される(物標PTのX座標が正の場合、θ>0)。また、仰角φは、物標PT、原点O及び射影点PT’を含む平面内での、物標PT、原点O及び射影点PT’を結ぶ線の角度と定義される(物標PTのY座標が正の場合、φ>0)。なお、以下では、XY平面内に送信アレーアンテナ108及び受信アレーアンテナ202を配置する場合を一例として説明を行う。
原点Oを基準とした、仮想受信アレーアンテナにおける第nva番目のアンテナ素子の位置ベクトルをSnvaと表記する。ここで、nva=1,…, Nt×Naである。
仮想受信アレーアンテナにおける第1番目(nva=1)のアンテナ素子の位置ベクトルSは、第1番目の受信アンテナ素子Rx#1の物理的な位置と原点Oとの位置関係に基づいて決定される。仮想受信アレーアンテナにおける他のアンテナ素子の位置ベクトルS,…,Snvaは、第1番目のアンテナ素子の位置ベクトルSを基準に、XY平面内に存在する送信アレーアンテナ108及び受信アレーアンテナ202の素子間隔から決定される仮想受信アレーアンテナの相対的な配置を保持した状態で決定される。なお、原点Oを第1番目の受信アンテナ素子Rx#1の物理的な位置と一致させてもよい。
レーダ受信部200が遠方界に存在する物標PTからの反射波を受信する場合、仮想受信アレーアンテナの第1番目のアンテナ素子での受信信号を基準とした、第2番目のアンテナ素子での受信信号の位相差d(rPT,2,1)は、以下の式(9)で示される。ここで、<x,y>はベクトルx及びベクトルyの内積演算子である。
Figure 0007361266000013
なお、仮想受信アレーアンテナの第1番目のアンテナ素子の位置ベクトルを基準とした、第2番目のアンテナ素子の位置ベクトルを、素子間ベクトルD(2,1)として次の式(10)で表す。
Figure 0007361266000014
同様に、レーダ受信部200が遠方界に存在する物標PTからの反射波を受信する場合、仮想受信アレーアンテナの第nva (r)番目のアンテナ素子での受信信号を基準とした、第nva (t)番目のアンテナ素子での受信信号の位相差d(rPT, nva (t),nva (r))は、以下の式(11)で示される。ここで、nva (r)=1,…, Nt×Na、nva (t)=1,…, Nt×Naである。
Figure 0007361266000015
なお、仮想受信アレーアンテナの第nva (r)番目のアンテナ素子の位置ベクトルを基準とした、第nva (t)番目のアンテナ素子の位置ベクトルを、素子間ベクトルD(nva (t),nva (r))として次の式(12)に表す。
Figure 0007361266000016
上述の式(11)及び式(12)に示すように、仮想受信アレーアンテナの第nva (r)番目のアンテナ素子での受信信号を基準とした、第nva (t)番目のアンテナ素子での受信信号の位相差d(rPT,nva (t), nva (r))は、遠方界に存在する物標PTの方向を示す単位ベクトル(rPT/|rPT|)及び素子間ベクトルD(nva (t),nva (r))に依存する。
また、仮想受信アレーアンテナが同一平面内に存在する場合、素子間ベクトルD(nva (t),nva (r))は同一平面上に存在する。方向推定部214は、このような素子間ベクトルの全て又は一部を用いて、素子間ベクトルが示す位置に仮想的にアンテナ素子が存在するものとして、仮想面配置アレーアンテナを構成し、2次元における方向推定処理を行う。すなわち、方向推定部214は、仮想受信アレーアンテナを構成するアンテナ素子に対する補間処理によって補間された複数の仮想的なアンテナを用いて到来方向推定処理を行う。
なお、方向推定部214は、仮想的なアンテナ素子が重複する場合、重複するアンテナ素子のうちの一つのアンテナ素子を予め固定的に選択してもよい。又は、方向推定部214は、重複する全ての仮想的なアンテナ素子での受信信号を用いて加算平均処理を施してもよい。
以下、Nq個の素子間ベクトル群を用いて、仮想面配置アレーアンテナを構成した場合における、ビームフォーマ法を用いた2次元における方向推定処理について説明する。
ここで、仮想面配置アレーアンテナを構成する第nq番目の素子間ベクトルをD(nva(nq) (t),nva(nq) (r))と表す。ここで、nq=1,…,Nqである。
方向推定部214は、仮想受信アレー相関ベクトルh_after_cal(k,fs,w)の各要素であるh1(k,fs,w),…,hNa×N(k,fs,w)を用いて、以下の式(13)に示す仮想面配置アレーアンテナ素子相関ベクトルhVA(k,fs,w)を生成する。
Figure 0007361266000017
仮想面配置アレー方向ベクトルaVAuv)を、次の式(14)に示す。
Figure 0007361266000018
仮想受信アレーアンテナがXY平面内に存在する場合、物標PTの方向を示す単位ベクトル(rPT/|rPT|)と、方位角θ及び仰角φとの関係を次の式(15)に示す。
Figure 0007361266000019
方向推定部214は、垂直方向及び水平方向の2次元空間プロファイルを算出する各角度方向θuvに対して、上述の式(15)を用いて単位ベクトル(rPT/|rPT|)を算出する。
さらに、方向推定部214は、仮想面配置アレーアンテナ素子相関ベクトルhVA(k,fs,w)、及び、仮想面配置アレー方向ベクトルaVAuv)を用いて、水平方向及び垂直方向の2次元方向推定処理を行う。
例えば、ビームフォーマ法を用いた2次元における方向推定処理では、仮想面配置アレーアンテナ相関ベクトルhVA(k,fs,w)及び仮想面配置アレー方向ベクトルaVAuv)を用いて、次の式(16)で示される2次元における方向推定評価関数を用いて垂直方向及び水平方向の2次元空間プロファイルを算出し、2次元空間プロファイルの最大値又は極大値となる方位角及び仰角方向を到来方向の推定値とする。
Figure 0007361266000020
なお、方向推定部214は、ビームフォーマ法以外にも、仮想面配置アレーアンテナ相関ベクトルhVA(k,fs,w)及び仮想面配置アレー方向ベクトルaVAuv)を用いて、Capon法又はMUSIC法などの高分解能到来方向推定アルゴリズムを適用してもよい。これにより、演算量は増加するが、角度分解能を高めることができる。
なお、上述した離散時間kは、距離情報に変換して出力されてもよい。離散時間kを距離情報R(k)に変換する際には次の式(17)を用いればよい。
Figure 0007361266000021
ここで、Twは符号送信区間を表し、Lはパルス符号長を表し、C0は光速度を表す。
また、ドップラ周波数情報は、相対速度成分に変換して出力されてもよい。ドップラ周波数fsΔΦを相対速度成分vd(fs)に変換する際には次の式(18)を用いて変換できる。
Figure 0007361266000022
ここで、λは送信周波数変換部105から出力されるRF信号のキャリア周波数の波長である。
方向推定部214から得られた結果を、車両に搭載された車両制御部(図示せず)に出力する。車両制御部は、方向推定結果を用いて、車両の制御を行う。
[レーダ装置10におけるアンテナ配置]
以上の構成を有するレーダ装置10における送信アレーアンテナ108および受信アレーアンテナ202の配置について説明する。
図9は、実施の形態1に係るアンテナ配置の一例を示す図である。送信アレーアンテナ108を構成する送信アンテナ素子の総数Ntは3以上であり、受信アレーアンテナ202を構成する受信アンテナ素子の総数Nは4以上である。送信アレーアンテナ108および受信アレーアンテナ202のいずれも、第1軸方向に沿って配置される。図9において、例えば、第1軸方向および第2軸方向は、それぞれ水平方向および垂直方向である。
ここで、第1軸方向の基本間隔を、dH(半波長程度)とする。図9に示されるように、Nt個の送信アンテナ素子Tx#1~Tx#Ntは、第1軸に沿って第1の間隔Dtで等間隔に配置される。Dtは、基本間隔dHの正の整数倍である。即ち、ある正の整数ntにより、Dt=nt×dHと表される。なお、Nt個の送信アンテナ素子Tx#1~Tx#Ntを送信アンテナ素子群、送信アンテナ群と呼ぶ。
また、図9に示されるように、N個の受信アンテナ素子Rx#1~Rx#Naは、それぞれ、隣の受信アンテナ素子との間隔Dr(1)~Dr(Na-1)で不等間隔に配置される。間隔Dr(n)(1≦n≦Na-1)は、受信アンテナ素子Rx#nの右隣の受信アンテナ素子Rx#n+1との間隔を表し、Dr(n)=(nr(n)×nt+1)dHと表される。ここで、nr=[nr(1),nr(2),…,nr(Na-1)]は、中央に位置する1つまたは2つの値を1とし、その両隣に0または1ずつ増加させた値の列が対称に並ぶ数列である。Na=4の場合、例えば、nr=[2,1,2]である。Na=5の場合、例えば、nr=[2,1,1,2]である。Na=6の場合、例えば、nr=[2,1,1,1,2]、nr=[2,2,1,2,2]、またはnr=[3,2,1,2,3]である。1≦n<Na-1を満たす正の整数nに対して、nr(n)=nr(Na-n)が成り立ち、Dr(n)についても、同様にDr(n)=Dr(Na-n)が成り立つ。つまり、図9の受信アレーアンテナ202の配置は、中央部分が狭い間隔であり、端部は広い間隔である。なお、N個の受信アンテナ素子Rx#1~Rx#Naを受信アンテナ素子群、または、受信アンテナ群と呼ぶ。
受信アレーアンテナ108および受信アレーアンテナ202は、図9に示す点を位相中心として、アンテナ素子の開口長(図示なし)を第1軸方向および第2軸方向に拡げることができる。これにより、水平方向および垂直方向のビーム幅を絞り、高いアンテナ利得を得ることができる。各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図10は、実施の形態1に係るサブアレーアンテナ構成の一例を示す図である。図10に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。
図10に示されるように、サブアレーアンテナ素子の間隔を半波長程度として、アンテナ素子には、様々なサブアレーアンテナ構成を用いることができる。例えば、(a)第1軸方向1素子、第2軸方向に4素子のサブアレーアンテナ構成を用いた場合、(b)第1軸方向1素子、第2軸方向10素子のサブアレーアンテナ構成を用いた場合、(c)第1軸方向2素子、第2軸方向4素子のサブアレーアンテナ構成を用いた場合、(d)第1軸方向2素子、第2軸方向10素子のサブアレーアンテナ構成を用いた場合などが考えられる。さらに、サブアレーアンテナ構成は、図10に示す構成に限らず、アンテナ素子のサイズが隣接するアンテナ素子に物理的に干渉しない程度に開口長を拡大してもよい。開口長を拡大することにより、アンテナ利得を向上させることが可能である。
レーダ装置10における素子数がNt個の送信アレーアンテナ108及び素子数がN個の受信アレーアンテナ202が第1軸に沿って配置される場合について、以下に複数の例を示す。
<実施の形態1のバリエーション1>
本実施の形態のバリエーション1では、送信アンテナ素子の数が4個、受信アンテナ素子の数が4個の場合のアンテナ配置と、それを用いた到来方向推定手法とについて説明する。
図11は、実施の形態1のバリエーション1に係るアンテナ配置の一例を示す図である。図11に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。なお、第1軸方向に垂直な破線によって区切られた間隔は、第1軸方向の基本間隔dHを表す。以降の図においても、同様の破線によって第1軸方向の基本間隔dHが表される場合がある。送信アレーアンテナ108aの配置および受信アレーアンテナ202aの配置によって、仮想受信アレーアンテナVAA1の配置が構成される。
図11において、送信アレーアンテナ108aを構成する送信アンテナ素子の総数Ntは4個であり、4個の送信アンテナ素子は、それぞれ、Tx#1~Tx#4で示される。送信アンテナ素子Tx#1~Tx#4は、第1軸方向にDt=2×dHの間隔で等間隔に配置される。ここで、第1軸方向の基本間隔dHは、例えば、dH=0.5λである。受信アレーアンテナ202aを構成する受信アンテナ素子Rxの総数Nは4個であり、4個の受信アンテナ素子は、それぞれ、Rx#1~Rx#4で示される。受信アンテナ素子Rx#1~Rx#4は第1軸方向にDr=[5,3,5]×dHの間隔で配置される。図11に示される例においては、nr=[2,1,2]である。
図11に示される送信アレーアンテナ108aおよび受信アレーアンテナ202aのアンテナ素子に、図10に示されるサブアレーアンテナ構成を用いることにより、仮想受信アレーアンテナVAA1の広い開口長を確保してビーム幅を絞り、サブアレーアンテナによる高いアンテナ利得を得ることができる。
ここで、送信アレーアンテナ108aの開口長は、第1軸方向に2×dH以下、第2軸方向に任意の長さで構成してもよい。また、受信アレーアンテナ202aの開口長は、第1軸方向に3×dH以下、第2軸方向に任意の長さで構成してもよい。さらに、各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
例えば、レーダ装置10に求められる視野角(FOV)が、水平方向に広角かつ垂直方向に狭角である場合、送信アレーアンテナ108aおよび受信アレーアンテナ202aの各アンテナ素子のビームパターンも同様に、水平方向に広角かつ垂直方向に狭角となることが望ましい。したがって、各アンテナ素子は、例えば、図10における(b)に示される垂直方向に並べたサブアレーアンテナ構成を用いることが考えられる。
また、例えば、高速道路上などの遠距離検知に用いるレーダ装置10には、水平方向に狭角であるFOVが求められる。この場合、送信アレーアンテナ108aおよび受信アレーアンテナ202aの各アンテナ素子は、例えば、図10における(c)または(d)に示されるように、水平方向にサブアレーアンテナ素子を並べる構成を採ることが考えられる。
同様に、送信アレーアンテナ108aおよび受信アレーアンテナ202aの各アンテナ素子は、レーダ装置の視野角に適したビームパターンを形成するようなサブアレーアンテナ構成を用いることが望ましい。
図12Aは、実施の形態1のバリエーション1に係る仮想受信アレーアンテナVAA1による1次元ビームによる指向性パターンの一例を示す。図11に示される仮想受信アレーアンテナVAA1を用いたビームフォーマ法により、図12Aに示される指向性パターンが第1軸方向に形成される。図12Aに示される指向性パターンは、受信アレーアンテナ202aへの到来波が第1軸方向0度(天頂)から到来した場合のものである。
図12Bは、実施の形態1のバリエーション1に係る仮想受信アレーアンテナVAA1にウエイトをかけた場合の1次元ビームによる指向性パターンの一例を示す。レーダ装置10は、仮想受信アレーアンテナVAA1で受信した信号にウエイトをかけてビーム形成してもよい。例えば、VA#1~VA#16の受信信号に図12Bに示される仮想受信アレーウエイトをかけると、メインローブ幅は太くなるが、図12Bに示されるビームパターンにように、サイドローブレベルを下げたビームを形成できる。
<比較例1>
実施の形態1のバリエーション1に関して、比較例1を検討する。
図13は、実施の形態1の比較例1に係るアンテナの配置の一例を示す。図13に示される比較例1においては、送信アレーアンテナ108bの4つの送信アンテナ素子Tx#1~Tx#4は、dHの間隔で等間隔に配置される。また、受信アレーアンテナ202bの4つの受信アンテナ素子Rx#1~Rx#4は、4×dHの間隔で等間隔に配置される。
図13に示されるように、送信アンテナ素子Tx#1~Tx#4および受信アンテナ素子Rx#1~Rx#4によって構成される仮想受信アレーアンテナVAA2には、16個の仮想アンテナが、dHの間隔で等間隔に配置される。比較例1の仮想受信アレーアンテナVAA2の第1軸方向の開口長は、15×dHであり、実施の形態1のバリエーション1の仮想受信アレーアンテナVAA1の第1軸方向の開口長19×dHよりも小さい。このように、比較例1においては、実施の形態1のバリエーション1と比較すると、仮想受信アレーアンテナVAA2の第1軸方向の開口長を広げることが困難である。
図14Aは、実施の形態1のバリエーション1に係る仮想受信アレーアンテナVAA1による1次元ビームによる指向性パターンの一例と比較例1に係る仮想受信アレーアンテナVAA2による1次元ビームによる指向性パターンの一例との比較を示す。バリエーション1と比較例1とは、いずれも同数の送信アンテナ素子および受信アンテナ素子を使用している。
バリエーション1の指向性パターンにおいては、比較例1と比較して、より幅の狭いメインローブのビームが形成される。即ち、バリエーション1に係る仮想受信アレーアンテナVAA1は、比較例1に係る仮想受信アレーアンテナVAA2よりも分解能の高い仮想受信アレー構成である。
なお、図14Aに示されるように、バリエーション1の指向性パターンにおける広角側のサイドローブは、比較例1のサイドローブと比較して高くなる。しかしながら、例えば、水平方向の視野角を絞っている場合、広角側は、視野角のより外側に位置するので、サイドローブの高さの影響は、小さくなり、無視してもよい。
図14Bは、実施の形態1のバリエーション1に係る仮想受信アレーアンテナVAA1にウエイトをかけた場合の1次元ビームによる指向性パターンの一例と比較例1に係る仮想受信アレーアンテナVAA2による1次元ビームによる指向性パターンの一例との比較を示す。
図14Bに示されるように、実施の形態1のバリエーション1は、仮想受信アレーアンテナVAA1にウエイトをかけることにより、比較例1と同等のメインローブ幅およびサイドローブレベルが確保できる。さらに、比較例1と比較して、実施の形態1のバリエーション1においては、送信アレーアンテナ108aおよび受信アレーアンテナ202aのアンテナ素子間の間隔が広い。
したがって、実施の形態1のバリエーション1においては、各アンテナ素子の開口長を水平方向により広げて送信アレーアンテナ108aおよび受信アレーアンテナ202aを構成することにより、より高いアンテナ利得を得ることができる。即ち、実施の形態1のバリエーション1においては、アンテナ利得を上げつつ比較例1と同等の指向性パターンを得ることができる。
<実施の形態1のバリエーション2>
本実施の形態のバリエーション2のアンテナ配置は、本実施の形態のバリエーション1と類似のアンテナ配置である。送信アレーアンテナ108cのアンテナ素子の総数が3個、受信アレーアンテナ202cのアンテナ素子の総数が5個の場合のアンテナ配置について説明する。
図15は、実施の形態1のバリエーション2に係るアンテナ配置の一例を示す。図15に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。送信アレーアンテナ108cおよび受信アレーアンテナ202cの配置によって、仮想受信アレーアンテナVAA3の配置が構成される。
図15において、送信アンテナ素子の総数Ntは3個であり、それぞれ、Tx#1~Tx#3で示される。送信アンテナ素子Tx#1~Tx#3は、Dt=2×dHの間隔で第1軸方向に等間隔に配置される。ここで、第1軸方向の基本間隔dHは、例えば、dH=0.5λである。受信アンテナ素子の総数Nは5個であり、それぞれ、Rx#1~Rx#5で示される。受信アンテナ素子Rx#1~Rx#5は、Dr=[5,3,3,5]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,1,2]の場合に相当する。
実施の形態1のバリエーション2においても、バリエーション1と同様に、図15に示される点を位相中心として、送信アレーアンテナ108cおよび受信アレーアンテナ202cの各アンテナ素子の開口長を第1軸方向および第2軸方向に拡げることができる。これにより、水平方向および垂直方向のビーム幅を絞りつつ、高いアンテナ利得を得ることができる。各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
<実施の形態1のバリエーション3>
本実施の形態のバリエーション3のアンテナ配置は、本実施の形態のバリエーション1と類似のアンテナ配置である。送信アレーアンテナ108dのアンテナ素子の総数が3個、受信アレーアンテナ202dのアンテナ素子の総数が4個の場合のアンテナ配置について説明する。
図16は、実施の形態1のバリエーション3に係るアンテナ配置の一例を示す。図16に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。送信アレーアンテナ108dおよび受信アレーアンテナ202dの配置によって、仮想受信アレーアンテナVAA4の配置が構成される。
図16において、送信アンテナ素子の総数Ntは3個であり、それぞれ、Tx#1~Tx#3で示される。送信アンテナ素子Tx#1~Tx#3は、Dt=2×dHの間隔で第1軸方向に等間隔に配置される。ここで、第1軸方向の基本間隔dHは、例えば、dH=0.5λである。受信アンテナ素子の総数Nは4個であり、それぞれ、Rx#1~Rx#4で示される。受信アンテナ素子Rx#1~Rx#4は、Dr=[5,3,5]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。
実施の形態1のバリエーション3においても、バリエーション1と同様に、図16に示される点を位相中心として、送信アレーアンテナ108dおよび受信アレーアンテナ202dの各アンテナ素子の開口長を第1軸方向および第2軸方向に拡げることができる。これにより、水平方向および垂直方向のビーム幅を絞り、高いアンテナ利得を得ることができる。各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
<実施の形態1のバリエーション4>
本実施の形態のバリエーション4のアンテナ配置は、本実施の形態のバリエーション3と類似のアンテナ配置である。送信アレーアンテナ108eおよび受信アレーアンテナ202eにおいて、アンテナ素子間の間隔が異なる場合のアンテナ配置について説明する。
図17は、実施の形態1のバリエーション4に係るアンテナ配置の一例を示す。図17に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。送信アレーアンテナ108eおよび受信アレーアンテナ202eの配置によって、仮想受信アレーアンテナVAA5の配置が構成される。
図17において、送信アンテナ素子の総数Ntは3個であり、それぞれ、Tx#1~Tx#3で示される。送信アンテナ素子Tx#1~Tx#3は、Dt=dHの間隔で第1軸方向に等間隔に配置される。ここで、第1軸方向の基本間隔dHは、例えば、dH=0.5λである。受信アンテナ素子の総数Nは4個であり、それぞれ、Rx#1~Rx#4で示される。受信アンテナ素子Rx#1~Rx#4は、Dr=[3,2,3]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。
実施の形態1のバリエーション4においても、バリエーション3と同様に、図17に示される点を位相中心として、送信アレーアンテナ108eおよび受信アレーアンテナ202eの各アンテナ素子の開口長を第1軸方向および第2軸方向に拡げることができる。これにより、水平方向および垂直方向のビーム幅を絞りつつ、高いアンテナ利得を得ることができる。各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図17に示されるように、仮想受信アレーアンテナVAA5において、仮想アンテナVA#6の位置には、送信アンテナ素子Tx#3と受信アンテナ素子Rx#2によって構成される仮想アンテナと、送信アンテナ素子Tx#1と受信アンテナ素子Rx#3によって構成される仮想アンテナとが重複して構成される。したがって、仮想アンテナVA#6の位置では、2つの受信信号が存在する。レーダ装置10は、到来方向推定においては、2つの受信信号のうち一方を用いてもよく、その平均値を用いてもよく、その和を用いてもよい。仮想受信アンテナの位置が重複することから、重複する2つの信号に到来角による位相差はないことに留意する。
このため、レーダ装置10が時分割多重MIMOレーダの場合、レーダ装置10は、重複する仮想アンテナが受信する2つの受信信号を用いてドップラ解析を行ってもよい。図6に示されるドップラ解析部213で解析する信号の送信周期を小さくすることにより、ドップラ解析部213が解析可能な最大速度を大きくすることができる。
<実施の形態1のバリエーション5>
本実施の形態のバリエーション5のアンテナ配置は、本実施の形態のバリエーション3と類似のアンテナ配置である。送信アレーアンテナ108fおよび受信アレーアンテナ202fにおいて、アンテナ素子間の間隔が異なる場合のアンテナ配置について説明する。
図18は、実施の形態1のバリエーション5に係るアンテナ配置の一例を示す。図18に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。送信アレーアンテナ108fおよび受信アレーアンテナ202fの配置によって、仮想受信アレーアンテナVAA6の配置が構成される。
図18において、送信アンテナ素子の総数Ntは3個であり、それぞれ、Tx#1~Tx#3で示される。送信アンテナ素子Tx#1~Tx#3は、Dt=3×dHの間隔で第1軸方向に等間隔に配置される。ここで、第1軸方向の基本間隔dHは、例えば、dH=0.5λである。受信アンテナ素子の総数Nは4個であり、それぞれ、Rx#1~Rx#4で示される。受信アンテナ素子Rx#1~Rx#4は、Dr=[7,4,7]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。
実施の形態1のバリエーション5においても、バリエーション3と同様に、図18に示される点を位相中心として、送信アレーアンテナ108fおよび受信アレーアンテナ202fの各アンテナ素子の開口長を第1軸方向および第2軸方向に拡げることができる。これにより、水平方向および垂直方向のビーム幅を絞りつつ、高いアンテナ利得を得ることができる。各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図19は、実施の形態1のバリエーション5に係る仮想受信アレーアンテナVAA6による1次元ビームによる指向性パターンの一例を示す。図19に示される指向性パターンは、受信アンテナへの到来波が第1軸方向0度(天頂)から到来した場合の、第1軸方向に形成される指向性パターンである。
実施の形態1のバリエーション5は、水平方向の視野角(FOV)が狭い場合に適している。実施の形態1のバリエーション5は、例えば、水平方向の視野角が30度程度の長距離用のレーダに使用できる。送信アレーアンテナ108fおよび受信アレーアンテナ202fの各アンテナ素子に対してサブアレーアンテナ構成を用いることで、水平方向及び垂直方向の指向性を絞ることができる。
図19に示されるように、実施の形態1のバリエーション5においては、メインローブに比べて-3.4dB程度のサイドローブが生じる。しかしながら、各アンテナ素子にサブアレーアンテナ構成を用いて、第1軸方向の指向性を絞ることにより、サイドローブの影響を小さくすることができる。また、最尤推定法などの、サイドローブの影響の少ない到来方向推定手法を用いてもよい。
以上、実施の形態1に係るアンテナ配置の例としてバリエーション1、バリエーション2、バリエーション3、バリエーション4、およびバリエーション5について説明した。
このように、実施の形態1では、レーダ装置10は、送信アレーアンテナ108の複数の送信アンテナ素子#1~#Ntからレーダ送信信号を多重して送信するレーダ送信部100と、レーダ送信信号がターゲットにおいて反射された反射波信号を、送信アレーアンテナ202の複数の受信アンテナ素子#1~#Naを用いて受信するレーダ受信部200と、を具備する。また、本実施の形態では、送信アンテナ素子#1~#Ntおよび受信アンテナ素子#1~#Naを上述のように配置する。
実施の形態1によれば、送信アレーアンテナ108及び受信アレーアンテナ202のアンテナ素子の開口長を、例えば、サブアレー化によって拡大し、アンテナ利得を向上させ、反射波信号の受信SNRを向上させることができる。また、実施の形態1によれば、不要なグレーティングローブの発生が抑えられ、MIMOレーダによる誤検出リスクを低減することができる。さらに、実施の形態1によれば、仮想受信アレーアンテナの形成するビームパターンにおけるメインローブ幅の狭いMIMOレーダを構成できる。
なお、送信アンテナおよび受信アンテナに対して、ダミーアンテナ素子を設置してもよい。ここで、ダミーアンテナ素子とは、構成するアンテナ素子が他のアンテナ素子と物理的に類似の構成をとり、レーダ信号の送受信に用いられないアンテナである。例えば、アンテナ素子間などやアンテナ素子の外側の領域にダミーアンテナ素子を設置してもよい。ダミーアンテナ素子を設置することによって、例えば、アンテナの放射、インピーダンス整合、アイソレーションといった電気的特性の影響を一様化する効果が得られる。
(実施の形態2-2次元配置)
本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置10と基本構成が共通するので、図1を援用して説明する。
本実施の形態では、各アンテナ素子にサブアレーアンテナ構成を用いて、アンテナ素子の指向性利得を高め、2次元の方向に仮想受信アレーアンテナの開口長を拡げ、不要なグレーティングローブの発生を抑えることで誤検出リスクを低減し、所望の指向性パターンを実現することができる、レーダ装置10を提供する。
[レーダ装置10におけるアンテナ配置]
実施の形態2においては、実施の形態1の送信アレーアンテナ108および受信アレーアンテナ202のアンテナ配置を含み、2次元の方向に配置されるアンテナ配置と、そのアンテナ配置を用いた到来方向推定手法について説明する。2次元の方向にアンテナ素子を配置することによって、2次元の到来方向推定が可能となる。
図20は、実施の形態2に係るアンテナ配置の一例を示す図を示す。図20に示される第1軸方向および第2軸方向は、例えば、それぞれ、水平方向および垂直方向である。なお、第1軸方向に垂直な破線によって区切られた間隔は、第1軸方向の基本間隔dHを表す。また、第2軸方向に垂直な破線によって区切られた間隔は、第2軸方向の基本間隔dVを表す。以降の図においても、同様の破線によって、第1軸方向と第2軸方向のそれぞれの基本間隔が表される場合がある。図20において、送信アレーアンテナ108gを構成する送信アンテナ素子の総数Ntは6個である。受信アレーアンテナ202gを構成する受信アンテナ素子の総数Nは8個であり、8個の受信アンテナ素子は、それぞれ、Rx#1~Rx#8で示される。送信アンテナ素子Tx#1~Tx#6および受信アンテナ素子Rx#1~Rx#8によって構成される仮想受信アレーアンテナVAA7の仮想アンテナの総数は48であり、それぞれ、VA#1~VA#48で示される。ここで、第1軸方向と第2軸方向とは直交する。第1軸方向の基本間隔dHは、例えば、dH=0.5λである。また、第2軸方向の基本間隔dVは、例えば、dV=0.68λである。
図20において、送信アンテナ素子Tx#1~#3と受信アンテナ素子Rx#1~#4の配置は、実施の形態1のバリエーション3と同じ配置である。即ち、送信アンテナ素子Tx#1~Tx#3は、Dt=dHの間隔で第1軸方向に等間隔に配置される。また、受信アンテナ素子Rx#1~Rx#4は、Dr=[3,2,3]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。さらに、送信アンテナ素子Tx#4~Tx#6は、送信アンテナ素子Tx#1~#3と同様に配置される。また、受信アンテナ素子Rx#5~Rx#8は、受信アンテナ素子Rx#1~Rx#4と同様に配置される。
送信アンテナ素子Tx#4~Tx#6と受信アンテナ素子Rx#5~Tx#8の配置は、それぞれ、送信アンテナ素子Tx#1~Tx#3と受信アンテナ素子Rx#1~Rx#4に対して、第1軸方向および第2軸方向にずらして配置してもよい。例えば、図20に示されるように、送信アンテナ素子Tx#4~Tx#6は、それぞれ、送信アンテナ素子Tx#1~Tx#3に対して、第1軸方向にdHの間隔、第2軸方向にdVの間隔ずらして配置される。また、受信アンテナ素子Rx#5~Rx#8は、それぞれ、受信アンテナ素子Rx#1~Rx#4に対して、第1軸方向にdHの間隔、第2軸方向に2dVの間隔ずらして配置される。
送信アレーアンテナ108gおよび受信アレーアンテナ202gの各アンテナ素子は、送信アンテナ素子Tx#1~Tx#6および受信アンテナ素子Rx#1~Rx#8の位置を中心として、隣接するアンテナ素子に物理的に干渉しない程度に開口長を拡大してもよい。開口長を拡大することにより、アンテナ利得を向上させることが可能である。
また、実施の形態2においても、実施の形態1と同様に、サブアレーアンテナ構成を用いて、送信アレーアンテナ108gおよび受信アレーアンテナ202gの各アンテナ素子を構成してもよい。
図21は、実施の形態2に係るアンテナ素子のサイズの一例を示す。例えば、図21に示されるように、各アンテナ素子には、第2軸方向に、4素子からなるサブアレーアンテナ構成を用いてもよい。レーダ装置10の視野角(FOV)が水平方向に広角、垂直方向に狭角である場合、送信アレーアンテナ108gおよび受信アレーアンテナ202gの各アンテナ素子のビームパターンも、同様に水平方向に広角、垂直方向に狭角となることが望ましい。したがって、図10における(b)に示されるように、サブアレーアンテナ素子を垂直方向に並べたサブアレーアンテナ構成が考えられる。このように、送信アレーアンテナ108gおよび受信アレーアンテナ202gの各アンテナ素子には、レーダ装置10の視野角に適したビームパターンを形成するようなサブアレーアンテナ構成を用いることが望ましい。
各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図22Aは、実施の形態2に係る仮想受信アレーアンテナVAA7による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第1軸方向に沿った断面図の一例を示す。
図22Bは、実施の形態2に係る仮想受信アレーアンテナVAA7による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第2軸方向に沿った断面図の一例を示す。
これらの指向性パターンの特徴については、図24Aおよび図24Bを参照して後述する。
なお、時分割多重MIMOレーダの場合、送信アレーアンテナ108gの全てのアンテナ素子を多重しなくてもよい。例えば、図20に示される送信アンテナ素子Tx#1~Tx#3の3個の送信アンテナ素子に対して多重してもよい。これによって、仮想受信アレー数は少なくなり、第1軸方向(水平方向)の角度推定性能を維持し、アンテナ多重数を削減することができる。
時分割多重MIMOレーダの場合、アンテナ多重数が少なくなることがら送信周期を短くすることができ、そのため、ドップラ解析部213によって解析可能である最大ドップラ速度を大きくすることができる。したがって、全てのアンテナ素子を多重して送信アンテナ素子からそれぞれ独立に信号を送信する構成と比較して、高速物体の検知に適した構成とすることができる。
また、送信アレーアンテナ108gの複数のアンテナ素子を1素子のアンテナ素子として用いてビームを形成してもよい。例えば、送信アンテナ素子Tx#1,Tx#4に位相を制御して給電し、1つの送信アンテナ素子として用いる。送信アンテナ素子Tx#2,Tx#5と、送信アンテナ素子Tx#3,Tx#6も、それぞれ、同様に位相制御して給電し、1つの送信アンテナ素子として用いる。これにより、位相中心が2×dHの間隔で第1軸上に配置された、合計3つの送信アンテナ素子として扱うことができる。
複数の送信アンテナ素子を1つのアンテナ素子として用いて送信ビームを形成することで、各送信アンテナ素子から独立に信号を送信する場合と比較して、第1軸方向(水平方向)の視野角が狭くなるが、正面方向の利得が向上する。さらに、上述の全てのアンテナ素子を多重しない場合と同様、送信アンテナ素子の多重数が3になる。例えば、時分割多重MIMOレーダの場合、多重数が少ない分、送信周期を小さくすることができ、ドップラ解析部213によって解析可能な最大ドップラ速度を大きくすることができる。したがって、上述の一例は送信アンテナ素子からそれぞれ独立に信号を送信する構成と比較して、レーダ装置10による検知距離を伸ばすことができ、また、高速移動物体のレーダ装置10による検知性能を向上させることができる。
<比較例2>
図23は、実施の形態2の比較例2に係るアンテナ配置の一例を示す図である。
比較例2において、送信アレーアンテナ108hを構成する送信アンテナ素子Tx#1~Tx#6は、第1軸方向にdHの間隔で、第2軸方向にdVの間隔で、等間隔に配置される。また、受信アレーアンテナ202hを構成する受信アンテナ素子Rx#1~Rx#8は、第1軸方向に3×dHの間隔で、第2軸方向に2×dVの間隔で、等間隔に配置される。送信アンテナ素子Tx#1~Tx#6および受信アンテナ素子Rx#1~Rx#8によって構成される仮想受信アレーアンテナVAA8の仮想アンテナの総数は48であり、それぞれ、VA#1~VA#48で示される。仮想受信アレーアンテナVAA8において、48個の仮想アンテナVA#1~VA#48は、第1軸方向にdHの間隔で、第2軸方向にdVの間隔で、等間隔に配置される。
比較例2において、送信アンテナ素子Tx#1~Tx#6は、それぞれ、隣接するアンテナに物理的に干渉しないように、第1軸方向および第2軸方向に、それぞれ、dH以下およびdV以下の開口長で構成することが求められる。したがって、送信アンテナ素子Tx#1~Tx#6は、いずれも、図21に示されるようなサブアレーアンテナ構成を用いることはできず、単一のアンテナ素子で構成することが求められる。即ち、実施の形態2において、送信アンテナ1素子にサブアレーアンテナ構成を用いたが、比較例2においては、送信アンテナ1素子にサブアレーアンテナ構成を用いることは困難である。
また、比較例2において、受信アンテナ素子Rx#1~Rx#8は、それぞれ、第1軸方向および第2軸方向に、それぞれ、3×dH以下および2×dV以下の開口長で構成する場合、隣接するアンテナに物理的に干渉しないようにすることができる。したがって、受信アンテナ素子Rx#1~Rx#8には、それぞれ、サブアレーアンテナ構成を用いてもよく、さらに、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。しかしながら、比較例2においては、実施の形態2と比較して、受信アンテナ素子Rx#1~Rx#8の第2軸方向の開口長を広げられる範囲が狭い。
図24Aは、実施の形態2に係る仮想受信アレーアンテナVAA7による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第1軸方向に沿った断面図の一例と比較例2に係る仮想受信アレーアンテナVAA8による2次元ビームの指向性パターンであって第1軸方向に沿った断面図の一例との比較を示す。図24Bは、実施の形態2に係る仮想受信アレーアンテナVAA7による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第2軸方向に沿った断面図の一例と比較例2に係る仮想受信アレーアンテナVAA8による2次元ビームの指向性パターンであって第2軸方向に沿った断面図の一例との比較を示す。
実施の形態2では、比較例2と同数の送信アンテナ素子および受信アンテナ素子が用いられている。しかしながら、図24Aに示されるように、実施の形態2の構成によって、比較例2の構成と比較して、メインローブ幅の狭いビームを形成することができる。したがって、実施の形態2のアンテナ配置によって、比較例2と比較して、第1軸方向(水平方向)の分解能が高い仮想受信アレー構成が得られる。
さらに、図24Bに示されるように、実施の形態2のビーム形状は、比較例2のビーム形状と比較して、略同様のビーム形状である。しかしながら、実施の形態2においては、比較例2と比較して、送信アンテナ素子および受信アンテナ素子の位相中心の水平方向の間隔が大きい分、送信アレーアンテナ108hおよび受信アレーアンテナ202hのアンテナ1素子の開口長を水平方向により広げて構成することが可能である。したがって、実施の形態2のアンテナ配置によって、比較例2と比較して、アンテナ利得を上げつつ、第2軸方向(垂直方向)に同等の性能を有する指向性パターンを得ることができる。
<実施の形態2のバリエーション1>
実施の形態2のバリエーション1においては、実施の形態1の送信アレーアンテナ108および受信アレーアンテナ202のアンテナ配置を含み、2次元の方向に配置されるアンテナ配置と、そのアンテナ配置を用いた到来方向推定手法について説明する。実施の形態2のバリエーション1においても、実施の形態2と同様、2次元の方向にアンテナ素子を配置することによって、2次元の到来方向推定が可能となる。
図25Aは、実施の形態2のバリエーション1に係る送信アレーアンテナ108iおよび受信アレーアンテナ202iの配置の一例を示す。
図25Aにおいて、送信アレーアンテナ108iを構成する送信アンテナ素子の総数Ntは6個であり、6個の送信アンテナ素子は、それぞれ、Tx#1~Tx#6で示される。受信アレーアンテナ202iを構成する受信アンテナ素子の総数Nは8個であり、8個の受信アンテナ素子は、それぞれ、Rx#1~Rx#8で示される。ここで、第1軸方向と第2軸方向とは直交する。第1軸方向の基本間隔dHは、例えば、dH=0.5λである。また、第2軸方向の基本間隔dVは、例えば、dV=0.68λである。
図25Aに示されるように、送信アンテナ素子Tx#1~Tx#6の配置は、実施の形態2の送信アンテナ素子Tx#1~Tx#6の配置と同じ配置である。即ち、送信アンテナ素子Tx#1~Tx#3は、Dt=dHの間隔で第1軸方向に等間隔に配置される。さらに、送信アンテナ素子Tx#4~Tx#6は、それぞれ、送信アンテナ素子Tx#1~Tx#3に対して、第1軸方向にdHの間隔、第2軸方向にdVの間隔ずらして、送信アンテナ素子Tx#1~#3と同様に配置される。
また、受信アンテナ素子Rx#3~Rx#6の配置は、実施の形態1のバリエーション3の受信アンテナ素子Rx#1~Rx#4の配置と同じ配置である。即ち、受信アンテナ素子Rx#3~Rx#6は、Dr=[5,3,5]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。
また、受信アンテナ素子Rx#1,Rx#2およびRx#7,Rx#8は、それぞれ、受信アンテナ素子Rx#4,Rx#5と同様の間隔、即ち、3×dHの間隔で第1軸方向に配置される。さらに、受信アンテナ素子Rx#1,Rx#2およびRx#7,Rx#8の配置は、受信アンテナ素子Rx#4,Rx#5に対して第1軸方向、および第2軸方向にずらして配置してもよい。例えば、図25Aに示すように、受信アンテナ素子Rx#1,Rx#2は、受信アンテナ素子Rx#4, Rx#5に対して、第1軸方向にdHの間隔、第2軸方向に-2dVの間隔ずらして配置される。一方、受信アンテナ素子Rx#7, Rx#8は、受信アンテナ素子Rx#4, Rx#5に対して、第1軸方向に-dHの間隔、第2軸方向に2dVの間隔ずらして配置される。
送信アレーアンテナ108iおよび受信アレーアンテナ202iの各アンテナ素子は、図25Aに示される送信アンテナ素子Tx#1~Tx#6および受信アンテナ素子Rx#1~Rx#8の位置を位相中心として、隣接するアンテナに物理的に干渉しない程度に開口長を拡大してもよい。開口長を拡大することにより、アンテナ利得を向上させることが可能である。
図25Bは、実施の形態2のバリエーション1に係る仮想受信アレーアンテナVAA9の配置の一例を示す。図25Bに示される仮想受信アレーアンテナVAA9は、図25Aに示される送信アレーアンテナ108iおよび受信アレーアンテナ202iに基づく仮想受信アレーアンテナである。送信アレーアンテナ108iの送信アンテナ素子Tx#1~Tx#6および受信アレーアンテナ202iの受信アンテナ素子Rx#1~Rx#8によって構成される仮想受信アレーアンテナVAA9の仮想アンテナの総数は48であり、48個の仮想アンテナは、それぞれ、VA#1~VA#48で示される。
図26は、実施の形態2のバリエーション1に係るアンテナ素子のサイズの一例を示す。例えば、図26に示されるように、各アンテナ素子には、第2軸方向に4素子からなるサブアレーアンテナ構成を用いてもよい。レーダ装置10の視野角(FOV)が水平方向に広角、垂直方向に狭角である場合、送信アレーアンテナ108iおよび受信アレーアンテナ202iの各アンテナ素子のビームパターンも、同様に水平方向に広角、垂直方向に狭角となることが望ましい。したがって、図10における(b)に示されるように、アンテナ素子を垂直方向に並べたサブアレーアンテナ構成が考えられる。このように、送信アレーアンテナ108iおよび受信アレーアンテナ202iの各アンテナ素子には、レーダ装置10の視野角に適したビームパターンを形成するようなサブアレーアンテナ構成を用いることが望ましい。
各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図27Aは、図25Bに示す実施の形態2のバリエーション1に係る仮想受信アレーアンテナVAA9による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第1軸方向に沿った断面図の一例を示す。図27Bは、実施の形態2のバリエーション1に係る仮想受信アレーアンテナVAA9による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第2軸方向に沿った断面図の一例を示す。
図27Aに示されるように、実施の形態2のバリエーション1の指向性パターンは、図22Aに示される実施の形態2と比較して、第1軸方向(水平方向)のメインローブ幅が広い。したがって、水平方向の角度推定の性能は、実施の形態2の方が実施の形態2のバリエーション1よりも優れている。一方、図27Bに示されるように、実施の形態2のバリエーション1の指向性パターンは、図22Bに示される実施の形態2と比較して、第2軸方向(垂直方向)のメインローブ幅が広い。したがって、垂直方向の角度推定の性能は、実施の形態2のバリエーション1の方が実施の形態2よりも優れている。
なお、時分割多重MIMOレーダの場合、実施の形態2と同様、送信アレーアンテナ108の全てのアンテナ素子を多重しなくてもよい。例えば、図25Aに示される送信アンテナ素子Tx#1~Tx#3の3個の送信アンテナ素子を多重してもよい。また、実施の形態2と同様、送信アレーアンテナ108の複数のアンテナ素子を1つのアンテナ素子として用いてビームを形成してもよい。
例えば、送信アンテナ素子Tx#1, Tx#4に位相を制御して給電し、1つの送信アンテナとして用いる。送信アンテナ素子Tx#2, Tx#5と、送信アンテナ素子Tx#3, Tx#6も、それぞれ、同様に位相制御して給電し、1つの送信アンテナとして用いる。これにより、位相中心が2×dHの間隔で第1軸上に配置された、合計3つからなる送信アンテナとして扱うことができる。これらの構成により、実施の形態2のバリエーション1においても、実施の形態2と同様の効果が得られる。
<実施の形態2のバリエーション2>
実施の形態2のバリエーション2においては、実施の形態1の送信アレーアンテナ108および受信アレーアンテナ202のアンテナ配置を含み、2次元の方向に配置されるアンテナ配置と、そのアンテナ配置を用いた到来方向推定手法について説明する。実施の形態2のバリエーション2においても、実施の形態2と同様、2次元の方向にアンテナ素子を配置することによって、2次元の到来方向推定が可能となる。実施の形態2のバリエーション2は、実施の形態2および実施の形態2のバリエーション1と比較して、アンテナ素子数は同一で、アンテナ配置が異なる。
上述のように、実施の形態2のバリエーション2においては、実施の形態2のバリエーション1のアンテナ構成を一部含むようなアンテナ構成を有するので、実施の形態2のバリエーション1の効果と同等の効果が得られる。さらに、実施の形態2のバリエーション2においては、分解能の向上の効果も得られる。
図28Aは、実施の形態2のバリエーション2に係る送信アレーアンテナ108jおよび受信アレーアンテナ202jの配置の一例を示す。
図28Aにおいて、送信アレーアンテナ108jを構成する送信アンテナ素子の総数Ntは6個であり、6個の送信アンテナ素子は、それぞれ、Tx#1~Tx#6で示される。受信アレーアンテナ202jを構成する受信アンテナ素子の総数Nは8個であり、8個の受信アンテナ素子は、それぞれ、Rx#1~Rx#8で示される。ここで、第1軸方向と第2軸方向とは直交する。第1軸方向の基本間隔dHは、例えば、dH=0.5λである。また、第2軸方向の基本間隔dVは、例えば、dV=0.68λである。
図28Aに示されるように、送信アンテナ素子Tx#1~Tx#3の配置と、送信アンテナ素子Tx#4~Tx#6の配置とは、それぞれ、実施の形態1のバリエーション3の送信アンテナ素子Tx#1~Tx#3の配置と同じ配置である。即ち、送信アンテナ素子Tx#1~Tx#3と、送信アンテナ素子Tx#1~Tx#3とは、それぞれ、Dt=2×dHの間隔で第1軸方向に等間隔に配置される。さらに、送信アンテナ素子Tx#4~Tx#6は、それぞれ、送信アンテナ素子Tx#1~Tx#3に対して、第1軸方向にdHの間隔、第2軸方向にdVの間隔ずらして配置される。
また、図28Aに示されるように、受信アンテナ素子Rx#4~Rx#7の配置は、それぞれ、実施の形態1のバリエーション3の受信アンテナ素子Rx#1~Rx#4の配置と同じ配置である。即ち、受信アンテナ素子Rx#4~Rx#7は、Dr=[5,3,5]×dHの間隔で第1軸方向に配置される。これは、nr=[2,1,2]の場合に相当する。さらに、受信アンテナ素子Rx#1~Rx#3およびRx#8は、受信アンテナ素子Rx#4~Rx#7が配置される第2軸座標と異なる第2軸座標上にdVの間隔で配置される。受信アンテナ素子Rx#1とRx#8は、同じ第1軸座標上に配置され、Rx#2とRx#3とRx#5とRx#1とRx#8とは、それぞれ異なる第1軸座標上に、dHの間隔で配置される。
送信アレーアンテナ108jおよび受信アレーアンテナ202jのアンテナ素子は、図28Aに示される送信アンテナ素子Tx#1~Tx#6および受信アンテナ素子Rx#1~Rx#8の位置を位相中心として、隣接するアンテナに物理的に干渉しない程度に開口長を拡大してもよい。開口長を拡大することにより、アンテナ利得を向上させることが可能である。さらに、各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図28Bは、実施の形態2のバリエーション2に係る仮想受信アレーアンテナVAA10の配置の一例を示す。図28Bに示される仮想受信アレーアンテナVAA10は、図28Aに示される送信アレーアンテナ108jおよび受信アレーアンテナ202jに基づく仮想受信アレーアンテナである。送信アレーアンテナ108jの送信アンテナ素子Tx#1~Tx#6および受信アレーアンテナ202jの受信アンテナ素子Rx#1~Rx#8によって構成される仮想受信アレーアンテナVAA10の仮想アンテナの総数は48であり、48個の仮想アンテナは、それぞれ、VA#1~VA#48で示される。
図29Aは、実施の形態2のバリエーション2に係るアンテナ素子のサイズの一例を示す。図29Bは、実施の形態2のバリエーション2に係るアンテナ素子のサイズがアンテナ素子毎に異なる場合の一例を示す。
例えば、図29Aに示されるように、各アンテナ素子には、第2軸方向に4素子からなるサブアレーアンテナ構成を用いてもよい。レーダ装置10の視野角(FOV)が水平方向に広角、垂直方向に狭角である場合、送信アレーアンテナ108jおよび受信アレーアンテナ202jの各アンテナ素子のビームパターンも、同様に水平方向に広角、垂直方向に狭角となることが望ましい。したがって、図10における(b)に示されるように、アンテナ素子を垂直方向に並べたサブアレーアンテナ構成が考えられる。このように、送信アレーアンテナ108jおよび受信アレーアンテナ202jの各アンテナ素子には、レーダ装置10の視野角に適したビームパターンを形成するようなサブアレーアンテナ構成が用いられることが望ましい。
図29Aにおいて、全てのアンテナ素子は、同様のサブアレーアンテナ構成を用いている。さらに、アンテナ素子毎に、隣接するアンテナに干渉しない範囲で構成を変えてもよい。例えば、図29Bに示すように、送信アンテナ素子Tx#1~Tx#6は、第1軸方向に2素子、第2軸方向に4素子のサブアレーで構成してもよく、受信アンテナ素子Rx#4、#6、#7は、第1軸方向に3素子、第2軸方向に8素子のサブアレーで構成してもよい。図29Aに示される構成と図29Bに示される構成とを比較すると、図29Aに示される構成においては、各アンテナ素子のビームパターンが広角であることから、広い視野角(FOV)を確保でき、図29Bに示される構成においては、正面方向のアンテナ利得が向上し、SNRが向上する。
図30Aは、図28Bに示す実施の形態2のバリエーション2に係る仮想受信アレーアンテナVAA10による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第1軸方向に沿った断面図の一例を示す。図30Bは、実施の形態2のバリエーション2に係る仮想受信アレーアンテナVAA10による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第2軸方向に沿った断面図の一例を示す。
図30Aに示される指向性パターンは、図27Aに示される実施の形態2のバリエーション1と比較して、第1軸方向(水平方向)のメインローブ幅が同等である。また、図30Bに示される指向性パターンは、図27Bに示される実施の形態2のバリエーション1と比較して、第2軸方向(垂直方向)のメインローブ幅が狭い。したがって、実施の形態2のバリエーション2の構成を用いると、実施の形態1のバリエーション1の構成と比較して、レーダ装置10の垂直方向の角度推定の性能を向上させることができる。
実施の形態2のバリエーション2に係る構成と第1軸方向および第2軸方向の到来方向推定を独立して行う手法と組み合わせることによって、実施の形態2のバリエーション1に比べて高いサイドローブレベルがもたらしうる誤検出の確率を低減し、到来方向推定の精度を向上できる。例えば、図28Bに示す仮想受信アレーアンテナVAA10によって、第1軸方向および第2軸方向に精密に到来方向推定を行い、ある閾値を超えた角度に対して2次元ビームを用いた、より精密な到来方向推定を行う。これによって、レーダ装置10による誤検出の確率を低減し、到来方向推定の精度を向上できる。また、到来方向推定の計算量も削減できる。
なお、時分割多重MIMOレーダの場合、実施の形態2のバリエーション1と同様、送信アレーアンテナ108jの全ての素子アンテナを多重しなくてもよい。例えば、図28Aに示される送信アンテナ素子Tx#4~Tx#6の3個の送信アンテナ素子を多重してもよい。また、実施の形態2と同様、送信アレーアンテナ108jの複数のアンテナ素子を1つのアンテナ素子として用いてビームを形成してもよい。これらの構成により、実施の形態2のバリエーション2においても、実施の形態2と同様の効果が得られる。
<実施の形態2のバリエーション3>
実施の形態2のバリエーション3においては、実施の形態1の送信アレーアンテナ108および受信アレーアンテナ202のアンテナ配置を含み、2次元の方向に配置されるアンテナ配置と、そのアンテナ配置を用いた到来方向推定手法について説明する。実施の形態2のバリエーション3においても、実施の形態2と同様、2次元の方向にアンテナ素子を配置することによって、2次元の到来方向推定が可能となる。
本実施の形態のバリエーション3のアンテナ配置は、実施の形態2のバリエーション2のアンテナ配置を一部変更させたアンテナ配置である。実施の形態2のバリエーション2の効果に加えて、時分割MIMOの場合にドップラ解析部213によって解析可能である最大ドップラ速度の向上の効果が得られる。
図31Aは、実施の形態2のバリエーション3に係る送信アレーアンテナ108kおよび受信アレーアンテナ202kの配置の一例を示す。
図31Aにおいて、送信アレーアンテナ108kを構成する送信アンテナ素子の総数Ntは6個であり、6個の送信アンテナ素子は、それぞれ、Tx#1~Tx#6で示される。受信アレーアンテナ202kを構成する受信アンテナ素子の総数Nは8個であり、8個の受信アンテナ素子は、それぞれ、Rx#1~Rx#8で示される。ここで、第1軸方向と第2軸方向とは直交する。第1軸方向の基本間隔dHは、例えば、dH=0.5λである。また、第2軸方向の基本間隔dVは、例えば、dV=0.68λである。
図31Aに示されるアンテナ配置は、送信アンテナ素子Tx#3の配置を除いて、図28Aに示される実施の形態2のバリエーション2のアンテナ配置と同様である。換言すると、実施の形態2のバリエーション3においては、実施の形態2のバリエーション2を基準として、送信アンテナ素子Tx#1~Tx#6のうち送信アンテナ素子Tx#3が、第1軸方向および第2軸方向に、変則的にそれぞれdH、dVずつずらして配置される。
ここで、送信アレーアンテナ108kおよび受信アレーアンテナ202kの各アンテナ素子は、図31Aに示されるアンテナ素子の位置を位相中心として、図10に示されるように開口長を拡げることにより、ビーム幅を絞り、高いアンテナ利得を得ることができる。また、各アンテナ素子のサイズを隣接するアンテナに物理的に干渉しない程度に拡げることにより、各アンテナ素子の開口長を拡げてもよい。さらに、各アンテナ素子には、サブアレーアンテナ構成を用いてもよく、サブアレーアンテナ素子にアレーウエイトをかけてサイドローブを抑制してもよい。
図31Bは、実施の形態2のバリエーション3に係る仮想受信アレーアンテナの配置の一例を示す。図31Bに示される仮想受信アレーアンテナVAA11は、図31Aに示される送信アレーアンテナ108kおよび受信アレーアンテナ202kに基づく仮想受信アレーアンテナである。送信アレーアンテナ108kの送信アンテナ素子Tx#1~Tx#6および受信アレーアンテナ202kの受信アンテナ素子Rx#1~Rx#8によって構成される仮想受信アレーアンテナVAA11の仮想アンテナの総数は47であり、47個の仮想アンテナは、それぞれ、VA#1~VA#47で示される。
図31Bに示されるように、仮想受信アレーアンテナVA#6において、仮想アンテナVA#6の位置には、送信アンテナ素子Tx#3と受信アンテナ素子Rx#2によって構成される仮想アンテナと、送信アンテナ素子Tx#2と受信アンテナ素子Rx#3によって構成される仮想アンテナとが重複して構成される。したがって、仮想アンテナVA#6の位置では、2つの受信信号が存在する。レーダ装置10は、到来方向推定においては、2つの受信信号のうち一方を用いてもよく、その平均値を用いてもよく、その和を用いてもよい。仮想受信アンテナの位置が重複することから、重複する2つの信号に到来角による位相差はないことに留意する。
実施の形態1のバリエーション4に示されるように、これらの重複する仮想受信アレーアンテナの信号を用いることで、ドップラ解析部213が解析可能な最大速度を大きくすることができる。
図32Aは、実施の形態2のバリエーション3に係るアンテナ素子のサイズの一例を示す。図32Bは、実施の形態2のバリエーション3に係るアンテナ素子のサイズがアンテナ素子毎に異なる場合の一例を示す。
例えば、図32Aに示されるように、各アンテナ素子には、第2軸方向に4素子からなるサブアレーアンテナ構成を用いてもよい。レーダ装置10の視野角(FOV)が水平方向に広角、垂直方向に狭角である場合、送信アレーアンテナ108kおよび受信アレーアンテナ202kの各アンテナ素子のビームパターンも、同様に水平方向に広角、垂直方向に狭角となることが望ましい。したがって、図10における(b)に示されるように、アンテナ素子を垂直方向に並べたサブアレーアンテナ構成が考えられる。このように、送信アレーアンテナ108および受信アレーアンテナ202の各アンテナ素子には、レーダ装置10の視野角に適したビームパターンを形成するようなサブアレーアンテナ構成を用いることが望ましい。
図32Aにおいて、全てのアンテナ素子には、同様のサブアレーアンテナ構成を用いている。しかしながら、アンテナ素子毎に、隣接するアンテナに干渉しない範囲で構成を変えてもよい。例えば、図32Bに示すように、送信アンテナ素子Tx#1~Tx#6は、第1軸方向に2素子、第2軸方向に4素子のサブアレーで構成してもよく、受信アンテナ素子Rx#4、#6、#7は、第1軸方向に3素子、第2軸方向に8素子のサブアレーで構成してもよい。図32Aに示される構成と図32Bに示される構成とを比較すると、図32Aに示される構成においては、各アンテナ素子のビームパターンが広角であることから、広い視野角(FOV)を確保でき、図32Bに示される構成においては、正面方向のアンテナ利得が向上し、SNRが向上する。
図33Aは、図31Bに示す実施の形態2のバリエーション3に係る仮想受信アレーアンテナVAA11による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第1軸方向に沿った断面図の一例を示す。図33Bは、図31Bに示す実施の形態2のバリエーション3に係る仮想受信アレーアンテナVAA11による2次元ビーム(メインビーム:水平0°、垂直0°方向)の指向性パターンであって第2軸方向に沿った断面図の一例を示す。
図33Aおよび図33Bに示されるように、実施の形態2のバリエーション3の指向性パターンは、それぞれ、図30Aおよび図30Bに示される実施の形態2のバリエーション2と指向性パターンに類似する。実施の形態2のバリエーション3の指向性パターンは、実施の形態2のバリエーション2の指向性パターンと比較して、メインローブ幅が第1軸方向に0.5度程度小さく、第2軸方向に0.4度程度大きい。また、実施の形態2のバリエーション3の指向性パターンは、実施の形態2のバリエーション2の指向性パターンと比較して、最大サイドローブレベルが約1.3dB低い。したがって、実施の形態2のバリエーション3の構成を用いると、実施の形態2のバリエーション2と比較して、誤検出の確率を小さくすることができる。
実施の形態2のバリエーション2の説明で上述したように、実施の形態2のバリエーション3に係る構成と第1軸方向および第2軸方向の到来方向推定を独立して行う手法と組み合わせることによって、誤検出の確率を低減し、到来方向推定の精度を向上できる。例えば、図31Bに示す仮想受信アレーアンテナVAA11によって、第1軸方向および第2軸方向に精密に到来方向推定を行い、ある閾値を超えた角度に対して2次元ビームを用いたより精密な到来方向推定を行う。これによって、レーダ装置10による誤検出の確率を低減し、到来方向推定の精度を向上できる。また、到来方向推定に必要な計算量も削減できる。
なお、時分割多重MIMOレーダの場合、実施の形態2のバリエーション1およびバリエーション2と同様、送信アレーアンテナ108kの全てのアンテナ素子を多重しなくてもよい。例えば、図31Aに示される送信アンテナ素子Tx#4~Tx#6の3個の送信アンテナ素子を多重してもよい。また、実施の形態2と同様、送信アレーアンテナ108kの複数のアンテナ素子を1つのアンテナ素子として用いてビームを形成してもよい。これらの構成により、実施の形態2のバリエーション3においても、実施の形態2と同様の効果が得られる。
図31Bに示されるように、仮想受信アレーアンテナVAA11において、仮想アンテナVA#6の位置には、送信アンテナ素子Tx#3と受信アンテナ素子Rx#2によって構成される仮想アンテナと、送信アンテナ素子Tx#2と受信アンテナ素子Rx#3によって構成される仮想アンテナとが重複して構成される。したがって、仮想アンテナVA#6の位置では、2つの受信信号が存在する。レーダ装置10は、到来方向推定においては、2つの受信信号のうち一方を用いてもよく、その平均値を用いてもよく、その和を用いてもよい。仮想受信アンテナの位置が重複することから、重複する2つの信号に到来角による位相差はないことに留意する。
時分割多重MIMOレーダの場合、この重複する2つの信号を用いてドップラ解析を行っても良い。ドップラ解析部213で解析する信号の送信周期を小さくすることにより、図6に示されるドップラ解析部213で解析可能な最大速度を大きくすることができる。
以上、実施の形態2に係るアンテナ配置の例として、実施の形態2に加えて、バリエーション1、バリエーション2、およびバリエーション3について説明した。
このように、実施の形態2では、レーダ装置10は、送信アレーアンテナ108の複数の送信アンテナ素子Tx#1~Tx#Ntからレーダ送信信号を多重して送信するレーダ送信部100と、レーダ送信信号がターゲットにおいて反射された反射波信号を、送信アレーアンテナ202の複数の受信アンテナ素子Rx#1~Rx#Naを用いて受信するレーダ受信部200と、を具備する。また、実施の形態2においては、実施の形態1の送信アレーアンテナおよび受信アレーアンテナの構成を含む送信アンテナ素子Tx#1~Tx#Ntおよび受信アンテナ素子Rx#1~Rx#Naを2次元の方向に配置する。
これにより、送信アレーアンテナ108及び受信アレーアンテナ202を、例えば、サブアレー化によって、各アンテナ素子のサイズを拡大させ、アンテナ利得を向上させることができる。
実施の形態2によれば、実施の形態1の効果を奏し、2次元の到来方向推定が可能であるMIMOレーダを構成できる。
なお、送信アンテナおよび受信アンテナに加えて、レーダ装置10にダミーアンテナ素子を設置してもよい。ここで、ダミーアンテナ素子とは、構成するアンテナ素子が他のアンテナ素子と物理的に類似の構成をとり、レーダ装置10によるレーダ信号の送受信には用いられないアンテナである。例えば、アンテナ素子間などやアンテナ素子の外側の領域にダミーアンテナ素子を設置してもよい。ダミーアンテナ素子を設置することによって、例えば、アンテナの放射、インピーダンス整合、アイソレーションといった電気的特性の影響を一様化する効果が得られる。
<実施の形態3>
本実施の形態3に係るレーダ装置は、実施の形態1に係るレーダ装置10と基本構成が共通するので、図1を援用して説明する。
本実施の形態3では、各アンテナ素子にサブアレーアンテナ構成を用いて、アンテナ素子の指向性利得を高め、2次元の方向に仮想受信アレーアンテナの開口長を拡げ、不要なグレーティングローブの発生を抑えることで誤検出リスクを低減し、所望の指向性パターンを実現することができる、レーダ装置10を提供する。
[レーダ装置10におけるアンテナ配置]
本実施の形態3においては、実施の形態1および実施の形態2に係る送信アレーアンテナ108を1つの「送信アンテナ群」とし、実施の形態1および実施の形態2に係る受信アレーアンテナ202を1つの「受信アンテナ群」とする。また、以下の説明では、送信アレーアンテナと、受信アレーアンテナとは、まとめて、「送受信アレーアンテナ」と記載される場合がある。
本実施の形態3においては、他の実施の形態と同様に、各アンテナを物理的に干渉しないサイズに拡大し、アンテナ利得を向上し、多数の送信アンテナ群又は受信アンテナ群を用いることで、仮想受信アレーアンテナの開口長を拡大し、分解能を向上できる。
図34は、本実施の形態3に係る送受信アレーアンテナの配置及び仮想受信アレーアンテナの配置の一例を示す図である。図34は、一例として、図11の送信アレーアンテナ108aを1つの送信アンテナ群とし、第1軸方向に2つの群を配置した送信アレーアンテナ108Lとすることで、拡張した仮想受信アレーアンテナVAA12を得る。
送信アンテナ群の開口長を、第1軸方向にDT1とし、受信アンテナ群の開口長を、第1軸方向にDR1とし、各送信アンテナ群の間隔を、第1軸上にDR1+dとする。これによって、仮想受信アレーアンテナVAA12は、図34に示すように、図11に示す仮想受信アレーアンテナVAA1を1つの群とした仮想受信アレーアンテナ群を、第1軸方向に2つ連接した構成である。
図35Aは、本実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図である。図35Bは、本実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図である。2次元配置の一例として、図35A、図35Bは、図20に示したアンテナ配置の構成に基づいて、複数の送信アンテナ群および複数の受信アンテナ群が配置される例を示す。図35Aにおいて、4つの送信アンテナ群が、第1軸方向に2列、第2軸方向に2列配置され、4つの受信アンテナ群が第1軸方向に2列、第2軸方向に2列配置される。各アンテナ群の第1軸方向の開口長、第2軸方向の開口長、アンテナ群の間隔を考慮して、送信アレーアンテナ108m、受信アレーアンテナ202mとすることで、図35Bの仮想受信アレーアンテナVAA13を得ることができる。
ここで、送信アンテナ群の開口長を、第1軸方向にDT1、第2軸方向にDT2とし、受信アンテナ群の開口長を、第1軸方向にDR1、第2軸方向にDR2とし、各送信アンテナ群の間隔を、第1軸上にDR1+d、第2軸方向に2×DR2とし、各受信アンテナ群の間隔を、第1軸方向にDT1+DR1-d、第2軸方向に2×DR2とする。これによって、仮想受信アレーアンテナVAA13は、図35Bに示すように、図20に示した仮想受信アレーアンテナVAA7を1つの群とした仮想受信アレーアンテナ群を、第1軸方向に4列、第2軸方向に4列配置した構成である。
図36Aは、本実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図である。図36Bは、本実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図である。2次元配置の別の一例である図36Aは、図25Aに示した実施の形態2のバリエーション1のアンテナ配置において、送信アレーアンテナ108iを1つの送信アンテナ群、受信アレーアンテナ202iを1つの受信アンテナ群として、複数の送信アンテナ群および複数の受信アンテナ群が配置される例を示す。送信アレーアンテナ108nは、送信アンテナ群が第1軸方向に2列、第2軸方向に2列の計4組配置された構成であり、受信アレーアンテナ202nは、受信アンテナ群が1組配置された構成である。
ここで、受信アンテナ群の開口長は、第1軸方向にDR1とし、第2軸方向にDR2とし、送信アンテナ群は、第1軸上にDR1+dの間隔、第2軸方向にDR2の間隔で配置される。これによって、図36Bに示す仮想受信アレーアンテナVAA14は、図25Bに示した仮想受信アレーアンテナVAA9を1つの群とした仮想受信アレーアンテナ群を、4組配置した構成となる。
図37Aは、本実施の形態3に係る送受信アレーアンテナの配置の他の一例を示す図である。図37Bは、本実施の形態3に係る仮想受信アレーアンテナの配置の他の一例を示す図である。2次元配置の別の一例である図37Aは、図25Aに示したバリエーション1のアンテナ配置において、送信アレーアンテナ108iを1つの送信アンテナ群、受信アレーアンテナ202iを1つの受信アンテナ群として、4つの送信アンテナ群および2つの受信アンテナ群が配置される例を示す。送信アレーアンテナ108pでは、送信アンテナ群が第1軸方向に2列、第2軸方向に2列の計4組配置される。受信アレーアンテナ202pでは、受信アンテナ群が2組配置される。
ここで、各受信アンテナ群の開口長を、第1軸方向にDR1、第2軸方向にDR2とし、各送信アンテナ群を第1軸上にDR1+dの間隔、第2軸方向に2×DR2の間隔で配置する。また、第2の受信アンテナ群は第1軸方向に6dオフセットして配置し、第2軸方向にDR2の間隔で配置される。このため、第1の受信アンテナ群の受信アンテナ素子Rx#3と、第2の受信アンテナ群の受信アンテナ素子Rx#3とは、第1軸方向に6dオフセットして配置され、第1の受信アンテナ群の受信アンテナ素子Rx#7、Rx#8と、第2の受信アンテナ群の受信アンテナ素子Rx#1、Rx#2とは、第2軸上において、同じ位置に配置される。これによって、仮想受信アレーアンテナVAA15は、図37Bに示す構成となる。仮想受信アレーアンテナVAA15は、図25Bに示した仮想受信アレーアンテナVAA9を1つの群とした仮想受信アレーアンテナ群を、8組配置した構成となる。
なお、ここでは、実施の形態1および実施の形態2で示したアレーアンテナの配置に基づいて、送信アンテナ群および受信アンテナ群を複数備える場合について説明したが、これに限定されず本開示のアレーアンテナ配置以外のアレーアンテナ配置に基づいて送信アンテナ群又は受信アンテナ群を複数備える場合についても同様の効果が得られる。また、送信アンテナ群及び受信アンテナ群の間隔についても上述した例に限定されない。
<実施の形態4>
図38は、本実施の形態4に係るレーダ装置10aの構成の一例を示すブロック図である。本開示のレーダ装置10の構成は、図1に示した構成に限定されない。例えば、図38に示すレーダ装置10aの構成を用いてもよい。なお、図38において、図1及び図2と同様の構成については、同一の符番を付し、説明を省略する。また、図38において、レーダ受信部200の構成は、図6と同様であるので詳細な構成を省略している。
図1に示したレーダ装置10では、例えば、図2のレーダ送信部100において、制御部400が、送信制御信号によって、複数の送信増幅部107の出力レベルを調整することによって、レーダ送信信号を出力する送信増幅部107が選択的に切り替えられる。レーダ送信信号生成部101は、制御部400からの所定のレーダ送信周期Tr毎の符号制御信号に基づいて、レーダ送信周期Trにてレーダ送信信号を繰り返し出力する。これに対して、図38に示すレーダ装置10aでは、レーダ送信部100aにおいて、レーダ送信信号生成部101からの出力(レーダ送信信号)は、送信無線部107aによって送信無線処理を施され、切替制御部410からの切替制御信号に従い、送信切替部109によって、送信無線部107aの出力を複数の送信アンテナ108の何れか一つに選択的に切り替える。なお、レーダ送信信号生成部101は、図2の制御部400とは異なり、切替制御部410から切替制御信号は入力されていない。
図38に示すレーダ装置10aの構成でも、他の実施の形態と同様の効果が得られる。
<実施の形態5>
実施の形態1~3の各々では、レーダ送信部100又は100aにおいて、パルス列を位相変調又は振幅変調して送信するパルス圧縮レーダを用いる場合について説明したが、変調方式はこれに限定されない。例えば、本開示は、チャープ(chirp)パルスのような周波数変調したパルス波を用いたレーダ方式についても適用可能である。
図39は、本実施の形態5に係るレーダ装置10bの構成の一例を示すブロック図である。図40は、本実施の形態5に係るレーダ装置10bが用いるチャープパルスの一例を示す図である。図39は、チャープパルス(例えば、fast chirp modulation)を用いたレーダ方式を適用した場合のレーダ装置10bの構成図の一例を示す。なお、図39において、図1、図2、図6、図38と同様の構成には同一の符号を付し、その説明を省略する。
まず、レーダ送信部100bにおける送信処理について説明する。レーダ送信部100bにおいて、レーダ送信信号生成部401は、変調信号発生部402及びVCO(Voltage Controlled Oscillator)403を有する。
変調信号発生部402は、例えば、図40に示すように、のこぎり歯形状の変調信号を周期的に発生させる。ここで、レーダ送信周期をTrとする。
VCO403は、変調信号発生部402から出力されるレーダ送信信号に基づいて、周波数変調信号(換言すると、周波数チャープ信号)を送信無線部107aへ出力する。周波数変調信号は、送信無線部107aにおいて増幅され、切替制御部410が出力する切替制御信号に従い、送信切替部109において切り替えられた送信アンテナ108から空間に放射される。例えば、第1の送信アンテナ108から第Ntの送信アンテナ108の各々において、レーダ送信信号は、Np(= Nt×Tr)周期の送信間隔で送信される。
方向性結合部404は、周波数変調信号の一部の信号を取り出して、レーダ受信部200bのアンテナ素子系統処理部201-1~Nの各受信無線部501(ミキサ部502)に出力する。
次に、レーダ受信部200bにおける受信処理について説明する。レーダ受信部200bのアンテナ素子系統処理部201-1~Nのそれぞれにおいて、受信無線部501に含まれるミキサ部502が、受信した反射波信号に対して、送信信号である周波数変調信号(方向性結合部404から入力される信号)をミキシングし、ミキシングされた信号が、受信無線部501に含まれるLPF503を通過する。これにより、反射波信号の遅延時間に応じたビート周波数を有するビート信号がLPF503の出力として取り出される。例えば、図40に示すように、送信信号(送信周波数変調波)の周波数と、受信信号(受信周波数変調波)の周波数との差分周波数がビート周波数として得られる。
LPF503から出力された信号は、信号処理部207bのA/D変換部208bによって離散サンプルデータに変換される。
R-FFT(Range - Fast Fourier Transform)部504は、送信周期Tr毎に、所定の時間範囲(レンジゲート)において得られたNdata個の離散サンプルデータをFFT処理する。これにより、信号処理部207bでは、反射波信号(レーダ反射波)の遅延時間に応じたビート周波数にピークが現れる周波数スペクトラムが出力される。これにより、ターゲットまでの距離を算出することができる。なお、FFT処理において、R-FFT部504は、例えば、Han窓又はHamming窓等の窓関数係数を乗算してもよい。窓関数係数を用いることにより、周波数スペクトラムにおいて、ビート周波数に現れるピークの周辺に発生するサイドローブを抑圧できる。
ここで、第M番目のチャープパルス送信によって得られる、第z番目の信号処理部207bのR-FFT部504から出力されるビート周波数スペクトラム応答をAC_RFT(fb, M)で表す。ここで、fbはFFTのインデックス番号(ビン番号)であり、fb=0,…, Ndata/2である。周波数インデックスfbが小さいほど、反射波信号の遅延時間が小さい(換言すると、物標との距離が近い)ビート周波数を示す。
第z番目の信号処理部207bにおける出力切替部212は、例えば、図38に示したレーダ装置10aと同様に、切替制御部410から入力される切替制御信号に基づいて、レーダ送信周期Tr毎のR-FFT部504の出力を、Nt個のドップラ解析部213のうちの一つに選択的に切り替えて出力する。
以下、一例として、第M番目のレーダ送信周期Tr[M]における切替制御信号をNtビットの情報[bit1(M), bit2(M), … ,bitNt(M)]で表す。例えば、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第ND番目のビットbitND(M)(ただし、ND=1~Ntの何れか)が‘1’である場合、出力切替部212は、第ND番目のドップラ解析部213を選択(換言するとON)する。一方、第M番目のレーダ送信周期Tr [M]の切替制御信号において、第ND番目のビットbitND(M)が‘0’である場合、出力切替部212は、第ND番目のドップラ解析部213を非選択(換言するとOFF)とする。出力切替部212は、選択したドップラ解析部213に対して、R-FFT部504から入力される信号を出力する。
上記のように、各ドップラ解析部213の選択は、Np(= Nt×Tr)周期で順次ONとなる。切替制御信号は、上記内容をNc回繰り返す。
なお、各送信無線部107aにおける送信信号の送信開始時刻は、周期Trに同期させなくてもよい。例えば、各送信無線部107aでは、送信開始時刻に異なる送信遅延Δ1, Δ2,…,ΔNtを設けて、レーダ送信信号の送信を開始してもよい。
第z(z=1,…, N)番目の信号処理部207bは、Nt個のドップラ解析部213を有する。
ドップラ解析部213は、出力切替部212からの出力に対して、ビート周波数インデックスfb毎にドップラ解析を行う。
例えば、Ncが2のべき乗値である場合、ドップラ解析において高速フーリエ変換(FFT:Fast Fourier Transform)処理を適用できる。
第z番目の信号処理部207bの第ND番目のドップラ解析部213における第w番目の出力は、式(19)に示すように、ビート周波数インデックスfbにおけるドップラ周波数インデックスfuのドップラ周波数応答FT_CIz (ND)(fb, fu, w)を示す。なお、ND=1~Ntであり、ND=1~Ntであり、wは1以上の整数である。また、jは虚数単位であり、z=1~Nである。
Figure 0007361266000023
信号処理部207b以降の方向推定部214の処理は、例えば、実施の形態1で説明した離散時刻kをビート周波数インデックスfbで置き換えた動作となるので、詳細な説明を省略する。
以上の構成及び動作により、本実施の形態5でも、実施の形態1~3の各々と同様の効果が得られる。
また、上述したビート周波数インデックスfbは、距離情報に変換して出力されてもよい。ビート周波数インデックスfbを距離情報R(fb)に変換するには式(20)を用いればよい。ここで、Bwは周波数変調して生成される周波数チャープ信号の周波数変調帯域幅を表し、C0は光速度を表す。
Figure 0007361266000024
以上、本開示の一実施例に係る実施の形態について説明した。なお、上記実施の形態、及び、各バリエーションに係る動作を適宜組み合わせて実施してもよい。
また、上記実施の形態では、一例として、基本間隔dH=0.5λ、dV=0.5λの場合について説明したが、これらの値に限定されない。例えば、基本間隔dH及びdVは、0.5波長以上、かつ、1波長以下の値でもよい。また、上記の実施の形態において、「アンテナ群」という表記は、例えば、「アンテナ素子群」等の別の表記に置き換えられてよい。
また、レーダ装置10,10a,10b(例えば、図1、図38、図39を参照)において、レーダ送信部100及びレーダ受信部200は、物理的に離れた場所に個別に配置されてもよい。また、レーダ受信部200(例えば、図1、図38、図39を参照)において、方向推定部214と、他の構成部とは、物理的に離れた場所に個別に配置されてもよい。
レーダ装置10,10a,10bは、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記録媒体、およびRAM(Random Access Memory)等の作業用メモリを有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。但し、レーダ装置10,10a,10bのハードウェア構成は、かかる例に限定されない。例えば、レーダ装置10,10a,10bの各機能部は、集積回路であるIC(Integrated Circuit)として実現されてもよい。各機能部は、個別に1チップ化されてもよいし、その一部または全部を含むように1チップ化されてもよい。また、レーダ装置10,10a,10bは、図示しないが、例えば、車両(自動車、自動2輪、自転車、工事車両、フォークリフト)、電車、船舶といった、移動物体に搭載することができ、例えば、信号機、路側装置(Road Side Unit)といった静止物体に搭載することができる。
以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
上記各実施の形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
以上の説明において、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラム可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続又は設定を再構成可能なリコンフィギュラブル プロセッサ(Reconfigurable Processor)を利用してもよい。
さらには、半導体技術の進歩又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックを集積化してもよい。例えば、バイオ技術の適用が可能性としてありえる。
本開示のレーダ装置は、レーダ信号を送信アレーアンテナから送信するレーダ送信回路と、前記レーダ信号がターゲットにおいて反射された反射波信号を受信アレーアンテナから受信するレーダ受信回路と、を具備し、前記送信アレーアンテナ及び前記受信アレーアンテナの一方は、m個のアンテナ素子の位相中心が第1軸方向に沿って第1の間隔Dで等間隔に配置される第1のアンテナ素子群を含み(mは1以上の整数)、前記送信アレーアンテナ及び前記受信アレーアンテナの他方は、(n+1)個のアンテナ素子の位相中心が前記第1軸方向に沿って第2の間隔Dr(n)で配置される第2のアンテナ素子群を含む(nは1以上の整数)、前記第1の間隔Dは式(1a)を満たし、
Figure 0007361266000025
ここで、dは第1の基本間隔を示し、nは1以上の整数、
前記第2の間隔Dr(n)は、式(1b)を満たし、
Figure 0007361266000026
ここで、Nは、1≦n<N-1を満たす整数であり、
nrは、式(1c)を満たす。
Figure 0007361266000027
本開示のレーダ装置において、前記第1の基本間隔は、0.5波長以上0.8波長以下である。
本開示のレーダ装置において、前記送信アレーアンテナおよび受信アレーアンテナの少なくとも1つは、複数のサブアレー素子を含む。
本開示のレーダ装置において、前記送信アレーアンテナおよび前記受信アレーアンテナの一方は、前記第1軸方向と直交する第2軸方向に沿って第3の間隔で、前記第1のアンテナ素子群を複製配置した、第3のアンテナ素子群を含み、前記第3の間隔は、第2の基本間隔の整数倍であり、前記第2の基本間隔は、0.5波長以上0.8波長以下であり、前記送信アレーアンテナおよび前記受信アレーアンテナの他方は、前記第2軸方向に沿って第4の間隔で、前記第2のアンテナ素子群を複製配置した、第4のアンテナ素子群を含み、前記第4の間隔は、前記第2の基本間隔の整数倍である。
本開示のレーダ装置において、前記送信アレーアンテナおよび前記受信アレーアンテナの一方は、前記第1軸方向に沿って第5の間隔で、前記第1のアンテナ素子群及び前記第3のアンテナ素子群を複製配置した、第5のアンテナ素子群を含み、前記第1のアンテナ素子群の開口長がDT1、前記第2のアンテナ素子群の開口長がDR1である場合、前記第5の間隔は、前記第2のアンテナ素子群の開口長DR1に基本間隔dを加算した値であり、前記送信アレーアンテナおよび前記受信アレーアンテナの他方は、前記第1軸方向に沿って第6の間隔で、前記第2のアンテナ素子群及び前記第4のアンテナ素子群を複製配置した、第6のアンテナ素子群を含み、前記第6の間隔は、前記第1のアンテナ素子群の開口長DT1と前記第1のアンテナ素子群の開口長DR1との合算から基本間隔dを減算した値である。
本開示の移動物体は、本開示のレーダ装置を搭載する。
本開示の静止物体は、本開示のレーダ装置を搭載する。
本開示は、広角範囲を検知するレーダ装置として好適である。
10,10a,10b レーダ装置
100,100a,100b レーダ送信部
101,101a,401 レーダ送信信号生成部
102 符号生成部
103 変調部
104 LPF
105 送信周波数変換部
106 電力分配器
107 送信増幅部
107a 送信無線部
108 送信アレーアンテナ
109 送信切替部
111 符号記憶部
112 DA変換部
200 レーダ受信部
201 アンテナ素子系統処理部
202 受信アレーアンテナ
203 受信無線部
204 増幅器
205 周波数変換器
206 直交検波器
207 信号処理部
208,209 AD変換部
210 相関演算部
211 加算部
212 出力切替部
213 ドップラ解析部
214 方向推定部
300 基準信号生成部
400 制御部
402 変調信号発生部
403 VCO
404 方向性結合部
410 切替制御部
501 受信無線部
502 ミキサ部
503 LPF
504 R-FFT部

Claims (7)

  1. レーダ信号を送信する送信アレーアンテナを有するレーダ送信部と、
    前記レーダ信号がターゲットにおいて反射された反射波信号を受信する受信アレーアンテナを有するレーダ受信部と、
    を具備し、
    前記送信アレーアンテナ及び前記受信アレーアンテナの一方は、複数個のアンテナ素子の位相中心が第1軸方向に沿って第1の間隔Dで等間隔に配置される第1のアンテナ素子群を含み、
    前記送信アレーアンテナ及び前記受信アレーアンテナの他方は、Na個のアンテナ素子の位相中心が前記第1軸方向に沿って第2の間隔Dr(n)で配置される第2のアンテナ素子群を含み、
    前記第2のアンテナ素子群のうち、中央に位置する2つまたは3つのアンテナの前記第2の間隔D r (n)は、前記第1の間隔D よりもd H 広く、
    前記第1の間隔Dは式(1)を満たし、
    Figure 0007361266000028
    ここで、dは第1の基本間隔を示し、n以上の整数であり、
    前記第2の間隔Dr(n)は、式(2)を満たし、
    Figure 0007361266000029
    ここで、Naは、1≦n<Na-1を満たす整数であり、nは1以上の整数であり、
    nrは、nrの中央に位置する値の両隣に0または1ずつ増加させた値の列が対称に並ぶ数列であり、かつ、前記第2の間隔D r (n)は、中央に位置する値が狭い間隔であり、端部に位置する値は広い間隔であり、
    nrは、式(3)を満たす、
    Figure 0007361266000030
    レーダ装置。
  2. 前記第1の基本間隔は、0.5波長以上0.8波長以下である、
    請求項1に記載のレーダ装置。
  3. 前記送信アレーアンテナおよび受信アレーアンテナの少なくとも1つは、複数のサブアレー素子を含む、
    請求項1に記載のレーダ装置。
  4. 前記送信アレーアンテナおよび前記受信アレーアンテナの一方は、前記第1軸方向と直交する第2軸方向に沿って第3の間隔で、前記第1のアンテナ素子群を複製配置した、第3のアンテナ素子群を含み、
    前記第3の間隔は、第2の基本間隔の整数倍であり、
    前記第2の基本間隔は、0.5波長以上0.8波長以下であり、
    前記送信アレーアンテナおよび前記受信アレーアンテナの他方は、前記第2軸方向に沿って第4の間隔で、前記第2のアンテナ素子群を複製配置した、第4のアンテナ素子群を含み、
    前記第4の間隔は、前記第2の基本間隔の整数倍である、
    請求項1から3のいずれか一項に記載のレーダ装置。
  5. 前記送信アレーアンテナおよび前記受信アレーアンテナの一方は、前記第1軸方向に沿って第5の間隔で、前記第1のアンテナ素子群及び前記第3のアンテナ素子群を複製配置した、第5のアンテナ素子群を含み、
    前記第1のアンテナ素子群の開口長がDT1、前記第2のアンテナ素子群の開口長がDR1である場合、
    前記第5の間隔は、前記第2のアンテナ素子群の開口長DR1に基本間隔dを加算した値であり、
    前記送信アレーアンテナおよび前記受信アレーアンテナの他方は、前記第1軸方向に沿って第6の間隔で、前記第2のアンテナ素子群及び前記第4のアンテナ素子群を複製配置した、第6のアンテナ素子群を含み、
    前記第6の間隔は、前記第1のアンテナ素子群の開口長DT1と前記第1のアンテナ素子群の開口長DR1との合算から基本間隔dを減算した値である、
    請求項4に記載のレーダ装置。
  6. 請求項1から5のいずれか一項に記載のレーダ装置を搭載した、移動物体。
  7. 請求項1から5のいずれか一項に記載のレーダ装置を搭載した、静止物体。
JP2019124568A 2018-09-28 2019-07-03 レーダ装置 Active JP7361266B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019125973.8A DE102019125973A1 (de) 2018-09-28 2019-09-26 Radar-Vorrichtung
US16/584,278 US11448725B2 (en) 2018-09-28 2019-09-26 Radar apparatus
CN201910923932.6A CN110967671B (zh) 2018-09-28 2019-09-27 雷达装置、移动物体以及静止物体
US17/887,053 US20230147240A1 (en) 2018-09-28 2022-08-12 Radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185265 2018-09-28
JP2018185265 2018-09-28

Publications (2)

Publication Number Publication Date
JP2020056780A JP2020056780A (ja) 2020-04-09
JP7361266B2 true JP7361266B2 (ja) 2023-10-16

Family

ID=70107102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124568A Active JP7361266B2 (ja) 2018-09-28 2019-07-03 レーダ装置

Country Status (1)

Country Link
JP (1) JP7361266B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333656A (ja) 2006-06-16 2007-12-27 Murata Mfg Co Ltd レーダ装置
JP2008241702A (ja) 2007-02-28 2008-10-09 Denso It Laboratory Inc 電子走査式レーダ装置及び受信用アレーアンテナ
JP2009290294A (ja) 2008-05-27 2009-12-10 Mitsubishi Electric Corp アダプティブアレイアンテナ装置
JP2011064567A (ja) 2009-09-17 2011-03-31 Fujitsu Ten Ltd レーダ装置
JP2014529076A (ja) 2011-09-09 2014-10-30 アスティックス ゲゼルシャフト ミット ベシュレンクテル ハフツング アンテナ開口の合成的拡大と二次元ビーム・スイープをともなうイメージング・レーダセンサ
JP2014238367A (ja) 2013-06-10 2014-12-18 パナソニック株式会社 イベント検出システム
JP2017534881A (ja) 2014-09-23 2017-11-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 物体の仰角と方位角とを切り離して決定するmimoレーダ装置およびmimoレーダ装置を動作させる方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304499A (ja) * 1996-05-13 1997-11-28 Nec Corp ローカライザ空中線装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333656A (ja) 2006-06-16 2007-12-27 Murata Mfg Co Ltd レーダ装置
JP2008241702A (ja) 2007-02-28 2008-10-09 Denso It Laboratory Inc 電子走査式レーダ装置及び受信用アレーアンテナ
JP2009290294A (ja) 2008-05-27 2009-12-10 Mitsubishi Electric Corp アダプティブアレイアンテナ装置
JP2011064567A (ja) 2009-09-17 2011-03-31 Fujitsu Ten Ltd レーダ装置
JP2014529076A (ja) 2011-09-09 2014-10-30 アスティックス ゲゼルシャフト ミット ベシュレンクテル ハフツング アンテナ開口の合成的拡大と二次元ビーム・スイープをともなうイメージング・レーダセンサ
JP2014238367A (ja) 2013-06-10 2014-12-18 パナソニック株式会社 イベント検出システム
JP2017534881A (ja) 2014-09-23 2017-11-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 物体の仰角と方位角とを切り離して決定するmimoレーダ装置およびmimoレーダ装置を動作させる方法

Also Published As

Publication number Publication date
JP2020056780A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
EP3309577B1 (en) Radar apparatus
CN110967671B (zh) 雷达装置、移动物体以及静止物体
CN110286376B (zh) 雷达装置
EP3471210B1 (en) Radar apparatus
US11209518B2 (en) Radar device
JP6396244B2 (ja) レーダ装置
US20220163623A1 (en) Radar device
US20220003834A1 (en) Radar device and transmitting/receiving array antenna
JP7390658B2 (ja) レーダ装置
JP6694027B2 (ja) レーダ装置
JP7361266B2 (ja) レーダ装置
JP7266234B2 (ja) レーダ装置
JP7117557B2 (ja) レーダ装置
JP7249546B2 (ja) レーダ装置
JP7266258B2 (ja) レーダ装置
JP7457289B2 (ja) レーダ装置
JP7305730B2 (ja) レーダ装置
JP6980937B2 (ja) レーダ装置
JP2024055876A (ja) レーダ装置
JP2020126061A (ja) レーダ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R151 Written notification of patent or utility model registration

Ref document number: 7361266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03