JP7359194B2 - Resin compositions, molded bodies, and vehicle parts - Google Patents

Resin compositions, molded bodies, and vehicle parts Download PDF

Info

Publication number
JP7359194B2
JP7359194B2 JP2021115771A JP2021115771A JP7359194B2 JP 7359194 B2 JP7359194 B2 JP 7359194B2 JP 2021115771 A JP2021115771 A JP 2021115771A JP 2021115771 A JP2021115771 A JP 2021115771A JP 7359194 B2 JP7359194 B2 JP 7359194B2
Authority
JP
Japan
Prior art keywords
meth
copolymer
mol
acrylate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021115771A
Other languages
Japanese (ja)
Other versions
JP2021165406A (en
Inventor
紘一 兼森
覚 小澤
義明 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2021115771A priority Critical patent/JP7359194B2/en
Publication of JP2021165406A publication Critical patent/JP2021165406A/en
Application granted granted Critical
Publication of JP7359194B2 publication Critical patent/JP7359194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、樹脂組成物、成形体及び車両用部品に関する。 The present invention relates to a resin composition , a molded article, and a vehicle part.

ポリメチルメタクリレートやポリカーボネートは、優れた透明性や寸法安定性から、光学材料、車両用部品、照明用材料、建築用材料等、様々な分野で幅広く用いられている。近年、ポリメチルメタクリレートやポリカーボネートの成形体は、部品の薄肉化や細密化に伴い、より高性能化が求められている。その性能の1つとして、耐熱性が挙げられる。特に、テールランプやヘッドランプ等の車両用部品は、自動車等の車両が高温多湿下でも用いられるため、より優れた耐熱性が求められている。 Polymethyl methacrylate and polycarbonate are widely used in various fields such as optical materials, vehicle parts, lighting materials, and construction materials due to their excellent transparency and dimensional stability. In recent years, molded bodies of polymethyl methacrylate and polycarbonate are required to have higher performance as parts become thinner and more detailed. One of its properties is heat resistance. In particular, vehicle parts such as tail lamps and head lamps are required to have better heat resistance because vehicles such as automobiles are used even under high temperature and humidity.

しかしながら、ポリメチルメタクリレートは、優れた透明性や耐候性を有するものの、耐熱性が十分ではなかった。また、ポリカーボネートは、優れた耐熱性や耐衝撃性を有するものの、光学的歪みである複屈折率が大きく成形体に光学的異方性が生じる、また、成形加工性や耐傷性や耐油性に著しく劣る。 However, although polymethyl methacrylate has excellent transparency and weather resistance, it does not have sufficient heat resistance. In addition, although polycarbonate has excellent heat resistance and impact resistance, it has a large birefringence, which is an optical distortion, and optical anisotropy occurs in molded products, and it also has poor moldability, scratch resistance, and oil resistance. Significantly inferior.

そのため、ポリメチルメタクリレートに代表されるアクリル樹脂の耐熱性を改善する検討が行われている。例えば、特許文献1には、メチルメタクリレート単位とメタクリル酸単位とグルタル酸無水物単位を有する共重合体が提案されている。 Therefore, studies are being conducted to improve the heat resistance of acrylic resins such as polymethyl methacrylate. For example, Patent Document 1 proposes a copolymer having methyl methacrylate units, methacrylic acid units, and glutaric anhydride units.

特開2009-256406号公報Japanese Patent Application Publication No. 2009-256406

しかしながら、特許文献1で提案されている共重合体は、グルタル酸無水物単位(無水グルタル酸単位)が過剰であるため、外観、低吸水性、成形性に劣る。 However, the copolymer proposed in Patent Document 1 has an excess of glutaric anhydride units (glutaric anhydride units), and therefore is inferior in appearance, low water absorption, and moldability.

そこで、本発明の目的は、耐熱性、流動性、機械特性、外観、低吸水性、成形性に優れた共重合体を提供することにある。また、本発明の目的は、得られる共重合体の耐熱性、流動性、機械特性、外観、低吸水性、成形性に優れる共重合体の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a copolymer that is excellent in heat resistance, fluidity, mechanical properties, appearance, low water absorption, and moldability. Another object of the present invention is to provide a method for producing a copolymer that has excellent heat resistance, fluidity, mechanical properties, appearance, low water absorption, and moldability.

(1)メチル(メタ)アクリレート単位(A1)及び(メタ)アクリル酸単位(A2)を含む共重合体(A)と、少なくとも2つの官能基を有する有機物である離型剤(B)とを含有し、下記式(1’)で示す(メタ)アクリル酸単位(A2)の残存率が、50%以上である、樹脂組成物。
(メタ)アクリル酸単位(A2)の残存率(%)={[共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]/([共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体中の無水グルタル酸単位(A3)の割合(mol%)])}×100・・・(1’)
(2)前記式(1’)で示す(メタ)アクリル酸単位(A2)の残存率が、90%以上である、前記の樹脂組成物。
(3)メチル(メタ)アクリレート単位(A1)及び(メタ)アクリル酸単位(A2)を含む共重合体(A)を含有し、下記条件(2’)を満たす前記の樹脂組成物。
10≧樹脂組成物の積分分子量分布より求めた250℃、20分加熱後のlog[2Mw]以上の割合%/樹脂組成物の積分分子量分布より求めた加熱前のlog[2Mw]以上の割合%≧1.5・・・(2’)
(4)離型剤(B)の有機物は少なくとも2つの官能基を有する前記の樹脂組成物。
(5)離型剤(B)の有機物が有する官能基が、ヒドロキシル基、カルボキシル基、アミノ基、アミド基からなる群より選ばれる少なくとも1種である、前記の樹脂組成物。
(6)少なくとも2つの官能基を有する有機物である離型剤(B)の分子量が、100~500である、前記の樹脂組成物。
(7)少なくとも2つの官能基を有する有機物である離型剤(B)が、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノ1,2-ヒドロキシステアレート、グリセリンモノオレート、グリセリンモノカプリレート、グリセリンモノカプレート及びグリセリンモノラウレートからなる群より選ばれる少なくとも1種である、前記の樹脂組成物。
(8)少なくとも2つの官能基を有する有機物である離型剤(B)の含有量が、共重合体(A)100質量部に対して、0.01質量部~1質量部である、前記の樹脂組成物。
(9)共重合体(A)が、更に、無水グルタル酸単位(A3)を含む、前記の樹脂組成物。
(10)共重合体(A)を構成する単量体単位において、メチル(メタ)アクリレート単位(A1)が80mol%以上、(メタ)アクリル酸由来の繰り返し単位(A2)が1mol%~15mol%、及び無水グルタル酸単位(A3)が5mol%以下である、前記の樹脂組成物。
(1) A copolymer (A) containing methyl (meth)acrylate units (A1) and (meth)acrylic acid units (A2) and a mold release agent (B) which is an organic substance having at least two functional groups. A resin composition containing 50% or more of (meth)acrylic acid units (A2) represented by the following formula (1').
Remaining rate (%) of (meth)acrylic acid units (A2) = {[ratio (mol%) of (meth)acrylic acid units (A2) in the copolymer]/([(meth)acrylic acid units (A2) in the copolymer Proportion of acrylic acid units (A2) (mol%) + [proportion of glutaric anhydride units (A3) in copolymer (mol%)]) x 100... (1')
(2) The resin composition described above, wherein the residual rate of the (meth)acrylic acid unit (A2) represented by the formula (1') is 90% or more.
(3) The resin composition described above, which contains a copolymer (A) containing methyl (meth)acrylate units (A1) and (meth)acrylic acid units (A2), and satisfies the following condition (2').
10≧Proportion% of log[2Mw] or more after heating at 250°C for 20 minutes determined from the integral molecular weight distribution of the resin composition/Proportion% of log[2Mw] or more before heating determined from the integral molecular weight distribution of the resin composition ≧1.5...(2')
(4) The resin composition described above, in which the organic substance of the mold release agent (B) has at least two functional groups.
(5) The resin composition described above, wherein the organic substance of the mold release agent (B) has at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, and an amide group.
(6) The resin composition described above, wherein the mold release agent (B), which is an organic substance having at least two functional groups, has a molecular weight of 100 to 500.
(7) The mold release agent (B) which is an organic substance having at least two functional groups is glycerin monostearate, glycerin monobehenate, glycerin mono-1,2-hydroxystearate, glycerin monooleate, glycerin monocaprylate, The above resin composition is at least one member selected from the group consisting of glycerin monocaprate and glycerin monolaurate.
(8) The content of the mold release agent (B), which is an organic substance having at least two functional groups, is 0.01 part by mass to 1 part by mass with respect to 100 parts by mass of the copolymer (A). resin composition.
(9) The above resin composition, wherein the copolymer (A) further contains a glutaric anhydride unit (A3).
(10) In the monomer units constituting the copolymer (A), 80 mol% or more of methyl (meth)acrylate units (A1) and 1 mol% to 15 mol% of repeating units (A2) derived from (meth)acrylic acid , and the resin composition described above, wherein the glutaric anhydride unit (A3) is 5 mol% or less.

(11)メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体を重合して前駆体を得て、得られた前駆体と少なくとも2つの官能基を有する有機物である離型剤(B)とを溶融混練し、前記式(1’)で示す(メタ)アクリル酸単位(a2)の残存率を50%以上とする、樹脂組成物の製造方法。
(12)重合方法が、懸濁重合である、前記の樹脂組成物の製造方法。
(13)少なくとも2つの官能基を有する有機物である離型剤(B)の含有量が、前駆体100質量部に対して、0.01~1質量部である、前記の樹脂組成物の製造方法。
(14)溶融混練温度が、150℃~270℃である、前記の樹脂組成物の製造方法。
(11) A precursor is obtained by polymerizing a monomer containing methyl (meth)acrylate (a1) and (meth)acrylic acid (a2), and the obtained precursor is combined with an organic substance having at least two functional groups. A method for producing a resin composition, which comprises melt-kneading a certain mold release agent (B) so that the residual rate of (meth)acrylic acid units (a2) represented by the formula (1') is 50% or more.
(12) The method for producing the resin composition described above, wherein the polymerization method is suspension polymerization.
(13) Production of the resin composition described above, wherein the content of the mold release agent (B), which is an organic substance having at least two functional groups, is 0.01 to 1 part by mass based on 100 parts by mass of the precursor. Method.
(14) The method for producing the resin composition described above, wherein the melt-kneading temperature is 150°C to 270°C.

(15)前記の樹脂組成物を成形した成形体。
(16)前記の成形体を含む車両用部品。
(15) A molded article obtained by molding the resin composition described above.
(16) A vehicle part including the molded article.

本発明の樹脂組成物は、耐熱性、流動性、機械特性、外観、低吸水性、成形性に優れる。
また、本発明の樹脂組成物の製造方法は、得られる樹脂組成物の耐熱性、流動性、機械特性、外観、低吸水性、成形性に優れる。
更に、本発明の成形体は、耐熱性、流動性、機械特性、外観、低吸水性、成形性に優れる。
The resin composition of the present invention has excellent heat resistance, fluidity, mechanical properties, appearance, low water absorption, and moldability.
Furthermore, the method for producing a resin composition of the present invention provides a resin composition that is excellent in heat resistance, fluidity, mechanical properties, appearance, low water absorption, and moldability.
Furthermore, the molded article of the present invention has excellent heat resistance, fluidity, mechanical properties, appearance, low water absorption, and moldability.

本発明の樹脂組成物において共重合体(A)は、メチル(メタ)アクリレート単位(A1)及び(メタ)アクリル酸単位(A2)(以下、単に「単位(A1)」、「単位(A2)」ということがある。)を含む。 In the resin composition of the present invention, the copolymer (A) includes methyl (meth)acrylate units (A1) and (meth)acrylic acid units (A2) (hereinafter simply referred to as "units (A1)" and "units (A2)"). ).

単位(A1)及び単位(A2)を含む共重合体中の単位(A1)の含有率は、共重合体100mol%中、80mol%以上99mol%以下がより好ましく、90mol%以上98mol%以下が更に好ましい。単位(A1)の含有率が80mol%以上であると、特に、外観、低吸水性、成形性の観点で、アクリル樹脂本来の性能を損なわない。また、単位(A1)の含有率が99mol%以下であると、共重合体の耐熱性、機械特性に優れる。
尚、本明細書において、共重合体中の各単位の含有率は、H-NMR測定から算出した値とする。
The content of the unit (A1) in the copolymer containing the unit (A1) and the unit (A2) is more preferably 80 mol% or more and 99 mol% or less, more preferably 90 mol% or more and 98 mol% or less, based on 100 mol% of the copolymer. preferable. When the content of the unit (A1) is 80 mol% or more, the inherent performance of the acrylic resin is not impaired, particularly in terms of appearance, low water absorption, and moldability. Moreover, when the content of the unit (A1) is 99 mol% or less, the copolymer has excellent heat resistance and mechanical properties.
In this specification, the content of each unit in the copolymer is a value calculated from 1 H-NMR measurement.

単位(A1)及び単位(A2)を含む共重合体中の単位(A2)の含有率は、共重合体100mol%中、0.45mol%以上7mol%以下が好ましく、0.5mol%以上6mol%以下がより好ましい。単位(A2)の含有率が0.45mol%以上であると、共重合体の耐熱性、機械特性に優れる。また、単位(A2)の含有率が7mol%以下であると、特に、外観、低吸水性、成形性の観点で、アクリル樹脂本来の性能を損なわない。 The content of the unit (A2) in the copolymer containing the unit (A1) and the unit (A2) is preferably 0.45 mol% or more and 7 mol% or less, and 0.5 mol% or more and 6 mol% or less, based on 100 mol% of the copolymer. The following are more preferable. When the content of the unit (A2) is 0.45 mol% or more, the copolymer has excellent heat resistance and mechanical properties. Moreover, when the content of the unit (A2) is 7 mol % or less, the inherent performance of the acrylic resin is not impaired, especially in terms of appearance, low water absorption, and moldability.

単位(A1)及び単位(A2)を含む共重合体中の(メタ)アクリル酸単位(A2)の残存率が、50%以上が好ましく、90%以上がより好ましい。また、単位(A1)及び単位(A2)を含む共重合体中の(メタ)アクリル酸単位(A2)の残存率は99.9%以下が好ましく、99.7%以下がより好ましい。50%以上であると、外観の観点で、アクリル樹脂本来の性能を損なわないだけでなく、(メタ)アクリル酸のヒドロキシル基と離型剤(B)との架橋反応による高分子量化が起こり、成形安定性に優れる。また、99.9%以下であると、共重合体の耐熱性に優れる。アクリル酸単位(A2)の残存率は下記式(1’)より算出した。
なお、ここでいう成形安定性とは、伸長流動特性が影響する成形方法であり、発泡成形、ブロー成形、フィルム成形などが挙げられる。これらの成形方法においては加熱成形時(伸長)時の歪硬化性が重要となる。歪硬化性を有することで、成形品の偏肉や吹き破れの防止できることで成形が安定し、成形中に成形品が切れるなどのトラブルが発生しにくく、生産性も向上する。歪硬化性を発現させるために、一般には高分子量物や長鎖分岐構造物を添加するが、本発明では離型剤(B)の添加により、一部が高分子量化するために、歪硬化性を発現することが期待できるため非常に効率的である。
(メタ)アクリル酸単位(A2)の残存率(%)={[共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]/([共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体中の無水グルタル酸単位(A3)の割合(mol%)])}×100・・・(1’)
The residual rate of the (meth)acrylic acid unit (A2) in the copolymer containing the unit (A1) and the unit (A2) is preferably 50% or more, more preferably 90% or more. Further, the residual rate of the (meth)acrylic acid unit (A2) in the copolymer containing the unit (A1) and the unit (A2) is preferably 99.9% or less, more preferably 99.7% or less. If it is 50% or more, not only will the original performance of the acrylic resin not be impaired in terms of appearance, but also the crosslinking reaction between the hydroxyl groups of (meth)acrylic acid and the mold release agent (B) will cause the polymer to have a high molecular weight. Excellent molding stability. Moreover, when it is 99.9% or less, the copolymer has excellent heat resistance. The residual rate of acrylic acid units (A2) was calculated from the following formula (1').
In addition, the molding stability here refers to a molding method that is influenced by elongational flow characteristics, and includes foam molding, blow molding, film molding, and the like. In these forming methods, strain hardening during heat forming (elongation) is important. By having strain hardening properties, it is possible to prevent uneven thickness and blow-out of the molded product, thereby stabilizing the molding, making it difficult for problems such as the molded product to break during molding, and improving productivity. In order to develop strain hardening properties, high molecular weight substances or long chain branched structures are generally added, but in the present invention, by adding the mold release agent (B), the molecular weight is partially increased, so strain hardening is not achieved. It is very efficient because it can be expected to express sexual characteristics.
Remaining rate (%) of (meth)acrylic acid units (A2) = {[ratio (mol%) of (meth)acrylic acid units (A2) in the copolymer]/([(meth)acrylic acid units (A2) in the copolymer Proportion of acrylic acid units (A2) (mol%) + [proportion of glutaric anhydride units (A3) in copolymer (mol%)]) x 100... (1')

本発明に記載の離型剤(B)とは、金型成形後に金型から剥離しやすくする目的と一部高分子量化のための部分架橋効果を目的として添加する成分である。
離型剤(B)の有機物は官能基が2つ以上であり、中でも2つが好ましい。官能基が2つ以上であると、溶融混練や溶融成形の際に共重合体(A)の(メタ)アクリル酸のヒドロキシル基との架橋反応による高分子量化が起こり、成形安定性に優れる。また官能基が少ないほど、樹脂組成物から得られる成形品の表面にくもりが発生し難い傾向がある。ここで言う官能基としては特に限定されないが、カルボニル基、ヒドロキシル基、カルボキシル基、アミノ基、アミド基などが挙げられる。
The mold release agent (B) according to the present invention is a component added for the purpose of facilitating peeling from the mold after molding and for the purpose of partial crosslinking effect for increasing the molecular weight.
The organic substance of the mold release agent (B) has two or more functional groups, and preferably two functional groups. When the number of functional groups is two or more, a high molecular weight occurs due to a crosslinking reaction with the hydroxyl group of (meth)acrylic acid in the copolymer (A) during melt-kneading or melt-molding, resulting in excellent molding stability. Furthermore, the fewer functional groups there are, the less likely clouding will occur on the surface of a molded article obtained from the resin composition. The functional groups mentioned here are not particularly limited, but include carbonyl groups, hydroxyl groups, carboxyl groups, amino groups, amide groups, and the like.

離型剤(B)の分子量は100~500が好ましく、200~400がより好ましい。分子量が100より大きいと揮発性が低いため、金型クモリに対して十分な効果が得られる。一方、分子量が500より小さいとメタクリル樹脂との相溶性が高いため、離型時に金型への残存が少なく、金型汚れ、成形品のクモリが発生しにくい。 The molecular weight of the mold release agent (B) is preferably 100 to 500, more preferably 200 to 400. When the molecular weight is greater than 100, the volatility is low and a sufficient effect against mold cloudiness can be obtained. On the other hand, when the molecular weight is less than 500, the compatibility with the methacrylic resin is high, so there is little remaining in the mold upon demolding, and mold stains and cloudiness of the molded product are less likely to occur.

少なくとも2つの官能基を有する有機物である離型剤(B)としては例えば、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノ1,2-ヒドロキシステアレート、グリセリンモノオレート、グリセリンモノカプリレート、グリセリンモノカプレート及びグリセリンモノラウレートが挙げられる。また、これらを組み合わせて使用してもよく、1つ以下の官能基を有する有機物である離型剤と併用して使用してもよい。 Examples of the mold release agent (B) which is an organic substance having at least two functional groups include glycerin monostearate, glycerin monobehenate, glycerin mono-1,2-hydroxystearate, glycerin monooleate, glycerin monocaprylate, and glycerin Mention may be made of monocaprate and glycerol monolaurate. Moreover, these may be used in combination, and may be used in combination with a mold release agent which is an organic substance having one or less functional group.

離型剤(B)の含有量は、共重合体(A)100質量部に対して、0.01~1質量部が好ましく、0.1~0.3質量部がより好ましい。含有量が0.01質量部より多いと離型性が向上し、1質量部より少ないと添加剤のブリードによる金型汚染の影響が少ない。 The content of the mold release agent (B) is preferably 0.01 to 1 part by weight, more preferably 0.1 to 0.3 parts by weight, based on 100 parts by weight of the copolymer (A). When the content is more than 0.01 parts by mass, mold release properties are improved, and when the content is less than 1 part by mass, mold contamination due to additive bleeding is less affected.

樹脂組成物の積分分子量分布より求めた250℃、20分加熱後のlog[2Mw]以上の割合%/樹脂組成物の積分分子量分布より求めた加熱前のlog[2Mw]以上の割合%(2’)は1.5以上10以下が好ましく、2以上7以下がより好ましい。樹脂組成物の積分分子量分布より求めた250℃、20分加熱後のlog[2Mw]以上の割合が、1.5以上であると成形安定性に優れ、10以下であると流動性に優れる。 Percentage % of log[2Mw] or higher after heating at 250°C for 20 minutes, determined from the integral molecular weight distribution of the resin composition/Ratio% of log[2Mw] or higher before heating, determined from the integral molecular weight distribution of the resin composition (2 ') is preferably 1.5 or more and 10 or less, more preferably 2 or more and 7 or less. When the ratio of log [2Mw] or more after heating at 250° C. for 20 minutes, determined from the integral molecular weight distribution of the resin composition, is 1.5 or more, the molding stability is excellent, and when it is 10 or less, the molding stability is excellent.

単位(A1)、単位(A2)及び無水グルタル酸単位(A3)(以下、単に「単位(A3)」ということがある。)を含む共重合体中の単位(A3)の含有率は、共重合体100mol%中、0.001mol%以上0.25mol%以下が好ましく、0.001mol%以上0.15mol%以下がより好ましい。単位(A3)の含有率が0.001mol%以上であると、共重合体の耐熱性、機械特性に優れる。また、単位(A3)の含有率が0.25mol%以下であると、特に、外観、低吸水性、成形性の観点で、アクリル樹脂本来の性能を損なわない。 The content of units (A3) in a copolymer containing units (A1), units (A2), and glutaric anhydride units (A3) (hereinafter sometimes simply referred to as "units (A3)") is In 100 mol% of the polymer, 0.001 mol% or more and 0.25 mol% or less are preferable, and 0.001 mol% or more and 0.15 mol% or less are more preferable. When the content of the unit (A3) is 0.001 mol% or more, the copolymer has excellent heat resistance and mechanical properties. Moreover, when the content of the unit (A3) is 0.25 mol % or less, the inherent performance of the acrylic resin is not impaired, especially in terms of appearance, low water absorption, and moldability.

単位(A1)80mol%以上、単位(A2)0.45mol%以上7mol%以下及び単位(A3)0.001mol%以上0.25mol%以下を含む共重合体を得るには、メチル(メタ)アクリレート(a1)80mol%以上及び(メタ)アクリル酸(a2)0.7mol%以上7mol%以下を含む単量体混合物を重合して前駆体を得て、得られた前駆体を押出機等により加熱溶融混練し、前駆体中の単位(A1)と単位(A2)を反応させ、単位(A3)を形成させればよい。 To obtain a copolymer containing units (A1) of 80 mol% or more, units (A2) of 0.45 mol% or more and 7 mol% or less, and units (A3) of 0.001 mol% or more and 0.25 mol% or less, methyl (meth)acrylate A monomer mixture containing (a1) 80 mol% or more and (meth)acrylic acid (a2) 0.7 mol% or more and 7 mol% or less is polymerized to obtain a precursor, and the obtained precursor is heated with an extruder etc. What is necessary is to melt-knead and react the units (A1) and the units (A2) in the precursor to form the units (A3).

加熱温度は、200℃以上270℃以下が好ましく、210℃以上260℃以下がより好ましい。加熱温度が200℃以上であると、共重合体の流動性に優れ、共重合体や樹脂組成物の生産性に優れる。また、加熱温度が270℃以下であると、共重合体の熱劣化を抑制することができる。 The heating temperature is preferably 200°C or more and 270°C or less, more preferably 210°C or more and 260°C or less. When the heating temperature is 200° C. or higher, the copolymer has excellent fluidity and productivity of the copolymer and resin composition. Further, when the heating temperature is 270° C. or lower, thermal deterioration of the copolymer can be suppressed.

加熱時間は、1秒以上2400秒以下が好ましく、5秒以上1800秒以下がより好ましく、10秒以上1200秒以下が更に好ましい。加熱時間が1秒以上であると、共重合体や樹脂組成物を十分混合することができる。また、加熱時間が2400秒以下であると、共重合体の熱劣化を抑制することができる。 The heating time is preferably 1 second or more and 2400 seconds or less, more preferably 5 seconds or more and 1800 seconds or less, and even more preferably 10 seconds or more and 1200 seconds or less. When the heating time is 1 second or more, the copolymer and the resin composition can be sufficiently mixed. Further, when the heating time is 2400 seconds or less, thermal deterioration of the copolymer can be suppressed.

本発明の共重合体は、単位(A1)、単位(A2)、単位(A3)以外にも、他の単量体単位(A4)(以下、単に「単位(A4)」ということがある。)を含んでもよい。 In addition to the unit (A1), the unit (A2), and the unit (A3), the copolymer of the present invention has another monomer unit (A4) (hereinafter sometimes simply referred to as "unit (A4)"). ) may also be included.

単位(A4)の含有率は、樹脂組成物がアクリル樹脂本来の性能を損なわないことから、共重合体100mol%中、15mol%以下が好ましく、5mol%以下がより好ましい。 The content of the unit (A4) is preferably 15 mol% or less, more preferably 5 mol% or less, based on 100 mol% of the copolymer, since the resin composition does not impair the inherent performance of the acrylic resin.

単位(A4)を構成する単量体としては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート等の(メタ)アクリレート類;スチレン、α-メチルスチレン等の芳香族ビニル単量体等が挙げられる。 Examples of the monomer constituting the unit (A4) include ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec. -Butyl (meth)acrylate, tert-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate , tridecyl (meth)acrylate, stearyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, isobornyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate acrylate, norbornyl (meth)acrylate, adamantyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, tetracyclododecanyl (meth)acrylate, cyclohexanedimethanol mono(meth)acrylate, etc. (Meth)acrylates; aromatic vinyl monomers such as styrene and α-methylstyrene; and the like.

メチル(メタ)アクリレートは、メチルメタクリレート及びメチルアクリレートの内の少なくとも一方をいう。
メチル(メタ)アクリレート(a1)の中でも、共重合体の外観、機械特性に優れることから、メチルメタクリレートが主成分であることが好ましい。また、共重合体の耐熱分解性を向上させる観点で、メチルアクリレートをメチルメタクリレートと共に用いることがより好ましい。
単位(A1)も同様に、共重合体の外観、機械特性に優れることから、メチルメタクリレート単位が主成分であることが好ましい。また、共重合体の耐熱分解性を向上させる観点で、メチルアクリレート単位がメチルメタクリレート単位と共に含まれることがより好ましい。
Methyl (meth)acrylate refers to at least one of methyl methacrylate and methyl acrylate.
Among methyl (meth)acrylate (a1), it is preferable that methyl methacrylate is the main component because the copolymer has excellent appearance and mechanical properties. Further, from the viewpoint of improving the heat decomposition resistance of the copolymer, it is more preferable to use methyl acrylate together with methyl methacrylate.
Similarly, the unit (A1) preferably has a methyl methacrylate unit as a main component since the copolymer has excellent appearance and mechanical properties. Moreover, from the viewpoint of improving the heat decomposition resistance of the copolymer, it is more preferable that methyl acrylate units are included together with methyl methacrylate units.

(メタ)アクリル酸は、アクリル酸及びメタクリル酸の内の少なくとも一方をいう。
(メタ)アクリル酸(a2)の中でも、共重合体の耐熱性に優れることから、メタクリル酸が好ましい。
単位(A2)も同様に、共重合体の耐熱性に優れることから、メタクリル酸単位が好ましい。
(Meth)acrylic acid refers to at least one of acrylic acid and methacrylic acid.
Among (meth)acrylic acids (a2), methacrylic acid is preferred because the copolymer has excellent heat resistance.
Similarly, the unit (A2) is preferably a methacrylic acid unit because the copolymer has excellent heat resistance.

メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体混合物中のメチル(メタ)アクリレート(a1)の含有率は、単量体混合物100mol%中、80mol%以上が好ましく、また99.5mol%以下が好ましい。前記含有率は、90mol%以上99mol%以下がより好ましい。メチル(メタ)アクリレート(a1)の含有率が80mol%以上であると、特に、外観、低吸水性、成形性の観点で、アクリル樹脂本来の性能を損なわない。また、メチル(メタ)アクリレート(a1)の含有率が99.5mol%以下であると、共重合体の耐熱性、機械特性に優れる。 The content of methyl (meth)acrylate (a1) in the monomer mixture containing methyl (meth)acrylate (a1) and (meth)acrylic acid (a2) is 80 mol% or more in 100 mol% of the monomer mixture. It is preferably 99.5 mol% or less. The content is more preferably 90 mol% or more and 99 mol% or less. When the content of methyl (meth)acrylate (a1) is 80 mol% or more, the inherent performance of the acrylic resin is not impaired, particularly in terms of appearance, low water absorption, and moldability. Moreover, when the content of methyl (meth)acrylate (a1) is 99.5 mol% or less, the copolymer has excellent heat resistance and mechanical properties.

メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体混合物中の(メタ)アクリル酸(a2)の含有率は、単量体混合物100mol%中、0.7mol%以上7mol%以下が好ましく、1mol%以上6mol%以下がより好ましい。(メタ)アクリル酸(a2)の含有率が0.7mol%以上であると、共重合体の耐熱性、機械特性に優れる。また、(メタ)アクリル酸(a2)の含有率が7mol%以下であると、特に、外観、低吸水性、成形性の観点で、アクリル樹脂本来の性能を損なわない。 The content of (meth)acrylic acid (a2) in the monomer mixture containing methyl (meth)acrylate (a1) and (meth)acrylic acid (a2) is 0.7 mol% in 100 mol% of the monomer mixture. It is preferably 7 mol% or less, more preferably 1 mol% or more and 6 mol% or less. When the content of (meth)acrylic acid (a2) is 0.7 mol% or more, the copolymer has excellent heat resistance and mechanical properties. Moreover, when the content of (meth)acrylic acid (a2) is 7 mol % or less, the inherent performance of the acrylic resin is not impaired, especially in terms of appearance, low water absorption, and moldability.

単量体混合物は、メチル(メタ)アクリレート(a1)、(メタ)アクリル酸(a2)以外にも、他の単量体(a4)を含んでもよい。
他の単量体(a4)は、メチル(メタ)アクリレート(a1)、(メタ)アクリル酸(a2)と共重合が可能なものであればよい。
The monomer mixture may contain other monomers (a4) in addition to methyl (meth)acrylate (a1) and (meth)acrylic acid (a2).
The other monomer (a4) may be any monomer that can be copolymerized with methyl (meth)acrylate (a1) and (meth)acrylic acid (a2).

他の単量体(a4)の含有率は、樹脂組成物がアクリル樹脂本来の性能を損なわないことから、単量体混合物100mol%中、15mol%以下が好ましく、5mol%以下がより好ましい。 The content of the other monomer (a4) is preferably 15 mol% or less, more preferably 5 mol% or less, based on 100 mol% of the monomer mixture, since the resin composition does not impair the inherent performance of the acrylic resin.

他の単量体(a4)としては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート等の(メタ)アクリレート類;スチレン、α-メチルスチレン等の芳香族ビニル単量体等が挙げられる。 Other monomers (a4) include, for example, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, isobornyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, Norbornyl (meth)acrylate, adamantyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, tetracyclododecanyl (meth)acrylate, cyclohexanedimethanol mono(meth)acrylate, etc. ) Acrylates; examples include aromatic vinyl monomers such as styrene and α-methylstyrene.

単量体混合物の重合方法としては、例えば、塊状重合、溶液重合、懸濁重合、乳化重合等が挙げられる。これらの単量体混合物の重合方法の中でも、単量体混合物の反応効率に優れることから、塊状重合、溶液重合、懸濁重合が好ましい。 Examples of methods for polymerizing the monomer mixture include bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among these methods for polymerizing monomer mixtures, bulk polymerization, solution polymerization, and suspension polymerization are preferred because they are excellent in reaction efficiency of monomer mixtures.

単量体混合物の重合において、重合温度、重合開始剤種類、重合開始剤量等は、重合方法や得ようとする共重合体に応じて、適宜設定すればよい。 In the polymerization of the monomer mixture, the polymerization temperature, type of polymerization initiator, amount of polymerization initiator, etc. may be appropriately set depending on the polymerization method and the copolymer to be obtained.

共重合体(A)の質量平均分子量は、50,000以上150,000以下であり、70,000以上130,000以下が好ましい。共重合体の質量平均分子量が50,000以上であると、共重合体の機械特性に優れる。また、共重合体の質量平均分子量が150,000以下であると、共重合体の流動性に優れる。
尚、本明細書において、質量平均分子量は、標準試料として標準ポリスチレンを用い、ゲルパーミエーションクロマトグラフィーを用いて測定した値とする。
The mass average molecular weight of the copolymer (A) is 50,000 or more and 150,000 or less, preferably 70,000 or more and 130,000 or less. When the mass average molecular weight of the copolymer is 50,000 or more, the copolymer has excellent mechanical properties. Further, when the mass average molecular weight of the copolymer is 150,000 or less, the copolymer has excellent fluidity.
In this specification, the mass average molecular weight is a value measured using gel permeation chromatography using standard polystyrene as a standard sample.

前記共重合体の質量平均分子量を制御するためには、単量体混合物の重合において連鎖移動剤の量を調整することが好ましい。
単量体混合物の重合における連鎖移動剤の含有量は、所望の共重合体の質量平均分子量とすることができることから、単量体混合物100質量部に対して、0.1質量部以上0.5質量部以下が好ましく、0.15質量部以上0.4質量部以下がより好ましい。
In order to control the weight average molecular weight of the copolymer, it is preferable to adjust the amount of chain transfer agent in the polymerization of the monomer mixture.
The content of the chain transfer agent in the polymerization of the monomer mixture can be set to the weight average molecular weight of the desired copolymer, and therefore, the content of the chain transfer agent in the polymerization of the monomer mixture is 0.1 parts by mass or more and 0.1 parts by mass or more based on 100 parts by mass of the monomer mixture. It is preferably 5 parts by mass or less, and more preferably 0.15 parts by mass or more and 0.4 parts by mass or less.

前記共重合体のビカット軟化温度は、115℃以上が好ましく、また125℃以下が好ましい。共重合体のビカット軟化温度が115℃以上であると、共重合体の耐熱性に優れる。また、共重合体のビカット軟化温度が125℃以下であると、共重合体の流動性に優れる。
尚、本明細書において、ビカット軟化温度は、ISO306のA50法に準拠して測定した値とする。
The Vicat softening temperature of the copolymer is preferably 115°C or higher, and preferably 125°C or lower. When the Vicat softening temperature of the copolymer is 115° C. or higher, the copolymer has excellent heat resistance. Further, when the Vicat softening temperature of the copolymer is 125° C. or less, the copolymer has excellent fluidity.
In this specification, the Vicat softening temperature is a value measured in accordance with the A50 method of ISO306.

本発明の樹脂組成物は、前記共重合体を含む。 The resin composition of the present invention contains the copolymer.

本発明の樹脂組成物は、前記の共重合体以外に、他の添加剤を含んでもよい。
他の添加剤としては、例えば、紫外線吸収剤、酸化防止剤、可塑剤、光拡散剤、艶消剤、滑剤、帯電防止剤、顔料等の着色剤等が挙げられる。これらの他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
日光等の紫外線による共重合体の劣化を抑制することから、樹脂組成物中に紫外線吸収剤を含むことが好ましい。
溶融混練や溶融成形の際に共重合体の熱劣化を抑制することから、樹脂組成物中に酸化防止剤を含むことが好ましい。
The resin composition of the present invention may contain other additives in addition to the above copolymer.
Examples of other additives include ultraviolet absorbers, antioxidants, plasticizers, light diffusing agents, matting agents, lubricants, antistatic agents, and colorants such as pigments. These other additives may be used alone or in combination of two or more.
In order to suppress deterioration of the copolymer due to ultraviolet rays such as sunlight, it is preferable to include an ultraviolet absorber in the resin composition.
In order to suppress thermal deterioration of the copolymer during melt-kneading and melt-molding, it is preferable to include an antioxidant in the resin composition.

前記共重合体と他の添加剤とを混合する方法としては、例えば、二軸押出機等の装置を用いて溶融混練する方法等が挙げられる。また、前駆体と他の添加剤とを加熱溶融混練し、単位(A3)を形成させて共重合体を得ると共に、他の添加剤と混合してもよい。 Examples of the method for mixing the copolymer and other additives include a method of melt-kneading using a device such as a twin-screw extruder. Alternatively, the precursor and other additives may be heat-melted and kneaded to form units (A3) to obtain a copolymer, and the copolymer may be mixed with other additives.

本発明の成形体は、本発明の樹脂組成物を成形して得られる。 The molded article of the present invention is obtained by molding the resin composition of the present invention.

成形体を得るための成形方法としては、例えば、射出成形、押出成形、加圧成形、ブロー成形、フィルム成型等が挙げられる。また、得られた成形体を、更に圧空成形や真空成形等の二次成形してもよい。 Examples of the molding method for obtaining the molded body include injection molding, extrusion molding, pressure molding, blow molding, and film molding. Further, the obtained molded product may be further subjected to secondary molding such as pressure forming or vacuum forming.

成形温度は、200℃以上270℃以下が好ましく、210℃以上260℃以下がより好ましい。成形温度が200℃以上であると、樹脂組成物の流動性に優れ、成形体の外観に優れる。また、成形温度が270℃以下であると、共重合体の熱劣化を抑制することができる。 The molding temperature is preferably 200°C or more and 270°C or less, more preferably 210°C or more and 260°C or less. When the molding temperature is 200° C. or higher, the resin composition has excellent fluidity and the molded product has excellent appearance. Further, when the molding temperature is 270°C or less, thermal deterioration of the copolymer can be suppressed.

成形時間は、30秒以上1200秒以下が好ましく、45秒以上900秒以下がより好ましく、60秒以上600秒以下が更に好ましい。成形時間が30秒以上であると、樹脂組成物の流動性に優れ、成形体の外観に優れる。また、成形時間が1200秒以下であると、共重合体の熱劣化を抑制することができる。 The molding time is preferably 30 seconds or more and 1200 seconds or less, more preferably 45 seconds or more and 900 seconds or less, and even more preferably 60 seconds or more and 600 seconds or less. When the molding time is 30 seconds or more, the resin composition has excellent fluidity and the molded product has excellent appearance. Further, when the molding time is 1200 seconds or less, thermal deterioration of the copolymer can be suppressed.

本発明の成形体は、耐熱性、機械特性、外観、成形性に優れることから、光学材料、車両用部品、照明用材料、建築用材料等に用いることができ、特に、自動車等の車両用部品に好適である。
自動車等の車両用部品としては、例えば、リアランプアウターカバー、リアランプ内部の光学部材、ヘッドライト用のインナーレンズ(プロジェクターレンズやPESレンズと称される場合がある)、メーターカバー、ドアミラーハウジング、ピラーカバー(サッシュカバー)、ライセンスガーニッシュ、フロントグリル、フォグガーニッシュ、エンブレム等が挙げられる。
Since the molded article of the present invention has excellent heat resistance, mechanical properties, appearance, and moldability, it can be used for optical materials, vehicle parts, lighting materials, construction materials, etc., and especially for vehicles such as automobiles. Suitable for parts.
Examples of vehicle parts for automobiles include rear lamp outer covers, optical members inside rear lamps, inner lenses for headlights (sometimes referred to as projector lenses or PES lenses), meter covers, door mirror housings, and pillar covers. (sash cover), license garnish, front grill, fog garnish, emblem, etc.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

(共重合体中の各単位の含有率)
実施例・比較例で得られた共重合体及び重ジメチルスルホキシドを、撹拌子を備えた20mlのシュレンク管に供給し、撹拌しながら80℃に加熱し、共重合体を溶解させた。その後、23℃まで冷却し、ベンジルアミンをシュレンク管に供給し、撹拌しながら80℃に加熱した。1時間反応させた後、反応溶液を抜き取り、核磁気共鳴装置(varian社製、270MHz)を用い、測定温度80℃、積算回数32回の条件で、H-NMR測定を行った。
得られたH-NMR測定結果から、3.7ppm付近に存在するシングレットピークの未反応ベンジルアミンのベンジルプロトンの積分値と、4.2ppm付近に存在するシングレットピークのグルタル酸ベンジルアミドのベンジルプロトンの積分値との比から、共重合体中の単位(A3)の含有率を算出した。また、3.5ppm付近に存在するシングレットピークの単位(A1)由来のプロトンの積分値、0.5ppm以上2.5ppm以下付近に存在する単位(A1)と単位(A2)由来のプロトンの積分値をそれぞれ、3.7ppm付近に存在するシングレットピークの未反応ベンジルアミンのベンジルプロトンの積分値と比をとることで、共重合体中の単位(A1)及び単位(A2)の含有率を算出した。
(Content of each unit in copolymer)
The copolymers and heavy dimethyl sulfoxide obtained in Examples and Comparative Examples were supplied to a 20 ml Schlenk tube equipped with a stirrer, and heated to 80° C. while stirring to dissolve the copolymers. Thereafter, the mixture was cooled to 23°C, and benzylamine was fed into a Schlenk tube, and heated to 80°C with stirring. After reacting for 1 hour, the reaction solution was extracted and 1 H-NMR measurement was performed using a nuclear magnetic resonance apparatus (manufactured by Varian, 270 MHz) at a measurement temperature of 80° C. and a total number of 32 times.
From the obtained 1 H-NMR measurement results, the integrated value of the benzyl proton of unreacted benzylamine with a singlet peak existing around 3.7 ppm, and the benzyl proton of glutaric acid benzylamide with a singlet peak around 4.2 ppm. The content of the unit (A3) in the copolymer was calculated from the ratio with the integral value of . In addition, the integral value of protons derived from the singlet peak unit (A1) existing around 3.5 ppm, the integral value of protons derived from the unit (A1) and unit (A2) existing around 0.5 ppm to 2.5 ppm, The content of unit (A1) and unit (A2) in the copolymer was calculated by taking the ratio of the integral value of the benzyl proton of unreacted benzylamine of the singlet peak existing around 3.7 ppm, respectively. .

(質量平均分子量)
実施例・比較例で得られた共重合体20mgを、10mlのテトラヒドロフランに溶解し、0.2μmメンブレンフィルターで濾過して、試料溶液を得た。得られた試料溶液について、ゲルパーミエーションクロマトグラフィー(機種名「HLC-8320 GPC Eco SEC」、東ソー(株)製)を用い、質量平均分子量を測定した。分離カラムとして「TSKgel SuperHM-H」(商品名、東ソー(株)製、内径6.0mm×長さ15cm)を2本直列にしたもの、溶媒としてテトラヒドロフラン、検出器として示差屈折計、標準試料として標準ポリスチレンを用い、流量0.6ml/分、測定温度40℃、注入量0.01mlの条件とした。
(mass average molecular weight)
20 mg of the copolymer obtained in Examples and Comparative Examples was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.2 μm membrane filter to obtain a sample solution. The mass average molecular weight of the obtained sample solution was measured using gel permeation chromatography (model name: "HLC-8320 GPC Eco SEC", manufactured by Tosoh Corporation). Two "TSKgel SuperHM-H" (trade name, manufactured by Tosoh Corporation, inner diameter 6.0 mm x length 15 cm) were connected in series as a separation column, tetrahydrofuran was used as a solvent, a differential refractometer was used as a detector, and a standard sample was used. Using standard polystyrene, the conditions were a flow rate of 0.6 ml/min, a measurement temperature of 40° C., and an injection amount of 0.01 ml.

(樹脂組成物の加熱による分子量変化)
実施例・比較例で得られた樹脂組成物について、その質量平均分子量(Mw)および積分分子量分布を、ゲルパーミエーションクロマトグラフィーを用い、測定した。次に、実施例・比較例で得られた樹脂組成物を、250℃に加熱した乾燥機(機種名「DRV320DA」、アドバンテック東洋(株)製)中で20分加熱した後、ゲルパーミエーションクロマトグラフィーを用い、積分分子量分布を測定した。測定条件は前記(共重合体中の各単位の含有率)の項に記載している条件と同条件とした。下記式(2’)の条件を満たす樹脂組成物は共重合体と離型剤による部分架橋反応が進行し、高分子量化するため、成形安定性が向上することになる。そのため、下記式(2’)の条件を満たす樹脂組成物の成形安定性を「○」、(2’)の条件を満たさない樹脂組成物のそれを「×」とした。
10≧樹脂組成物の積分分子量分布より求めた加熱後のlog[2Mw]以上の割合%/樹脂組成物の積分分子量分布より求めた加熱前のlog[2Mw]以上の割合%≧1.5・・・(2’)
(Molecular weight change due to heating of resin composition)
The mass average molecular weight (Mw) and integral molecular weight distribution of the resin compositions obtained in Examples and Comparative Examples were measured using gel permeation chromatography. Next, the resin compositions obtained in Examples and Comparative Examples were heated for 20 minutes in a dryer (model name "DRV320DA", manufactured by Advantech Toyo Co., Ltd.) heated to 250°C, and then subjected to gel permeation chromatography. The integral molecular weight distribution was measured using graphography. The measurement conditions were the same as those described in the section (Content of each unit in copolymer) above. In a resin composition that satisfies the conditions of the following formula (2'), a partial crosslinking reaction between the copolymer and the mold release agent proceeds and the molecular weight is increased, so that molding stability is improved. Therefore, the molding stability of the resin composition satisfying the condition of formula (2') below was rated as "○", and that of the resin composition that did not satisfy the condition of formula (2') was rated as "x".
10≧Proportion% of log[2Mw] or more after heating determined from the integral molecular weight distribution of the resin composition/Proportion% of more than log[2Mw] before heating determined from the integral molecular weight distribution of the resin composition≧1.5. ...(2')

(耐熱性評価)
実施例・比較例で得られた樹脂組成物を、射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃、成形時間360秒の条件で射出成形し、80mm×8mm×4mmの成形体を得た。得られた80mm×8mm×4mmの成形体を切断し、40mm×8mm×4mmの成形体を得た後、80℃で16時間アニールを行い、得られた成形体を耐熱性評価の試験片として用いた。
耐熱性評価として、HDT/VICAT試験機(機種名「No.148-HAD ヒートデストーションテスター」、(株)安田精機製作所製)を用い、ISO306のA50法に準拠し、ビカット軟化温度試験を行い、ビカット軟化温度を測定した。
尚、各共重合体3回ビカット軟化温度試験を行い、その平均値をビカット軟化温度とした。
(Heat resistance evaluation)
The resin compositions obtained in Examples and Comparative Examples were injection molded using an injection molding machine (model name "IS-100", manufactured by Toshiba Machinery Co., Ltd.) at a molding temperature of 250°C and a molding time of 360 seconds. A molded article measuring 80 mm x 8 mm x 4 mm was obtained. The resulting 80 mm x 8 mm x 4 mm molded body was cut to obtain a 40 mm x 8 mm x 4 mm molded body, and then annealed at 80°C for 16 hours, and the resulting molded body was used as a test piece for heat resistance evaluation. Using.
As a heat resistance evaluation, a Vicat softening temperature test was conducted using an HDT/VICAT tester (model name "No. 148-HAD Heat Distortion Tester", manufactured by Yasuda Seiki Seisakusho Co., Ltd.) in accordance with ISO306 A50 method. , the Vicat softening temperature was measured.
Each copolymer was subjected to the Vicat softening temperature test three times, and the average value was taken as the Vicat softening temperature.

(離型性評価)
実施例・比較例で得られた樹脂組成物を射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃、成形時間360秒の条件で射出成形し、100mm×50mm×2mmの成形体を得た。
いずれも安定的に剥離したものを「○」、剥離し難いものがあったものを「×」と評価した。
(Mold releasability evaluation)
The resin compositions obtained in Examples and Comparative Examples were injection molded using an injection molding machine (model name "IS-100", manufactured by Toshiba Machinery Co., Ltd.) at a molding temperature of 250°C and a molding time of 360 seconds. A molded article of 100 mm x 50 mm x 2 mm was obtained.
In both cases, those that were stably peeled off were evaluated as "○", and those that were difficult to peel off were evaluated as "x".

[製造例0]
脱イオン水900質量部、メタクリル酸2-スルホエチルナトリウム60質量部、メタクリル酸カリウム10質量部及びメチルメタクリレート12質量部を、撹拌機、温度計及び冷却管を備えたフラスコに供給し、窒素を放流しながら、フラスコの内温が50℃になるよう加熱した。その後、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩0.08質量部を供給し、フラスコの内温が60℃になるよう加熱した。その後、滴下ポンプを用いて、メチルメタクリレートを0.24質量部/分の速度で75分間滴下した。その後、6時間保持し、分散剤(固形分10質量%)を得た。
[Manufacture example 0]
900 parts by weight of deionized water, 60 parts by weight of sodium 2-sulfoethyl methacrylate, 10 parts by weight of potassium methacrylate and 12 parts by weight of methyl methacrylate were fed into a flask equipped with a stirrer, a thermometer and a condenser, and nitrogen was added. While discharging water, the flask was heated to an internal temperature of 50°C. Thereafter, 0.08 parts by mass of 2,2'-azobis(2-methylpropionamidine) dihydrochloride was supplied, and the flask was heated so that the internal temperature reached 60°C. Thereafter, using a dropping pump, methyl methacrylate was added dropwise at a rate of 0.24 parts by mass/min for 75 minutes. Thereafter, the mixture was held for 6 hours to obtain a dispersant (solid content: 10% by mass).

[製造例1]
脱イオン水2000質量部及び硫酸ナトリウム4.2質量部を、攪拌機、温度計、冷却管及び窒素ガス導入管を備えたセパラブルフラスコに供給し、320rpmの撹拌速度で15分間撹拌した。その後、メチルメタクリレート(95mol%)(商品名「アクリエステルM」、三菱レイヨン(株)製)1339.4質量部、メタクリル酸(5mol%)60.6質量部、2,2’-アゾビス-2-メチルブチロニトリル(重合開始剤、商品名「V-59」、和光純薬工業(株)製)2.8質量部、n-オクチルメルカプタン(連鎖移動剤、東京化成工業(株)製)4.2質量部(単量体合計100質量部に対する含有量が0.3質量部)及びリケマールS-100A(離型剤、理研ビタミン(株)製)2.8質量部(単量体合計100質量部に対する含有量が0.2質量部)をセパラブルフラスコに供給し、5分間撹拌した。その後、製造例0で製造した分散剤6.72質量部をセパラブルフラスコに供給し、撹拌し、セパラブルフラスコ中の単量体混合物を水中に分散させた。その後、窒素ガスを15分間放流した。
その後、セパラブルフラスコの内温が75℃になるよう加熱し、重合発熱ピークが観測されるまでその温度を保持した。重合発熱ピークが観測された後、セパラブルフラスコの内温が90℃になるよう加熱し、60分間保持し、重合を完了させた。その後、セパラブルフラスコ内の混合物を濾過し、濾過物を脱イオン水で洗浄し、80℃で16時間乾燥し、ビーズ状の前駆体(1)を得た。
[Manufacture example 1]
2000 parts by mass of deionized water and 4.2 parts by mass of sodium sulfate were supplied to a separable flask equipped with a stirrer, a thermometer, a cooling tube, and a nitrogen gas introduction tube, and stirred for 15 minutes at a stirring speed of 320 rpm. Thereafter, 1339.4 parts by mass of methyl methacrylate (95 mol%) (trade name "Acryester M", manufactured by Mitsubishi Rayon Co., Ltd.), 60.6 parts by mass of methacrylic acid (5 mol%), 2,2'-azobis-2 - 2.8 parts by mass of methylbutyronitrile (polymerization initiator, trade name "V-59", manufactured by Wako Pure Chemical Industries, Ltd.), n-octyl mercaptan (chain transfer agent, manufactured by Tokyo Chemical Industry Co., Ltd.) 4.2 parts by mass (content is 0.3 parts by mass based on 100 parts by mass of monomers in total) and Rikemar S-100A (mold release agent, manufactured by Riken Vitamin Co., Ltd.) 2.8 parts by mass (total monomers) 0.2 parts by mass per 100 parts by mass) was supplied to a separable flask and stirred for 5 minutes. Thereafter, 6.72 parts by mass of the dispersant produced in Production Example 0 was supplied to the separable flask and stirred to disperse the monomer mixture in the separable flask in water. Thereafter, nitrogen gas was released for 15 minutes.
Thereafter, the separable flask was heated to an internal temperature of 75° C., and the temperature was maintained until an exothermic peak of polymerization was observed. After the exothermic peak of polymerization was observed, the separable flask was heated to an internal temperature of 90° C. and maintained for 60 minutes to complete polymerization. Thereafter, the mixture in the separable flask was filtered, and the filtered product was washed with deionized water and dried at 80° C. for 16 hours to obtain a bead-shaped precursor (1).

[製造例2~4]
単量体混合物中のメチル(メタ)アクリレート(a1)、(メタ)アクリル酸(a2)の含有率及び離型剤の種類・含有量を表1のように変更したこと以外は製造例1と同様の操作を行い、ビーズ状の前駆体(2)~(4)を得た。
[Production Examples 2 to 4]
Same as Production Example 1 except that the content of methyl (meth)acrylate (a1) and (meth)acrylic acid (a2) in the monomer mixture and the type and content of the mold release agent were changed as shown in Table 1. A similar operation was performed to obtain bead-shaped precursors (2) to (4).

[実施例1]
得られたビーズ状の前駆体(1)を、二軸混練押出機(Werner&Pfleiderer社製、30mmφ)を用い、混練温度250℃、混練時間60秒で溶融混練し、グルタル酸無水物単位(A3)を形成させ、ペレット状の樹脂組成物を得た。
[Example 1]
The obtained bead-like precursor (1) was melt-kneaded using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mmφ) at a kneading temperature of 250°C and a kneading time of 60 seconds to form glutaric anhydride units (A3). was formed to obtain a pellet-shaped resin composition.

[比較例1~3]
用いる前駆体を前駆体(2)~(4)とすること以外は実施例1と同様の操作を行い、ペレット状の樹脂組成物を得た。
得られた樹脂組成物の評価結果を、表2に示す。
[Comparative Examples 1 to 3]
A pellet-shaped resin composition was obtained by carrying out the same operation as in Example 1 except that the precursors used were precursors (2) to (4).
Table 2 shows the evaluation results of the obtained resin composition.

Figure 0007359194000001
Figure 0007359194000001

Figure 0007359194000002
Figure 0007359194000002

実施例1で得られた樹脂組成物は、耐熱性、離型性、成形安定性に優れた。
一方、比較例1で得られた樹脂組成物は、離型性と成形安定性に劣り、比較例2で得られた樹脂組成物は、成形安定性に劣った。また、比較例3で得られた樹脂組成物は、耐熱性と成形安定性に劣った。
The resin composition obtained in Example 1 had excellent heat resistance, mold releasability, and molding stability.
On the other hand, the resin composition obtained in Comparative Example 1 had poor mold releasability and molding stability, and the resin composition obtained in Comparative Example 2 had poor molding stability. Further, the resin composition obtained in Comparative Example 3 was inferior in heat resistance and molding stability.

本発明の成形体は、耐熱性、離型性、流動性、機械特性、外観、低吸水性、成形性に優れることから、光学材料、車両用部品、照明用材料、建築用材料等に用いることができ、特に、自動車の車両用部品に好適である。 The molded article of the present invention has excellent heat resistance, mold releasability, fluidity, mechanical properties, appearance, low water absorption, and moldability, and is therefore used for optical materials, vehicle parts, lighting materials, construction materials, etc. It is particularly suitable for automobile parts.

Claims (5)

メチル(メタ)アクリレート単位(A1)、(メタ)アクリル酸単位(A2)及び無水グルタル酸単位(A3)を含む共重合体(A)と、少なくとも2つの官能基を有する有機物である離型剤(B)とを含有し、下記式(1’)で示す(メタ)アクリル酸単位(A2)の残存率が、90%以上であり、
共重合体(A)100mol%中、メチル(メタ)アクリレート単位(A1)が80mol%以上、(メタ)アクリル酸単位(A2)が0.45mol%以上7mol%以下、及び無水グルタル酸単位(A3)が0.001mol%以上0.25mol%以下であり、
少なくとも2つの官能基を有する有機物である離型剤(B)が、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノ1,2-ヒドロキシステアレート、グリセリンモノオレート、グリセリンモノカプリレート、グリセリンモノカプレート及びグリセリンモノラウレートからなる群より選ばれる少なくとも1種であり、
離型剤(B)の含有量が、共重合体(A)100質量部に対して、0.01~1質量部である、樹脂組成物(但し、流動性ポリオルガノシロキサンを含まない。)。
(メタ)アクリル酸単位(A2)の残存率(%)={[共重合体(A)中の(メタ)アクリル酸単位(A2)の割合(mol%)]/([共重合体(A)中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体(A)中の無水グルタル酸単位(A3)の割合(mol%)])}×100・・・(1’)
A copolymer (A) containing methyl (meth)acrylate units (A1), (meth)acrylic acid units (A2) and glutaric anhydride units (A3), and a mold release agent that is an organic substance having at least two functional groups. (B) and the residual rate of the (meth)acrylic acid unit (A2) represented by the following formula (1') is 90% or more,
In 100 mol% of copolymer (A), methyl (meth)acrylate unit (A1) is 80 mol% or more, (meth)acrylic acid unit (A2) is 0.45 mol% or more and 7 mol% or less, and glutaric anhydride unit (A3) ) is 0.001 mol% or more and 0.25 mol% or less,
The mold release agent (B) which is an organic substance having at least two functional groups is glycerin monostearate, glycerin monobehenate, glycerin mono-1,2-hydroxystearate, glycerin monooleate, glycerin monocaprylate, glycerin monocaprate. and at least one member selected from the group consisting of glycerin monolaurate,
A resin composition in which the content of the mold release agent (B) is 0.01 to 1 part by mass based on 100 parts by mass of the copolymer (A) (however, it does not contain a fluid polyorganosiloxane). .
Remaining rate (%) of (meth)acrylic acid units (A2) = {[Ratio (mol%) of (meth)acrylic acid units (A2) in copolymer (A)]/([Copolymer (A) ) in (mol%) of (meth)acrylic acid units (A2)] + [proportion of glutaric anhydride units (A3) in copolymer (A) (mol%)])}×100... (1')
離型剤(B)の含有量が、共重合体(A)100質量部に対して、0.1~0.3質量部である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the mold release agent (B) is 0.1 to 0.3 parts by mass based on 100 parts by mass of the copolymer (A). 離型剤(B)が、グリセリンモノステアレートである、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the mold release agent (B) is glycerin monostearate. 請求項1~のいずれかに記載の樹脂組成物を成形した成形体。 A molded article obtained by molding the resin composition according to any one of claims 1 to 3 . 請求項に記載の成形体を含む車両用部品。 A vehicle component comprising the molded article according to claim 4 .
JP2021115771A 2017-03-27 2021-07-13 Resin compositions, molded bodies, and vehicle parts Active JP7359194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021115771A JP7359194B2 (en) 2017-03-27 2021-07-13 Resin compositions, molded bodies, and vehicle parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061077A JP2018162405A (en) 2017-03-27 2017-03-27 Resin composition, method for producing resin composition, molded body and component for vehicle
JP2021115771A JP7359194B2 (en) 2017-03-27 2021-07-13 Resin compositions, molded bodies, and vehicle parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017061077A Division JP2018162405A (en) 2017-03-27 2017-03-27 Resin composition, method for producing resin composition, molded body and component for vehicle

Publications (2)

Publication Number Publication Date
JP2021165406A JP2021165406A (en) 2021-10-14
JP7359194B2 true JP7359194B2 (en) 2023-10-11

Family

ID=63859735

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017061077A Pending JP2018162405A (en) 2017-03-27 2017-03-27 Resin composition, method for producing resin composition, molded body and component for vehicle
JP2021115771A Active JP7359194B2 (en) 2017-03-27 2021-07-13 Resin compositions, molded bodies, and vehicle parts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017061077A Pending JP2018162405A (en) 2017-03-27 2017-03-27 Resin composition, method for producing resin composition, molded body and component for vehicle

Country Status (1)

Country Link
JP (2) JP2018162405A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335051A (en) * 1991-05-13 1992-11-24 Asahi Chem Ind Co Ltd Transparent heat-resistant resin composition
KR20130141466A (en) * 2010-08-31 2013-12-26 가부시키가이샤 구라레 Polymer composition and molded product

Also Published As

Publication number Publication date
JP2018162405A (en) 2018-10-18
JP2021165406A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6733548B2 (en) Copolymer, method for producing copolymer, resin composition, molded article and vehicle
JP6457094B2 (en) Thermoplastic resin composition and molded product produced therefrom
JP5357019B2 (en) Fluidity improver for aromatic polycarbonate resin and method for producing the same, aromatic polycarbonate resin composition, and molded article
JP6932965B2 (en) Resin composition, manufacturing method of resin composition, molded body and vehicle parts
JP6204649B2 (en) Vehicle member cover containing methacrylic resin
JP6911921B2 (en) Thermoplastic composition, molded parts, and vehicle parts
JP7359194B2 (en) Resin compositions, molded bodies, and vehicle parts
JP2009256406A (en) Acrylic resin
JPWO2021039368A1 (en) A transparent thermoplastic resin composition, a method for producing the same, a molded product obtained by molding the transparent thermoplastic resin composition, and a method for producing the molded product.
JP2007091809A (en) Thermoplastic resin composition
KR101211341B1 (en) Thermoplastic resin
JP2010059305A (en) Methacrylic resin composition
JP3817993B2 (en) Methyl methacrylate resin composition
JP2007091810A (en) Extrusion molded article
JP2016117867A (en) Polybutylene terephthalate resin composition and molded body
JP2017128685A (en) Thermoplastic resin composition, molding and vehicle
JP6801223B2 (en) A method for producing a macromonomer copolymer and a method for producing a molded product using the same.
JP2020147715A (en) Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product
JPH07216007A (en) Production of methacrylic resin
JPH11140265A (en) Methacrylic resin composition
JP4019849B2 (en) Vehicle window material
JP2022183689A (en) Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product
JP3413360B2 (en) Method for producing methacrylic resin
JP2018162403A (en) Resin composition, method for producing resin composition, molded body and component for vehicle
JP2018162404A (en) Resin composition, method for producing resin composition, molded body and component for vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230421

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7359194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151