JP2022183689A - Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product - Google Patents

Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product Download PDF

Info

Publication number
JP2022183689A
JP2022183689A JP2021091130A JP2021091130A JP2022183689A JP 2022183689 A JP2022183689 A JP 2022183689A JP 2021091130 A JP2021091130 A JP 2021091130A JP 2021091130 A JP2021091130 A JP 2021091130A JP 2022183689 A JP2022183689 A JP 2022183689A
Authority
JP
Japan
Prior art keywords
mass
resin
crosslinked rubber
acrylic
coagulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021091130A
Other languages
Japanese (ja)
Inventor
圭 佐藤
Kei Sato
祐作 野本
Yusaku Nomoto
康成 梅田
Yasunari Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2021091130A priority Critical patent/JP2022183689A/en
Publication of JP2022183689A publication Critical patent/JP2022183689A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

To provide a coagulated powder including an acrylic cross-linked rubber particle excellent in dispersibility in a matrix resin (base resin), and excellent in impact resistance.SOLUTION: A coagulated powder includes an acrylic cross-linked rubber particle having an inner layer composed of a cross-linked rubber including an acrylic acid ester unit, an outermost layer composed of a thermoplastic resin including a (meth)acrylic acid unit and graft-bonding to the inner layer, and having an average particle size of 0.08-0.3 μm, where the consumed shear energy E necessary for dispersing the acrylic cross-linked rubber particle to monomodality of a dispersed particle size of 1 μm or under is 180 MJ/m3 or less in a 0.1 mass% acetone dispersion of a melt-kneaded composition of the coagulated powder and the (meth)acrylic resin when melt-kneading 60 pts.mass of a (meth)acrylic resin having an MFR at 230°C, 37.3 N of 8±1 g/10 min. and 40 pts. mass of the coagulated powder, as measured by a kneading extrusion molding evaluation testing machine with a consumed shear energy measuring device at 230°C.SELECTED DRAWING: Figure 1

Description

本発明は、アクリル系架橋ゴム粒子を含む凝固粉体およびその製造方法、樹脂組成物並びに成形品に関する。 TECHNICAL FIELD The present invention relates to a coagulated powder containing acrylic crosslinked rubber particles, a method for producing the same, a resin composition, and a molded product.

メタクリル樹脂は、透明性に優れており、その成形体は美しい外観と耐候性を有することから照明器具、看板等の表示部材、ディスプレイ部品等の光学部材、インテリア部材、建築部材、電子・電気部材、医療用部材をはじめとする様々な用途で使用されている。しかしながら、メタクリル樹脂からなる成形品は、耐衝撃性については不充分であり、落下、衝突、振動などの応力を受けると、ひび割れや欠けなどが発生し易いといった問題があった。 Methacrylic resin has excellent transparency, and its moldings have a beautiful appearance and weather resistance. , and is used in a variety of applications, including medical materials. However, a molded product made of methacrylic resin has insufficient impact resistance, and has a problem that cracks and chips are likely to occur when subjected to stress such as dropping, collision, and vibration.

メタクリル樹脂の衝撃強度改善には、内部にゴム成分層を有し、最外層に熱可塑性樹脂成分層を有する多層構造重合体粒子を添加する方法が好適に用いられる。この方法は現在最も広く工業的に実施されている。 For improving the impact strength of methacrylic resins, a method of adding multilayer structure polymer particles having a rubber component layer inside and a thermoplastic resin component layer as the outermost layer is preferably used. This method is currently the most widely practiced industrially.

しかし、このように多層構造重合体粒子をメタクリル系樹脂中に配合した従来のメタクリル系耐衝撃性樹脂では、耐衝撃性は向上するものの、それから得られる成形品の表面に粒子の凝集物がブツとして表面に観測され、凹凸を伴う外観欠陥が発生するという問題がある。特許文献1には、乳化重合により得られる多層構造重合体と硬質熱可塑性重合体をラテックス状態で均一混合した後、凝固させて取り出した耐衝撃性改質剤は、硬質メタクリル系樹脂との溶融混合において分散性が良好で、著しくブツの発生を改良できる製造方法が開示されているが、耐衝撃性改質剤に硬質熱可塑性重合体を含むことから軟質重合体層の割合が少なく、添加量に対する耐衝撃性が劣る。特許文献2には、多層構造重合体を有機溶媒に分散させた後、水相を分離することにより凝集体を得、その凝集体に有機溶媒を添加し得られた分散体を、重合性有機化合物と混合することで、多層構造重合体の分散状態が良好となる製造方法が開示されているが、添加できる樹脂がエポキシ樹脂などの反応性基を有する重合性有機化合物に限定されている。 However, in conventional methacrylic impact resistant resins in which multi-layer structure polymer particles are blended in methacrylic resins, although the impact resistance is improved, aggregates of particles are formed on the surface of molded articles obtained therefrom. is observed on the surface, and there is a problem that an appearance defect accompanied by unevenness occurs. In Patent Document 1, a multilayer structure polymer obtained by emulsion polymerization and a rigid thermoplastic polymer are uniformly mixed in a latex state, and then solidified and taken out. A production method has been disclosed that has good dispersibility in mixing and can significantly improve the occurrence of lumps. Poor impact resistance to weight. In Patent Document 2, after dispersing a multilayer structure polymer in an organic solvent, an aqueous phase is separated to obtain an aggregate, and an organic solvent is added to the aggregate to obtain a dispersion, which is a polymerizable organic A manufacturing method is disclosed in which the dispersion state of the multilayer structure polymer is improved by mixing with a compound, but the resin that can be added is limited to a polymerizable organic compound having a reactive group such as an epoxy resin.

特許第3145864号Patent No. 3145864 WO2005/028546WO2005/028546

本発明の目的は、マトリックス樹脂(ベース樹脂)中への分散性が優れ、且つ耐衝撃性に優れたアクリル系架橋ゴム粒子を含む凝固粉体を提供することを目的とする。 An object of the present invention is to provide a coagulated powder containing acrylic crosslinked rubber particles excellent in dispersibility in a matrix resin (base resin) and in impact resistance.

本発明は、上記の目的を達成するため、以下の条件を満たすアクリル系架橋ゴム粒子を含む凝固粉体およびその製造方法、前記凝固粉体を含む樹脂組成物並びに成形品を提供する。
〔1〕
アクリル酸アルキルエステル単位を含む架橋ゴムを含む内層と、メタクリル酸メチル単位を含み前記内層にグラフト結合している熱可塑性樹脂からなる最外層とを有し、最外層の熱可塑性樹脂の、ガラス転移温度が60~85℃であり、重量平均分子量が40,000~80,000であり、平均粒子径が0.08~0.3μmであるアクリル系架橋ゴム粒子を含む凝固粉体であって、
230℃、37.3Nのメルトフローレートが8±1g/10分のメタクリル酸メチル樹脂60質量部と前記凝固粉体40質量部とを、消費剪断エネルギー測定装置付き混練・押出成形評価試験装置で、温度230℃で溶融混練する際に、
前記凝固粉体と前記メタクリル酸メチル系樹脂との溶融混練組成物の0.1質量%アセトン分散液中で、前記アクリル系架橋ゴム粒子が分散粒子径1μm以下の単峰性に分散されるまでに必要とする消費剪断エネルギーEが180MJ/m以下である凝固粉体。
〔2〕
前記アクリル系架橋ゴム粒子の平均粒子径が0.2~0.3μmである〔1〕に記載の凝固粉体。
〔3〕
アクリル系架橋ゴム粒子を含むラテックスを乳化重合法により製造する重合工程、
前記ラテックスを35~65℃で凝集させる凝集工程、
更に100~130℃で造粒させる造粒工程を含む、〔1〕または〔2〕に記載の凝固粉体の製造方法。
〔4〕
〔1〕または〔2〕に記載の凝固粉体とマトリックス樹脂とを含む樹脂組成物。
〔5〕
熱可塑性樹脂がメタクリル系樹脂である〔4〕に記載の樹脂組成物。
〔6〕
〔4〕又は〔5〕に記載の樹脂組成物を含む成形品。
In order to achieve the above objects, the present invention provides a coagulated powder containing crosslinked acrylic rubber particles that satisfies the following conditions, a method for producing the same, a resin composition containing the coagulated powder, and a molded article.
[1]
It has an inner layer containing crosslinked rubber containing alkyl acrylate units and an outermost layer made of a thermoplastic resin containing methyl methacrylate units and graft-bonded to the inner layer, wherein the thermoplastic resin of the outermost layer has a glass transition A coagulated powder containing acrylic crosslinked rubber particles having a temperature of 60 to 85° C., a weight average molecular weight of 40,000 to 80,000, and an average particle size of 0.08 to 0.3 μm,
60 parts by mass of methyl methacrylate resin having a melt flow rate of 8±1 g/10 minutes at 230° C. and 37.3 N and 40 parts by mass of the solidified powder were kneaded and extruded using a kneading/extrusion evaluation test apparatus equipped with a shear energy consumption measuring device. , when melt-kneading at a temperature of 230 ° C.,
Until the acrylic crosslinked rubber particles are unimodally dispersed with a dispersed particle diameter of 1 μm or less in a 0.1% by mass acetone dispersion of the melt-kneaded composition of the coagulated powder and the methyl methacrylate resin. A solidified powder whose consumption shear energy E required for the above is 180 MJ/m 3 or less.
[2]
The coagulated powder according to [1], wherein the acrylic crosslinked rubber particles have an average particle size of 0.2 to 0.3 μm.
[3]
a polymerization step of producing a latex containing acrylic crosslinked rubber particles by an emulsion polymerization method;
aggregating step of aggregating the latex at 35-65°C;
The method for producing a coagulated powder according to [1] or [2], further comprising a granulation step of granulating at 100 to 130°C.
[4]
A resin composition comprising the coagulated powder according to [1] or [2] and a matrix resin.
[5]
The resin composition according to [4], wherein the thermoplastic resin is a methacrylic resin.
[6]
A molded article containing the resin composition according to [4] or [5].

本発明によれば、熱可塑性樹脂などのマトリックス樹脂(ベース樹脂)中への分散性が優れ、且つ耐衝撃性に優れたアクリル系架橋ゴム粒子を含む凝固粉体を提供することができる。 According to the present invention, it is possible to provide a coagulated powder containing acrylic crosslinked rubber particles that are excellent in dispersibility in a matrix resin (base resin) such as a thermoplastic resin and have excellent impact resistance.

アセトン中での凝固粉体の分散粒子径分布の測定結果を示す。Figure 2 shows the measurement results of dispersed particle size distribution of solidified powder in acetone.

<アクリル系架橋ゴム粒子>
本発明の凝固粉体を構成ずるアクリル系架橋ゴム粒子は、乳化重合法で得られるアクリル系架橋ゴム重合体を含有する粒子で、好ましくは熱可塑性重合体(P)からなる最外層と、該最外層に接し且つ覆われた架橋ゴム重合体(Q)を含む多層構造ゴム粒子である。多層構造ゴム粒子は、例えば、芯が架橋ゴム重合体(Q)-外殻(最外層)が熱可塑性重合体(P)の2層構成(Q-P)、芯が架橋重合体(R)-内殻が架橋ゴム重合体(Q)-外殻(最外層)が熱可塑性重合体(P)の3層構成(R-Q-P)、芯が架橋ゴム重合体(Q)-第一内殻が架橋重合体(R)-第二内殻が架橋ゴム重合体(Q)-外殻(最外層)が熱可塑性重合体(P)の4層構成(Q-R-Q-P)の粒子などを挙げることができる。
<Acrylic crosslinked rubber particles>
The acrylic crosslinked rubber particles constituting the coagulated powder of the present invention are particles containing an acrylic crosslinked rubber polymer obtained by an emulsion polymerization method. It is a multi-layered rubber particle containing a crosslinked rubber polymer (Q) in contact with and covered with the outermost layer. The multi-layered rubber particles have, for example, a two-layer structure (QP) in which the core is a crosslinked rubber polymer (Q) and the outer shell (outermost layer) is a thermoplastic polymer (P), and the core is a crosslinked polymer (R). -Inner shell is a crosslinked rubber polymer (Q) -Outer shell (outermost layer) is a three-layer structure (RQP) of a thermoplastic polymer (P), core is a crosslinked rubber polymer (Q) -First A four-layer structure (QRQP) of a crosslinked polymer (R) for the inner shell, a crosslinked rubber polymer (Q) for the second inner shell, and a thermoplastic polymer (P) for the outer shell (outermost layer). and the like.

アクリル系架橋ゴム粒子における最外層以外の層(以下、最外層以外の層を「内層」と記載することがある、例えば、上記のQ、R+Q、Q+R+Qが各々内層に該当する)と最外層との質量比は、内層/最外層が好ましくは60/40~95/5、より好ましくは70/30~90/10である。内層において、架橋ゴム重合体(Q)を含有してなる層が占める割合は、好ましくは20~70質量%、より好ましくは30~50質量%である。 A layer other than the outermost layer in the acrylic crosslinked rubber particle (hereinafter, the layer other than the outermost layer may be referred to as an “inner layer”; for example, the above Q, R+Q, and Q+R+Q respectively correspond to the inner layer) and the outermost layer The mass ratio of inner layer/outermost layer is preferably 60/40 to 95/5, more preferably 70/30 to 90/10. The ratio of the layer containing the crosslinked rubber polymer (Q) in the inner layer is preferably 20 to 70% by mass, more preferably 30 to 50% by mass.

アクリル系架橋ゴム粒子の平均粒子径は0.08~0.3μmであり、好ましくは0.2~0.3μmである。このような範囲内の平均粒子径、特に0.2~0.3μmの平均粒子径を有するアクリル系架橋ゴム粒子を用いると、少量の配合で、靭性を発現することができ、このため成形品の剛性や表面硬度を損なうことがない。なお、本明細書における平均粒子径は、光散乱光法によって測定される体積基準の粒径分布における平均値(体積平均粒子径)、または電子顕微鏡写真から測定される粒径の平均値である。
本発明の1つの実施形態において、最外層の熱可塑性樹脂のガラス転移温度は、60~85℃であり、好ましくは65~80℃である。熱可塑性樹脂のガラス転移温度がこの範囲内にあれば、マトリックス樹脂と溶融混錬する際に消費剪断エネルギーが低下する点で好ましい。
本発明のもう1つの実施形態において、最外層の熱可塑性樹脂の重量平均分子量(Mw)は、40,000~80,000であり、好ましくは50,000~70,000である。熱可塑性樹脂の重量平均分子量がこの範囲内にあれば、耐衝撃性、かつ分散性の点で好ましい。
The average particle size of the acrylic crosslinked rubber particles is 0.08 to 0.3 μm, preferably 0.2 to 0.3 μm. By using acrylic crosslinked rubber particles having an average particle size within such a range, particularly an average particle size of 0.2 to 0.3 μm, it is possible to express toughness with a small amount of compounding. without compromising the rigidity and surface hardness of the The average particle size in the present specification is the average value (volume average particle size) in the volume-based particle size distribution measured by the light scattering method, or the average value of the particle sizes measured from the electron micrograph. .
In one embodiment of the present invention, the thermoplastic resin of the outermost layer has a glass transition temperature of 60-85°C, preferably 65-80°C. If the glass transition temperature of the thermoplastic resin is within this range, it is preferable in terms of reducing shear energy consumption during melt-kneading with the matrix resin.
In another embodiment of the present invention, the thermoplastic resin of the outermost layer has a weight average molecular weight (Mw) of 40,000 to 80,000, preferably 50,000 to 70,000. If the weight average molecular weight of the thermoplastic resin is within this range, it is preferable in terms of impact resistance and dispersibility.

最外層を構成する熱可塑性重合体(P)は、好ましくは炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル(以下、「メタクリル酸C1~8アルキルエステル」と記載することがある)単位および必要に応じて該メタクリル酸アルキルエステル以外の単官能単量体単位を含む重合体である。熱可塑性重合体(P)は、多官能単量体単位を含まない方が好ましい。 The thermoplastic polymer (P) constituting the outermost layer is preferably a methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms (hereinafter sometimes referred to as "methacrylic acid C 1-8 alkyl ester"). It is a polymer containing units and optionally monofunctional monomer units other than the methacrylic acid alkyl ester. The thermoplastic polymer (P) preferably does not contain polyfunctional monomer units.

熱可塑性重合体(P)を構成する炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単位の量は、熱可塑性重合体(P)の質量に対して、好ましくは75~100質量%、より好ましくは80~95質量%である。 The amount of methacrylic acid alkyl ester units having an alkyl group having 1 to 8 carbon atoms constituting the thermoplastic polymer (P) is preferably 75 to 100% by mass with respect to the mass of the thermoplastic polymer (P), More preferably, it is 80 to 95% by mass.

炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル(以下、メタクリル酸C1~8アルキルエステルということがある。)としては、例えば、メタクリル酸メチル(MMA)が好ましい。 As the methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms (hereinafter sometimes referred to as methacrylic acid C 1-8 alkyl ester), for example, methyl methacrylate (MMA) is preferable.

熱可塑性重合体(P)を構成するメタクリル酸C1~8アルキルエステル以外の単官能単量体単位の量は、熱可塑性重合体(P)の質量に対して、好ましくは0~25質量%、より好ましくは5~20質量%である。
メタクリル酸C1~8アルキルエステル以外の単官能単量体としては、好ましくはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル、スチレンなどの芳香族ビニル化合物を挙げることができる。
The amount of monofunctional monomer units other than methacrylic acid C 1-8 alkyl ester constituting the thermoplastic polymer (P) is preferably 0 to 25% by mass with respect to the mass of the thermoplastic polymer (P). , more preferably 5 to 20% by mass.
Monofunctional monomers other than C 1-8 alkyl methacrylate are preferably acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and propyl acrylate, and styrene. Aromatic vinyl compounds may be mentioned.

最外層は1種の熱可塑性重合体(P)からなる単層であってもよいし、2種類以上の熱可塑性重合体(P)からなる複層であってもよい。 The outermost layer may be a single layer composed of one type of thermoplastic polymer (P), or may be a multiple layer composed of two or more types of thermoplastic polymers (P).

本発明の1つの好ましい実施形態において、内層は、架橋ゴム重合体(Q)からなる中間層と、架橋重合体(R)からなり且つ前記中間層に接して覆われた芯とを有する(内層=R+Q)。 In one preferred embodiment of the present invention, the inner layer has an intermediate layer made of the crosslinked rubber polymer (Q) and a core made of the crosslinked polymer (R) and covered in contact with the intermediate layer (inner layer = R + Q).

架橋重合体(R)は、メタクリル酸メチル単位、メタクリル酸メチル以外の単官能単量体単位、および多官能単量体単位からなる。 The crosslinked polymer (R) consists of methyl methacrylate units, monofunctional monomer units other than methyl methacrylate, and polyfunctional monomer units.

架橋重合体(R)を構成するメタクリル酸メチル単位の量は、架橋重合体(R)の質量に対して、好ましくは40~98.5質量%、より好ましくは80~95質量%である。 The amount of methyl methacrylate units constituting the crosslinked polymer (R) is preferably 40 to 98.5% by mass, more preferably 80 to 95% by mass, based on the mass of the crosslinked polymer (R).

架橋重合体(R)を構成するメタクリル酸メチル以外の単官能単量体単位の量は、架橋重合体(R)の質量に対して、1~59.5質量%、好ましくは5~20質量%である。
メタクリル酸メチル以外の単官能単量体としては、好ましくはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル、スチレンなどの芳香族ビニル化合物を挙げることができる。
The amount of monofunctional monomer units other than methyl methacrylate constituting the crosslinked polymer (R) is 1 to 59.5% by mass, preferably 5 to 20% by mass, based on the mass of the crosslinked polymer (R). %.
Monofunctional monomers other than methyl methacrylate are preferably acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and propyl acrylate, and aromatic vinyl compounds such as styrene. can be mentioned.

架橋重合体(R)を構成する多官能単量体単位の量は、架橋重合体(R)の質量に対して、好ましくは0.05~0.4質量%、より好ましくは0.1~0.3質量%である。 The amount of the polyfunctional monomer unit constituting the crosslinked polymer (R) is preferably 0.05 to 0.4% by mass, more preferably 0.1 to 0.1%, based on the mass of the crosslinked polymer (R). It is 0.3% by mass.

架橋重合体(R)の量は、多層構造ゴム粒子の量に対して、好ましくは5~40質量%、より好ましくは7~35質量%、さらに好ましくは10~30質量%である。 The amount of the crosslinked polymer (R) is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, still more preferably 10 to 30% by mass, based on the amount of the multi-layered rubber particles.

架橋ゴム重合体(Q)は、炭素数1~8のアルキル基を有するアクリル酸エステル単位、アクリル酸エステル以外の単官能単量体単位、および多官能単量体単位からなる。 The crosslinked rubber polymer (Q) comprises an acrylic ester unit having an alkyl group of 1 to 8 carbon atoms, a monofunctional monomer unit other than the acrylic ester, and a polyfunctional monomer unit.

架橋ゴム重合体(Q)における炭素数1~8のアルキル基を有するアクリル酸エステル単位は、架橋ゴム重合体(Q)の質量に対して、好ましくは10~90質量%、より好ましくは20~85質量%である。
架橋ゴム重合体(Q)におけるアクリル酸エステル以外の単官能単量体単位は、架橋ゴム重合体(Q)の質量に対して、好ましくは10~90質量%、より好ましくは15~80質量%である。
The acrylic acid ester unit having an alkyl group having 1 to 8 carbon atoms in the crosslinked rubber polymer (Q) is preferably 10 to 90% by mass, more preferably 20 to 90% by mass, based on the mass of the crosslinked rubber polymer (Q). 85% by mass.
Monofunctional monomer units other than acrylic acid ester in the crosslinked rubber polymer (Q) are preferably 10 to 90% by mass, more preferably 15 to 80% by mass, based on the mass of the crosslinked rubber polymer (Q). is.

架橋ゴム重合体(Q)における多官能単量体単位は、架橋ゴム重合体(Q)の質量に対して、好ましくは0.01~3質量%、より好ましくは0.1~2質量%である。 The polyfunctional monomer unit in the crosslinked rubber polymer (Q) is preferably 0.01 to 3% by mass, more preferably 0.1 to 2% by mass, based on the mass of the crosslinked rubber polymer (Q). be.

熱可塑性重合体(P)、架橋ゴム重合体(Q)、および架橋重合体(R)に用いられるアクリル酸エステルとしては、例えば、メチルアクリレート(MA)、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート(BA)、s-ブチルアクリレート、t-ブチルアクリレート、n-ブチルメチルアクリレート、n-ヘプチルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレートなどのアクリル酸アルキルエステルを挙げることができる。これらアクリル酸エステルは、1種単独でまたは2種以上を組み合わせて用いることができる。これらのうちでも、メチルアクリレートおよび/またはn-ブチルアクリレートが好ましい。 Examples of acrylic acid esters used in the thermoplastic polymer (P), the crosslinked rubber polymer (Q), and the crosslinked polymer (R) include methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, n- Mention may be made of acrylic acid alkyl esters such as butyl acrylate (BA), s-butyl acrylate, t-butyl acrylate, n-butylmethyl acrylate, n-heptyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate. These acrylic acid esters can be used singly or in combination of two or more. Among these, methyl acrylate and/or n-butyl acrylate are preferred.

架橋ゴム重合体(Q)、および架橋重合体(R)に用いられる多官能単量体単位としては、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート(ALMA)、トリアリルイソシアヌレートなどを挙げることができる。
架橋重合体(R)におけるメタクリル酸メチル以外の単官能単量体単位、および架橋ゴム重合体(Q)におけるアクリル酸エステル以外の単官能単量体単位は、メタクリル酸エステルもしくはアクリル酸エステルと共重合し得るビニル系単量体であればいずれでもよく、例えば、スチレン、p-メチルスチレン、o-メチルスチレン、ビニルナフタレンなどの芳香族ビニル単量体、アクリロニトリルなどの不飽和ニトリル系単量体、エチレン、プロピレンなどのオレフィン系単量体、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル系単量体、アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸系単量体、酢酸ビニル、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド系単量体を挙げることができ、これらの化合物は単独でまたは2種以上を組み合わせて用いることができる。
Examples of polyfunctional monomer units used in the crosslinked rubber polymer (Q) and crosslinked polymer (R) include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, and ethylene glycol. Diacrylates, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate (ALMA), triallyl isocyanurate and the like can be mentioned.
A monofunctional monomer unit other than methyl methacrylate in the crosslinked polymer (R) and a monofunctional monomer unit other than an acrylic acid ester in the crosslinked rubber polymer (Q) are covalent with a methacrylic acid ester or an acrylic acid ester. Any polymerizable vinyl-based monomer may be used, for example, aromatic vinyl monomers such as styrene, p-methylstyrene, o-methylstyrene, vinylnaphthalene, and unsaturated nitrile-based monomers such as acrylonitrile. , ethylene, propylene and other olefinic monomers, vinyl chloride, vinylidene chloride, vinylidene fluoride and other vinyl halide monomers, acrylic acid, methacrylic acid, maleic anhydride and other unsaturated carboxylic acid monomers , vinyl acetate, N-propylmaleimide, N-cyclohexylmaleimide, No-chlorophenylmaleimide and other maleimide monomers, and these compounds can be used alone or in combination of two or more. .

<重合工程>
熱可塑性重合体(P)から構成される最外層、該最外層に接し且つ覆われた架橋ゴム重合体(Q)から構成される内殻、必要に応じてさらに架橋重合体(R)から構成される芯を含むアクリル系架橋ゴム粒子のラテックスは、各々単量体混合物、重合開始剤、乳化剤などを用いて多段階で重合することで、常法に従い製造することができる。
各重合において使用される重合開始剤は、特に制限されない。重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウムなどの水溶性の無機系開始剤; 無機系開始剤に亜硫酸塩またはチオ硫酸塩などを併用してなるレドックス開始剤; 有機過酸化物に第一鉄塩またはナトリウムスルホキシレートなどを併用してなるレドックス開始剤などを挙げることができる。重合開始剤は重合開始時に一括して反応系に添加してもよいし、反応速度などを勘案して重合開始時と重合途中とに分割して反応系に添加してもよい。重合開始剤の使用量は、例えば、アクリル系架橋ゴム粒子に含まれる粒状体の平均粒子径が前述の範囲になるように適宜設定できる。
<Polymerization process>
An outermost layer composed of a thermoplastic polymer (P), an inner shell composed of a crosslinked rubber polymer (Q) in contact with and covered with the outermost layer, and optionally further composed of a crosslinked polymer (R). The latex of acrylic crosslinked rubber particles containing the core can be produced according to a conventional method by polymerizing in multiple stages using a monomer mixture, a polymerization initiator, an emulsifier, and the like.
A polymerization initiator used in each polymerization is not particularly limited. Polymerization initiators include, for example, water-soluble inorganic initiators such as potassium persulfate and ammonium persulfate; redox initiators obtained by combining inorganic initiators with sulfites or thiosulfates; and organic peroxides. A redox initiator that uses a ferrous salt or sodium sulfoxylate in combination may be used. The polymerization initiator may be added to the reaction system all at once at the start of the polymerization, or may be added to the reaction system at the start of the polymerization and during the polymerization in consideration of the reaction rate. The amount of the polymerization initiator to be used can be appropriately set, for example, so that the average particle size of the granules contained in the acrylic crosslinked rubber particles is within the range described above.

各重合において使用される乳化剤は、特に制限されない。乳化剤としては、例えば、長鎖アルキルスルホン酸塩、スルホコハク酸アルキルエステル塩、アルキルベンゼンスルホン酸塩などのアニオン系乳化剤; ポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのノニオン系乳化剤; ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩などのノニオン・アニオン系乳化剤を挙げることができる。乳化剤の使用量は、例えば、アクリル系架橋ゴム粒子に含まれる粒状体の平均粒子径が前述の範囲になるように適宜設定できる。 The emulsifier used in each polymerization is not particularly limited. Examples of emulsifiers include anionic emulsifiers such as long-chain alkylsulfonates, alkyl sulfosuccinates, and alkylbenzenesulfonates; nonionic emulsifiers such as polyoxyethylene alkyl ethers and polyoxyethylene nonylphenyl ethers; polyoxyethylene polyoxyethylene nonylphenyl ether sulfates such as sodium nonylphenyl ether sulfate; polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene alkyl ether sulfate; alkyl ether carboxylates such as sodium polyoxyethylene tridecyl ether acetate; Examples include nonionic and anionic emulsifiers. The amount of the emulsifier to be used can be appropriately set, for example, so that the average particle size of the granules contained in the acrylic crosslinked rubber particles is within the range described above.

本発明の凝固粉体の好ましい製造方法は、アクリル系架橋ゴム粒子を含むラテックスを乳化重合法により製造する重合工程、前記ラテックスを35~65℃で凝集させてスラリーを得る凝集工程、該スラリーを100~130℃で造粒させる造粒工程、を含むものである。 A preferred method for producing the coagulated powder of the present invention includes a polymerization step of producing a latex containing acrylic crosslinked rubber particles by an emulsion polymerization method, an aggregation step of aggregating the latex at 35 to 65° C. to obtain a slurry, and a A granulation step of granulating at 100 to 130°C.

本発明のアクリル系架橋ゴム粒子を含むラテックスからの凝固粉体の製造は、凍結凝固法、塩析凝固法、酸析凝固法などにより行うことができる。これらのうち、凝固粉体の凝集力を調整することができ、且つ高品質な凝固物を連続的に生産することのできる塩析凝固法が好ましい。 The coagulated powder can be produced from the latex containing the crosslinked acrylic rubber particles of the present invention by a freezing coagulation method, a salting out coagulation method, an acid precipitation coagulation method, or the like. Among these, the salting-out coagulation method is preferable because it is possible to adjust the cohesive force of the coagulated powder and to continuously produce a high-quality coagulate.

<凝集工程>
凝集工程は、緩凝集を行う反応であり、乳化ラテックスおよび凝固剤溶液を加熱した状態で混合させ、以後の溶融混練時にアクリル系架橋ゴム粒子の分散性を向上させるため、緩やかな速度で凝集を進行させるものである。
<Aggregation process>
The agglomeration step is a slow agglomeration reaction, in which the emulsified latex and the coagulant solution are mixed in a heated state, and in order to improve the dispersibility of the acrylic crosslinked rubber particles during subsequent melt-kneading, agglomeration takes place at a slow rate. It is what makes progress.

本発明に用いることができる凝固剤としては、該乳化重合ラテックスを凝析・凝固し得る性質を有する無機酸若しくはその塩、または有機酸若しくはその塩の水溶液であればよい。 The coagulant that can be used in the present invention may be an aqueous solution of an inorganic acid or a salt thereof, or an organic acid or a salt thereof that has the property of coagulating and coagulating the emulsion polymerized latex.

具体的な前記無機酸溶液、無機酸の塩溶液、有機酸溶液または有機酸の塩溶液としては、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、ヨウ化カリウム、ヨウ化ナトリウムなどのアルカリ金属ハロゲン化物; 硫酸カリウム、硫酸ナトリウムなどのアルカリ金属硫酸塩; 硫酸アンモニウム; 塩化アンモニウム; 硝酸ナトリウム、硝酸カリウムなどのアルカリ金属硝酸塩; 塩化カルシウム硫酸第一鉄、硫酸マグネシウム、酢酸カルシウム、硫酸亜鉛、硫酸銅、塩化バリウム、塩化第一鉄、塩化第二鉄、塩化マグネシウム、硫酸第二鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバンなどの無機塩類の水溶液を単独または2種以上を混合したものを挙げることができる。これらの中でも、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化アンモニウム、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化バリウム、酢酸カルシウムなどの一価または二価の無機酸の塩の水溶液が好適に使用できる。前記凝固剤の添加方法には特に制限は無く、一括添加、分割添加、あるいは連続的添加を用いることができる。 Specific inorganic acid solutions, inorganic acid salt solutions, organic acid solutions or organic acid salt solutions include, for example, sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, iodine Alkali metal halides such as potassium chloride and sodium iodide; Alkali metal sulfates such as potassium sulfate and sodium sulfate; Ammonium sulfate; Ammonium chloride; Alkali metal nitrates such as sodium nitrate and potassium nitrate; Aqueous solutions of inorganic salts such as calcium acetate, zinc sulfate, copper sulfate, barium chloride, ferrous chloride, ferric chloride, magnesium chloride, ferric sulfate, aluminum sulfate, potassium alum, and iron alum, either alone or in combination of two or more. can be mentioned. Among these, aqueous solutions of salts of monovalent or divalent inorganic acids such as sodium chloride, potassium chloride, sodium sulfate, ammonium chloride, calcium chloride, magnesium chloride, magnesium sulfate, barium chloride and calcium acetate can be preferably used. The method of adding the coagulant is not particularly limited, and batch addition, divided addition, or continuous addition can be used.

凝集工程における乳化ラテックスのポリマー濃度は、好ましくは5~25質量%であり、より好ましくは7.5~22.5質量%であり、さらに好ましくは10~20質量%である。乳化ラテックスのポリマー濃度が低いほど凝集が進み難くなり、高いほど凝集は進みやすくなるが高粘度のため制御が難しくなる傾向がある。 The polymer concentration of the emulsified latex in the aggregation step is preferably 5-25% by mass, more preferably 7.5-22.5% by mass, still more preferably 10-20% by mass. The lower the polymer concentration of the emulsified latex, the more difficult it is for aggregation to proceed.

凝集工程における凝固剤の添加濃度は、乳化ラテックス中のポリマー100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7.5質量部、さらに好ましくは1.0~7.0質量部である。凝固剤の添加濃度が低いと凝集が進み難くなり、高いほど凝集は進みやすくなるが得られた凝固物の耐温水若しくは耐沸水白化性が悪化する傾向がある。 The concentration of the coagulant added in the aggregation step is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7.5 parts by mass, still more preferably 1.5 parts by mass, with respect to 100 parts by mass of the polymer in the emulsified latex. 0 to 7.0 parts by mass. If the concentration of the coagulant added is low, aggregation will not proceed easily, and if the concentration is high, aggregation will proceed more easily, but the hot water resistance or boiling water whitening resistance of the resulting coagulant tends to deteriorate.

凝集工程における滞留時間は、好ましくは0.25~2.0時間、より好ましくは0.5~1.75時間、さらに好ましくは0.75~1.6時間である。滞留時間が短いほど凝集が不十分となり得られる凝固物の粒子径は小さくなり、長いほど凝集は進みやすくなるが得られた凝固物の耐温水若しくは耐沸水白化性が悪化する傾向がある。 The residence time in the aggregation step is preferably 0.25 to 2.0 hours, more preferably 0.5 to 1.75 hours, still more preferably 0.75 to 1.6 hours. The shorter the residence time, the smaller the particle size of the obtained coagulum due to insufficient aggregation.

<造粒工程>
造粒工程は、第一凝固(凝集工程)で得られたスラリーをさらに加熱することで、凝集しきらない微粒子を減らし、かつ凝固物の嵩密度を高くするものである。
<Granulation process>
In the granulation step, the slurry obtained in the first coagulation (aggregation step) is further heated to reduce fine particles that are not completely aggregated and increase the bulk density of the coagulate.

造粒工程における滞留時間は、好ましくは0.5~3時間、より好ましくは0.75~2.75時間、さらに好ましくは1.0~2.5時間である。滞留時間が短いほど造粒が不十分となり得られる凝固物の粒子径は小さくなり、長いほど造粒は進みやすくなるが得られた凝固物の耐温水若しくは耐沸水白化が悪化する傾向がある。 The residence time in the granulation step is preferably 0.5 to 3 hours, more preferably 0.75 to 2.75 hours, still more preferably 1.0 to 2.5 hours. The shorter the residence time, the smaller the particle size of the obtained coagulum due to insufficient granulation.

スラリーの洗浄および脱水は、例えば、フィルタープレス、ベルトプレス、ギナ型遠心分離機、スクリューデカンタ型遠心分離機などで行うことができる。生産性、洗浄効率の観点からスクリューデカンタ式遠心分離機を用いることが好ましい。スラリーの洗浄および脱水は、少なくとも2回行うことが好ましい。洗浄および脱水の回数が多いほど水溶性成分の残存量が下がる。しかし、生産性の観点から、洗浄および脱水の回数は、3回以下が好ましい。 Washing and dehydration of the slurry can be performed using, for example, a filter press, a belt press, a Guina centrifuge, a screw decanter centrifuge, or the like. From the viewpoint of productivity and washing efficiency, it is preferable to use a screw decanter centrifuge. Washing and dewatering of the slurry are preferably performed at least twice. The greater the number of times of washing and dehydration, the lower the residual amount of water-soluble components. However, from the viewpoint of productivity, the number of times of washing and dehydration is preferably 3 or less.

凝固物の脱水後の含水率は、好ましくは5~50質量%、より好ましくは5~45質量%、さらに好ましくは5~40質量%である。含水率が高いほど乾燥が十分に行うことができず、乾燥後に好適な含水率の凝固物を得ることが難しくなる。
脱水時に排出される排水の濁度は、好ましくは1000以下、より好ましくは700以下、さらに好ましくは400以下である。排水の濁度が高いと、固液分離性が不十分であることを示し、製品収率が下がるだけでなく、排出ポンプのストレーナー詰りなどのトラブルを引き起こすため安定運転することが難しくなる。
The moisture content of the coagulum after dehydration is preferably 5 to 50% by mass, more preferably 5 to 45% by mass, still more preferably 5 to 40% by mass. The higher the moisture content, the more difficult it is to dry sufficiently, making it difficult to obtain a coagulum with a suitable moisture content after drying.
The turbidity of waste water discharged during dehydration is preferably 1000 or less, more preferably 700 or less, and even more preferably 400 or less. If the turbidity of the waste water is high, it indicates that the solid-liquid separation property is insufficient, which not only lowers the product yield, but also causes problems such as clogging of the strainer of the discharge pump, making stable operation difficult.

凝固物の乾燥は、含水率が、好ましくは0.2質量% 未満、より好ましくは0.1質量%未満になるように行う。含水率が高いほど溶融押出成形の際にアクリル系架橋ゴム粒子にエステル加水分解反応が起き、分子鎖にカルボキシル基が生成する傾向がある。 Drying of the coagulum is carried out so that the moisture content is preferably less than 0.2% by weight, more preferably less than 0.1% by weight. The higher the water content, the more the crosslinked acrylic rubber particles undergo an ester hydrolysis reaction during melt extrusion molding, which tends to generate a carboxyl group in the molecular chain.

本発明の凝固粉体は、230℃、37.3NでJIS K7210に準拠するメルトフローレートが8±1g/10分であるメタクリル酸メチル樹脂60質量部と前記凝固粉体40質量部とを、消費剪断エネルギー測定装置付き混練・押出成形評価試験装置により温度230℃、40rpmで溶融混練し1分毎に採取した一連の溶融混練組成物により規定する。該メタクリル酸メチル樹脂は、重量平均分子量が70,000~120,000の範囲にあり、メタクリル酸メチル単位:アクリル酸メチル単位の質量比が90:10~100:0である。該一連の溶融混練組成物は、各々0.1質量%の割合でアセトン中に室温で2時間撹拌し、可溶分を溶解させ、不溶分を分散させた状態のアセトン分散液を、レーザー回折/散乱式粒子径分布測定装置で粒子径分布を測定する。溶融混練時間の短い試料は粒子径分布が多峰性ないし広い分布であり、溶融混練の進んだ試料では単峰性の分布となる。
本発明の凝固粉体では、1分毎に採取した一連の溶融混練組成物の内、最初にアクリル系架橋ゴム粒子が分散粒子径1μm以下の単峰性の分布となるに要する消費剪断エネルギーEが180MJ/m以下、好ましくは150MJ/m以下である。
消費剪断エネルギーEが該上限値以下である本発明の凝固粉体は、メタクリル系樹脂中へ溶融混練する際のアクリル系架橋ゴム粒子の分散性に優れ、メタクリル系樹脂との組成物は凝集物欠点が減少し、耐衝撃性に優れる。
The coagulated powder of the present invention comprises 60 parts by mass of methyl methacrylate resin having a melt flow rate of 8±1 g/10 min according to JIS K7210 at 230° C. and 37.3 N, and 40 parts by mass of the coagulated powder. It is defined by a series of melt-kneaded compositions that are melt-kneaded at a temperature of 230° C. and 40 rpm with a kneading/extrusion molding evaluation test device equipped with a shear energy consumption measuring device and sampled every minute. The methyl methacrylate resin has a weight average molecular weight in the range of 70,000 to 120,000 and a mass ratio of methyl methacrylate units to methyl acrylate units of 90:10 to 100:0. The series of melt-kneaded compositions were stirred in acetone at a rate of 0.1% by mass for 2 hours at room temperature to dissolve the soluble matter and disperse the insoluble matter. / Measure the particle size distribution with a scattering type particle size distribution analyzer. A sample with a short melt-kneading time has a multimodal or broad particle size distribution, and a sample with an advanced melt-kneading has a unimodal distribution.
In the coagulated powder of the present invention, the consumed shear energy E required for the first unimodal distribution of the acrylic crosslinked rubber particles to have a dispersed particle diameter of 1 μm or less in a series of melt-kneaded compositions sampled every minute is 180 MJ/m 3 or less, preferably 150 MJ/m 3 or less.
The coagulated powder of the present invention, in which the consumed shear energy E is equal to or less than the upper limit, is excellent in the dispersibility of the acrylic crosslinked rubber particles when melt-kneaded into the methacrylic resin, and the composition with the methacrylic resin is an aggregate. Reduced defects and excellent impact resistance.

<樹脂組成物>
本発明の樹脂組成物に含まれるマトリックス樹脂としては、ポリメタクリル酸メチルなどのメタクリル酸エステルが主成分であるホモポリマー又は共重合体であるメタクリル系樹脂、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、およびポリノルボルネン等のオレフィン系樹脂、エチレン系アイオノマー、ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、およびMBS樹脂等のスチレン系樹脂、メタクリル酸メチル-スチレン共重合体、ポリエチレンテレフタレートおよびポリブチレンテレフタレート等のエステル系樹脂、ナイロン6、ナイロン66、およびポリアミドエラストマー等のアミド系樹脂、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、フェノキシ系樹脂等が挙げられ、メタクリル系樹脂が好ましい。マトリックス樹脂は、1種または2種以上用いることができる。
<Resin composition>
Examples of the matrix resin contained in the resin composition of the present invention include methacrylic resins, polyethylene, polypropylene, polybutene-1, poly- Olefin resins such as 4-methylpentene-1 and polynorbornene, ethylene ionomers, polystyrene, styrene-maleic anhydride copolymers, high impact polystyrene, AS resins, ABS resins, AES resins, AAS resins, ACS resins, and styrene resins such as MBS resins, methyl methacrylate-styrene copolymers, ester resins such as polyethylene terephthalate and polybutylene terephthalate, amide resins such as nylon 6, nylon 66, and polyamide elastomers, polyphenylene sulfide, polyether Etherketone, polysulfone, polyphenylene oxide, polyimide, polyetherimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, phenoxy resin, etc., and methacrylic based resins are preferred. Matrix resins can be used alone or in combination of two or more.

本発明の樹脂組成物は、必要に応じて各種添加剤を含有していてもよい。添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料・顔料、光拡散剤、艶消し剤、膠着防止剤、耐衝撃性改質剤、および蛍光体等が挙げられる。これら添加剤の含有量は、本発明の効果を損なわない範囲で適宜設定でき、樹脂組成物100質量部に対して、例えば、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部、染料・顔料の含有量は0.01~3質量部、膠着防止剤は0.001~1質量部とすることが好ましい。他の添加剤も0.01~3質量部の範囲で添加することができる。 The resin composition of the present invention may contain various additives as necessary. Additives include antioxidants, heat deterioration inhibitors, UV absorbers, light stabilizers, lubricants, release agents, polymer processing aids, antistatic agents, flame retardants, dyes/pigments, light diffusing agents, gloss erasing agents, anti-sticking agents, impact modifiers, phosphors, and the like. The content of these additives can be appropriately set within a range that does not impair the effects of the present invention. The content of the agent is 0.01 to 3 parts by mass, the content of the light stabilizer is 0.01 to 3 parts by mass, the content of the lubricant is 0.01 to 3 parts by mass, and the content of the dye/pigment is 0.01 to 3 parts by mass. 01 to 3 parts by mass, and the anti-adhesion agent is preferably 0.001 to 1 part by mass. Other additives can also be added in the range of 0.01 to 3 parts by weight.

酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、フェノール系酸化防止剤、イオウ系酸化防止剤、およびアミン系酸化防止剤等が挙げられる。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤およびフェノール系酸化防止剤が好ましく、フェノール系酸化防止剤の単独使用またはリン系酸化防止剤とフェノール系酸化防止剤との併用がより好ましい。リン系酸化防止剤とフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤/フェノール系酸化防止剤を質量比で0.2/1~2/1で使用するのが好ましく、0.5/1~1/1で使用するのがより好ましい。 Antioxidants are effective by themselves to prevent oxidation deterioration of resins in the presence of oxygen. Examples include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and amine antioxidants. Among them, from the viewpoint of preventing deterioration of optical properties due to coloring, phosphorus antioxidants and phenolic antioxidants are preferable, and phenolic antioxidants are used alone or in combination with phosphorus antioxidants and phenolic antioxidants. Combined use is more preferred. When a phosphorus antioxidant and a phenolic antioxidant are used in combination, it is preferable to use the phosphorus antioxidant/phenolic antioxidant at a mass ratio of 0.2/1 to 2/1, and 0.2/1 to 2/1. It is more preferable to use 5/1 to 1/1.

リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(株式会社ADEKA製「アデカスタブHP-10」)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン株式会社製「IRGAFOS168」)、および3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(株式会社ADEKA社製「アデカスタブPEP-36」)等が好ましい。 Phosphorus-based antioxidants include 2,2-methylenebis(4,6-di-t-butylphenyl)octyl phosphite (manufactured by ADEKA Co., Ltd. "ADEKA STAB HP-10"), tris (2,4-di-t -butylphenyl) phosphite ("IRGAFOS168" manufactured by BASF Japan Ltd.), and 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa- 3,9-diphosphaspiro[5.5]undecane (“ADEKA STAB PEP-36” manufactured by ADEKA Co., Ltd.) and the like are preferable.

フェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン株式会社製「IRGANOX1010」)、およびオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASFジャパン株式会社製「IRGANOX1076」)等が好ましい。
イオウ系酸化防止剤としては、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)等が好ましい。
アミン系酸化防止剤としては、オクチル化ジフェニルアミン等が好ましい。
Phenolic antioxidants include pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan Ltd. "IRGANOX1010"), and octadecyl-3- (3,5-Di-t-butyl-4-hydroxyphenyl) propionate (“IRGANOX1076” manufactured by BASF Japan Ltd.) and the like are preferred.
Preferred sulfur-based antioxidants include dilauryl 3,3'-thiodipropionate, distearyl 3,3'-thiodipropionate, pentaerythritol tetrakis(3-laurylthiopropionate), and the like.
As the amine-based antioxidant, octylated diphenylamine and the like are preferable.

熱劣化防止剤としては、実質上無酸素の条件下で高温にさらされたときに生じるポリマーラジカルを補足することによって樹脂の熱劣化を防止できるものである。熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学株式会社製「スミライザーGM」)、および2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学株式会社製「スミライザーGS」)等が好ましい。 The thermal degradation inhibitor can prevent thermal degradation of the resin by capturing polymer radicals generated when exposed to high temperatures under substantially oxygen-free conditions. As the heat deterioration inhibitor, 2-t-butyl-6-(3'-t-butyl-5'-methyl-hydroxybenzyl)-4-methylphenyl acrylate ("Sumilizer GM" manufactured by Sumitomo Chemical Co., Ltd.), and 2,4-di-t-amyl-6-(3′,5′-di-t-amyl-2′-hydroxy-α-methylbenzyl)phenyl acrylate (“Sumilizer GS” manufactured by Sumitomo Chemical Co., Ltd.), etc. preferable.

紫外線吸収剤は、紫外線吸収能力を有し、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、およびホルムアミジン類等が挙げられる。中でも、ベンゾトリアゾール類およびトリアジン類が好ましい。紫外線吸収剤は、1種または2種以上用いることができる。 A UV absorber is a compound that is said to have an ability to absorb UV rays and mainly has the function of converting light energy into heat energy. Examples of UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, and formamidines. Among them, benzotriazoles and triazines are preferred. 1 type(s) or 2 or more types can be used for an ultraviolet absorber.

光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6一テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(株式会社ADEKA社製「アデカスタブLA-77Y」)等が挙げられる。 A photostabilizer is a compound that is said to have a function of scavenging radicals generated mainly by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine backbone. Examples thereof include bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate ("ADEKA STAB LA-77Y" manufactured by ADEKA Co., Ltd.).

滑剤は、樹脂と金属表面との滑りを調整し、凝着または粘着を防ぐことで離型性および加工性等を改善する効果があると言われる化合物である。例えば、高級アルコール、炭化水素、脂肪酸、脂肪酸金属塩、脂肪族アミド、および脂肪酸エステル等が挙げられる。中でも、本発明の樹脂組成物との融和性の観点から、炭素原子数12~18の脂肪族1価アルコールおよび脂肪族アミドが好ましく、脂肪族アミドがより好ましい。脂肪族アミドは飽和脂肪族アミドと不飽和脂肪族アミドとに分類され、粘着防止によるスリップ効果が期待されるため不飽和脂肪族アミドがより好ましい。不飽和脂肪族アミドとしては、N,N’-エチレンビスオレイン酸アミド(日本化成株式会社製「スリパックスO」)、およびN,N’-ジオレイルアジピン酸アミド(日本化成株式会社製「スリパックスZOA」)等が挙げられる。 A lubricant is a compound that is said to have the effect of adjusting the slippage between a resin and a metal surface and preventing adhesion or sticking to improve releasability, processability, and the like. Examples include higher alcohols, hydrocarbons, fatty acids, fatty acid metal salts, fatty amides, and fatty acid esters. Among them, from the viewpoint of compatibility with the resin composition of the present invention, aliphatic monohydric alcohols and aliphatic amides having 12 to 18 carbon atoms are preferred, and aliphatic amides are more preferred. Aliphatic amides are classified into saturated aliphatic amides and unsaturated aliphatic amides, and unsaturated aliphatic amides are more preferable because they are expected to have a slip effect due to adhesion prevention. Examples of unsaturated aliphatic amides include N,N'-ethylenebisoleic acid amide ("Slipax O" manufactured by Nippon Kasei Co., Ltd.) and N,N'-dioleyladipate amide ("Slipax ZOA" manufactured by Nippon Kasei Co., Ltd.). ”) and the like.

離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類の使用量:グリセリン脂肪酸モノエステルの使用量は、質量比で、2.5:1~3.5:1が好ましく、2.8:1~3.2:1がより好ましい。
高分子加工助剤は、樹脂組成物を成形する際、厚さ精度および薄膜化に効果を発揮する化合物である。高分子加工助剤は、通常、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子である。
Release agents include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride; In the present invention, it is preferable to use higher alcohols and glycerin fatty acid monoester in combination as the release agent. When higher alcohols and glycerin fatty acid monoesters are used in combination, the ratio is not particularly limited, but the amount of higher alcohols used: the amount of glycerin fatty acid monoesters used is in a mass ratio of 2.5:1 to 3.5. 5:1 is preferred, and 2.8:1 to 3.2:1 is more preferred.
A polymer processing aid is a compound that exerts an effect on thickness accuracy and thinning when molding a resin composition. Polymeric processing aids are typically polymer particles having a particle size of 0.05 to 0.5 μm, which can be produced by emulsion polymerization methods.

帯電防止剤としては、ヘプチルスルホン酸ナトリウム、オクチルスルホン酸ナトリウム、ノニルスルホン酸ナトリウム、デシルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、セチルスルホン酸ナトリウム、オクタデシルスルホン酸ナトリウム、ジヘプチルスルホン酸ナトリウム、ヘプチルスルホン酸カリウム、オクチルスルホン酸カリウム、ノニルスルホン酸カリウム、デシルスルホン酸カリウム、ドデシルスルホン酸カリウム、セチルスルホン酸カリウム、オクタデシルスルホン酸カリウム、ジヘプチルスルホン酸カリウム、ヘプチルスルホン酸リチウム、オクチルスルホン酸リチウム、ノニルスルホン酸リチウム、デシルスルホン酸リチウム、ドデシルスルホン酸リチウム、セチルスルホン酸リチウム、オクタデシルスルホン酸リチウム、ジヘプチルスルホン酸リチウム等のアルキルスルホン酸塩等が挙げられる。 Antistatic agents include sodium heptylsulfonate, sodium octylsulfonate, sodium nonylsulfonate, sodium decylsulfonate, sodium dodecylsulfonate, sodium cetylsulfonate, sodium octadecylsulfonate, sodium diheptylsulfonate, heptylsulfonic acid Potassium, potassium octylsulfonate, potassium nonylsulfonate, potassium decylsulfonate, potassium dodecylsulfonate, potassium cetylsulfonate, potassium octadecylsulfonate, potassium diheptylsulfonate, lithium heptylsulfonate, lithium octylsulfonate, nonylsulfonate Alkyl sulfonates such as lithium oxide, lithium decylsulfonate, lithium dodecylsulfonate, lithium cetylsulfonate, lithium octadecylsulfonate, and lithium diheptylsulfonate.

難燃剤としては、水酸化マグネシウム、水酸化アルミニウム、水和珪酸アルミニウム、水和珪酸マグネシウム、ハイドロタルサイト等の水酸基または結晶水を有する金属水和物、ポリリン酸アミン、リン酸エステル等のリン酸化合物、シリコン化合物等が挙げられ、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェートなどのリン酸エステル系難燃剤が好ましい。 Examples of flame retardants include magnesium hydroxide, aluminum hydroxide, hydrated aluminum silicate, hydrated magnesium silicate, metal hydrates having hydroxyl groups or water of crystallization such as hydrotalcite, and phosphoric acids such as amine polyphosphate and phosphate esters. trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, dimethylethyl Phosphate flame retardants such as phosphate, methyldibutyl phosphate, ethyldipropyl phosphate and hydroxyphenyldiphenyl phosphate are preferred.

染料・顔料としては、パラレッド、ファイヤーレッド、ピラゾロンレッド、チオインジコレッド、ペリレンレッドなどの赤色有機顔料、としてシアニンブルー、インダンスレンブルーなどの青色有機顔料、シアニングリーン、ナフトールグリーンなどの緑色有機顔料が挙げられ、これらの1種又は2種以上を使用することができる。
光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。本発明の共重合体は、酸発生剤を含まないことが好ましい。
Dyes and pigments include red organic pigments such as para red, fire red, pyrazolone red, thioindicole red, and perylene red; blue organic pigments such as cyanine blue and indanthrene blue; and green organic pigments such as cyanine green and naphthol green. Pigments may be mentioned, and one or more of these may be used.
Light diffusing agents and matting agents include fine glass particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate, and the like. The copolymer of the present invention preferably does not contain an acid generator.

膠着防止剤としては、ステアリン酸、パルミチン酸等の脂肪酸;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、パルミチン酸カリウム、パルミチン酸ナトリウム等の脂肪酸金属塩;ポリエチレンワックス、ポリプロピレンワックス、モンタン酸系ワックス等のワックス類;低分子量ポリエチレンや低分子量ポリプロピレン等の低分子量ポリオレフィン;アクリル系樹脂粉末;ジメチルポリシロキサン等のポリオルガノシロキサン;オクタデシルアミン、リン酸アルキル、脂肪酸エステル、エチレンビスステアリルアミド等のアミド系樹脂粉末、四フッ化エチレン樹脂等のフッ素樹脂粉末、二硫化モリブデン粉末、シリコーン樹脂粉末、シリコーンゴム粉末、シリカ等が挙げられる。
耐衝撃性改質剤としては、ジエン系ゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などが挙げられる。
蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
Anti-adhesion agents include fatty acids such as stearic acid and palmitic acid; fatty acid metal salts such as calcium stearate, zinc stearate, magnesium stearate, potassium palmitate and sodium palmitate; polyethylene wax, polypropylene wax, montanic acid wax and the like. waxes; Low molecular weight polyolefins such as low molecular weight polyethylene and low molecular weight polypropylene; Acrylic resin powder; Polyorganosiloxane such as dimethylpolysiloxane; powder, fluororesin powder such as tetrafluoroethylene resin, molybdenum disulfide powder, silicone resin powder, silicone rubber powder, silica and the like.
Examples of impact modifiers include core-shell modifiers containing diene rubber as a core layer component; modifiers containing a plurality of rubber particles, and the like.
Examples of phosphors include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.

本発明の樹脂組成物にマトリックス樹脂および/または添加剤を含有させる場合、マトリックス樹脂および/またはアクリル系架橋ゴム粒子の重合時に添加してもよいし、マトリックス樹脂および/またはアクリル系架橋ゴム粒子との混合時に添加してもよいし、マトリックス樹脂および/またはアクリル系架橋ゴム粒子を混合した後に添加してもよい。 When the resin composition of the present invention contains a matrix resin and/or an additive, it may be added during polymerization of the matrix resin and/or the acrylic crosslinked rubber particles. may be added at the time of mixing, or may be added after mixing the matrix resin and/or acrylic crosslinked rubber particles.

本発明の樹脂組成物は、マトリックス樹脂に対して一般に用いられている成形加工方法や成形加工装置を用いて成形加工することができる。例えば、射出成形、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形などの加熱溶融を経る成形加工法、溶液流延方法などにより成形品が製造できる。 The resin composition of the present invention can be molded using a molding method and molding apparatus generally used for matrix resins. For example, a molded product can be produced by a molding method involving heating and melting such as injection molding, extrusion molding, compression molding, blow molding, calendar molding, vacuum molding, or a solution casting method.

本発明の樹脂組成物は、フィルムとしても有用であり、例えば、通常の溶融押出法であるインフレーション法やTダイ押出法、あるいはカレンダー法、更には溶液流延法等により良好に加工される。また、必要に応じて、フィルム両面をロールまたは金属ベルトに同時に接触させることにより、特に、ガラス転移温度以上の温度に加熱したロールまたは金属ベルトに同時に接触させることにより、表面性のより優れたフィルムを得ることも可能である。また、目的に応じて、フィルムの積層成形や二軸延伸によるフィルムの改質も可能である。 The resin composition of the present invention is also useful as a film, and can be processed well by, for example, usual melt extrusion methods such as inflation method, T-die extrusion method, calendering method, and solution casting method. In addition, if necessary, by simultaneously contacting both sides of the film with a roll or a metal belt, in particular, by simultaneously contacting a roll or a metal belt heated to a temperature higher than the glass transition temperature, the film has a better surface property. It is also possible to obtain In addition, depending on the purpose, it is also possible to modify the film by laminate molding or biaxial stretching.

本発明の樹脂組成物より得られたフィルムは、金属、プラスチックなどに積層して用いることができる。積層の方法としては、鋼板などの金属板に接着剤を塗布した後、金属板にフィルムを載せて乾燥させ貼り合わせるウエットラミネートや、ドライラミネート、エキストル-ジョンラミネート、ホットメルトラミネートなどが挙げられる。 A film obtained from the resin composition of the present invention can be used by being laminated on metal, plastic, or the like. Examples of lamination methods include wet lamination in which an adhesive is applied to a metal plate such as a steel plate and then a film is placed on the metal plate, dried, and laminated, dry lamination, extrusion lamination, hot melt lamination, and the like.

プラスチック部品にフィルムを積層する方法としては、フィルムを金型内に配置しておき、射出成形にて樹脂を充填するフィルムインサート成形、ラミネートインジェクションプレス成形や、フィルムを予備成形した後金型内に配置し、射出成形にて樹脂を充填するフィルムインモールド成形などが挙げられる。 As a method of laminating a film on a plastic part, the film is placed in a mold and filled with resin by injection molding, such as film insert molding, laminate injection press molding, or preforming the film and then placing it in the mold. Examples include film in-mold molding in which a film is arranged and resin is filled by injection molding.

本発明の樹脂組成物およびそれを含む成形品は、各種用途の部材にすることができる。具体的な用途としては、例えば、看板部品やマーキングフィルム;ディスプレイ部品;照明部品;インテリア部品;建築用部品;自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、サンルーフ、グレージング、自動車内装部材、バンパーなどの自動車外装部材等の輸送機関係部品;電子機器部品;医療機器部品;機械関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板等の光学関係部品;交通関係部品;その他各種表面材料等が挙げられる。
他方、本発明の樹脂組成物から得られるフィルムのラミネート積層品としては、自動車内外装材、日用雑貨品、壁紙、塗装代替用途、家具や電気機器のハウジング、ファクシミリなどのOA機器のハウジング、床材、電気または電子装置の部品、浴室設備などに使用することができる。
The resin composition of the present invention and molded articles containing it can be used as members for various uses. Specific applications include, for example, signboard parts and marking films; display parts; lighting parts; interior parts; Transportation equipment parts such as automotive exterior parts such as bumpers; Electronic equipment parts; Medical equipment parts; Mechanical parts; optical-related parts such as; traffic-related parts; and other various surface materials.
On the other hand, laminate laminates of films obtained from the resin composition of the present invention include interior and exterior materials for automobiles, daily necessities, wallpaper, paint substitute applications, housings for furniture and electrical equipment, housings for OA equipment such as facsimiles, It can be used for flooring, parts of electrical or electronic devices, bathroom fixtures and the like.

以下、本発明に係る製造例と実施例、および比較例について、説明する。 Production examples and examples according to the present invention and comparative examples will be described below.

[評価項目および評価方法]
製造例、実施例および比較例における評価項目および評価方法は、以下の通りである。
(重量平均分子量(Mw))
樹脂の重量平均分子量(Mw)は、GPC法により求めた。溶離液としてテトラヒドロフランを用いた。カラムとして、東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000とを直列に繋いだものを用いた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。測定対象樹脂4mgをテトラヒドロフラン5mLに溶解させて試料溶液を調整した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35mL/分で、試料溶液20μLを装置内に注入して、クロマトグラムを測定した。分子量が400~5,000,000の範囲内にある標準ポリスチレン10点をGPC測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて測定対象樹脂のMwを決定した。
[Evaluation items and evaluation methods]
Evaluation items and evaluation methods in Production Examples, Examples and Comparative Examples are as follows.
(Weight average molecular weight (Mw))
The weight average molecular weight (Mw) of the resin was determined by the GPC method. Tetrahydrofuran was used as the eluent. As a column, two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used. As a GPC apparatus, HLC-8320 (product number) manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used. A sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 mL of tetrahydrofuran. The temperature of the column oven was set to 40° C., the eluent flow rate was 0.35 mL/min, 20 μL of the sample solution was injected into the device, and the chromatogram was measured. Ten points of standard polystyrene having a molecular weight in the range of 400 to 5,000,000 were subjected to GPC measurement to prepare a calibration curve showing the relationship between retention time and molecular weight. Based on this calibration curve, the Mw of the resin to be measured was determined.

(体積平均粒子径)
アクリル系架橋ゴム粒子を含有するラテックスについて、堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-950V2を用いて光散乱法によって、体積平均粒子径を決定した。
(Volume average particle size)
The volume-average particle size of the latex containing the acrylic crosslinked rubber particles was determined by a light scattering method using a laser diffraction/scattering particle size distribution analyzer LA-950V2 manufactured by Horiba, Ltd.

(消費剪断エネルギー)
230℃、37.3Nのメルトフローレートが8g/10分のメタクリル酸メチル樹脂(クラレ社製パラペットG)60質量部を、消費剪断エネルギー測定装置付き混練・押出成形評価試験装置(東洋精機製ラボプラストミル4C150)でシグマミキサーを使用し230℃、80rpm、3分間混練した後、凝固粉体40質量部を添加し、40rpmで更に混練した。混練中、1分ごとにサンプリングすることで消費剪断エネルギーが異なる溶融混練組成物を得た。得られた各溶融混練組成物0.10質量部をアセトン100質量部に2時間溶解し、その分散液を堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-950V2を用いて光散乱法によって、メタクリル系樹脂中に分散したアクリル系架橋ゴム粒子の体積平均分散粒子径を測定した。1μm以下の範囲かつ分布の山が一つ(単峰性)に現れたところを1次粒子に分散されたとみなし、その樹脂組成物の消費剪断エネルギーをその凝固粉体の消費剪断エネルギーとして採用した。
(Shear energy consumed)
60 parts by mass of methyl methacrylate resin (Parapet G manufactured by Kuraray Co., Ltd.) having a melt flow rate of 8 g/10 minutes at 230 ° C. and 37.3 N is kneaded and extruded with a shear energy consumption measuring device (Toyo Seiki Lab. After kneading for 3 minutes at 230° C. and 80 rpm using a sigma mixer in Plastomill 4C150), 40 parts by mass of coagulated powder was added and further kneaded at 40 rpm. A melt-kneaded composition with different shear energy consumption was obtained by sampling every minute during kneading. 0.10 parts by mass of each of the resulting melt-kneaded compositions was dissolved in 100 parts by mass of acetone for 2 hours, and the dispersion was subjected to light scattering using a laser diffraction/scattering particle size distribution analyzer LA-950V2 manufactured by Horiba, Ltd. The volume average dispersed particle size of the acrylic crosslinked rubber particles dispersed in the methacrylic resin was measured by the method. When the range of 1 μm or less and one distribution peak (unimodal) appeared, it was considered to be dispersed in primary particles, and the shear energy consumption of the resin composition was adopted as the shear energy consumption of the solidified powder. .

(シャルピー衝撃値)
プレス成形サンプルについて、温度23℃、相対湿度50%の条件において、衝撃値(ノッチ有り)をJIS-K7111に準拠した方法で測定した。5回の測定を行い、その平均値をシャルピー衝撃値として採用した。
(Charpy impact value)
The impact value (notched) of the press-molded sample was measured by a method according to JIS-K7111 under the conditions of a temperature of 23° C. and a relative humidity of 50%. Measurement was performed five times, and the average value was adopted as the Charpy impact value.

(ブツ欠点数)
実施例または比較例で得られたアクリル系樹脂組成物のペレットについて、OCS社製ポリマー品質検査装置付属の押出機ME-20/26V2および巻取機CR-8を用い、シリンダ温度240~250℃、150mm幅Tダイ温度260℃で押出したフィルムを冷却ロール4.2m/minの速度で巻取製膜し、厚さ30~70mmのフィルムを得た。得られたフィルムについて前記ポリマー品質検査装置FSA-100を用いて、40μm以上の欠点を測定し、1mあたりの個数を異ブツ数(ブツ欠点数)として採用した。
(number of defects)
For the pellets of the acrylic resin composition obtained in Examples or Comparative Examples, using an extruder ME-20/26V2 and a winder CR-8 attached to the polymer quality inspection device manufactured by OCS, the cylinder temperature is 240 to 250 ° C. , and a T-die temperature of 260° C. with a width of 150 mm. Defects of 40 μm or more were measured on the obtained film using the polymer quality inspection apparatus FSA-100, and the number of defects per 1 m 2 was adopted as the number of different defects (number of defects).

(製造例1)
攪拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器内に、イオン交換水750質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.14質量部および炭酸ナトリウム0.1質量部を仕込み、反応器内を窒素ガスで十分に置換した。次いで内温を80℃にした。そこに、過硫酸カリウム0.10質量部を投入し、5分間攪拌した。これに、メタクリル酸メチル(MMA)93.8質量%、アクリル酸メチル(MA)6.0質量%およびメタクリル酸アリル(ALMA)0.2質量%からなる単量体混合物262.5質量部を45分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った(第1層(R))。
次いで、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、アクリル酸ブチル(BA)80.6質量%、スチレン(St)17.4質量%およびメタクリル酸アリル(ALMA)2質量%からなる単量体混合物337.5質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに80分間重合反応を行った(第1層(R)+第2層(Q))。 次に、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、メタクリル酸メチル(MMA)80.0質量%およびアクリル酸メチル(MA)20.0質量%からなる単量体混合物150質量部並びにn-オクチルメルカプタン0.3質量部を25分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。以上の操作によって、アクリル系架橋ゴム粒子を含むラテックスを得た(第1層(R)+第2層(Q)+第3層(P))。ラテックス中のアクリル系架橋ゴム粒子の体積平均粒子径は0.26μmであった。
(Production example 1)
In a reactor equipped with a stirrer, a thermometer, a nitrogen gas inlet tube, a monomer inlet tube and a reflux condenser, 750 parts by mass of ion-exchanged water, 0.14 parts by mass of sodium polyoxyethylene tridecyl ether acetate and sodium carbonate were added. 0.1 part by mass was charged, and the inside of the reactor was sufficiently replaced with nitrogen gas. The internal temperature was then raised to 80°C. 0.10 parts by mass of potassium persulfate was added thereto and stirred for 5 minutes. To this, 262.5 parts by mass of a monomer mixture consisting of 93.8% by mass of methyl methacrylate (MMA), 6.0% by mass of methyl acrylate (MA) and 0.2% by mass of allyl methacrylate (ALMA) was added. It was added dropwise continuously over 45 minutes. After completion of dropping, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or more (first layer (R)).
Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. After that, 337.5 parts by mass of a monomer mixture consisting of 80.6% by mass of butyl acrylate (BA), 17.4% by mass of styrene (St) and 2% by mass of allyl methacrylate (ALMA) was added continuously over 60 minutes. dropwise. After the completion of dropping, the polymerization reaction was further carried out for 80 minutes so that the polymerization conversion rate was 98% or more (first layer (R) + second layer (Q)). Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. After that, 150 parts by mass of a monomer mixture consisting of 80.0% by mass of methyl methacrylate (MMA) and 20.0% by mass of methyl acrylate (MA) and 0.3 parts by mass of n-octyl mercaptan were added continuously over 25 minutes. dropwise. After completion of the dropwise addition, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or higher. Through the above operations, a latex containing acrylic crosslinked rubber particles was obtained (first layer (R) + second layer (Q) + third layer (P)). The volume average particle size of the acrylic crosslinked rubber particles in the latex was 0.26 μm.

(製造例2)
第1層及び第2層まで製造例1と同様の方法で架橋ゴム重合体を含むラテックスを得た。
次に、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、メタクリル酸メチル94.0質量%およびアクリル酸メチル6.0質量%からなる単量体混合物150質量部並びにn-オクチルメルカプタン0.3質量部を25分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。以上の操作によって、アクリル系架橋ゴム粒子(3層構成:R-Q-P)を含むラテックスを得た。ラテックス中のアクリル系架橋ゴム粒子の体積平均粒子径は0.23μmであった。
(Production example 2)
A latex containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first and second layers.
Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. After that, 150 parts by weight of a monomer mixture consisting of 94.0% by weight of methyl methacrylate and 6.0% by weight of methyl acrylate and 0.3 parts by weight of n-octyl mercaptan were continuously added dropwise over 25 minutes. After completion of the dropwise addition, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or higher. Through the above operations, a latex containing acrylic crosslinked rubber particles (three-layer structure: RQP) was obtained. The volume average particle size of the acrylic crosslinked rubber particles in the latex was 0.23 μm.

(製造例3)
第1層及び第2層まで製造例1と同様の方法で架橋ゴム重合体を含むラテックスを得た。
次に、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、メタクリル酸メチル94.0質量%およびアクリル酸メチル6.0質量%からなる単量体混合物150質量部並びにn-オクチルメルカプタン1.125質量部を25分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。以上の操作によって、アクリル系架橋ゴム粒子(3層構成:R-Q-P)を含むラテックスを得た。ラテックス中のアクリル系架橋ゴム粒子の体積平均粒子径は0.29μmであった。
(Production example 3)
A latex containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first and second layers.
Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. Thereafter, 150 parts by mass of a monomer mixture consisting of 94.0% by mass of methyl methacrylate and 6.0% by mass of methyl acrylate and 1.125 parts by mass of n-octylmercaptan were continuously added dropwise over 25 minutes. After completion of the dropwise addition, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or higher. Through the above operations, a latex containing acrylic crosslinked rubber particles (three-layer structure: RQP) was obtained. The volume average particle size of the acrylic crosslinked rubber particles in the latex was 0.29 μm.

(製造例4)
1層目及び2層目まで製造例1と同様の方法で架橋ゴム重合体を含むラテックスを得た。
次に、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、メタクリル酸メチル86.0質量%およびアクリル酸ブチル14.0質量%からなる単量体混合物150質量部並びにn-オクチルメルカプタン0.3質量%を25分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。以上の操作によって、アクリル系架橋ゴム粒子(3層構成:R-Q-P)を含むラテックスを得た。ラテックス中のアクリル系架橋ゴム粒子の体積平均粒子径は0.29μmであった。
(Production example 4)
A latex containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first and second layers.
Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. Thereafter, 150 parts by weight of a monomer mixture consisting of 86.0% by weight of methyl methacrylate and 14.0% by weight of butyl acrylate and 0.3% by weight of n-octyl mercaptan were continuously added dropwise over 25 minutes. After completion of the dropwise addition, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or higher. Through the above operations, a latex containing acrylic crosslinked rubber particles (three-layer structure: RQP) was obtained. The volume average particle size of the acrylic crosslinked rubber particles in the latex was 0.29 μm.

(製造例5)
1層目及び2層目まで製造例1と同様の方法で架橋ゴム重合体を含むラテックスを得た。
次に、同反応器内に、過硫酸カリウム0.10質量部を投入して5分間攪拌した。その後、メタクリル酸メチル86.0質量%およびアクリル酸ブチル14.0質量%からなる単量体混合物150質量部並びにn-オクチルメルカプタン1.125質量部を25分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。以上の操作によって、アクリル系架橋ゴム粒子(3層構成:R-Q-P)を含むラテックスを得た。ラテックス中のアクリル系架橋ゴム粒子の体積平均粒子径は0.29μmであった。
(Production example 5)
A latex containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first and second layers.
Next, 0.10 parts by mass of potassium persulfate was put into the same reactor and stirred for 5 minutes. Thereafter, 150 parts by mass of a monomer mixture consisting of 86.0% by mass of methyl methacrylate and 14.0% by mass of butyl acrylate and 1.125 parts by mass of n-octylmercaptan were continuously added dropwise over 25 minutes. After completion of the dropwise addition, the polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or higher. Through the above operations, a latex containing acrylic crosslinked rubber particles (three-layer structure: RQP) was obtained. The volume average particle size of the acrylic crosslinked rubber particles in the latex was 0.29 μm.

[実施例1]
製造例1で得られたラテックスを、以下の条件で凝固した。ラテックス210部にイオン交換水484.8部と硫酸マグネシウム5.25部を添加し、攪拌しながら液温を40℃に昇温した。液温40℃を保ったまま、1.1時間攪拌を継続し、凝集スラリーを得た。更に、このスラリーを115℃に昇温し、保持したまま1.6時間攪拌を継続し、造粒スラリーを得た。得られた造粒スラリーを、スクリューデカンタ式遠心分離器を用いて洗浄および脱水を行い、乾燥することで凝固粉体を得た。凝固粉体の体積平均粒子径は、239μmであった。
得られた凝固粉体40質量部とメタクリル系樹脂60質量部とを、Φ40mmの単軸押出機にてシリンダ温度170~235℃で溶融混練した。その後、溶融樹脂組成物を押出して、ペレット状のアクリル系樹脂組成物を得、上記の方法でブツ欠点数を測定した。
また、得られた凝固粉体40質量部とメタクリル系樹脂60質量部とを、ラボプラストミル(東洋精機製4C150)で230℃、3分間混練してアクリル系樹脂組成物を得、図1に示すアセトン中での分散粒子径分布を測定した。さらに230℃で4分30秒間、熱プレス成形することで厚さ3mmの成形品を得、シャルピー衝撃値を測定した。物性評価結果を表2に示す。
[Example 1]
The latex obtained in Production Example 1 was coagulated under the following conditions. 484.8 parts of deionized water and 5.25 parts of magnesium sulfate were added to 210 parts of latex, and the liquid temperature was raised to 40° C. while stirring. Stirring was continued for 1.1 hours while maintaining the liquid temperature at 40° C. to obtain an aggregated slurry. Further, the temperature of this slurry was raised to 115° C., and stirring was continued for 1.6 hours while maintaining the temperature to obtain a granulated slurry. The resulting granulated slurry was washed and dewatered using a screw decanter centrifuge, and dried to obtain a coagulated powder. The volume average particle size of the coagulated powder was 239 μm.
40 parts by mass of the solidified powder obtained and 60 parts by mass of methacrylic resin were melt-kneaded at a cylinder temperature of 170 to 235° C. with a single-screw extruder of Φ40 mm. Thereafter, the molten resin composition was extruded to obtain a pellet-shaped acrylic resin composition, and the number of defects was measured by the method described above.
Further, 40 parts by mass of the solidified powder obtained and 60 parts by mass of methacrylic resin were kneaded at 230° C. for 3 minutes in a Laboplastomill (4C150 manufactured by Toyo Seiki Co., Ltd.) to obtain an acrylic resin composition. The dispersed particle size distribution in acetone indicated was measured. Further, a molded article having a thickness of 3 mm was obtained by hot press molding at 230° C. for 4 minutes and 30 seconds, and the Charpy impact value was measured. Table 2 shows the physical property evaluation results.

[実施例2~4]
表2に示す温度とアクリル系架橋ゴム粒子に変更した以外は実施例1と同様にして、凝固粉体を得た。各実施例においては、実施例1と同様にして、得られた凝固粉体を用いて成形品を得た。各実施例における物性評価結果を表2に示す。
[Examples 2 to 4]
A coagulated powder was obtained in the same manner as in Example 1, except that the temperature shown in Table 2 and the acrylic crosslinked rubber particles were changed. In each example, in the same manner as in Example 1, the obtained coagulated powder was used to obtain a molded product. Table 2 shows the physical property evaluation results in each example.

[比較例1~6]
表3に示す温度とアクリル系架橋ゴム粒子および分散用粒子に変更した以外は実施例1と同様にして、凝固粉体を得た。各比較例においては、実施例1と同様にして、得られた凝固粉体を用いて成形品を得た。各比較例における物性評価結果を表3に示す。また、比較例1で得られた凝固粉体40質量部とメタクリル系樹脂60質量部とを、ラボプラストミルで230℃、3分間混練してアクリル系樹脂組成物を得、図1に示すアセトン中での分散粒子径分布を測定した。
[Comparative Examples 1 to 6]
A coagulated powder was obtained in the same manner as in Example 1, except that the temperature, the acrylic crosslinked rubber particles, and the particles for dispersion were changed as shown in Table 3. In each comparative example, the same procedure as in Example 1 was carried out to obtain a molded product using the obtained coagulated powder. Table 3 shows the physical property evaluation results in each comparative example. Further, 40 parts by mass of the coagulated powder obtained in Comparative Example 1 and 60 parts by mass of methacrylic resin were kneaded at 230° C. for 3 minutes in a Laboplastomill to obtain an acrylic resin composition, and the acetone shown in FIG. The dispersed particle size distribution was measured in

Figure 2022183689000002
Figure 2022183689000002

Figure 2022183689000003
Figure 2022183689000003

Figure 2022183689000004
Figure 2022183689000004

本発明のアクリル系架橋ゴム粒子を含む凝固粉体から成る実施例1~4で得られた成形品は、分散性且つ耐衝撃性が良好であった。 The molded articles obtained in Examples 1 to 4, which were made of the coagulated powder containing the acrylic crosslinked rubber particles of the present invention, had good dispersibility and impact resistance.

これに対して、第3層ガラス転移温度が高いアクリル系架橋ゴム粒子を含む凝固粉体から成る比較例1~2で得られた成形品は、実施例と比較してブツ欠点数が多く、耐衝撃強度が不良であった。 On the other hand, the molded articles obtained in Comparative Examples 1 and 2, which consist of coagulated powder containing acrylic crosslinked rubber particles with a high third layer glass transition temperature, have a large number of defects compared to the examples. The impact resistance strength was poor.

凝固粉体を得る工程での凝集温度を高くして製造したアクリル系架橋ゴム粒子を含む凝固粉体から成る比較例3で得られた成形品は、実施例と比較してブツ欠点数が多く、耐衝撃強度が不良であった。 The molded article obtained in Comparative Example 3, which is composed of the coagulated powder containing acrylic crosslinked rubber particles produced by increasing the aggregation temperature in the step of obtaining the coagulated powder, has a large number of defects as compared with the examples. , the impact resistance strength was poor.

最外層の分子量を低いアクリル系架橋ゴム粒子を含む凝固粉体から成る比較例4で得られた成形品は、実施例と比較して耐衝撃強度が不良であった。 The molded article obtained in Comparative Example 4, which is composed of a coagulated powder containing acrylic crosslinked rubber particles having a low molecular weight in the outermost layer, had poor impact strength as compared with Examples.

最外層の分子量を低く、且つ凝固粉体を得る工程での造粒温度を高くして製造したアクリル系架橋ゴム粒子を含む凝固粉体から成る比較例5で得られた成形品は、実施例と比較してブツ欠点数が多く、耐衝撃強度が不良であった。 The molded article obtained in Comparative Example 5, which is made of the coagulated powder containing acrylic crosslinked rubber particles produced by lowering the molecular weight of the outermost layer and increasing the granulation temperature in the step of obtaining the coagulated powder, Compared to , the number of defects was large, and the impact resistance strength was poor.

分散用粒子を添加して得たアクリル系架橋ゴム粒子を含む凝固粉体から成る比較例6で得られた成形品は、全体のゴム含有量が低下することで、実施例と比較して耐衝撃強度が不良であった。 The molded article obtained in Comparative Example 6, which is composed of the coagulated powder containing the acrylic crosslinked rubber particles obtained by adding the dispersing particles, has a lower rubber content as a whole, and is more durable than the examples. The impact strength was poor.

Claims (6)

アクリル酸アルキルエステル単位を含む架橋ゴムを含む内層と、メタクリル酸メチル単位を含み前記内層にグラフト結合している熱可塑性樹脂からなる最外層とを有し、最外層の熱可塑性樹脂の、ガラス転移温度が60~85℃であり、重量平均分子量が40,000~80,000であり、平均粒子径が0.08~0.3μmであるアクリル系架橋ゴム粒子を含む凝固粉体であって、
230℃、37.3Nのメルトフローレートが8±1g/10分のメタクリル酸メチル樹脂60質量部と前記凝固粉体40質量部とを、消費剪断エネルギー測定装置付き混練・押出成形評価試験装置で、温度230℃で溶融混練する際に、
前記凝固粉体と前記メタクリル酸メチル樹脂との溶融混練組成物の0.1質量%アセトン分散液中で、前記アクリル系架橋ゴム粒子が分散粒子径1μm以下の単峰性に分散されるまでに必要とする消費剪断エネルギーEが180MJ/m以下である凝固粉体。
It has an inner layer containing crosslinked rubber containing alkyl acrylate units and an outermost layer made of a thermoplastic resin containing methyl methacrylate units and graft-bonded to the inner layer, wherein the thermoplastic resin of the outermost layer has a glass transition A coagulated powder containing acrylic crosslinked rubber particles having a temperature of 60 to 85° C., a weight average molecular weight of 40,000 to 80,000, and an average particle size of 0.08 to 0.3 μm,
60 parts by mass of methyl methacrylate resin having a melt flow rate of 8±1 g/10 minutes at 230° C. and 37.3 N and 40 parts by mass of the solidified powder were kneaded and extruded using a kneading/extrusion evaluation test apparatus equipped with a shear energy consumption measuring device. , when melt-kneading at a temperature of 230 ° C.,
Until the acrylic crosslinked rubber particles are unimodally dispersed with a dispersed particle diameter of 1 μm or less in a 0.1% by mass acetone dispersion of the melt-kneaded composition of the coagulated powder and the methyl methacrylate resin. A solidified powder having a required shear energy consumption E of 180 MJ/m 3 or less.
前記アクリル系架橋ゴム粒子の平均粒子径が0.2~0.3μmである請求項1に記載の凝固粉体。 The coagulated powder according to claim 1, wherein the acrylic crosslinked rubber particles have an average particle size of 0.2 to 0.3 µm. アクリル系架橋ゴム粒子を含むラテックスを乳化重合法により製造する重合工程、
前記ラテックスを35~65℃で凝集させる凝集工程、
更に100~130℃で造粒させる造粒工程を含む、請求項1または2に記載の凝固粉体の製造方法。
a polymerization step of producing a latex containing acrylic crosslinked rubber particles by an emulsion polymerization method;
aggregating step of aggregating the latex at 35-65°C;
The method for producing a coagulated powder according to claim 1 or 2, further comprising a granulation step of granulating at 100 to 130°C.
請求項1または2に記載の凝固粉体とマトリックス樹脂とを含む樹脂組成物。 A resin composition comprising the coagulated powder according to claim 1 or 2 and a matrix resin. マトリックス樹脂がメタクリル系樹脂である請求項4に記載の樹脂組成物。 5. The resin composition according to claim 4, wherein the matrix resin is a methacrylic resin. 請求項4又は5に記載の樹脂組成物を含む成形品。 A molded article comprising the resin composition according to claim 4 or 5.
JP2021091130A 2021-05-31 2021-05-31 Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product Pending JP2022183689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021091130A JP2022183689A (en) 2021-05-31 2021-05-31 Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021091130A JP2022183689A (en) 2021-05-31 2021-05-31 Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product

Publications (1)

Publication Number Publication Date
JP2022183689A true JP2022183689A (en) 2022-12-13

Family

ID=84438054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021091130A Pending JP2022183689A (en) 2021-05-31 2021-05-31 Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product

Country Status (1)

Country Link
JP (1) JP2022183689A (en)

Similar Documents

Publication Publication Date Title
CN108350125B (en) Methacrylic resin, methacrylic resin composition, film, and production method
US11066544B2 (en) Optical resin composition and molded article
EP3587491B1 (en) Resin composition containing polymer particles
JP2023080157A (en) Methacrylic resin, methacrylic resin composition, and film
JP2014098117A (en) Film containing methacrylic resin
TW201816429A (en) Dope solution for preparing a polarizing plate protective film, polarizing plate protective film using the dope solution, polarizing plate and image display comprising the polarizing plate, and method of preparing the polarizing plate protective film
JP5630891B2 (en) Acrylic polymer resin particles and thermoplastic resin composition containing the acrylic resin particles
JP2022059643A (en) Transparent thermoplastic resin composition, method for producing the same, molded article obtained by molding transparent thermoplastic resin composition, and method for manufacturing molded article
JP3642919B2 (en) Impact modifier and thermoplastic polymer composition containing the same
US9096704B2 (en) Impact modifier, method for preparing the same and scratch resistant methacrylate resin composition using the same
KR20140033831A (en) Acrylate based impact modifier and environment-friendly polylactic acid resin composition comprising thereof
KR102080714B1 (en) Transparent thermoplastic resin and method for preparing the same
JP7076882B2 (en) Thermoplastic resin composition
JP7055488B2 (en) Method for producing graft copolymer powder
JP5711575B2 (en) Acrylic resin film
JP2022183689A (en) Coagulated powder including acrylic cross-linked rubber particle, production method of the same, resin composition, and molded product
KR101856465B1 (en) The environmental-friendly Windows Profile compositions with enhanced heat resistance and color
JP2006232879A (en) Sheet for protecting display window
JP6326530B2 (en) Film containing methacrylic resin
JP2005060658A (en) Acrylic resin composition having antistatic property
JP6704254B2 (en) Methacrylic resin composition, method for producing the same and molded article
JP7301627B2 (en) METHACRYLIC RESIN COMPOSITION, MOLDED PRODUCT THEREOF, AND METHOD FOR MANUFACTURING FILM
JPH11147991A (en) Impact-resistant methacrylic molding material
JP3317725B2 (en) Methacrylic resin composition
JP4187883B2 (en) Acrylic film with excellent roll peelability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231227