JP6801223B2 - A method for producing a macromonomer copolymer and a method for producing a molded product using the same. - Google Patents

A method for producing a macromonomer copolymer and a method for producing a molded product using the same. Download PDF

Info

Publication number
JP6801223B2
JP6801223B2 JP2016099182A JP2016099182A JP6801223B2 JP 6801223 B2 JP6801223 B2 JP 6801223B2 JP 2016099182 A JP2016099182 A JP 2016099182A JP 2016099182 A JP2016099182 A JP 2016099182A JP 6801223 B2 JP6801223 B2 JP 6801223B2
Authority
JP
Japan
Prior art keywords
macromonomer
producing
meth
acid ester
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099182A
Other languages
Japanese (ja)
Other versions
JP2017206606A (en
Inventor
莉沙 山下
莉沙 山下
英子 岡本
英子 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016099182A priority Critical patent/JP6801223B2/en
Publication of JP2017206606A publication Critical patent/JP2017206606A/en
Application granted granted Critical
Publication of JP6801223B2 publication Critical patent/JP6801223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

本発明は、イソボルニル(メタ)アクリレート樹脂組成物、(メタ)アクリレート樹脂組成物、ブチルアクリレート樹脂組成物、耐熱性樹脂、成形体に関する。 The present invention relates to an isobornyl (meth) acrylate resin composition, a (meth) acrylate resin composition, a butyl acrylate resin composition, a heat-resistant resin, and a molded product.

アクリル系樹脂はその優れた透明性、加工性、表面硬度、耐光性等により、光メディア、自動車部品、建築部材等に広く使用されている。しかしながら、アクリル系樹脂は、自動車ヘッドランプなどの用途において、耐熱性が低く不十分である。
非特許文献1では、(メタ)アクリル酸メチルと(メタ)アクリル酸イソボルニルをランダム共重合することで、ガラス転移温度を向上させている。しかしながら、非特許文献1において、樹脂成形温度が高いため加工性が十分に高いとはいえない。また、非特許文献2では、(メタ)アクリル酸イソボルニルとアクリル酸ブチルをランダム共重合することでフィルムを作製している。非特許文献2において、熱分解温度が200℃付近から始まるため耐熱性が十分に高いとはいえない。このため、アクリル系共重合体には、耐熱性と加工成形性の両立に問題があった。
Acrylic resins are widely used in optical media, automobile parts, building materials, etc. due to their excellent transparency, workability, surface hardness, light resistance, and the like. However, acrylic resins have low heat resistance and are insufficient in applications such as automobile headlamps.
In Non-Patent Document 1, the glass transition temperature is improved by randomly copolymerizing methyl (meth) acrylate and isobornyl (meth) acrylate. However, in Non-Patent Document 1, it cannot be said that the processability is sufficiently high because the resin molding temperature is high. Further, in Non-Patent Document 2, a film is produced by random copolymerization of isobornyl (meth) acrylate and butyl acrylate. In Non-Patent Document 2, since the thermal decomposition temperature starts from around 200 ° C., it cannot be said that the heat resistance is sufficiently high. For this reason, the acrylic copolymer has a problem in achieving both heat resistance and process moldability.

Macromolecules 1995, 28, 6488-6493.Macromolecules 1995, 28, 6488-6493. Optical Materials 2014, 36, 804-808.Optical Materials 2014, 36, 804-808.

本発明の目的は、アクリル系共重合体を加工成形する際の成形不良の発生が低減され、かつ良好な光学特性および耐熱性を得ることができる、アクリル樹脂組成物を提案することである。 An object of the present invention is to propose an acrylic resin composition capable of reducing the occurrence of molding defects when processing and molding an acrylic copolymer, and obtaining good optical properties and heat resistance.

[1]ガラス転移温度が115〜165℃である(メタ)アクリル系マクロモノマー(A) 50〜90wt%と、ガラス転移温度が0℃〜−60℃である(メタ)アクリル酸エステル(B)10〜50wt%とを共重合するポリマーの製造方法。
[2]前記(メタ)アクリル系マクロモノマー(A)が、下記の構造式を有するマクロモノマーである[1]に記載のポリマーの製造方法。
[3]前記共重合の際に、さらにガラス転移温度が100℃以上である(メタ)アクリル酸エステル(C)を0〜45wt%共重合する[1]又は[2]に記載のポリマーの製造方法。
[4]前記共重合が、溶液重合法による[1]〜[3]のいずれかに記載のポリマーの製造方法。
[5]前記溶液重合法において、用いる溶媒がトルエン又はジメチルアセトアミドである[4]に記載のポリマーの製造方法。
[6]前記マクロモノマー(A)は、標準物質としてポリメチルメタクリレートを使用した検量線を用いたGPCによる測定で数平均分子量(Mn)が10000〜30000である[1]〜[5]のいずれかに記載のポリマーの製造方法。
[7][1]〜[4]のいずれかに記載のポリマーを成型して得られる樹脂成形体。
[1] A (meth) acrylic macromonomer (A) having a glass transition temperature of 115 to 165 ° C. (A) 50 to 90 wt% and a (meth) acrylic acid ester (B) having a glass transition temperature of 0 ° C. to -60 ° C. A method for producing a polymer that copolymerizes with 10 to 50 wt%.
[2] The method for producing a polymer according to [1], wherein the (meth) acrylic macromonomer (A) is a macromonomer having the following structural formula.
[3] Production of the polymer according to [1] or [2], wherein 0 to 45 wt% of the (meth) acrylic acid ester (C) having a glass transition temperature of 100 ° C. or higher is further copolymerized at the time of the copolymerization. Method.
[4] The method for producing a polymer according to any one of [1] to [3], wherein the copolymerization is a solution polymerization method.
[5] The method for producing a polymer according to [4], wherein the solvent used in the solution polymerization method is toluene or dimethylacetamide.
[6] The macromonomer (A) has a number average molecular weight (Mn) of 1000 to 30000 as measured by GPC using a calibration curve using polymethylmethacrylate as a standard substance, whichever is [1] to [5]. The method for producing a polymer according to the above.
[7] A resin molded product obtained by molding the polymer according to any one of [1] to [4].

本発明のマクロモノマー共重合体は、耐熱アクリル樹脂の成形不良の発生が低減され、かつ良好な(光学特性および)耐熱性を得ることができることから、電気電子・OA機器、電気電子・OA機器筐体、光メディア、自動車部品、自動車内装材、建築部材、自動車ヘッドランプ、シートなどに好適である。 Since the macromonomer copolymer of the present invention can reduce the occurrence of molding defects of the heat-resistant acrylic resin and can obtain good (optical characteristics and) heat resistance, it is possible to obtain electric / electronic / OA equipment and electric / electronic / OA equipment. It is suitable for housings, optical media, automobile parts, automobile interior materials, building materials, automobile headlamps, seats and the like.

<(メタ)アクリル系マクロモノマー(A)>
(メタ)アクリル系マクロモノマー(A)の数平均分子量(Mn)は10000〜30000であり、より好ましくは15000〜28000であり、最も好ましくは18000〜26000である。数平均分子量が10000以上であると、成形体のビカット軟化温度が優れ、30000以下であると成形不良が改善する傾向にある。
<(Meta) acrylic macromonomer (A)>
The number average molecular weight (Mn) of the (meth) acrylic macromonomer (A) is 1000 to 30000, more preferably 15000 to 28000, and most preferably 18000 to 26000. When the number average molecular weight is 10,000 or more, the vicut softening temperature of the molded product is excellent, and when it is 30,000 or less, the molding defect tends to be improved.

マクロモノマー(A)は、イソボルニル(メタ)アクリレート単位(a1)とメチルメタクリレート単位(a2)を含むことができる。また、マクロモノマー(A)の熱分解を抑制するという観点からアクリレート(a3)を含んでも良く、例えばエチルメタクリレート、ブチルメタクリレート、プロピルメタクリレート、2−エチルヘキシルメタクリレート等のメタクリレート;メチルアクリレート、エチルアクリレート、ブチルアクリレート、プロピルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレート等のアクリレートを挙げることができる。これらのうち、共重合性に優れることから、好ましくはメタクリレートである。これらの単量体は1種を単独で用いてもよく、2種以上を併用しても良い。 The macromonomer (A) can contain an isobornyl (meth) acrylate unit (a1) and a methyl methacrylate unit (a2). Further, acrylate (a3) may be contained from the viewpoint of suppressing thermal decomposition of the macromonomer (A), and for example, methacrylates such as ethyl methacrylate, butyl methacrylate, propyl methacrylate and 2-ethylhexyl methacrylate; methyl acrylate, ethyl acrylate and butyl. Examples thereof include acrylates such as acrylate, propyl acrylate, 2-ethylhexyl acrylate and glycidyl acrylate. Of these, methacrylate is preferable because it has excellent copolymerizability. One of these monomers may be used alone, or two or more of these monomers may be used in combination.

イソボルニル(メタ)アクリレート単位(a1)およびメチルメタクリレート単位(a2)、他の単量体(a3)の合計100wt%に対して、他の単量体(a3)は5wt%以下が好ましい。他の単量体(a3)は5wt%以下であると、得られる成形体の耐熱分解性が優れる傾向にある。 The total amount of the isobornyl (meth) acrylate unit (a1), the methyl methacrylate unit (a2), and the other monomer (a3) is 100 wt%, whereas the amount of the other monomer (a3) is preferably 5 wt% or less. When the content of the other monomer (a3) is 5 wt% or less, the heat-resistant decomposition property of the obtained molded product tends to be excellent.

マクロモノマー(A)を製造する方法として、公知の懸濁重合、溶液重合、乳化重合、塊状重合などを挙げることができる。回収方法が容易なことから、懸濁重合が好ましい。 Examples of the method for producing the macromonomer (A) include known suspension polymerization, solution polymerization, emulsion polymerization, bulk polymerization and the like. Suspension polymerization is preferable because the recovery method is easy.

<イソボルニル(メタ)アクリレート単位(a1)>
イソボルニル(メタ)アクリレート単位(a1)は、本発明のアクリル樹脂組成物に含有される成分である。
<Isobornyl (meth) acrylate unit (a1)>
The isobornyl (meth) acrylate unit (a1) is a component contained in the acrylic resin composition of the present invention.

アクリル樹脂組成物中のマクロモノマー(A)に含まれるイソボルニル(メタ)アクリレート単位(a1)は、イソボルニル(メタ)アクリレート単位(a1)およびメチルメタクリレート単位(a2)の合計100wt%中、10wt%以上であり、好ましくは30wt%以上であり、より好ましくは70wt%以上である。イソボルニル(メタ)アクリレート単位(a1)が70wt%以上であると、得られる成形体のビカット軟化温度、光学特性が優れる傾向にある。 The isobornyl (meth) acrylate unit (a1) contained in the macromonomer (A) in the acrylic resin composition is 10 wt% or more in a total of 100 wt% of the isobornyl (meth) acrylate unit (a1) and the methyl methacrylate unit (a2). It is preferably 30 wt% or more, and more preferably 70 wt% or more. When the isobornyl (meth) acrylate unit (a1) is 70 wt% or more, the Vicut softening temperature and optical characteristics of the obtained molded product tend to be excellent.

<メチルメタクリレート単位(a2)>
メチルメタクリレート単位(a2)は、本発明のアクリル樹脂組成物に含有される成分である。
<Methyl methacrylate unit (a2)>
The methyl methacrylate unit (a2) is a component contained in the acrylic resin composition of the present invention.

アクリル樹脂組成物中のマクロモノマー(A)に含まれるメチルメタクリレート単位(a2)は、イソボルニル(メタ)アクリレート単位(a1)およびメチルメタクリレート単位(a2)の合計100wt%中、90wt%以下であり、好ましくは70wt%以下であり、より好ましくは30wt%以下である。メチルメタクリレート単位(a2)が30wt%以下であると、得られる成形体のビカット軟化温度、光学特性が優れる傾向にある。 The methyl methacrylate unit (a2) contained in the macromonomer (A) in the acrylic resin composition is 90 wt% or less in a total of 100 wt% of the isobornyl (meth) acrylate unit (a1) and the methyl methacrylate unit (a2). It is preferably 70 wt% or less, and more preferably 30 wt% or less. When the methyl methacrylate unit (a2) is 30 wt% or less, the Vicut softening temperature and optical characteristics of the obtained molded product tend to be excellent.

<アクリル酸エステル(B)>
本発明のアクリル酸エステル(B)は、本発明のアクリル樹脂組成物に含有される成分である。
<Acrylic acid ester (B)>
The acrylic acid ester (B) of the present invention is a component contained in the acrylic resin composition of the present invention.

アクリル酸エステル(B)は、ホモポリマーのガラス転移温度が0℃〜−60℃のアクリレートである。例えば、エチルアクリレート、ブチルアクリレート、プロピルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレート等のアクリレートを挙げることができる。これらのうち、共重合性に優れることから、好ましくはブチルアクリレートである。 The acrylic acid ester (B) is an acrylate having a homopolymer glass transition temperature of 0 ° C. to −60 ° C. For example, acrylates such as ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate and glycidyl acrylate can be mentioned. Of these, butyl acrylate is preferable because it has excellent copolymerizability.

アクリル樹脂組成物に含まれるアクリル酸エステル(B)は、マクロモノマー(A)およびアクリル酸エステル(B)の合計100wt%に対し、アクリル酸エステル(B)が10〜50wt%である。より好ましくは10〜45wt%である。アクリル酸エステル(B)が50wt%以上であると、耐熱性が低下する傾向にあり、10wt%以下であると成形性が低下したり、反応液の粘度が上昇し重合が進行しないといった傾向がある。 The acrylic acid ester (B) contained in the acrylic resin composition contains 10 to 50 wt% of the acrylic acid ester (B) with respect to 100 wt% of the total of the macromonomer (A) and the acrylic acid ester (B). More preferably, it is 10 to 45 wt%. When the acrylic acid ester (B) is 50 wt% or more, the heat resistance tends to decrease, and when it is 10 wt% or less, the moldability tends to decrease, or the viscosity of the reaction solution increases and the polymerization does not proceed. is there.

<(メタ)アクリル酸エステル(C)>
(メタ)アクリル酸エステル(C)は、アクリル樹脂組成物に含有され、マクロモノマー(A)以外のメタアクリレート成分である。
<(Meta) acrylic acid ester (C)>
The (meth) acrylic acid ester (C) is contained in the acrylic resin composition and is a methacrylate component other than the macromonomer (A).

(メタ)アクリル酸エステル(C)は、ホモポリマーのガラス転移温度が100度以上のメタアクリレートである。例えば、メチルメタクリレート、t−ブチルメタクリレート、イソボルニルメタクリレート、アダマンチルメタクリレート、等のメタクリレートを挙げることができる。これらのうち、成形性と透明性に優れることから、好ましくはメチルメタクリレートである。 The (meth) acrylic acid ester (C) is a metal acrylate having a homopolymer glass transition temperature of 100 ° C. or higher. For example, methacrylates such as methyl methacrylate, t-butyl methacrylate, isobornyl methacrylate, and adamantyl methacrylate can be mentioned. Of these, methyl methacrylate is preferable because it is excellent in moldability and transparency.

アクリル樹脂組成物に含まれる(メタ)アクリル酸エステル(C)は、マクロモノマー(A)およびアクリル酸エステル(B)および(メタ)アクリル酸エステル(C)-の合計100wt%に対し、(メタ)アクリル酸エステル(C)が0〜45wt%である。より好ましく0〜40wt%である。(メタ)アクリル酸エステル(C)が45wt%以上であると、成形性が低下し、45wt%以下であると成形体の耐熱性が改善する傾向にある。 The (meth) acrylic acid ester (C) contained in the acrylic resin composition is (meth) based on 100 wt% of the total of macromonomer (A), acrylic acid ester (B) and (meth) acrylic acid ester (C). ) Acrylic acid ester (C) is 0 to 45 wt%. More preferably, it is 0 to 40 wt%. When the (meth) acrylic acid ester (C) is 45 wt% or more, the moldability tends to decrease, and when it is 45 wt% or less, the heat resistance of the molded product tends to improve.

<マクロモノマー共重合体>
マクロモノマー共重合体は、マクロモノマー(A)およびアクリル酸エステル(B)および(メタ)アクリル酸エステル(C)の共重合体であり、アクリル樹脂組成物である。
<Macromonomer copolymer>
The macromonomer copolymer is a copolymer of macromonomer (A) and acrylic acid ester (B) and (meth) acrylic acid ester (C), and is an acrylic resin composition.

<アクリル樹脂組成物>
本発明のアクリル樹脂組成物は、耐熱性を有するマクロモノマー共重合体である。本発明においては、ガラス転移温度が115〜165℃であるマクロモノマーとガラス転移温度が0〜−60℃であるアクリル酸エステルを共重合することにより、アクリル樹脂組成物の加工成形性を向上することができる。
<Acrylic resin composition>
The acrylic resin composition of the present invention is a macromonomer copolymer having heat resistance. In the present invention, the processability of the acrylic resin composition is improved by copolymerizing a macromonomer having a glass transition temperature of 115 to 165 ° C. and an acrylic acid ester having a glass transition temperature of 0 to -60 ° C. be able to.

<成形体>
本発明の成形体を得る方法としては、前記アクリル樹脂組成物を小型成形、熱プレス、射出成形、押出成形、圧縮成形等の方法で成形して得られる。これらの中では、所望の形状に成形できることから、小型成形、熱プレス、射出成形、押出成形が好ましい。
<Molded body>
As a method for obtaining a molded product of the present invention, the acrylic resin composition is obtained by molding by a method such as compact molding, hot pressing, injection molding, extrusion molding, or compression molding. Among these, small molding, hot pressing, injection molding, and extrusion molding are preferable because they can be molded into a desired shape.

以下に本発明を実施例により説明する。成形体の評価を以下の方法で行った。 Hereinafter, the present invention will be described with reference to Examples. The molded product was evaluated by the following method.

(a)加工成形性の評価
小型成形機(井元製作所製、型番:IMC−18D7)で20mm×10mm×厚さ2mmの成形体を作製した際の成形温度と得られた成形片の形状で次のように判定した。
○:220℃以下の成形温度で、樹脂が金型に完全に充填された形状の成形片が得られる
×:220℃を超える成形温度でなければ、樹脂が金型に完全に充填された形状の成形片が得られない
(A) Evaluation of workability The following are the molding temperature and the shape of the obtained molded piece when a molded product of 20 mm × 10 mm × thickness 2 mm was produced with a small molding machine (manufactured by Imoto Seisakusho, model number: IMC-18D7). It was judged as follows.
◯: A molded piece having a shape in which the resin is completely filled in the mold can be obtained at a molding temperature of 220 ° C. or lower. ×: A shape in which the resin is completely filled in the mold unless the molding temperature exceeds 220 ° C. Molded pieces cannot be obtained

(b)透明性の程度の評価
小型成形機で作製した20mm×10mm×厚さ2mmの成形体をカラー印刷物の上に置き、判読の程度と色調の変化の有無で次のように判定した。
○:印字を判読でき、色調の変化が無い
△:印字を判読できるが、色調に変化が有る
×:白化し、印字を判読できない
(B) Evaluation of the degree of transparency A molded product having a size of 20 mm × 10 mm × thickness 2 mm produced by a small molding machine was placed on a color printed matter, and the degree of interpretation and the presence or absence of a change in color tone were judged as follows.
◯: The print can be read and there is no change in color tone △: The print can be read but there is a change in color tone ×: Whitening and the print cannot be read

(c)軟化温度(VICAT)測定
JIS K7206−A50(ISO 306)に準拠し、20mm×10mm×厚さ2mmの成形体の軟化温度を測定した。
○:VICAT軟化温度が105℃以上である
△:VICAT軟化温度が100℃以上105℃未満である
×:VICAT軟化温度が100℃未満である
(C) Measurement of softening temperature (VICAT) The softening temperature of a 20 mm × 10 mm × 2 mm thick molded product was measured according to JIS K7206-A50 (ISO 306).
◯: VICAT softening temperature is 105 ° C. or higher Δ: VICAT softening temperature is 100 ° C. or higher and lower than 105 ° C. ×: VICAT softening temperature is lower than 100 ° C.

(製造例1)アニオン系高分子化合物水溶液(X1)の合成
攪拌機を備えた重合装置に、メタクリル酸2−スルホエチルナトリウム58 質量部、メタクリル酸カリウム水溶液(メタクリル酸カリウム分30質量%)31質量部、メタクリル酸メチル11質量部からなる単量体混合物と、脱イオン水900質量部とを加えて攪拌溶解させた。その後、窒素雰囲気下で混合物を攪拌しながら60℃まで昇温し、6時間攪拌しつつ60℃で保持させてアニオン系高分子化合物水溶液を得た。この際、温度が50℃に到達した後、重合開始剤として過硫酸アンモニウム0.1質量部を添加し、更に別に計量したメタクリル酸メチル11質量部を75分間かけて、上記の反応系に連続的に滴下し、アニオン系高分子化合物水溶液(X1)を得た。
(Production Example 1) Synthesis of an aqueous solution of anionic polymer compound (X1) In a polymerization apparatus equipped with a stirrer, 58 parts by mass of 2-sulfoethyl sodium methacrylate and 31 parts by mass of an aqueous potassium methacrylate solution (potassium methacrylate content 30% by mass). A monomer mixture consisting of 11 parts by mass of methyl methacrylate and 900 parts by mass of deionized water were added and dissolved by stirring. Then, the mixture was heated to 60 ° C. with stirring under a nitrogen atmosphere and kept at 60 ° C. with stirring for 6 hours to obtain an aqueous solution of an anionic polymer compound. At this time, after the temperature reached 50 ° C., 0.1 part by mass of ammonium persulfate was added as a polymerization initiator, and 11 parts by mass of methyl methacrylate, which was separately weighed, was continuously added to the above reaction system over 75 minutes. To obtain an aqueous solution of an anionic polymer compound (X1).

(製造例2)アニオン系高分子化合物水溶液(X2)の合成
攪拌機を備えた重合装置に、メタクリル酸カリウム水溶液(メタクリル酸カリウム分30質量%)100質量部、メタクリル酸メチル70質量部からなる単量体混合物とを加えて攪拌し、重合ピーク発現後冷却してアニオン系高分子化合物水溶液(X2)を得た。
(Production Example 2) Synthesis of anionic polymer compound aqueous solution (X2) A simple polymer consisting of 100 parts by mass of an aqueous potassium methacrylate solution (30% by mass of potassium methacrylate) and 70 parts by mass of methyl methacrylate in a polymerization apparatus equipped with a stirrer. The mixture was added and stirred, and after the polymerization peak appeared, the mixture was cooled to obtain an anionic polymer compound aqueous solution (X2).

(製造例3)マクロモノマー(A)の合成
撹拌機、冷却管及び温度計を備えた反応容器内に、アクリエステルIBX(三菱レイヨン(株)製メタクリル酸イソボルニル、商品名)とアクリエステルM(三菱レイヨン(株)製メタクリル酸メチル、商品名)の合計100質量部及び脱イオン水145質量部、分散安定所剤として硫酸ナトリウム(NaSO)0.1質量部、重合開始剤としてパーオクタO(日油(株)製、商品名)0.4質量部、コバルト錯体12ppmを加え撹拌溶解させた。次いで、アニオン系高分子化合物水溶液(X1)0.48質量部、アニオン系高分子化合物水溶液(X2)0.04質量部を投入し、重合装置内を十分に窒素置換し、水性分散液を80℃に昇温してから3時間保持した後に90℃に昇温して1時間保持した。その後、反応液を40℃に冷却して、マクロモノマー(A)の水性懸濁液を得た。この水性懸濁液を濾過布で濾過し、濾過物を脱イオン水で洗浄し、80℃で18時間乾燥して、マクロモノマー(A)を得た。
(Production Example 3) Synthesis of macromonomer (A) Acryester IBX (isobornyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd., trade name) and Acryester M (trade name) are placed in a reaction vessel equipped with a stirrer, a cooling tube and a thermometer. A total of 100 parts by mass of methyl methacrylate (trade name) manufactured by Mitsubishi Rayon Co., Ltd. and 145 parts by mass of deionized water, 0.1 part by mass of sodium sulfate (Na 2 SO 4 ) as a dispersion stabilizer, and perocta as a polymerization initiator. 0.4 parts by mass of O (manufactured by Nichiyu Co., Ltd., trade name) and 12 ppm of cobalt complex were added and dissolved by stirring. Next, 0.48 parts by mass of the anionic polymer compound aqueous solution (X1) and 0.04 parts by mass of the anionic polymer compound aqueous solution (X2) were added to sufficiently replace the inside of the polymerization apparatus with nitrogen, and 80 parts of the aqueous dispersion was added. After the temperature was raised to ° C. and held for 3 hours, the temperature was raised to 90 ° C. and held for 1 hour. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension of macromonomer (A). The aqueous suspension was filtered through a filter cloth, the filtrate was washed with deionized water and dried at 80 ° C. for 18 hours to give the macromonomer (A).

(製造例4)マクロモノマー共重合体(A−1)の合成
撹拌機及び冷却管を備えた重合装置中に、製造例1で製造したマクロモノマー(A)、アクリル酸ブチル(三菱化学(株)製)、アクリエステルM(三菱レイヨン(株)製、メチルメタクリレート、商品名)、モノマー濃度が50重量%となるように溶媒としてトルエンを加え45℃に昇温し30分間撹拌して、均一な溶液とした。次に、反応液を室温に冷却し、重合装置内を十分に窒素置換した。重合開始剤としてAIBN(和光純薬(株)製、2,2−アゾビス−2−メチルプロピオニトリル、商品名)1500ppmを加え、反応液を80℃に昇温してから6時間保持した。その後、反応液を室温に冷却し、重合体(A−1)のシラップを得た。このシラップをメタノールで再沈殿し、濾過布で濾過し、濾過物をメタノールで洗浄し、80℃で18時間乾燥して、マクロモノマー共重合体(A−1)を得た。
(Production Example 4) Synthesis of macromonomer copolymer (A-1) Macromonomer (A) produced in Production Example 1 and butyl acrylate (Mitsubishi Chemical Corporation) were placed in a polymerization apparatus equipped with a stirrer and a cooling tube. ), Acryester M (manufactured by Mitsubishi Rayon Co., Ltd., methyl methacrylate, trade name), toluene was added as a solvent so that the monomer concentration was 50% by weight, the temperature was raised to 45 ° C., and the mixture was stirred for 30 minutes to make it uniform. Solution. Next, the reaction solution was cooled to room temperature, and the inside of the polymerization apparatus was sufficiently replaced with nitrogen. As a polymerization initiator, 1500 ppm of AIBN (manufactured by Wako Pure Chemical Industries, Ltd., 2,2-azobis-2-methylpropionitrile, trade name) was added, and the reaction solution was heated to 80 ° C. and held for 6 hours. Then, the reaction solution was cooled to room temperature to obtain a syrup of the polymer (A-1). The syrup was reprecipitated with methanol, filtered through a filter cloth, the filtrate washed with methanol and dried at 80 ° C. for 18 hours to give the macromonomer copolymer (A-1).

(製造例5)ランダム共重合体(A−2)の合成
撹拌機及び冷却管を備えた重合装置中に、アクリエステルIBX(三菱レイヨン(株)製メタクリル酸イソボルニル、商品名)及びアクリエステルM(三菱レイヨン(株)製メタクリル酸メチル、商品名)、連鎖移動剤として1−オクタンチオール(東京化成工業(株)製)1000ppm、モノマー濃度が50wt%となるように溶媒としてトルエンを加えた。AIBN(和光純薬(株)製、2,2−アゾビス−2−メチルプロピオニトリル、商品名)1500ppmを加え、反応液を80℃に昇温してから6時間保持した。その後、反応液を室温に冷却し、重合体(A−1)のシラップを得た。このシラップをメタノールで再沈殿し、濾過布で濾過し、濾過物をメタノールで洗浄し、80℃で18時間乾燥して、ランダム共重合体(A−2)を得た。
(Production Example 5) Synthesis of Random Copolymer (A-2) In a polymerization apparatus equipped with a stirrer and a cooling tube, Acryester IBX (isobornyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd., trade name) and Acryester M (Methyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd., trade name), 1-octanethiol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 1000 ppm as a chain transfer agent, and toluene as a solvent was added so that the monomer concentration was 50 wt%. AIBN (manufactured by Wako Pure Chemical Industries, Ltd., 2,2-azobis-2-methylpropionitrile, trade name) was added at 1500 ppm, and the reaction solution was heated to 80 ° C. and held for 6 hours. Then, the reaction solution was cooled to room temperature to obtain a syrup of the polymer (A-1). The syrup was reprecipitated with methanol, filtered through a filter cloth, the filtrate washed with methanol and dried at 80 ° C. for 18 hours to give a random copolymer (A-2).

(製造例6)ランダム共重合体(A−3)の合成
共重合体成分にアクリル酸ブチル(三菱化学(株)製)を追加した以外は製造例3と同様の操作を行いランダム重合体(A−3)を得た。
(Production Example 6) Synthesis of Random Copolymer (A-3) Random polymer (Production Example 6) was operated in the same manner as in Production Example 3 except that butyl acrylate (manufactured by Mitsubishi Chemical Corporation) was added to the copolymer component. A-3) was obtained.

(実施例1)
表1に示すモノマー組成で製造例3の操作を行い、マクロモノマー(A)を作製した。作製したマクロモノマー(A)の添加量を56wt%、アクリル酸ブチルの添加量を44wt%とし、製造例4と同様の操作を行い、小型成形機(井元製作所製、型番:IMC−18D7)を使用し、マクロモノマー共重合体(A−1)を得た。
上記重合体(A−1)を成形温度220℃、混練速度50rpm、混練時間1分間で成形し、20mm×10mm×厚さ2mmの成形体を得た。評価結果を表1に示す。イソボルニルメタクリレートの熱分解温度以下である220℃で成形可能であり、成形体の透明性も良好で、ビカット軟化点も115.0℃と高く耐熱性を有していた。
(Example 1)
The operation of Production Example 3 was carried out with the monomer composition shown in Table 1 to prepare a macromonomer (A). The amount of the produced macromonomer (A) added was 56 wt%, the amount of butyl acrylate added was 44 wt%, and the same operation as in Production Example 4 was performed to obtain a small molding machine (manufactured by Imoto Seisakusho, model number: IMC-18D7). It was used to obtain a macromonomer copolymer (A-1).
The polymer (A-1) was molded at a molding temperature of 220 ° C., a kneading speed of 50 rpm, and a kneading time of 1 minute to obtain a molded product having a size of 20 mm × 10 mm × thickness of 2 mm. The evaluation results are shown in Table 1. It could be molded at 220 ° C., which is lower than the thermal decomposition temperature of isobornyl methacrylate, had good transparency of the molded product, and had a high bicut softening point of 115.0 ° C. and had heat resistance.

(実施例2〜6)
モノマー組成を変更したこと以外は製造例3と同様にしてマクロモノマー(A)を作製し、マクロモノマー(A)とアクリル酸ブチル、メタクリル酸メチルの添加量を変更した以外は実施例1と同様の操作を行った。評価結果を表1に示す。いずれも、イソボルニルメタクリレートの熱分解温度以下である220℃で成形可能であり、成形体の透明性も良好であった。
(Examples 2 to 6)
The macromonomer (A) was prepared in the same manner as in Production Example 3 except that the monomer composition was changed, and the same as in Example 1 except that the addition amounts of the macromonomer (A), butyl acrylate, and methyl methacrylate were changed. Was performed. The evaluation results are shown in Table 1. All of them could be molded at 220 ° C., which is lower than the thermal decomposition temperature of isobornyl methacrylate, and the transparency of the molded product was also good.

(比較例1)
アクリエステルIBXを30wt%、アクリエステルMを70wt%添加し、製造例5と同様の操作を行い、ランダム共重合体(A−2)を得た。上記ランダム共重合体(A−2)を実施例1と同様に成形体を得た。評価結果を表2に示す。共重合体のガラス転移温度は135度、成形体のビカット軟化温度も108.4度と良好な耐熱性を示したものの、樹脂流動性が低く、ポリイソボルニルメタクリレートの熱分解温度である250℃を成形温度として要した。
(Comparative Example 1)
30 wt% of Acryester IBX and 70 wt% of Acryester M were added, and the same operation as in Production Example 5 was carried out to obtain a random copolymer (A-2). A molded product of the above random copolymer (A-2) was obtained in the same manner as in Example 1. The evaluation results are shown in Table 2. The glass transition temperature of the copolymer was 135 degrees, and the vicut softening temperature of the molded product was 108.4 degrees, showing good heat resistance, but the resin fluidity was low, which is the thermal decomposition temperature of polyisobornyl methacrylate 250. ° C was required as the molding temperature.

(比較例2)
アクリエステルIBXを39wt%、アクリエステルMを17wt%、アクリル酸ブチルを44wt%添加し、製造例6と同様の操作を行い、ランダム共重合体(A−3)を得た。上記ランダム共重合体(A−3)を実施例1と同様に成形体を得た。評価結果を表2に示す。この成形体は、高Tg成分と低Tg成分が平均化し、ガラス転移温度の低下が起こり、耐熱性が失われた。
(Comparative Example 2)
39 wt% of Acryester IBX, 17 wt% of Acryester M, and 44 wt% of butyl acrylate were added, and the same operation as in Production Example 6 was carried out to obtain a random copolymer (A-3). A molded product of the above random copolymer (A-3) was obtained in the same manner as in Example 1. The evaluation results are shown in Table 2. In this molded product, the high Tg component and the low Tg component were averaged, the glass transition temperature was lowered, and the heat resistance was lost.

(比較例3)
製造例1でコバルト錯体を添加せず、アクリエステルIBXの添加量を100wt%とした以外は製造例3と同様の操作を行い、ポリイソボルニル(メタ)アクリレートを得た。評価結果を表2に示す。この成形体は、ポリイソボルニル(メタ)アクリレートの熱分解温度である250℃以上の成形温度を要した。さらに、樹脂が固いため金型通りの完全な成形片を得られなかった。
(Comparative Example 3)
The same operation as in Production Example 3 was carried out except that the cobalt complex was not added in Production Example 1 and the amount of acrylic ester IBX added was 100 wt% to obtain polyisobornyl (meth) acrylate. The evaluation results are shown in Table 2. This molded product required a molding temperature of 250 ° C. or higher, which is the thermal decomposition temperature of polyisobornyl (meth) acrylate. Furthermore, because the resin was hard, it was not possible to obtain a complete molded piece as per the mold.

(比較例4)
モノマー組成を変更した以外は製造例1と同様にしてマクロモノマー(A)を作製し、マクロモノマー(A)とアクリル酸ブチル、メタクリル酸メチルの添加量を変更した以外は実施例1と同様の操作を行った。評価結果を表3に示す。この成形体は、耐熱成分であるマクロモノマー(A)が115〜165℃のガラス転移温度を持たないため、ビカット軟化温度が91.2℃となり耐熱性が低下した。
(Comparative Example 4)
The macromonomer (A) was prepared in the same manner as in Production Example 1 except that the monomer composition was changed, and the same as in Example 1 except that the addition amounts of the macromonomer (A), butyl acrylate, and methyl methacrylate were changed. The operation was performed. The evaluation results are shown in Table 3. In this molded product, the macromonomer (A), which is a heat-resistant component, does not have a glass transition temperature of 115 to 165 ° C., so that the Vicat softening temperature is 91.2 ° C., and the heat resistance is lowered.

(比較例5)
製造例1と同様にしてマクロモノマー(A)を作製した。マクロモノマー(A)の添加量を45wt%、アクリル酸ブチルの添加量を55wt%として実施例1と同様の操作を行った。評価結果を表3に示す。この成形体は、アクリル酸エステル(B)が10〜50wt%の範囲を超え、耐熱成分であるマクロモノマー(A)とアクリル酸エステル(B)の相分離構造が変化したことにより、ビカット軟化温度が52.2℃まで低下した。
(Comparative Example 5)
A macromonomer (A) was produced in the same manner as in Production Example 1. The same operation as in Example 1 was carried out with the addition amount of the macromonomer (A) being 45 wt% and the addition amount of butyl acrylate being 55 wt%. The evaluation results are shown in Table 3. In this molded product, the acrylic acid ester (B) exceeded the range of 10 to 50 wt%, and the phase separation structure of the macromonomer (A) and the acrylic acid ester (B), which are heat-resistant components, changed, so that the bicut softening temperature was increased. Decreased to 52.2 ° C.

(比較例6)
モノマー組成を変更した以外は製造例1と同様にしてマクロモノマー(A)を作製し、実施例1と同様の操作を行った。評価結果を表3に示す。この成形体は、マクロモノマー(A)の数平均分子量(Mn)が10000〜30000の範囲から外れており、マクロモノマー共重合体のモルフォロジーが変化したと考えられる。低Tgであるポリブチルアクリレート相が、マクロモノマー(A)相と相溶したためにビカット軟化温度が39.2℃まで低下した。
(Comparative Example 6)
A macromonomer (A) was prepared in the same manner as in Production Example 1 except that the monomer composition was changed, and the same operation as in Example 1 was carried out. The evaluation results are shown in Table 3. In this molded product, the number average molecular weight (Mn) of the macromonomer (A) was out of the range of 1000 to 30000, and it is considered that the morphology of the macromonomer copolymer was changed. Since the polybutyl acrylate phase having a low Tg was compatible with the macromonomer (A) phase, the Vicat softening temperature was lowered to 39.2 ° C.

(比較例7)
製造例1と同様にしてマクロモノマー(A)を作製した。作製したマクロモノマー(A)の添加量を98wt%、アクリル酸ブチルの添加量を2wt%として実施例1と同様の操作を行った。評価結果を表3に示す。反応溶液の粘度が非常に高く、重合が進行しなかった。
(Comparative Example 7)
A macromonomer (A) was produced in the same manner as in Production Example 1. The same operation as in Example 1 was carried out with the amount of the produced macromonomer (A) added being 98 wt% and the amount of butyl acrylate added being 2 wt%. The evaluation results are shown in Table 3. The viscosity of the reaction solution was very high and the polymerization did not proceed.

(比較例8)
製造例1と同様にしてマクロモノマー(A)を作製した。作製したマクロモノマー(A)の添加量を55wt%、アクリル酸ブチルの添加量を3wt%、メタクリル酸メチルの添加量を47wt%とし、実施例1と同様の操作を行った。評価結果を表3に示す。この成形体は、アクリル酸エステル(B)が10〜50wt%の範囲を下回り、樹脂流動性が低下した。そのため、ポリイソボルニル(メタ)アクリレートの熱分解温度である250℃を成形温度として要した。
(Comparative Example 8)
A macromonomer (A) was produced in the same manner as in Production Example 1. The prepared macromonomer (A) was added in an amount of 55 wt%, butyl acrylate was added in an amount of 3 wt%, and methyl methacrylate was added in an amount of 47 wt%, and the same operation as in Example 1 was carried out. The evaluation results are shown in Table 3. In this molded product, the acrylic acid ester (B) was below the range of 10 to 50 wt%, and the resin fluidity was lowered. Therefore, 250 ° C., which is the thermal decomposition temperature of polyisobornyl (meth) acrylate, was required as the molding temperature.

(比較例9)
モノマー組成を変更した以外は製造例1と同様にしてマクロモノマー(A)を作製し、実施例1と同様の操作を行った。評価結果を表3に示す。この成形体は、マクロモノマー(A)のガラス転移温度が115℃〜165℃の範囲を超えており、樹脂の流動性が低く、ポリイソボルニルメタクリレートの熱分解温度である250℃を成形温度として要した。
(Comparative Example 9)
A macromonomer (A) was prepared in the same manner as in Production Example 1 except that the monomer composition was changed, and the same operation as in Example 1 was carried out. The evaluation results are shown in Table 3. In this molded product, the glass transition temperature of the macromonomer (A) exceeds the range of 115 ° C. to 165 ° C., the fluidity of the resin is low, and the molding temperature is 250 ° C., which is the thermal decomposition temperature of polyisobornyl methacrylate. It took as.

Claims (6)

ガラス転移温度が115℃〜165℃である(メタ)アクリル系マクロモノマー(A) 50〜90wt%と、ガラス転移温度が0℃〜−60℃である(メタ)アクリル酸エステル(B)10〜50wt%とを共重合するポリマーの製造方法であって、
前記マクロモノマー(A)は、標準物質としてポリメチルメタクリレートを使用した検量線を用いたGPCによる測定で数平均分子量(Mn)が10000〜30000であるポリマーの製造方法。
The (meth) acrylic macromonomer (A) having a glass transition temperature of 115 ° C. to 165 ° C. is 50 to 90 wt%, and the glass transition temperature is 0 ° C. to -60 ° C. (meth) acrylic acid ester (B) 10 to 10. A method for producing a polymer that copolymerizes with 50 wt% .
The macromonomer (A) is a method for producing a polymer having a number average molecular weight (Mn) of 1000 to 30000 as measured by GPC using a calibration curve using polymethylmethacrylate as a standard substance.
前記(メタ)アクリル系マクロモノマー(A)は、イソボルニル(メタ)アクリレート単位(a1)とメチルメタクリレート単位(a2)を含む、請求項1に記載のポリマーの製造方法。 The method for producing a polymer according to claim 1, wherein the (meth) acrylic macromonomer (A) contains an isobornyl (meth) acrylate unit (a1) and a methyl methacrylate unit (a2) . 前記共重合の際に、さらにガラス転移温度が100℃以上である(メタ)アクリル酸エステル(C)を、マクロモノマー(A)および(メタ)アクリル酸エステル(B)および(メタ)アクリル酸エステル(C)の合計100wt%に対し、0〜45wt%共重合する請求項1又は2に記載のポリマーの製造方法。 At the time of the copolymerization, the (meth) acrylic acid ester (C) having a glass transition temperature of 100 ° C. or higher is further replaced with the macromonomer (A), the (meth) acrylic acid ester (B) and the (meth) acrylic acid ester. The method for producing a polymer according to claim 1 or 2 , wherein 0 to 45 wt% is copolymerized with respect to 100 wt% of the total of (C) . 前記共重合が、溶液重合法による請求項1〜3のいずれかに記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 3, wherein the copolymerization is a solution polymerization method. 前記溶液重合法において、用いる溶媒がトルエン又はジメチルアセトアミドである請求項4に記載のポリマーの製造方法。 The method for producing a polymer according to claim 4, wherein the solvent used in the solution polymerization method is toluene or dimethylacetamide. 請求項1〜のいずれかに記載のポリマーの製造方法による工程と、該工程によるポリマーを成型する工程を有する樹脂成形体の製造方法A method for producing a resin molded product , comprising a step according to the method for producing a polymer according to any one of claims 1 to 5 and a step for molding the polymer according to the step .
JP2016099182A 2016-05-18 2016-05-18 A method for producing a macromonomer copolymer and a method for producing a molded product using the same. Active JP6801223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099182A JP6801223B2 (en) 2016-05-18 2016-05-18 A method for producing a macromonomer copolymer and a method for producing a molded product using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099182A JP6801223B2 (en) 2016-05-18 2016-05-18 A method for producing a macromonomer copolymer and a method for producing a molded product using the same.

Publications (2)

Publication Number Publication Date
JP2017206606A JP2017206606A (en) 2017-11-24
JP6801223B2 true JP6801223B2 (en) 2020-12-16

Family

ID=60415320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099182A Active JP6801223B2 (en) 2016-05-18 2016-05-18 A method for producing a macromonomer copolymer and a method for producing a molded product using the same.

Country Status (1)

Country Link
JP (1) JP6801223B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056668A1 (en) * 2013-10-16 2015-04-23 三菱レイヨン株式会社 Polymer, production method for same, and molded article
JP6361107B2 (en) * 2013-10-21 2018-07-25 三菱ケミカル株式会社 Resin composition and film
TWI773060B (en) * 2013-11-29 2022-08-01 日商三菱化學股份有限公司 Adhesive composition and adhesive sheet
JP6260480B2 (en) * 2014-07-14 2018-01-17 三菱ケミカル株式会社 Acrylic elastomer resin processing aid, acrylic elastomer resin composition and molded article

Also Published As

Publication number Publication date
JP2017206606A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6413767B2 (en) POLYMER, PROCESS FOR PRODUCING THE SAME, AND MOLDED BODY
JP6733548B2 (en) Copolymer, method for producing copolymer, resin composition, molded article and vehicle
EP2910580B1 (en) Aromatic vinyl-vinyl cyanide resin composition with improved heat resistance
US11608401B2 (en) Thermoplastic resin composition
WO2020206108A1 (en) Impact resistant hydrophobic high heat optical acrylic copolymers
WO2020206113A1 (en) Hydrophobic high heat optical acrylic copolymers
JP6932965B2 (en) Resin composition, manufacturing method of resin composition, molded body and vehicle parts
JP6520089B2 (en) Method for producing polymer, molding material and molded body
JP6801223B2 (en) A method for producing a macromonomer copolymer and a method for producing a molded product using the same.
JP6481426B2 (en) Highly transparent and heat resistant resin composition and film
JP6361107B2 (en) Resin composition and film
JP6855866B2 (en) Macromonomer copolymer and molding material
JP6939002B2 (en) Resin composition and molding material
JPS62156115A (en) Heat-resistant resin, production thereof and optical element composed therewith
JP7302685B2 (en) Copolymer, resin composition, molded article, film-like molded article, and method for producing copolymer
JP7359194B2 (en) Resin compositions, molded bodies, and vehicle parts
JPH0158204B2 (en)
WO2023168058A1 (en) Acrylic copolymer resins
JP6804222B2 (en) Styrene resin
JP6597211B2 (en) Resin composition and molded article comprising the resin composition
JP2021116315A (en) Polymer for melt molding, resin composition and resin molding for melt molding, as well as, manufacturing method of polymer for melt molding and resin molding
KR20140142402A (en) Composition for polymethylmethacrylate film
JP2023115374A (en) Styrene-based resin composition and molded article
TW202336039A (en) Method for producing polymer, and resin composition
JP2004210835A (en) Styrenic resin and its sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151