JP2020147715A - Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product - Google Patents

Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product Download PDF

Info

Publication number
JP2020147715A
JP2020147715A JP2019048390A JP2019048390A JP2020147715A JP 2020147715 A JP2020147715 A JP 2020147715A JP 2019048390 A JP2019048390 A JP 2019048390A JP 2019048390 A JP2019048390 A JP 2019048390A JP 2020147715 A JP2020147715 A JP 2020147715A
Authority
JP
Japan
Prior art keywords
molded product
polymer
resin molded
melt molding
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019048390A
Other languages
Japanese (ja)
Inventor
晃和 松本
Akikazu Matsumoto
晃和 松本
春樹 岡田
Haruki Okada
春樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019048390A priority Critical patent/JP2020147715A/en
Publication of JP2020147715A publication Critical patent/JP2020147715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a polymer for melt molding and a resin composition for melt molding each excellent in melt moldability and to provide a resin molded product excellent in transparency, scratch resistance and heat resistance.SOLUTION: The polymer for melt molding includes 70 to 97 mol% of (A) a methyl (meth)acrylate unit and 3 to 30 mol% of (B) a vinyl compound monomer unit having an alkoxysilyl group in the side chain. The resin composition for melt molding includes the polymer for melt molding. The resin molded product having a gel fraction of 1.0 mass% or more is produced by subjecting a resin molded body precursor produced by melt molding the polymer for melt molding or the resin composition for melt molding to crosslinking treatment. The method for producing a polymer for melt molding is a production method of the polymer for melt molding which includes the unit (A) and the unit (B) and includes a step of polymerizing a monomer composition containing 70 to 97 mol% of methyl (meth)acrylate and 3 to 30 mol% of a vinyl compound having an alkoxysilyl group in the side chain.SELECTED DRAWING: None

Description

本発明は、溶融成形用重合体、溶融成形用樹脂組成物及び樹脂成形体、並びに、溶融成形用重合体及び樹脂成形体の製造方法に関する。 The present invention relates to a polymer for melt molding, a resin composition for melt molding and a resin molded product, and a method for producing a polymer for melt molding and a resin molded product.

アクリル樹脂は、その優れた透明性や寸法安定性から、光学材料、車両用部品、照明用材料、建築用材料等、様々な分野で幅広く用いられている。最近では、車両の内外装材料等の車両用部材の用途で、特に車両ランプカバーに用いられつつある。 Acrylic resins are widely used in various fields such as optical materials, vehicle parts, lighting materials, and building materials because of their excellent transparency and dimensional stability. Recently, it is being used for vehicle members such as interior and exterior materials of vehicles, especially for vehicle lamp covers.

上記の用途では、意匠性の面で、視認者から見たときに、透明で存在感の低いことが求められるため、透明性に優れたアクリル樹脂が要求されている。 In the above applications, in terms of design, it is required to be transparent and have a low presence when viewed from the viewer, and therefore an acrylic resin having excellent transparency is required.

また、車両用部材や建築用材料の用途では、人や物との接触により製品に傷が付くことがあるため、耐擦傷性に優れたアクリル樹脂が要求されている。 Further, in applications such as vehicle members and building materials, the product may be scratched by contact with people or objects, so an acrylic resin having excellent scratch resistance is required.

さらに近年は、車両用部材の用途、特にテールランプやヘッドランプ等のランプカバーの用途では、高温環境下や屋外でアクリル樹脂を使用する検討が進められており、耐熱性に優れたアクリル樹脂が要求されている。 Furthermore, in recent years, the use of acrylic resin in high-temperature environments and outdoors has been studied for applications of vehicle components, especially lamp covers such as tail lamps and headlamps, and acrylic resin with excellent heat resistance is required. Has been done.

耐擦傷性、耐熱性を向上するために、アクリル樹脂に架橋構造を導入する方法が知られている。しかしながら、アクリル樹脂に架橋構造を導入した場合、押出成形や射出成形等の溶融成形性が損なわれるという課題があった。すなわち、溶融成形が可能な耐擦傷性に優れたアクリル樹脂が要求されている。 A method of introducing a crosslinked structure into an acrylic resin is known in order to improve scratch resistance and heat resistance. However, when a crosslinked structure is introduced into an acrylic resin, there is a problem that melt moldability such as extrusion molding and injection molding is impaired. That is, there is a demand for an acrylic resin that can be melt-molded and has excellent scratch resistance.

アクリル樹脂の透明性を維持しつつ、得られた樹脂成形体の耐熱性を向上するために、例えば、特許文献1には、ビニル化合物と加水分解基を有する重合可能なシラン化合物との未架橋共重合体を加工(成形)して所望の成形体を得、成形体を酸性またはアルカリ性の水溶液で後処理して成形体中の共重合体を架橋させることにより架橋重合体の成形体を得る技術が開示されている。 In order to improve the heat resistance of the obtained resin molded product while maintaining the transparency of the acrylic resin, for example, Patent Document 1 states that a vinyl compound and a polymerizable silane compound having a hydrolyzing group are not crosslinked. The copolymer is processed (molded) to obtain a desired molded product, and the molded product is post-treated with an acidic or alkaline aqueous solution to crosslink the copolymer in the molded product to obtain a crosslinked polymer molded product. The technology is disclosed.

特開平6−340746号公報Japanese Unexamined Patent Publication No. 6-340746

特許文献1に開示されている技術では、未架橋共重合体にアルコキシシリル基を側鎖に有するビニル化合物単量体が少量しか導入されていないため、得られた架橋重合体の樹脂成形体は、架橋密度が不足しており、耐擦傷性に劣っていた。また、強酸または強塩基水中での樹脂成形体の架橋処理を必要としており、処理後の樹脂成形体の透明性に劣った。すなわち、透明性、耐擦傷性、耐熱性及び溶融成形性を両立できなかった。 In the technique disclosed in Patent Document 1, since only a small amount of vinyl compound monomer having an alkoxysilyl group in the side chain is introduced into the uncrosslinked copolymer, the resin molded product of the obtained crosslinked polymer is obtained. , The crosslink density was insufficient, and the scratch resistance was inferior. Further, it is necessary to carry out a cross-linking treatment of the resin molded product in strong acid or strong base water, and the transparency of the treated resin molded product is inferior. That is, transparency, scratch resistance, heat resistance and melt moldability could not be achieved at the same time.

本発明はこれらの問題点を解決することを目的とする。すなわち、本発明の目的は、溶融成形性に優れる溶融成形用重合体及び溶融成形用樹脂組成物、及び、透明性、耐擦傷性、及び耐熱性に優れた樹脂成形体を提供することにある。 An object of the present invention is to solve these problems. That is, an object of the present invention is to provide a melt-molding polymer and a melt-molding resin composition having excellent melt-molding properties, and a resin molded body having excellent transparency, scratch resistance, and heat resistance. ..

本発明は、以下の構成を有する。
本発明の第1の要旨は、メチル(メタ)アクリレート由来の繰り返し単位(A)とアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)を含む溶融成形用重合体であって、前記溶融成形用重合体が、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、前記単位(A)を70mol%以上97mol%以下、及び前記単位(B)を3mol%以上30mol%以下含む、溶融成形用重合体にある。
本発明の第2の要旨は、前記溶融成形用重合体を含有する溶融成形用樹脂組成物であって、前記溶融成形用樹脂組成物が、該溶融成形用樹脂組成物の総質量100質量%に対して、前記溶融成形用重合体を1質量%以上100質量%未満含有する、溶融成形用樹脂組成物にある。
本発明の第3の要旨は、前記溶融成形用重合体若しくは前記溶融成形用樹脂組成物を溶融成形してなる樹脂成形体前駆体を、架橋処理してなる樹脂成形体であって、前記樹脂成形体のゲル分率が、該樹脂成形体の総質量100質量%に対して、1.0質量%以上である、樹脂成形体の樹脂成形体にある。
本発明の第4の要旨は、メチル(メタ)アクリレート由来の繰り返し単位(A)とアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)を含む溶融成形用重合体の製造方法であって、メチル(メタ)アクリレートを70mol%以上97mol%以下、アルコキシシリル基を側鎖に有するビニル化合物を3mol%以上30mol%以下含有する単量体組成物を重合する工程を含む、溶融成形用重合体の製造方法にある。
本発明の第5の要旨は、前記製造方法で得られた溶融成形用重合体を、溶融成形して樹脂成形体前駆体を得る工程、及び前記樹脂成形体前駆体を架橋処理する工程を含む、樹脂成形体の製造方法にある。
The present invention has the following configurations.
The first gist of the present invention is a polymer for melt molding containing a repeating unit (A) derived from methyl (meth) acrylate and a repeating unit (B) derived from a vinyl compound monomer having an alkoxysilyl group in the side chain. Therefore, the unit (A) is 70 mol% or more and 97 mol% or less, and the unit is based on 100 mol% of the total number of moles of the monomer units constituting the melt-molded polymer. It is in a polymer for melt molding containing (B) in an amount of 3 mol% or more and 30 mol% or less.
The second gist of the present invention is a melt molding resin composition containing the melt molding polymer, wherein the melt molding resin composition is 100% by mass of the total mass of the melt molding resin composition. On the other hand, the resin composition for melt molding contains the polymer for melt molding in an amount of 1% by mass or more and less than 100% by mass.
A third gist of the present invention is a resin molded product obtained by cross-linking a resin molded product precursor obtained by melt-molding the melt-molded polymer or the melt-molded resin composition. A resin molded product of a resin molded product has a gel content of 1.0% by mass or more with respect to 100% by mass of the total mass of the resin molded product.
The fourth gist of the present invention is a polymer for melt molding containing a repeating unit (A) derived from methyl (meth) acrylate and a repeating unit (B) derived from a vinyl compound monomer having an alkoxysilyl group in the side chain. The production method includes a step of polymerizing a monomer composition containing 70 mol% or more and 97 mol% or less of methyl (meth) acrylate and 3 mol% or more and 30 mol% or less of a vinyl compound having an alkoxysilyl group in the side chain. It is in the method of producing a polymer for melt molding.
A fifth gist of the present invention includes a step of melt-molding the polymer for melt molding obtained by the above-mentioned production method to obtain a resin molded product precursor, and a step of cross-linking the resin molded product precursor. , A method for manufacturing a resin molded product.

本発明により、溶融成形性に優れた溶融成形用重合体及び溶融成形用樹脂組成物を安定に提供することができる。
本発明の溶融成形用樹脂組成物は、溶融流動性に優れ、射出成形、押出成形、加圧成形(プレス成形)、圧空成形や真空成形に適用可能である。
さらに、前記溶融成形用重合体及び前記溶融成形用樹脂組を成形してなる樹脂成形体は、透明性、耐擦傷性及び耐熱性に優れている。
According to the present invention, it is possible to stably provide a melt-molding polymer and a melt-molding resin composition having excellent melt-molding properties.
The resin composition for melt molding of the present invention has excellent melt fluidity and can be applied to injection molding, extrusion molding, pressure molding (press molding), pressure molding and vacuum molding.
Further, the melt-molded polymer and the resin molded product obtained by molding the melt-molded resin assembly are excellent in transparency, scratch resistance and heat resistance.

本発明において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」から選ばれる少なくとも1種を意味し、「(メタ)アクリル酸」は、「アクリル酸」及び「メタクリル酸」から選ばれる少なくとも1種を意味する。
本発明において、「単量体」は未重合の化合物を意味し、「繰り返し単位」は単量体が重合することによって形成された前記単量体に由来する単位を意味する。繰り返し単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。
特に断らない限り、「質量%」は全体量100質量%中に含まれる特定の成分の含有率を示す。
特に断らない限り、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A〜B」は、A以上B以下であることを意味する。
In the present invention, "(meth) acrylate" means at least one selected from "acrylate" and "methacrylic acid", and "(meth) acrylic acid" is selected from "acrylic acid" and "methacrylic acid". Means at least one species.
In the present invention, the "monomer" means an unpolymerized compound, and the "repeating unit" means a unit derived from the monomer formed by polymerizing the monomer. The repeating unit may be a unit directly formed by a polymerization reaction, or a unit in which a part of the unit is converted into another structure by processing a polymer.
Unless otherwise specified, "% by mass" indicates the content of a specific component contained in 100% by mass of the total amount.
Unless otherwise specified, the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, and is "AB". Means that it is A or more and B or less.

<用語の定義>
本明細書において、溶融成形用樹脂組成物とは、本発明の溶融成形用重合体を含有する樹脂組成物のことをいう。溶融成形用樹脂組成物についての詳細は後述する。
本明細書において、樹脂成形体とは、本発明の溶融成形用重合体又は本発明の溶融成形用樹脂組成物を、後述する本発明の製造方法を用いて成形してなる樹脂成形体(以下、「得られた樹脂成形体」という。)のことをいう。樹脂成形体についての詳細は後述する。
<Definition of terms>
In the present specification, the resin composition for melt molding means a resin composition containing the polymer for melt molding of the present invention. Details of the resin composition for melt molding will be described later.
In the present specification, the resin molded product is a resin molded product obtained by molding the polymer for melt molding of the present invention or the resin composition for melt molding of the present invention by using the production method of the present invention described later (hereinafter referred to as a resin molded product). , "The obtained resin molded product"). Details of the resin molded product will be described later.

<溶融成形用重合体>
本発明の溶融成形用重合体は、押出成形法、射出成形法、加圧成形法(プレス成形)、圧空成形法や真空成形法等の公知の溶融成形法に供することが可能な、溶融成形用の重合体である。
本発明の溶融成形用重合体は、後述するメチル(メタ)アクリレート由来の繰り返し単位(A)(以下、「単位(A)」という。)、及び後述するアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)(以下、「単位(B)」という。)を含む重合体である。
本発明における溶融成形用重合体は、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、メチル(メタ)アクリレート由来の繰り返し単位(A)(以下、「単位(A)」という。)を、70mol%以上97mol%以下、及びアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)(以下、「単位(B)」という。)を3mol%以上30mol%含む重合体である。
<Polymer for melt molding>
The polymer for melt molding of the present invention can be subjected to known melt molding methods such as extrusion molding method, injection molding method, pressure molding method (press molding), pressure molding method and vacuum molding method. It is a polymer for.
The polymer for melt molding of the present invention is a vinyl compound having a repeating unit (A) derived from methyl (meth) acrylate described later (hereinafter referred to as “unit (A)”) and an alkoxysilyl group described later in the side chain. It is a polymer containing a repeating unit (B) derived from a monomer (hereinafter, referred to as “unit (B)”).
The polymer for melt molding in the present invention is a repeating unit (A) derived from methyl (meth) acrylate with respect to a total number of moles of 100 mol% of the monomer units constituting the polymer for melt molding (hereinafter, "unit"). (A) ”) is a repeating unit (B) derived from a vinyl compound monomer having 70 mol% or more and 97 mol% or less and an alkoxysilyl group in the side chain (hereinafter referred to as“ unit (B) ”). It is a polymer containing 3 mol% or more and 30 mol%.

前記溶融成形用重合体が前記単位(A)を含むことで、溶融成形用重合体及び溶融成形用樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性が良好となる。
前記溶融成形用重合体中の前記単位(A)の含有割合の下限は、樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性に優れる観点から、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、70mol%以上である。80mol%以上が好ましい。一方、前記溶融成形用重合体中の前記単位(A)の含有割合の上限は得られた樹脂成形体の耐擦傷性と耐熱性を良好に維持できる観点から、97mol%以下である。95mol%以下が好ましく、90mol%以下がより好ましい。
When the melt-molded polymer contains the unit (A), the melt-moldability of the melt-molded polymer and the melt-molded resin composition and the transparency of the obtained resin molded product are improved.
The lower limit of the content ratio of the unit (A) in the polymer for melt molding is that the polymer for melt molding is used from the viewpoint of excellent melt moldability of the resin composition and transparency of the obtained resin molded product. The total number of moles of the constituent monomer units is 70 mol% or more with respect to 100 mol%. 80 mol% or more is preferable. On the other hand, the upper limit of the content ratio of the unit (A) in the polymer for melt molding is 97 mol% or less from the viewpoint of maintaining good scratch resistance and heat resistance of the obtained resin molded product. 95 mol% or less is preferable, and 90 mol% or less is more preferable.

前記溶融成形用重合体が前記単位(B)を含むことで、樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性が良好となる。
前記溶融成形用重合体中の前記単位(B)の含有割合の下限は、得られた樹脂成形体の耐擦傷性と耐熱性に優れる観点から、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、3mol%以上である。5mol%以上がより好ましく、10mol%以上がさらに好ましい。一方、前記単位(B)の含有割合の上限は、樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性を良好に維持できる観点から、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、30mol%以下である。20mol%以下がより好ましい。
When the melt molding polymer contains the unit (B), the melt moldability of the resin composition and the scratch resistance and heat resistance of the obtained resin molded body are improved.
The lower limit of the content ratio of the unit (B) in the melt molding polymer is a monomer constituting the melt molding polymer from the viewpoint of excellent scratch resistance and heat resistance of the obtained resin molded product. It is 3 mol% or more with respect to 100 mol% of the total number of moles of a unit. 5 mol% or more is more preferable, and 10 mol% or more is further preferable. On the other hand, the upper limit of the content ratio of the unit (B) constitutes the polymer for melt molding from the viewpoint of maintaining good melt moldability of the resin composition and transparency of the obtained resin molded product. It is 30 mol% or less with respect to the total number of moles of the polymer unit of 100 mol%. 20 mol% or less is more preferable.

前記単位(A)を構成するメチル(メタ)アクリレートとは、メチルメタクリレート又はメチルアクリレートから選ばれる少なくとも一種である。 The methyl (meth) acrylate constituting the unit (A) is at least one selected from methyl methacrylate or methyl acrylate.

本発明の溶融成形用重合体は、前記単位(B)として、アルコキシシリル(メタ)アクリレート由来の繰り返し単位(B1)(以下、「単位(B1)」という。)を含むことができる。
前記単位(B1)を含むことにより、溶融成形用樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性をより優れたものにできる。
前記単位(B)に含まれる単位(B1)の含有割合の下限は、溶融成形用樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性をより優れたものにできる観点から、前記単位(B)の総モル数100mol%に対して、51mol%以上が好ましく、90mol%以上がより好ましい。一方、前記溶融成形用重合体に含まれる単位(B1)の含有割合の上限は、溶融成形用樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性をより良好に維持できる観点から、前記単位(B)の総モル数100mol%に対して、単位(B1)100mol%(単位(B1)単独)、或いは又、100mol%未満とすることができる。
The polymer for melt molding of the present invention may contain a repeating unit (B1) derived from alkoxysilyl (meth) acrylate (hereinafter, referred to as “unit (B1)”) as the unit (B).
By including the unit (B1), the melt moldability of the resin composition for melt molding and the scratch resistance and heat resistance of the obtained resin molded product can be further improved.
The lower limit of the content ratio of the unit (B1) contained in the unit (B) can make the melt moldability of the resin composition for melt molding and the scratch resistance and heat resistance of the obtained resin molded product more excellent. From the viewpoint, 51 mol% or more is preferable, and 90 mol% or more is more preferable with respect to 100 mol% of the total number of moles of the unit (B). On the other hand, the upper limit of the content ratio of the unit (B1) contained in the polymer for melt molding is a viewpoint that the melt moldability of the resin composition for melt molding and the transparency of the obtained resin molded product can be better maintained. Therefore, the unit (B1) can be 100 mol% (unit (B1) alone) or less than 100 mol% with respect to the total number of moles of the unit (B) of 100 mol%.

前記単位(B)及び前記単位(B1)を構成する単量体としては、トリメトキシシリルビニル、トリエトキシリルビニル、メチルジメトキシシリルビニル、メチルジエトキシシリルビニル、エチルジエトキシシリルビニル、ジメチルメトキシシシリルビニル、ジメチルエトキシシリルビニル、ジエチルメトキシシシリルビニル、ジエチルエトキシシリルビニル等のアルコキシシリルビニル系化合物、あるいは、トリメトキシシリルプロピル(メタ)アクリレート、トリエトキシシリルプロピル(メタ)アクリレート、メチルジメトキシシシリルプロピル(メタ)アクリレート、メチルジエトキシシリルプロピル(メタ)アクリレート、エチルジエトキシシリルプロピル(メタ)アクリレート、トリプロポキシシリルプロピル(メタ)アクリレート、トリブトキシシリルプロピル(メタ)アクリレート、メチルジプロポキシシリルプロピル(メタ)アクリレート、メチルジブトキシシリルプロピル(メタ)アクリレート、ジメチルエトキシシリルプロピル(メタ)アクリレート、ジメチルメトキシシリルプロピル(メタ)アクリレート、ジメチルプロポキシシリルプロピル(メタ)アクリレート、ジメチルブトキシシリルプロピル(メタ)アクリレート等のアルコキシシリル(メタ)アクリレート系化合物が挙げられる。これらの他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the unit (B) and the monomer constituting the unit (B1) include trimethoxysilylvinyl, triethoxylylvinyl, methyldimethoxysilylvinyl, methyldiethoxysilylvinyl, ethyldiethoxysilylvinyl and dimethylmethoxysy. Ekoxysilylvinyl compounds such as silylvinyl, dimethylethoxysilylvinyl, diethylmethoxysilylvinyl, diethylethoxysilylvinyl, or trimethoxysilylpropyl (meth) acrylate, triethoxysilylpropyl (meth) acrylate, methyldimethoxycyclylyl. Propyl (meth) acrylate, methyldiethoxysilylpropyl (meth) acrylate, ethyldiethoxysilylpropyl (meth) acrylate, tripropoxysilylpropyl (meth) acrylate, tributoxysilylpropyl (meth) acrylate, methyldipropoxysilylpropyl (meth) Meta) acrylate, methyldibutoxysilylpropyl (meth) acrylate, dimethylethoxysilylpropyl (meth) acrylate, dimethylmethoxysilylpropyl (meth) acrylate, dimethylpropoxysilylpropyl (meth) acrylate, dimethylbutoxysilylpropyl (meth) acrylate, etc. Examples thereof include alkoxysilyl (meth) acrylate-based compounds. One of these other monomers may be used alone, or two or more thereof may be used in combination.

さらに、本発明の溶融成形用重合体において、前記単位(B1)は、下記一般式(1)で表される単量体由来の繰り返し単位(B2)(以下、「単位(B2)」という。)とすることができる。
前記単位(B2)を含むことにより、樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性をさらに優れたものにできる。
(1)
[式(1)中、Xは、H又はCHを示す。aは0〜10の整数、mは1〜10の整数、nは0〜10の整数、pは1〜3の整数、qは0〜2の整数を示す。]
Further, in the polymer for melt molding of the present invention, the unit (B1) is referred to as a repeating unit (B2) derived from a monomer represented by the following general formula (1) (hereinafter, referred to as "unit (B2)". ) Can be.
By including the unit (B2), the melt moldability of the resin composition and the scratch resistance and heat resistance of the obtained resin molded product can be further improved.
(1)
[In formula (1), X represents H or CH 3 . a is an integer of 0 to 10, m is an integer of 1 to 10, n is an integer of 0 to 10, p is an integer of 1 to 3, and q is an integer of 0 to 2. ]

前記単位(B2)を構成する単量体としては、トリエトキシシリルプロピル(メタ)アクリレート、メチルジエトキシシリルプロピル(メタ)アクリレート、エチルジエトキシシリルプロピル(メタ)アクリレート、トリプロポキシシリルプロピル(メタ)アクリレート、トリブトキシシリルプロピル(メタ)アクリレート、メチルジプロポキシシリルプロピル(メタ)アクリレート、メチルジブトキシシリルプロピル(メタ)アクリレート、ジメチルエトキシシリルプロピル(メタ)アクリレート、ジメチルプロポキシシリルプロピル(メタ)アクリレート、ジメチルブトキシシリルプロピル(メタ)アクリレートが挙げられる。これらの他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
上記の単位(B2)を構成する単量体の中でも、樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性、並びに、入手の容易さと溶融混練時の安定性の観点から、トリエトキシシリルプロピルメタクリレート(前記式(1)において、XはCH、a=3、m=1、p=3、q=0)、エチルジエトキシシリルプロピルメタクリレート(前記式(1)において、XはCH、a=3、m=1、n=1、p=2、q=1)が好ましく、トリエトキシシリルプロピルメタクリレートがより好ましい。
Examples of the monomer constituting the unit (B2) include triethoxysilylpropyl (meth) acrylate, methyldiethoxysilylpropyl (meth) acrylate, ethyldiethoxysilylpropyl (meth) acrylate, and tripropoxysilylpropyl (meth). Acrylate, tributoxysilylpropyl (meth) acrylate, methyldipropoxysilylpropyl (meth) acrylate, methyldibutoxysilylpropyl (meth) acrylate, dimethylethoxysilylpropyl (meth) acrylate, dimethylpropoxysilylpropyl (meth) acrylate, dimethyl Butoxysilylpropyl (meth) acrylate can be mentioned. One of these other monomers may be used alone, or two or more thereof may be used in combination.
Among the monomers constituting the above unit (B2), the melt moldability of the resin composition, the scratch resistance and heat resistance of the obtained resin molded product, and the availability and stability during melt kneading. From the viewpoint, triethoxysilylpropyl methacrylate (in the above formula (1), X is CH 3 , a = 3, m = 1, p = 3, q = 0), ethyldiethoxysilylpropyl methacrylate (in the above formula (1)). In X, CH 3 , a = 3, m = 1, n = 1, p = 2, q = 1) is preferable, and triethoxysilylpropyl methacrylate is more preferable.

前記溶融成形用重合体は、必要に応じて、後述する他の単量体に由来する構造単位(以下、「他の単量体単位」という。)を本発明の効果を損なわない範囲で含有することができる。前記他の単量体単位の含有割合は、本発明の効果を損なわない範囲であれば、特に制限されるものではない。他の単量体単位を含有する場合、通常は、前記溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、10mol%以下である。 The polymer for melt molding contains, if necessary, a structural unit derived from another monomer described later (hereinafter, referred to as "another monomer unit") within a range that does not impair the effects of the present invention. can do. The content ratio of the other monomer unit is not particularly limited as long as the effect of the present invention is not impaired. When it contains other monomer units, it is usually 10 mol% or less with respect to 100 mol% of the total number of moles of the monomer units constituting the melt molding polymer.

前記他の単量体は、メチル(メタ)アクリレート及び前記アルコキシシリル基を側鎖に有するビニル化合物単量体と共重合可能な単量体であれば特に限定されるものではなく、例えば、例えば、以下のa)〜f)が挙げられる。 The other monomer is not particularly limited as long as it is a monomer copolymerizable with the methyl (meth) acrylate and the vinyl compound monomer having an alkoxysilyl group in the side chain, for example, for example. , The following a) to f) can be mentioned.

a)(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸n−ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸2−ナフチル、(メタ)アクリル酸フェノキシメチルなどの、メタクリル酸メチル以外の(メタ)アクリル酸エステル単量体。
これらの中でも、アルキル基部分の炭素数が1〜8個のアクリル酸アルキルが好ましい。
b)スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレン、o−クロロスチレン、p−クロロスチレン、p−メトキシスチレン、p−アセトキシスチレン、α−ビニルナフタレン、2−ビニルフルオレンなどの芳香族ビニル化合物。
c)アクリロニトリル、α−クロロアクリロニトリル、α−メトキシアクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどの不飽和ニトリル化合物。
d)メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、メチルアリルエーテル、エチルアリルエーテルなどのエチレン性不飽和エーテル化合物。
e)塩化ビニル、塩化ビニリデン、1,2−ジクロロエチレン、臭化ビニル、臭化ビニリデン、1,2−ジブロモエチレンなどのハロゲン化ビニル化合物。
f)1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−ネオペンチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1,2ジクロロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、2−ブロモ−1,3−ブタジエン、2−シアノ−1,3−ブタジエン、置換直鎖共役ペンタジエン類、直鎖および側鎖共役ヘキサジエンなどの脂肪族共役ジエン系化合物。
これらの他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
a) Ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) ) N-octyl acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, n-amyl (meth) acrylate, (meth) acrylic Isoamyl acid, lauryl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, (meth) A (meth) acrylic acid ester monomer other than methyl methacrylate, such as 2-naphthyl acrylate and phenoxymethyl (meth) acrylate.
Among these, alkyl acrylate having 1 to 8 carbon atoms in the alkyl group portion is preferable.
b) Styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, o-chlorostyrene, p-chlorostyrene, p-methoxystyrene, p-acetoxystyrene, α -Aromatic vinyl compounds such as vinylnaphthalene and 2-vinylstyrene.
c) Unsaturated nitrile compounds such as acrylonitrile, α-chloroacrylonitrile, α-methoxyacrylonitrile, methacrylonitrile, and vinylidene cyanide.
d) Ethyl unsaturated ether compounds such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, methyl allyl ether and ethyl allyl ether.
e) Vinyl halide compounds such as vinyl chloride, vinylidene chloride, 1,2-dichloroethylene, vinyl bromide, vinylidene bromide, and 1,2-dibromoethylene.
f) 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-neopentyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,2 dichloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene, 2-bromo-1,3-butadiene, 2-cyano-1,3-butadiene, substituted linear conjugated pentadienes, An aliphatic conjugated diene compound such as linear and side chain conjugated hexadiene.
One of these other monomers may be used alone, or two or more thereof may be used in combination.

前記溶融成形用重合体の質量平均分子量の下限は、得られた樹脂成形体の力学物性に優れる観点から、30,000以上が好ましく、50,000以上がより好ましく、70,000以上が更に好ましい。一方、質量平均分子量の上限は、溶融成形用重合体及び融成形用樹脂組成物の溶融流動性に優れる観点から、180,000以下が好ましく、150,000以下がより好ましく、130,000以下が更に好ましい。
なお、本明細書において、質量平均分子量は、標準試料として標準ポリメチルメタクリレートを用い、ゲルパーミエーションクロマトグラフィーを用いて測定した値とする。
The lower limit of the mass average molecular weight of the polymer for melt molding is preferably 30,000 or more, more preferably 50,000 or more, still more preferably 70,000 or more, from the viewpoint of excellent mechanical properties of the obtained resin molded product. .. On the other hand, the upper limit of the mass average molecular weight is preferably 180,000 or less, more preferably 150,000 or less, and 130,000 or less from the viewpoint of excellent melt fluidity of the melt molding polymer and the melt molding resin composition. More preferred.
In the present specification, the mass average molecular weight is a value measured by using standard polymethylmethacrylate as a standard sample and gel permeation chromatography.

<溶融成形用樹脂組成物>
本発明の溶融成形用樹脂組成物は、押出成形法、射出成形法、加圧成形法(プレス成形)、圧空成形法や真空成形法等の公知の溶融成形法に供することが可能な、溶融成形用の樹脂組成物である。
本発明の溶融成形用樹脂組成物は、上述した溶融成形用重合体を含有する溶融成形用樹脂組成物である。
本発明の溶融成形用樹脂組成物は、前記溶融成形用重合体を含むことにより、溶融成形性が良好となり、さらに、得られた樹脂成形体の耐擦傷性及び耐熱性が良好となる。
本発明の溶融成形用樹脂組成物は、前記溶融成形用重合体を、該溶融成形用樹脂組成物の総質量100質量%に対して、1質量%以上100質量%未満含有する。
<Resin composition for melt molding>
The resin composition for melt molding of the present invention can be subjected to known melt molding methods such as extrusion molding method, injection molding method, pressure molding method (press molding), pressure molding method and vacuum molding method. It is a resin composition for molding.
The resin composition for melt molding of the present invention is a resin composition for melt molding containing the above-mentioned polymer for melt molding.
By containing the melt-molding polymer, the resin composition for melt molding of the present invention has good melt moldability, and further, the scratch resistance and heat resistance of the obtained resin molded product are good.
The melt-molded resin composition of the present invention contains the melt-molded polymer in an amount of 1% by mass or more and less than 100% by mass with respect to 100% by mass of the total mass of the melt-molded resin composition.

前記溶融成形用樹脂組成物に含有される前記溶融成形用重合体の含有割合は、溶融成形用樹脂組成物に要求される溶融成形性、及び、得られた樹脂成形体に要求される透明性、耐熱性及び耐擦傷性に応じて、当業者が適宜設定すれば良い。
例えば、本発明の溶融成形用重合体と(メタ)アクリル系樹脂とを併用する溶融成形用樹脂組成物では、該溶融成形用樹脂組成物の総質量100質量%に対して、前記溶融成形用重合体を1質量%以上50質量%以下、メチルメタクリレート由来の繰り返し単位を80mol%以上含む(メタ)アクリル系樹脂を50質量%以上99質量%以下含有することができる。
The content ratio of the melt molding polymer contained in the melt molding resin composition is the melt moldability required for the melt molding resin composition and the transparency required for the obtained resin molded body. , A person skilled in the art may appropriately set the heat resistance and the scratch resistance.
For example, in the melt-molding resin composition in which the melt-molding polymer of the present invention and the (meth) acrylic resin are used in combination, the melt-molding is performed with respect to 100% by mass of the total mass of the melt-molding resin composition. A (meth) acrylic resin containing 1% by mass or more and 50% by mass or less of the polymer and 80 mol% or more of the repeating unit derived from methyl methacrylate can be contained in an amount of 50% by mass or more and 99% by mass or less.

<溶融成形用重合体の製造方法>
本発明における溶融成形用重合体は、メチル(メタ)アクリレート(以下、「単量体(A)」という。)及びアルコキシシリル基を側鎖に有するビニル化合物を含有する単量体(以下、「単量体(B)」という。)を含有する単量体組成物を、重合することで得られる。
<Manufacturing method of polymer for melt molding>
The polymer for melt molding in the present invention is a monomer containing a methyl (meth) acrylate (hereinafter referred to as "monomer (A)") and a vinyl compound having an alkoxysilyl group in the side chain (hereinafter, "monomer (A)"). It is obtained by polymerizing a monomer composition containing "monomer (B)").

単量体(A)としては、上述した溶融成形用重合体の欄に記載した単位(A)を構成する単量体と同様の単量体を用いることができる。 As the monomer (A), the same monomer as the monomer constituting the unit (A) described in the column of the polymer for melt molding described above can be used.

単量体(B)としては、上述した溶融成形用重合体の欄に記載した、単位(B)を構成する単量体と同様の単量体を用いることができる。 As the monomer (B), the same monomer as the monomer constituting the unit (B) described in the column of the polymer for melt molding described above can be used.

前記単量体組成物は、前記単量体(B)として、アルコキシシリル(メタ)アクリレート(以下、「単量体(B1)」という。)を含むことができる。
前記単量体(B1)を含むことにより、溶融成形用樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性をより優れたものにできる。
単量体(B1)としては、上述した溶融成形用重合体の欄に記載した、前記単位(B1)を構成する単量体と同様の単量体を用いることができる。
The monomer composition can contain an alkoxysilyl (meth) acrylate (hereinafter, referred to as "monomer (B1)") as the monomer (B).
By containing the monomer (B1), the melt moldability of the resin composition for melt molding and the scratch resistance and heat resistance of the obtained resin molded product can be further improved.
As the monomer (B1), the same monomer as the monomer constituting the unit (B1) described in the column of the polymer for melt molding described above can be used.

さらに、前記単量体組成物において、前記単量体(B1)は、下記一般式(2)で表される単量体(B2)(以下、「単量体(B2)」という。)とすることができる。
前記単量体(B2)を含むことにより、樹脂組成物の溶融成形性と得られた樹脂成形体の耐擦傷性と耐熱性をさらに優れたものにできる。
(2)
[式(2)中、Xは、H又はCHを示す。aは0〜10の整数、mは1〜10の整数、nは0〜10の整数、pは1〜3の整数、qは0〜2の整数を示す。]
単量体(B2)としては、上述した溶融成形用重合体の欄に記載した、前記単位(B2)を構成する単量体と同様の単量体を用いることができる。
Further, in the monomer composition, the monomer (B1) is referred to as a monomer (B2) represented by the following general formula (2) (hereinafter, referred to as "monomer (B2)"). can do.
By containing the monomer (B2), the melt moldability of the resin composition and the scratch resistance and heat resistance of the obtained resin molded product can be further improved.
(2)
[In formula (2), X represents H or CH 3 . a is an integer of 0 to 10, m is an integer of 1 to 10, n is an integer of 0 to 10, p is an integer of 1 to 3, and q is an integer of 0 to 2. ]
As the monomer (B2), the same monomer as the monomer constituting the unit (B2) described in the column of the polymer for melt molding described above can be used.

前記単量体組成物中に含まれる単量体(A)の含有割合の下限は、樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性に優れる観点から、前記単量体組成物を構成する単量体の総モル数100mol%に対して、70mol%以上である。80mol%以上がより好ましい。一方、単量体(A)の含有割合の上限は、得られた樹脂成形体の耐擦傷性と耐熱性を良好に維持できる観点から、前記単量体組成物を構成する単量体の総モル数100mol%に対して、97mol%以下である。95mol%以下がより好ましく、90mol%以下がさらに好ましい。 The lower limit of the content ratio of the monomer (A) contained in the monomer composition is the monomer from the viewpoint of excellent melt moldability of the resin composition and transparency of the obtained resin molded product. The total number of moles of the monomers constituting the composition is 70 mol% or more with respect to 100 mol%. 80 mol% or more is more preferable. On the other hand, the upper limit of the content ratio of the monomer (A) is the total amount of the monomers constituting the monomer composition from the viewpoint of maintaining good scratch resistance and heat resistance of the obtained resin molded product. It is 97 mol% or less with respect to 100 mol% of the number of moles. 95 mol% or less is more preferable, and 90 mol% or less is further preferable.

また、前記単量体組成物中に含まれる単量体(B)の含有割合の下限は、得られた樹脂成形体の耐擦傷性と耐熱性に優れる観点から、前記単量体組成物構成する単量体の総モル数100mol%に対して、3mol%以上である。5mol%以上がより好ましく、10mol%以上がさらに好ましい。一方、単量体(B)の含有割合の上限は、樹脂組成物の溶融成形性、及び得られた樹脂成形体の透明性に優れる観点から、前記単量体組成物構成する単量体の総モル数100mol%に対して、30mol%以下である。20mol%以下がより好ましい。 Further, the lower limit of the content ratio of the monomer (B) contained in the monomer composition is the composition of the monomer composition from the viewpoint of excellent scratch resistance and heat resistance of the obtained resin molded product. It is 3 mol% or more with respect to 100 mol% of the total number of moles of the monomer. 5 mol% or more is more preferable, and 10 mol% or more is further preferable. On the other hand, the upper limit of the content ratio of the monomer (B) is the upper limit of the content ratio of the monomer (B) of the monomer constituting the monomer composition from the viewpoint of excellent melt moldability of the resin composition and transparency of the obtained resin molded product. It is 30 mol% or less with respect to the total number of moles of 100 mol%. 20 mol% or less is more preferable.

前記単量体組成物の重合方法としては、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等が挙げられる。これらの重合方法の中でも、重合後の溶融成形用重合体の回収が容易であり、かつ得られる樹脂組成物の透明性に優れる観点から塊状重合又は懸濁重合が好ましく、懸濁重合がより好ましい。
前記単量体組成物の重合における重合温度、重合開始剤の種類、重合開始剤の添加量は、用いる重合方法や得ようとする溶融成形用重合体に応じて、適宜設定すればよい。
Examples of the polymerization method of the monomer composition include bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization and the like. Among these polymerization methods, bulk polymerization or suspension polymerization is preferable, and suspension polymerization is more preferable, from the viewpoint that the polymer for melt molding after polymerization can be easily recovered and the obtained resin composition is excellent in transparency. ..
The polymerization temperature, the type of the polymerization initiator, and the amount of the polymerization initiator added in the polymerization of the monomer composition may be appropriately set according to the polymerization method used and the polymer for melt molding to be obtained.

樹脂組成物の質量平均分子量を調整するために、前記単量体組成物を重合する際に、連鎖移動剤を用いてもよい。連鎖移動剤としては、公知のメルカプタン化合物、α−メチルスチレンダイマー、公知のテルピノレン系化合物等が挙げられる。これらの連鎖移動剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 A chain transfer agent may be used when polymerizing the monomer composition in order to adjust the mass average molecular weight of the resin composition. Examples of the chain transfer agent include known mercaptan compounds, α-methylstyrene dimers, and known terpinolene compounds. One of these chain transfer agents may be used alone, or two or more thereof may be used in combination.

連鎖移動剤の使用量は、前記単量体原料100質量部に対して、0.05質量部以上2質量部以下が好ましく、0.07質量部以上1.5質量部以下がより好ましい。連鎖移動剤の使用量が0.05質量部以上であると、樹脂組成物の溶融流動性に優れる。また、連鎖移動剤の使用量が1.5質量部以下であると樹脂組成物及び得られた樹脂成形体の力学強度に優れる。 The amount of the chain transfer agent used is preferably 0.05 parts by mass or more and 2 parts by mass or less, and more preferably 0.07 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the monomer raw material. When the amount of the chain transfer agent used is 0.05 parts by mass or more, the melt fluidity of the resin composition is excellent. Further, when the amount of the chain transfer agent used is 1.5 parts by mass or less, the mechanical strength of the resin composition and the obtained resin molded product is excellent.

樹脂組成物を懸濁重合で得る場合には、単量体(A)及び単量体(B)を水中で激しく撹拌しながら重合し、その後に、公知の手段を用いて水を分離して樹脂組成物のビーズを得ることが出来る。
懸濁重合は、重合温度5〜100℃、好ましくは40〜95℃、重合時間0.1〜24時間程度、好ましくは0.5〜12時間程度、より好ましくは1〜6時間程度の条件で行われる。単量体を反応器に添加する方法は、一括でも分割でも連続的添加でもよく、また、それらの併用でもよい。水と単量体組成物の割合としては水を100質量部とした場合に、単量体組成物が10〜100質量部の範囲で実施することが好ましい。水を分離した後の樹脂組成物のビーズは乾燥することが好ましい。ビーズの乾燥は乾燥温度20〜100℃、好ましくは40〜90℃、乾燥時間1〜72時間程度、好ましくは3〜48時間程度、より好ましくは5〜24時間程度の条件で行われる。
本発明の樹脂組成物は、上記の方法等で得られた樹脂組成物の粒子を押出機又は混練機により加熱し溶融混練することで、ペレット状に加工される。
溶融混練後に得られる樹脂組成物は特に射出成形に適用する場合において、溶融混練時の熱安定性に優れていることが好ましい。
本発明の樹脂組成物をペレット状の成形材料に加工する際には、要求される性能に応じて、樹脂組成物と、公知の熱可塑性樹脂または公知の重合体とを任意の割合でブレンドして用いることもできる。
When the resin composition is obtained by suspension polymerization, the monomer (A) and the monomer (B) are polymerized in water with vigorous stirring, and then the water is separated by a known means. Beads of the resin composition can be obtained.
Suspension polymerization is carried out under the conditions of a polymerization temperature of 5 to 100 ° C., preferably 40 to 95 ° C., a polymerization time of about 0.1 to 24 hours, preferably about 0.5 to 12 hours, and more preferably about 1 to 6 hours. Will be done. The method of adding the monomer to the reactor may be batch, divided, continuous addition, or a combination thereof. As for the ratio of water to the monomer composition, when water is 100 parts by mass, the monomer composition is preferably carried out in the range of 10 to 100 parts by mass. After separating the water, the beads of the resin composition are preferably dried. The beads are dried under the conditions of a drying temperature of 20 to 100 ° C., preferably 40 to 90 ° C., a drying time of about 1 to 72 hours, preferably about 3 to 48 hours, and more preferably about 5 to 24 hours.
The resin composition of the present invention is processed into pellets by heating the particles of the resin composition obtained by the above method or the like with an extruder or a kneader and melt-kneading the particles.
The resin composition obtained after melt-kneading is preferably excellent in thermal stability during melt-kneading, especially when applied to injection molding.
When the resin composition of the present invention is processed into a pellet-shaped molding material, the resin composition is blended with a known thermoplastic resin or a known polymer in an arbitrary ratio according to the required performance. Can also be used.

<樹脂成形体の製造方法>
本発明の樹脂成形体は、以下のような工程を経て得ることができる。
本発明の溶融成形用重合体を溶融成形して、樹脂成形体前駆体を得て、得られた樹脂成形体前駆体を、架橋処理することで、本発明の樹脂成形体を得ることができる。
本発明の樹脂成形体前駆体を得るための溶融成形方法としては、例えば、射出成形、押出成形、加圧成形(プレス成形)、圧空成形や真空成形等が挙げられる。
また、得られた樹脂成形体前駆体を、さらに圧空成形法や真空成形法等の公知の成形方法を用いて二次成形してもよい。成形温度、成形圧力等の成形条件は、適宜設定すればよい。
<Manufacturing method of resin molded product>
The resin molded product of the present invention can be obtained through the following steps.
The resin molded product of the present invention can be obtained by melt-molding the polymer for melt molding of the present invention to obtain a resin molded product precursor, and cross-linking the obtained resin molded product precursor. ..
Examples of the melt molding method for obtaining the resin molded body precursor of the present invention include injection molding, extrusion molding, pressure molding (press molding), pressure molding, vacuum molding and the like.
Further, the obtained resin molded body precursor may be further secondarily molded by using a known molding method such as a compressed air molding method or a vacuum forming method. Molding conditions such as molding temperature and molding pressure may be appropriately set.

樹脂成形体前駆体を架橋処理する方法としては、水分によって、樹脂成形体前駆体中のアルコキシシリル基間を脱アルコール反応によって縮合して、架橋構造を導入する方法が挙げられる。具体的には、湿熱環境下で樹脂成形体前駆体に吸湿させる湿熱処理法や、温水中に樹脂成形体前駆体を浸漬して吸水させる温水処理等、公知の方法を用いることができる。湿熱処理法又は温水処理法が好ましく、湿熱処理法がより好ましい。 Examples of the method for cross-linking the resin molded product precursor include a method in which the alkoxysilyl groups in the resin molded product precursor are condensed by a dealcohol reaction with water to introduce a cross-linked structure. Specifically, a known method can be used, such as a wet heat treatment method in which the resin molded product precursor is made to absorb moisture in a moist heat environment, or a hot water treatment in which the resin molded product precursor is immersed in warm water to absorb water. The wet heat treatment method or the hot water treatment method is preferable, and the wet heat treatment method is more preferable.

湿熱処理の処理温度は、0〜100℃の範囲にあることが好ましく、20〜100℃の範囲にあることがより好ましく、40〜90℃の範囲にあることがさらに好ましい。処理温度が20℃以上であると、アルコキシシリル基間を脱アルコール反応により縮合できるので、架橋構造を導入できる。また、処理温度が100℃以下であると、熱劣化により樹脂成形体が着色することを抑制できる。処理時間の間、処理温度はできるだけ一定に保つことが好ましく、±5℃以内に保つことが好ましく、±3℃以内に保つことがより好ましく、±1℃以内に保つことが更に好ましい。
湿熱処理の相対湿度は、10〜100%RHの範囲にあることが好ましく、40〜100%RHの範囲にあることがより好ましく、60〜100%%RHの範囲にあることがさらに好ましい。湿熱処理の相対湿度が10%RH以上であると、アルコキシシリル基間を脱アルコール反応により縮合できるので、架橋構造を導入できる。
湿熱処理の処理時間は、0.5〜720時間の範囲にあることが好ましく、1〜480時間の範囲にあることがより好ましく、4〜360時間の範囲にあることがさらに好ましい。処理時間が0.5時間以上であると、得られた樹脂成形体の耐擦傷性、耐熱性が良好となる程度に、架橋処理することができる。また、処理時間が720時間以下であると、樹脂成形体の生産性に優れる。
上記の湿熱処理の処理温度、相対湿度及び処理時間は任意に組み合わせることができる。
或いは又、本発明の樹脂成形体の製造方法において、樹脂成形体前駆体を、温度0〜100℃、相対湿度10〜100%RHの湿熱環境中で0.5〜720時間の条件で湿熱処理することができる。さらに、樹脂成形体前駆体を、温度20〜100℃、相対湿度40〜100%RHの湿熱環境中で、0.5〜720時間の条件で湿熱処理することがより好ましい。
The treatment temperature of the wet heat treatment is preferably in the range of 0 to 100 ° C, more preferably in the range of 20 to 100 ° C, and even more preferably in the range of 40 to 90 ° C. When the treatment temperature is 20 ° C. or higher, the alkoxysilyl groups can be condensed by a dealcohol reaction, so that a crosslinked structure can be introduced. Further, when the treatment temperature is 100 ° C. or lower, it is possible to prevent the resin molded product from being colored due to thermal deterioration. During the treatment time, the treatment temperature is preferably kept as constant as possible, preferably within ± 5 ° C, more preferably within ± 3 ° C, and even more preferably within ± 1 ° C.
The relative humidity of the moist heat treatment is preferably in the range of 10 to 100% RH, more preferably in the range of 40 to 100% RH, and even more preferably in the range of 60 to 100% RH. When the relative humidity of the wet heat treatment is 10% RH or more, the alkoxysilyl groups can be condensed by a dealcohol reaction, so that a crosslinked structure can be introduced.
The treatment time of the moist heat treatment is preferably in the range of 0.5 to 720 hours, more preferably in the range of 1 to 480 hours, and further preferably in the range of 4 to 360 hours. When the treatment time is 0.5 hours or more, the cross-linking treatment can be performed to such an extent that the scratch resistance and heat resistance of the obtained resin molded product become good. Further, when the processing time is 720 hours or less, the productivity of the resin molded product is excellent.
The treatment temperature, relative humidity and treatment time of the above wet heat treatment can be arbitrarily combined.
Alternatively, in the method for producing a resin molded product of the present invention, the resin molded product precursor is subjected to a wet heat treatment under the conditions of a temperature of 0 to 100 ° C. and a relative humidity of 10 to 100% RH for 0.5 to 720 hours. can do. Further, it is more preferable that the resin molded precursor is subjected to a wet heat treatment under the conditions of 0.5 to 720 hours in a moist heat environment having a temperature of 20 to 100 ° C. and a relative humidity of 40 to 100% RH.

湿熱処理を行う方法としては、温度、相対湿度、時間の条件が上記の通り調整されていれば特に限定されないが、例えば、樹脂成形体の製造ライン中にオーブン、恒温恒湿機等を設置して樹脂成形体前駆体を処理する方法や、樹脂成形体前駆体をオーブン、恒温恒湿機等の中に入れて処理する方法等が挙げられる。 The method of performing the moist heat treatment is not particularly limited as long as the conditions of temperature, relative humidity and time are adjusted as described above, but for example, an oven, a constant temperature and humidity controller, etc. are installed in the production line of the resin molded product. Examples thereof include a method of treating the resin molded product precursor and a method of treating the resin molded product precursor by putting it in an oven, a constant temperature and humidity chamber, and the like.

温水処理の処理温度は、40〜100℃の範囲にあることが好ましく、60〜100℃の範囲にあることがより好ましい。処理時間の間、処理温度はできるだけ一定に保つことが好ましく、±5℃以内に保つことが好ましく、±3℃以内に保つことがより好ましく、±1℃以内に保つことが更に好ましい。
温水処理の処理時間は、0.5〜10時間の範囲にあることが好ましく、1〜7時間の範囲にあることがより好ましい。
上記の温水処理の処理温度及び処理時間は任意に組み合わせることができる。
或いは又、本発明の樹脂成形体の製造方法において、樹脂成形体前駆体を、温度40〜100℃で0.5〜10時間の条件で湿熱処理することができる。
The treatment temperature of the hot water treatment is preferably in the range of 40 to 100 ° C, more preferably in the range of 60 to 100 ° C. During the treatment time, the treatment temperature is preferably kept as constant as possible, preferably within ± 5 ° C, more preferably within ± 3 ° C, and even more preferably within ± 1 ° C.
The treatment time of the hot water treatment is preferably in the range of 0.5 to 10 hours, more preferably in the range of 1 to 7 hours.
The treatment temperature and treatment time of the above hot water treatment can be arbitrarily combined.
Alternatively, in the method for producing a resin molded product of the present invention, the resin molded product precursor can be subjected to a wet heat treatment at a temperature of 40 to 100 ° C. under the condition of 0.5 to 10 hours.

温水処理を行う方法としては、温度、時間の条件が上記の通り調整されていれば特に限定されないが、例えば、樹脂成形体の製造ライン中に水槽等を設置して処理する方法や、樹脂成形体前駆体を水槽等の中に入れて処理する方法等が挙げられる。温水処理においては、樹脂成形体前駆体を前記の温度範囲に制御された水に直接接触させることが好ましい。
尚、本明細書において、温水とは、前記の温度範囲(40〜100℃)内に温度が制御された水を意味する。
The method of hot water treatment is not particularly limited as long as the temperature and time conditions are adjusted as described above, but for example, a method of installing a water tank or the like in the production line of the resin molded product for treatment, or resin molding Examples thereof include a method of treating the body precursor by putting it in a water tank or the like. In the hot water treatment, it is preferable to bring the resin molded precursor into direct contact with water controlled in the above temperature range.
In the present specification, hot water means water whose temperature is controlled within the above temperature range (40 to 100 ° C.).

本発明の樹脂成形体の製造方法においては、湿熱処理又は温水処理等の架橋処理を行った後に、樹脂成形体の水分を除去するための乾燥処理を行ってもよい。乾燥処理の温度の範囲は、40〜300℃が好ましく、80〜250℃がより好ましく、100〜200℃がさらに好ましい。乾燥時間の範囲は、0.1〜72時間が好ましく、0.5〜48時間がより好ましく、1〜24時間がさらに好ましい。 In the method for producing a resin molded product of the present invention, after performing a cross-linking treatment such as a wet heat treatment or a hot water treatment, a drying treatment for removing water from the resin molded product may be performed. The temperature range of the drying treatment is preferably 40 to 300 ° C, more preferably 80 to 250 ° C, and even more preferably 100 to 200 ° C. The drying time range is preferably 0.1 to 72 hours, more preferably 0.5 to 48 hours, even more preferably 1 to 24 hours.

<樹脂成形体>
本発明の樹脂成形体は、上述した溶融成形用重合体又は上述溶融成形用樹脂組成物を溶融成形してなる樹脂成形体前駆体を、架橋処理してなる樹脂成形体である。
さらに、本発明の樹脂成形体は、該樹脂成形体の総質量100質量%に対する、ゲル分率が1.0質量%以上である。本発明におけるゲル分率とは、前記樹脂成形体中に含まれる、テトラヒドロフランに対する不溶成分の含有割合(単位:質量%)である。
樹脂成形体のゲル分率の下限は、得られた樹脂成形体の耐擦傷性及び耐熱性が良好となる観点から、該樹脂成形体の総質量100質量%に対して、1.0質量%以上が好ましく、10質量%以上がより好ましく、50質量%以上がさらに好ましく、90質量部以上が特に好ましい。一方、ゲル分率の上限は、特に限定されるものではなく、ゲル分率の値が大きいほど、得られた樹脂成形体の耐擦傷性及び耐熱性が良好となる。該樹脂成形体の総質量100質量%に対して、100質量%であってもよいし、100質量%未満であってもよい。得られた樹脂成形体の透明性を良好に維持できる観点から、99.0質量%以下とすることができる。
樹脂成形体のゲル分率は、溶融成形用樹脂組成物中の単位(B)の含有割合、樹脂成形体前駆体を架橋処理する条件等を調整することにより制御できる。尚、具体的なゲル分率の測定方法は後述する。
<Resin molded product>
The resin molded product of the present invention is a resin molded product obtained by cross-linking a resin molded product precursor obtained by melt molding the above-mentioned melt molding polymer or the above-mentioned melt molding resin composition.
Further, the resin molded product of the present invention has a gel fraction of 1.0% by mass or more with respect to 100% by mass of the total mass of the resin molded product. The gel fraction in the present invention is the content ratio (unit: mass%) of the insoluble component in tetrahydrofuran contained in the resin molded product.
The lower limit of the gel content of the resin molded body is 1.0% by mass with respect to 100% by mass of the total mass of the resin molded body from the viewpoint of improving the scratch resistance and heat resistance of the obtained resin molded body. The above is preferable, 10% by mass or more is more preferable, 50% by mass or more is further preferable, and 90 parts by mass or more is particularly preferable. On the other hand, the upper limit of the gel fraction is not particularly limited, and the larger the gel fraction value, the better the scratch resistance and heat resistance of the obtained resin molded product. It may be 100% by mass or less than 100% by mass with respect to 100% by mass of the total mass of the resin molded product. From the viewpoint of maintaining good transparency of the obtained resin molded product, it can be 99.0% by mass or less.
The gel content of the resin molded product can be controlled by adjusting the content ratio of the unit (B) in the resin composition for melt molding, the conditions for cross-linking the resin molded product precursor, and the like. A specific method for measuring the gel fraction will be described later.

本発明の樹脂成形体は、架橋点間分子量の上限は、得られた樹脂成形体の耐擦傷性及び耐熱性が良好となる観点から、20,000以下が好ましく、15,000以下がより好ましく、10,000以下がさらに好ましく、5,000以下が特に好ましい。一方、架橋点間分子量の下限は、特に制限されないが、得られた樹脂成形体の透明性が良好に維持できる観点から、10以上が好ましく、100以上がより好ましく、300以上がさらに好ましく、500以上が特に好ましい。
樹脂成形体の架橋点間分子量は、溶融成形用樹脂組成物中の単位(B)の含有割合、樹脂成形体前駆体を架橋処理する条件等を調整することにより制御できる。尚、具体的な架橋点間分子量の測定方法は後述する。
In the resin molded product of the present invention, the upper limit of the molecular weight between the cross-linking points is preferably 20,000 or less, more preferably 15,000 or less, from the viewpoint of improving the scratch resistance and heat resistance of the obtained resin molded product. 10,000 or less is more preferable, and 5,000 or less is particularly preferable. On the other hand, the lower limit of the molecular weight between the cross-linking points is not particularly limited, but from the viewpoint of maintaining good transparency of the obtained resin molded product, 10 or more is preferable, 100 or more is more preferable, 300 or more is further preferable, and 500 or more. The above is particularly preferable.
The molecular weight between the cross-linking points of the resin molded product can be controlled by adjusting the content ratio of the unit (B) in the resin composition for melt molding, the conditions for cross-linking the resin molded product precursor, and the like. A specific method for measuring the molecular weight between cross-linking points will be described later.

樹脂成形体の耐擦傷性を向上する手法の一つとして、樹脂成形体の表面に架橋構造を導入する方法が知られていた。しかし、架橋構造を導入した樹脂は、溶融成形できないため、樹脂成形体の生産性が不十分であった。しかし、本発明の樹脂成形体は、本発明の溶融成形用重合体及び本発明の溶融成形用樹脂組成物を溶融成形して、先ず樹脂成形体前駆体を得た後に、該樹脂成形体前駆体に架橋構造を導入して製造することができるので、樹脂成形体の生産性に優れている。
さらに、樹脂成形体の耐擦傷性は、一般には溶融成形用重合体の溶融成形性の向上に伴い低下する傾向にあるという、溶融成形性と所謂トレードオフの関係にある。すなわち、本発明の樹脂成形体は、相反する特性である耐擦傷性と溶融成形性とを両立させているという顕著な特性を有した樹脂成形体である。
As one of the methods for improving the scratch resistance of the resin molded product, a method of introducing a crosslinked structure on the surface of the resin molded product has been known. However, since the resin having the crosslinked structure cannot be melt-molded, the productivity of the resin molded body is insufficient. However, the resin molded product of the present invention is obtained by first melt-molding the polymer for melt molding of the present invention and the resin composition for melt molding of the present invention to obtain a resin molded product precursor, and then the resin molded product precursor. Since it can be manufactured by introducing a crosslinked structure into the body, the productivity of the resin molded body is excellent.
Further, the scratch resistance of the resin molded product generally tends to decrease as the melt moldability of the melt molding polymer is improved, which is a so-called trade-off relationship with the melt moldability. That is, the resin molded product of the present invention is a resin molded product having a remarkable property of having both scratch resistance and melt moldability, which are contradictory properties.

さらに、本発明の樹脂成形体は、全光線透過率が88.0%以上という優れた透明性、荷重14kPaの条件で、#0000のスチールウールを11回往復させた擦傷処理前後の拡散透過率(Td)の変化量ΔTdが28.0%以下という優れた耐擦傷性、及び、ビカット軟化温度が120℃以上という優れた耐熱性を満足する樹脂成形体とすることができる。すなわち、樹脂成形体は、相反する特性である透明性、耐熱性、及び耐擦傷性が良好となり、特に擦傷処理前後の拡散透過率(Td)の変化量ΔTdが28.0%以下という顕著な耐擦傷性と、ビカット軟化温度が120℃以上という顕著な耐熱性を有した樹脂成形体である。このような樹脂成形体は、本発明の溶融成形用重合体又は本発明の溶融成形用樹脂組成物を用いて製造することができる。さらに、本発明の樹脂成形体の製造方法を用いて製造することで、透明性、耐熱性、及び耐擦傷性をより優れたものにできる。 Further, the resin molded body of the present invention has excellent transparency with a total light transmittance of 88.0% or more and a diffusion transmittance before and after the scratch treatment in which # 0000 steel wool is reciprocated 11 times under the condition of a load of 14 kPa. A resin molded body satisfying excellent scratch resistance with a change amount ΔTd of (Td) of 28.0% or less and excellent heat resistance with a Vicat softening temperature of 120 ° C. or more can be obtained. That is, the resin molded body has good transparency, heat resistance, and scratch resistance, which are contradictory characteristics, and in particular, the amount of change ΔTd in the diffusion transmittance (Td) before and after the scratch treatment is remarkable as 28.0% or less. It is a resin molded body having scratch resistance and remarkable heat resistance having a Vicat softening temperature of 120 ° C. or higher. Such a resin molded product can be produced by using the melt molding polymer of the present invention or the melt molding resin composition of the present invention. Furthermore, by manufacturing using the method for manufacturing a resin molded product of the present invention, transparency, heat resistance, and scratch resistance can be further improved.

本発明の樹脂成形体は、厚さ3mmの板状とした場合に、ISO13468−1に準拠して測定された前記成形体の全光線透過率が88.0%以上であることが好ましく、90.0%以上であることがより好ましく、91.0%以上であることがさらに好ましく、91.5%以上であることが特に好ましい。
さらに、本発明の樹脂成形体は、厚さ3mmの板状とした該成形体の表面を、荷重14kPaの条件で、#0000のスチールウールを11回往復させた擦傷処理前後の拡散透過率(Td)の変化量ΔTdが28.0%以下であることが好ましく、20.0%以下であることがより好ましく、15.0%以下であることがさらに好ましく、12.0%以下であることが特に好ましい。
本発明の樹脂成形体は、厚さ4mmの棒状とした場合に、ISO306のA50法に準拠して測定されたビカット軟化温度が120℃以上であることが好ましく、130℃以上であることがより好ましい。
When the resin molded product of the present invention has a plate shape having a thickness of 3 mm, the total light transmittance of the molded product measured in accordance with ISO 13468-1 is preferably 88.0% or more, preferably 90. It is more preferably 0.0% or more, further preferably 91.0% or more, and particularly preferably 91.5% or more.
Further, in the resin molded product of the present invention, the diffusion transmittance before and after the scratch treatment in which # 0000 steel wool is reciprocated 11 times on the surface of the molded product having a thickness of 3 mm in the form of a plate under a load of 14 kPa ( The amount of change ΔTd of Td) is preferably 28.0% or less, more preferably 20.0% or less, further preferably 15.0% or less, and 12.0% or less. Is particularly preferable.
When the resin molded product of the present invention has a rod shape having a thickness of 4 mm, the Vicat softening temperature measured in accordance with the A50 method of ISO306 is preferably 120 ° C. or higher, more preferably 130 ° C. or higher. preferable.

本発明の樹脂成形体は、樹脂成形体以外に、他の添加剤を含んでもよい。他の添加剤としては、例えば、紫外線吸収剤、酸化防止剤、可塑剤、光拡散剤、艶消剤、滑剤、離型剤、帯電防止剤、顔料等の着色剤等が挙げられる。これらの他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The resin molded product of the present invention may contain other additives in addition to the resin molded product. Examples of other additives include ultraviolet absorbers, antioxidants, plasticizers, light diffusing agents, matting agents, lubricants, mold release agents, antistatic agents, colorants such as pigments, and the like. One of these other additives may be used alone, or two or more thereof may be used in combination.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

<測定方法>
実施例及び比較例における評価は以下の方法により実施した。
<Measurement method>
Evaluation in Examples and Comparative Examples was carried out by the following method.

(質量平均分子量)
製造例で得られた溶融成形用重合体(ポリマー(P1)〜(P5)を、10mgを、10mlのテトラヒドロフランに溶解し、0.5μmメンブレンフィルターで濾過して、試料溶液を得た。得られた試料溶液について、ゲルパーミエーションクロマトグラフィー(機種名「HLC−8320 GPC Eco SEC」、東ソー(株)製)を用い、質量平均分子量を測定した。分離カラムとして「TSKgel SuperHZM−H」(商品名、東ソー(株)製、内径4.6mm×長さ15cm)を2本直列にしたもの、溶媒としてテトラヒドロフラン、検出器として示差屈折計、標準試料として標準ポリメチルメタクリレートを用い、流量0.6ml/min、測定温度40℃、注入量0.1mlの条件とした。
(Mass average molecular weight)
10 mg of the melt-molding polymers (polymers (P1) to (P5)) obtained in the production example was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.5 μm membrane filter to obtain a sample solution. The mass average molecular weight of the sample solution was measured using gel permeation chromatography (model name "HLC-8320 GPC Eco SEC", manufactured by Toso Co., Ltd.). As a separation column, "TSKgel SuperHZM-H" (trade name). , Tosoh Co., Ltd., inner diameter 4.6 mm x length 15 cm) in series, tetrahydrofuran as the solvent, differential refraction meter as the detector, standard polymethylmethacrylate as the standard sample, flow rate 0.6 ml / The conditions were min, the measurement temperature was 40 ° C., and the injection volume was 0.1 ml.

(溶融安定性)
溶融成形用重合体の溶融成形性の指標として、以下の手順で溶融安定性を評価した。製造例で得られた溶融成形用重合体をラボプラストミル(東洋精機)に供し、ミキサー試験モードで温度220℃、ミキサー速度30rpmで20分間溶融混練した。溶融混練開始から5分経過後のトルク値(T)(単位:N・m)と20分経過後のトルク値(T20)(単位:N・m)を比較し、以下の基準で溶融安定性を評価した。
A:T20とTが下記式(a)を満たす。
20/T< 2.0 (a)
B:T20とTが下記式(b)を満たす。
20/T≧ 2.0 (b)
条件Aを満たす場合には、溶融成形時に、前記単位(B)に含まれるアルコキシシリル基どうしが熱によって反応せず、架橋構造を形成しないため溶融安定性に優れ、射出成形することが可能であった。
条件Bを満たす場合には、溶融成形時に、前記単位(B)に含まれるアルコキシシリル基どうしが熱によって反応してしまい、架橋構造を形成するため、溶融安定性が優れず、射出成形できなかった。
(Melting stability)
As an index of the melt moldability of the polymer for melt molding, the melt stability was evaluated by the following procedure. The polymer for melt molding obtained in the production example was subjected to a laboplast mill (Toyo Seiki), and melt-kneaded in a mixer test mode at a temperature of 220 ° C. and a mixer speed of 30 rpm for 20 minutes. Compare the torque value (T 5 ) (unit: Nm) 5 minutes after the start of melt kneading with the torque value (T 20 ) (unit: Nm) after 20 minutes, and melt according to the following criteria. Stability was evaluated.
A: T 20 and T 5 satisfy the following equation (a).
T 20 / T 5 <2.0 (a)
B: T 20 and T 5 satisfy the following equation (b).
T 20 / T 5 ≧ 2.0 (b)
When condition A is satisfied, during melt molding, the alkoxysilyl groups contained in the unit (B) do not react with each other due to heat and do not form a crosslinked structure, so that the melt stability is excellent and injection molding is possible. there were.
When the condition B is satisfied, the alkoxysilyl groups contained in the unit (B) react with each other due to heat during melt molding to form a crosslinked structure, so that the melt stability is not excellent and injection molding cannot be performed. It was.

(樹脂成形体前駆体の作製)
製造例で得られた溶融成形用重合体(ポリマー(P1)〜(P5)を、射出成形機(機種名:IS−100、東芝機械(株)製)に供給して射出成形し、板状の樹脂成形体前駆体(幅50mm、長さ100mm、厚さ3mm)及び棒状の樹脂成形体前駆体(幅8mm、長さ80mm、厚さ4mm)を得た。
(Preparation of resin molded precursor)
The melt molding polymers (polymers (P1) to (P5) obtained in the production example are supplied to an injection molding machine (model name: IS-100, manufactured by Toshiba Machine Co., Ltd.) and injection molded to form a plate. Resin molded product precursor (width 50 mm, length 100 mm, thickness 3 mm) and rod-shaped resin molded product precursor (width 8 mm, length 80 mm, thickness 4 mm) were obtained.

(架橋処理)
上記の板状及び棒状の樹脂成形体前駆体に、以下に示す条件で架橋処理を施した後に、120℃の乾燥機で1時間乾燥処理を施して、板状及び棒状の樹脂成形体を得て、これらを評価用の試験片とした。
条件(1):温度80度、相対湿度90%の恒温恒湿環境中で24時間処理。
条件(2)温度80度、相対湿度90%の恒温恒湿環境中で96時間処理。
条件(3)温度80度、相対湿度90%の恒温恒湿環境中で148時間処理。
条件(4)温度60度、相対湿度90%の恒温恒湿環境中で148時間処理。
条件(5)温度80度の温水中で1時間処理。
条件(6)温度80度の温水中で3時間処理。
条件(7)温度80度の温水中で5時間処理。
(Crosslinking)
The above plate-shaped and rod-shaped resin molded precursors are subjected to cross-linking treatment under the following conditions, and then dried in a dryer at 120 ° C. for 1 hour to obtain plate-shaped and rod-shaped resin molded products. These were used as test pieces for evaluation.
Condition (1): Treatment for 24 hours in a constant temperature and humidity environment with a temperature of 80 degrees and a relative humidity of 90%.
Conditions (2) Treatment for 96 hours in a constant temperature and humidity environment with a temperature of 80 degrees and a relative humidity of 90%.
Conditions (3) Treatment for 148 hours in a constant temperature and humidity environment with a temperature of 80 degrees and a relative humidity of 90%.
Conditions (4) Treatment for 148 hours in a constant temperature and humidity environment with a temperature of 60 degrees and a relative humidity of 90%.
Condition (5) Treatment in warm water at a temperature of 80 degrees for 1 hour.
Condition (6) Treatment in warm water at a temperature of 80 degrees for 3 hours.
Condition (7) Treatment in warm water at a temperature of 80 degrees for 5 hours.

(ゲル分率)
前記試験片から約0.1gを切り出して、前記試験片の質量を精密電子天秤用いて下四桁の値まで精秤し、W(g)とした。次いで、切り出した試験片をテトラヒドロフラン20mLに浸漬した後、50℃の恒温水槽に設置し、24時間加熱した。24時間後に取り出し、吸引ろ過した後、漏斗状に残った濾過物を、テトラヒドロフランに対する不溶成分として回収し、80℃の真空乾燥機で24時間乾燥した。24時間乾燥後の濾過物の質量を精密電子天秤を用いて下四桁の値まで精秤し、W(g)とした。下記式を用いてゲル分率を算出した。
ゲル分率(%)=W/W×100
さらに、以下の基準を用いて判定した。
AA:95%以上
A :50%以上95%未満
B :1.0%以上50%未満
BB:1.0%未満
(Gel fraction)
Approximately 0.1 g was cut out from the test piece, and the mass of the test piece was precisely weighed to the value of the last four digits using a precision electronic balance to obtain W 1 (g). Next, the cut out test piece was immersed in 20 mL of tetrahydrofuran, placed in a constant temperature water bath at 50 ° C., and heated for 24 hours. After 24 hours, the mixture was taken out, suction-filtered, and the funnel-shaped filter was recovered as an insoluble component in tetrahydrofuran and dried in a vacuum dryer at 80 ° C. for 24 hours. The mass of the filtrate after drying for 24 hours was precisely weighed to the last four digits using a precision electronic balance to obtain W 2 (g). The gel fraction was calculated using the following formula.
Gel fraction (%) = W 2 / W 1 x 100
Furthermore, the judgment was made using the following criteria.
AA: 95% or more A: 50% or more and less than 95% B: 1.0% or more and less than 50% BB: less than 1.0%

(架橋点間分子量)
DMS(装置名:EXSTAR DMS6100、エスアイアイ・ナノテクノロジー)を用いて、以下の方法で、架橋点間分子量を測定した。棒状の試験片を用いて、窒素雰囲気下、測定温度30〜200℃、昇温速度2℃/分、測定周波数1Hzの条件で、3点曲げ試験で動的貯蔵弾性率(E’)を測定した。動的貯蔵弾性率(E’)の値は、被測定物の粘弾性挙動がゴム弾性領域に入ったと判断された、測定温度175℃の動的貯蔵弾性率を採用した。架橋点間分子量は、下記式を用いて求めた。
架橋点間分子量(cm/mol)=1/(E’/RT)
E’: 動的貯蔵弾性率(Pa)
R : 気体定数(J/K・mol)
T : 絶対温度(K)
さらに、以下の基準を用いて判定した。
AA:10,000未満
A :10,000以上20,000未満
B :20,000以上
(Molecular weight between cross-linking points)
Using DMS (device name: EXSTAR DMS6100, SII Nanotechnology), the molecular weight between cross-linking points was measured by the following method. Using a rod-shaped test piece, measure the dynamic storage elastic modulus (E') in a three-point bending test under the conditions of a measurement temperature of 30 to 200 ° C., a temperature rise rate of 2 ° C./min, and a measurement frequency of 1 Hz under a nitrogen atmosphere. did. As the value of the dynamic storage elastic modulus (E'), the dynamic storage elastic modulus at a measurement temperature of 175 ° C. was adopted, which was judged that the viscoelastic behavior of the object to be measured entered the rubber elastic region. The molecular weight between the cross-linking points was determined using the following formula.
Molecular weight between cross-linking points (cm 3 / mol) = 1 / (E'/ RT)
E': Dynamic storage modulus (Pa)
R: Gas constant (J / K · mol)
T: Absolute temperature (K)
Furthermore, the judgment was made using the following criteria.
AA: Less than 10,000 A: 10,000 or more and less than 20,000 B: 20,000 or more

(全光線透過率)
樹脂成形体の透明性の指標として、ヘイズメーター(機種名「NDH−2000」、日本電色工業(株)製)を用い、ISO13468−1に準拠して、試験片の全光線透過率を測定した。板状の試験片3点を用いて、各試験片につき1回測定を行い、その平均値を全光線透過率とした。さらに、以下の基準を用いて判定した。
AA:全光線透過率が91.5%以上
A :全光線透過率が88%以上91.5%未満
B :全光線透過率が88%未満
(Total light transmittance)
Using a haze meter (model name "NDH-2000", manufactured by Nippon Denshoku Kogyo Co., Ltd.) as an index of the transparency of the resin molded product, the total light transmittance of the test piece is measured in accordance with ISO13468-1. did. Measurement was performed once for each test piece using three plate-shaped test pieces, and the average value was taken as the total light transmittance. Furthermore, the judgment was made using the following criteria.
AA: Total light transmittance is 91.5% or more A: Total light transmittance is 88% or more and less than 91.5% B: Total light transmittance is less than 88%

(耐擦傷性試験)
樹脂成形体の耐擦傷性の指標として、擦傷処理前後の拡散透過率の変化量(ΔTd)を、下記の方法に従って測定した。
板状の試験片について、ヘイズメーター(機種名「NDH−2000」、日本電色工業(株)製)を用い、ISO13468−1に準拠して測定した全光線透過率T(%)に、ISO14782に準拠して測定したヘイズ値H(%)を乗じて100で除した値を、耐傷付試験前の樹脂成形体の拡散透過率(Td=T×H/100)とした。
ベンコット擦傷試験機(機種名:HEIDON TYPE30、新東科学(株)製)に板状の試験片をセットし、14kPaの圧力がかかるように錘をセットし、前記錘にセットした#0000スチールウールを、荷重14kPa条件で前記試験片の表面中央部を通過するように、掃引距離30mmを掃引速度3000mm/minで11回往復させることで擦傷処理を施し、試験片の表面に摩擦摩耗処理部を形成した。擦傷処理後の試験片の摩擦摩耗処理部について、全光線透過率(T(%))とヘイズ値(H(%))を測定し、耐傷付試験後の樹脂成形体の拡散透過率(Td=T×H/100)を算出した。耐擦傷性の指標として、擦傷処理前後の拡散透過率の変化量(ΔTd)を、下記式を用いて算出した。
ΔTd=Td−Td
試験片3点を用いて、各試験片につき1回測定を行い、その平均値をΔTdとした。さらに、以下の基準を用いて判定した。
AA:ΔTdが15%以下
A :ΔTdが15%を超えて28%以下
B :ΔTdが28%を超えた
(Scratch resistance test)
As an index of scratch resistance of the resin molded product, the amount of change in diffusion transmittance (ΔTd) before and after the scratch treatment was measured according to the following method.
For the plate-shaped test piece, the total light transmittance T 1 (%) measured in accordance with ISO 13468-1 using a haze meter (model name "NDH-2000", manufactured by Nippon Denshoku Kogyo Co., Ltd.) the value obtained by dividing 100 by multiplying the haze value was measured in accordance with ISO14782 H 1 (%), and diffuse transmittance of the resin molded body before mar testing and (Td 1 = T 1 × H 1/100) ..
A plate-shaped test piece was set in a Bencot scratch tester (model name: HEIDON TYPE30, manufactured by Shinto Kagaku Co., Ltd.), a weight was set so that a pressure of 14 kPa was applied, and the # 0000 steel wool set on the weight Is subjected to scratch treatment by reciprocating a sweep distance of 30 mm 11 times at a sweep speed of 3000 mm / min so as to pass through the central portion of the surface of the test piece under a load of 14 kPa. Formed. The total light transmittance (T 2 (%)) and haze value (H 2 (%)) of the friction and wear treated portion of the test piece after the scratch treatment were measured, and the diffusion transmittance of the resin molded product after the scratch resistance test was performed. It was calculated (Td 2 = T 2 × H 2/100). As an index of scratch resistance, the amount of change in diffusion transmittance (ΔTd) before and after the scratch treatment was calculated using the following formula.
ΔTd = Td 2 -Td 1
The measurement was performed once for each test piece using three test pieces, and the average value was defined as ΔTd. Furthermore, the judgment was made using the following criteria.
AA: ΔTd is 15% or less A: ΔTd is more than 15% and 28% or less B: ΔTd is more than 28%

(耐熱性評価)
樹脂成形体の耐熱性の指標として、HDT/VICAT試験機(機種名「No.148−HAD ヒートデストーションテスター」、(株)安田精機製作所製)を用い、ISO306のA50法に準拠し、ビカット軟化温度試験を行い、ビカット軟化温度を測定した。
尚、棒状の試験片3点を用いて、各試験片につき1回ビカット軟化温度試験を行い、その平均値をビカット軟化温度とした。さらに、以下の基準を用いて判定した。
A :ビカット軟化点温度が120℃以上
B :ビカット軟化点温度が120℃未満
(Heat resistance evaluation)
As an index of heat resistance of the resin molded product, an HDT / VICAT tester (model name "No. 148-HAD Heat Destruction Tester", manufactured by Yasuda Seiki Seisakusho Co., Ltd.) is used, and Bicut conforms to the A50 method of ISO306. A softening temperature test was performed to measure the Vicat softening temperature.
The Vicat softening temperature test was performed once for each test piece using three rod-shaped test pieces, and the average value was taken as the Vicat softening temperature. Furthermore, the judgment was made using the following criteria.
A: Vicat softening point temperature is 120 ° C or higher B: Vicat softening point temperature is less than 120 ° C

(原材料)
実施例及び比較例で使用した化合物の略号は以下の通りである。
MMA:メチルメタクリレート(商品名:アクリエステル(登録商標)M、三菱ケミカル(株)製)
MA:メチルアクリレート(三菱ケミカル(株)製)
TEPM:トリエトキシシリルプロピルメタクリレート(商品名:KBE−503、信越化学工業(株)製)
TMPM:トリエトキシシリルプロピルメタクリレート(商品名:KBM−503、信越化学工業(株)製)
AMBN:2,2’−アゾビス−2−メチルブチロニトリル(商品名:V−59、和光純薬工業(株)製)
nOcSH:n−オクチルメルカプタン
分散剤(1):製造例1で製造した分散剤
ポリマー(P1):製造例1で作製した溶融成形用樹脂組成物
ポリマー(P2):製造例2で作製した溶融成形用樹脂組成物
ポリマー(P3):製造例3で作製した溶融成形用樹脂組成物
ポリマー(P4):製造例4で作製した溶融成形用樹脂組成物
ポリマー(P5):製造例5で作製した溶融成形用樹脂組成物
(raw materials)
The abbreviations of the compounds used in Examples and Comparative Examples are as follows.
MMA: Methyl Methacrylate (Product Name: Acriester (registered trademark) M, manufactured by Mitsubishi Chemical Corporation)
MA: Methyl acrylate (manufactured by Mitsubishi Chemical Corporation)
TEPM: Triethoxysilylpropyl methacrylate (trade name: KBE-503, manufactured by Shin-Etsu Chemical Co., Ltd.)
TMPM: Triethoxysilylpropyl methacrylate (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.)
AMBN: 2,2'-azobis-2-methylbutyronitrile (trade name: V-59, manufactured by Wako Pure Chemical Industries, Ltd.)
nOcSH: n-octyl mercaptan dispersant (1): Dispersant polymer produced in Production Example 1 Polymer (P1): Resin composition for melt molding produced in Production Example 1 Polymer (P2): Melt molding produced in Production Example 2 Resin composition for use Polymer (P3): Resin composition for melt molding prepared in Production Example 3 Polymer (P4): Resin composition for melt molding prepared in Production Example 4 Polymer (P5): Melt prepared in Production Example 5 Resin composition for molding

[製造例1:分散剤(1)の製造]
脱イオン水900質量部、メタクリル酸2−スルホエチルナトリウム60質量部、メタクリル酸カリウム10質量部及びMMA12質量部を、撹拌機、温度計及び冷却管を備えたフラスコに供給し、窒素を放流しながら、フラスコの内温が50℃になるよう加熱した。その後、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩0.08質量部を供給し、フラスコの内温が60℃になるよう加熱した。その後、滴下ポンプを用いて、MMAを0.24質量部/分の速度で75分間滴下した。その後、6時間保持し、分散剤(1)(固形分10質量%)を得た。
[Production Example 1: Production of Dispersant (1)]
900 parts by mass of deionized water, 60 parts by mass of 2-sulfoethyl sodium methacrylate, 10 parts by mass of potassium methacrylate and 12 parts by mass of MMA were supplied to a flask equipped with a stirrer, a thermometer and a cooling tube, and nitrogen was discharged. However, the flask was heated so that the internal temperature of the flask was 50 ° C. Then, 0.08 parts by mass of 2,2'-azobis (2-methylpropionamidine) dihydrochloride salt was supplied, and the flask was heated so that the internal temperature of the flask was 60 ° C. Then, using a dropping pump, MMA was dropped at a rate of 0.24 parts by mass / min for 75 minutes. Then, it held for 6 hours, and the dispersant (1) (solid content 10% by mass) was obtained.

[製造例2:ポリマー(P1)の製造]
脱イオン水200質量部及び硫酸ナトリウム0.42質量部を、攪拌機、温度計、冷却管及び窒素ガス導入管を備えたセパラブルフラスコに供給し、320rpmの撹拌速度で15分間撹拌した。その後、単量体組成物を合計100質量部(前記単量体組成物を構成する単量体の総モル数100mol%に対して、MMA94mol%、MA1mol%及びTEPM5mol%の混合物)とし、重合開始剤としてAMBN0.28質量部、及び、連鎖移動剤としてnOcSH 0.30質量部をセパラブルフラスコに供給し、5分間撹拌した。その後、製造例1で製造した分散剤(1)0.67質量部をセパラブルフラスコに供給し、撹拌し、セパラブルフラスコ中の単量体混合物を水中に分散させた。その後、窒素ガスを15分間放流した。
その後、セパラブルフラスコの内温が75℃になるよう加熱し、重合発熱ピークが観測されるまでその温度を保持した。重合発熱ピークが観測された後、セパラブルフラスコの内温が90℃になるよう加熱し、60分間保持し、重合を完了させた。その後、セパラブルフラスコ内の混合物を室温まで冷却した後に濾過し、濾過物を脱イオン水で洗浄し、80℃で24時間乾燥し、ビーズ状の溶融成形用重合体を得た。
得られた溶融成形用重合体を乾燥した後に、二軸混練押出機を用いて溶融混練し、ペレット状の溶融成形用重合体を得て、これをポリマー(P1)とした。得られた溶融成形用重合体の評価結果を表1に示す。
[Production Example 2: Production of Polymer (P1)]
200 parts by mass of deionized water and 0.42 parts by mass of sodium sulfate were supplied to a separable flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas introduction tube, and stirred at a stirring rate of 320 rpm for 15 minutes. Then, the monomer composition was made into a total of 100 parts by mass (a mixture of MMA 94 mol%, MA 1 mol% and TEPM 5 mol% with respect to 100 mol% of the total number of moles of the monomers constituting the monomer composition), and polymerization was started. 0.28 parts by mass of AMBN as an agent and 0.30 parts by mass of nOcSH as a chain transfer agent were supplied to a separable flask and stirred for 5 minutes. Then, 0.67 parts by mass of the dispersant (1) produced in Production Example 1 was supplied to the separable flask and stirred to disperse the monomer mixture in the separable flask in water. Then, nitrogen gas was discharged for 15 minutes.
Then, the temperature of the separable flask was heated to 75 ° C., and the temperature was maintained until the peak of heat generation of polymerization was observed. After the polymerization exotherm peak was observed, the temperature of the separable flask was heated to 90 ° C. and held for 60 minutes to complete the polymerization. Then, the mixture in the separable flask was cooled to room temperature and then filtered, and the filtrate was washed with deionized water and dried at 80 ° C. for 24 hours to obtain a bead-shaped polymer for melt molding.
The obtained polymer for melt molding was dried and then melt-kneaded using a twin-screw kneading extruder to obtain a pellet-shaped polymer for melt molding, which was used as a polymer (P1). Table 1 shows the evaluation results of the obtained polymer for melt molding.

[製造例3〜6:ポリマー(P2)〜(P5)の製造]
単量体組成物の組成を表1に示すとおりとした以外は、製造例1と同様の方法で、ペレット状の樹脂組成物を得て、それぞれポリマー(P2)〜(P5)とした。得られた樹脂組成物の評価結果を表1に示す。
[Production Examples 3 to 6: Production of Polymers (P2) to (P5)]
Pellet-shaped resin compositions were obtained in the same manner as in Production Example 1 except that the composition of the monomer composition was as shown in Table 1, and the polymers (P2) to (P5) were used, respectively. The evaluation results of the obtained resin composition are shown in Table 1.

[実施例1]
ポリマー(P1)を射出成形して樹脂成形体前駆体を得たのちに、条件(1)に基づいて架橋処理を実施し、樹脂成形体を得た。得られた樹脂成形体の評価結果を表2に示す。
[Example 1]
After injection molding the polymer (P1) to obtain a resin molded product precursor, a cross-linking treatment was carried out based on the condition (1) to obtain a resin molded product. Table 2 shows the evaluation results of the obtained resin molded product.

[比較例1]
ポリマー(P3)を用いて樹脂成形体前駆体を得た以外は、実施例1と同様の方法で、樹脂成形体を得た。得られた樹脂成形体の評価結果を表2に示す。
[Comparative Example 1]
A resin molded product was obtained in the same manner as in Example 1 except that a resin molded product precursor was obtained using the polymer (P3). Table 2 shows the evaluation results of the obtained resin molded product.

[実施例2〜10、比較例2〜5]
用いた溶融成形用樹脂組成物の種類又は架橋処理の条件を表2に示すとおりとした以外は、実施例1と同様の方法で、樹脂成形体を得た。得られた樹脂成形体の評価結果を表2に示す。
[Examples 2 to 10, Comparative Examples 2 to 5]
A resin molded product was obtained in the same manner as in Example 1 except that the type of the resin composition for melt molding used or the conditions for the crosslinking treatment were as shown in Table 2. Table 2 shows the evaluation results of the obtained resin molded product.

実施例1〜10の樹脂成形体は、透明性、耐擦傷性及び耐熱性が良好であった。 The resin molded products of Examples 1 to 10 had good transparency, scratch resistance, and heat resistance.

比較例1〜3の樹脂成形体は、溶融成形用樹脂組成物であるポリマー(P3)中の単位(B)の含有割合が少ないため、樹脂成形体の耐擦傷性及び耐熱性が不十分であった。
比較例4の溶融成形用樹脂組成物は、ポリマー(P4)中の単位(B)の含有割合が少なく、さらに単位(B)を形成する単量体にTMPMを用いているため、溶融安定性が不十分であり、射出成型機に供したものの、安定的に樹脂成形体前駆体を取得することができなかった。
比較例5の樹脂成形体は、溶融成形用樹脂組成物であるポリマー(P5)が単位(B)を含まないため、架橋処理を実施しても架橋構造が形成されず、樹脂成形体の耐擦傷性及び耐熱性が不十分であった。
Since the resin molded products of Comparative Examples 1 to 3 have a small content ratio of the unit (B) in the polymer (P3) which is the resin composition for melt molding, the scratch resistance and heat resistance of the resin molded products are insufficient. there were.
The resin composition for melt molding of Comparative Example 4 has a small content ratio of the unit (B) in the polymer (P4), and TMPM is used as the monomer forming the unit (B), so that the melt stability Although it was used in an injection molding machine, it was not possible to stably obtain a resin molded precursor.
In the resin molded product of Comparative Example 5, since the polymer (P5) which is the resin composition for melt molding does not contain the unit (B), the crosslinked structure is not formed even if the crosslinking treatment is performed, and the resistance of the resin molded article The scratch resistance and heat resistance were insufficient.

本発明の樹脂成形体は、透明性、耐擦傷性及び耐熱性に優れ、光学材料、車両用部品、照明用材料、建築用材料等に用いることができ、特に、車両用部品に好適であり、その中でもテールランプやヘッドランプ等のランプカバーに好適に用いることができる。
その他の車両用部品としては、例えば、リアランプ内部の光学部材、ヘッドライト用のインナーレンズ(プロジェクターレンズやPESレンズと称される場合がある)、メーターカバー、ドアミラーハウジング、ピラーカバー(サッシュカバー)、ライセンスガーニッシュ、フロントグリル、フォグガーニッシュ、エンブレム等が挙げられる。
The resin molded body of the present invention is excellent in transparency, scratch resistance and heat resistance, and can be used for optical materials, vehicle parts, lighting materials, building materials, etc., and is particularly suitable for vehicle parts. Among them, it can be suitably used for lamp covers such as tail lamps and head lamps.
Other vehicle parts include, for example, optical members inside rear lamps, inner lenses for headlights (sometimes called projector lenses or PES lenses), meter covers, door mirror housings, pillar covers (sash covers), etc. Licensed garnish, front grille, fog garnish, emblem, etc.

Claims (12)

メチル(メタ)アクリレート由来の繰り返し単位(A)とアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)を含む溶融成形用重合体であって、
前記溶融成形用重合体が、該溶融成形用重合体を構成する単量体単位の総モル数100mol%に対して、前記単位(A)を70mol%以上97mol%以下、及び前記単位(B)を3mol%以上30mol%以下含む、溶融成形用重合体。
A polymer for melt molding containing a repeating unit (A) derived from methyl (meth) acrylate and a repeating unit (B) derived from a vinyl compound monomer having an alkoxysilyl group in the side chain.
The unit (A) is 70 mol% or more and 97 mol% or less, and the unit (B), based on 100 mol% of the total number of moles of the monomer units constituting the melt-molded polymer. A polymer for melt molding containing 3 mol% or more and 30 mol% or less.
前記溶融成形用重合体の質量平均分子量が30,000以上180,000以下である、請求項1に記載の溶融成形用重合体。 The polymer for melt molding according to claim 1, wherein the polymer for melt molding has a mass average molecular weight of 30,000 or more and 180,000 or less. 前記単位(B)が、アルコキシシリル(メタ)アクリレート由来の繰り返し単位(B1)を、前記単位(B)の総モル数100mol%に対して、51mol%以上100mol%以下含む、請求項1又は2に記載の溶融成形用重合体。 Claim 1 or 2 in which the unit (B) contains a repeating unit (B1) derived from an alkoxysilyl (meth) acrylate in an amount of 51 mol% or more and 100 mol% or less based on 100 mol% of the total number of moles of the unit (B). The polymer for melt molding according to. 前記単位(B1)が、下記一般式(1)で表される単量体由来の繰り返し単位(B2)である、請求項3に記載の溶融成形用重合体。
(1)
[式(1)中、Xは、H又はCHを示す。aは0〜10の整数、mは1〜10の整数、nは0〜10の整数、pは1〜3の整数、qは0〜2の整数を示す。]
The polymer for melt molding according to claim 3, wherein the unit (B1) is a repeating unit (B2) derived from a monomer represented by the following general formula (1).
(1)
[In formula (1), X represents H or CH 3 . a is an integer of 0 to 10, m is an integer of 1 to 10, n is an integer of 0 to 10, p is an integer of 1 to 3, and q is an integer of 0 to 2. ]
請求項1〜4のいずれか一項に記載の溶融成形用重合体を含有する溶融成形用樹脂組成物であって、
前記溶融成形用樹脂組成物が、該溶融成形用樹脂組成物の総質量100質量%に対して、前記溶融成形用重合体を1質量%以上100質量%未満含有する、溶融成形用樹脂組成物。
A resin composition for melt molding containing the polymer for melt molding according to any one of claims 1 to 4.
The melt-molded resin composition contains 1% by mass or more and less than 100% by mass of the melt-molded polymer with respect to 100% by mass of the total mass of the melt-molded resin composition. ..
請求項1〜4のいずれか一項に記載の溶融成形用重合体若しくは請求項5に記載の溶融成形用樹脂組成物を溶融成形してなる樹脂成形体前駆体を、架橋処理してなる樹脂成形体であって、
前記樹脂成形体のゲル分率が、該樹脂成形体の総質量100質量%に対して、1.0質量%以上である、樹脂成形体。
A resin obtained by cross-linking a resin molded product precursor obtained by melt molding the melt molding polymer according to any one of claims 1 to 4 or the melt molding resin composition according to claim 5. It is a molded product
A resin molded product having a gel fraction of 1.0% by mass or more based on 100% by mass of the total mass of the resin molded product.
前記樹脂成形体のゲル分率が、該樹脂成形体の総質量100質量%に対して、90質量%以上である、請求項6に記載の樹脂成形体。 The resin molded product according to claim 6, wherein the gel content of the resin molded product is 90% by mass or more with respect to 100% by mass of the total mass of the resin molded product. 前記樹脂成形体の架橋点間分子量が20,000以下である、請求項6又は7に記載の樹脂成形体。 The resin molded product according to claim 6 or 7, wherein the resin molded product has a molecular weight between cross-linking points of 20,000 or less. メチル(メタ)アクリレート由来の繰り返し単位(A)とアルコキシシリル基を側鎖に有するビニル化合物単量体由来の繰り返し単位(B)を含む溶融成形用重合体の製造方法であって、
メチル(メタ)アクリレートを70mol%以上97mol%以下、アルコキシシリル基を側鎖に有するビニル化合物を3mol%以上30mol%以下含有する単量体組成物を重合する工程を含む、溶融成形用重合体の製造方法。
A method for producing a polymer for melt molding, which comprises a repeating unit (A) derived from methyl (meth) acrylate and a repeating unit (B) derived from a vinyl compound monomer having an alkoxysilyl group in a side chain.
A polymer for melt molding, which comprises a step of polymerizing a monomer composition containing 70 mol% or more and 97 mol% or less of methyl (meth) acrylate and 3 mol% or more and 30 mol% or less of a vinyl compound having an alkoxysilyl group in a side chain. Production method.
前記単量体組成物の重合が懸濁重合で行われる、請求項9に記載の溶融成形用重合体の製造方法。 The method for producing a polymer for melt molding according to claim 9, wherein the polymerization of the monomer composition is carried out by suspension polymerization. 請求項9又は10に記載の製造方法で得られた溶融成形用重合体を、溶融成形して樹脂成形体前駆体を得る工程、及び
前記樹脂成形体前駆体を架橋処理する工程を含む、
樹脂成形体の製造方法。
A step of melt-molding the polymer for melt molding obtained by the production method according to claim 9 or 10 to obtain a resin molded product precursor, and a step of cross-linking the resin molded product precursor.
A method for manufacturing a resin molded product.
前記架橋処理が、
前記樹脂成形体前駆体を温度40〜100℃の温水中で0.5〜10時間処理する工程、又は
前記樹脂成形体前駆体を温度0〜100℃、相対湿度10〜100%RHの湿熱環境中で0.5〜720時間処理する工程を含む、
請求項11に記載の樹脂成形体の製造方法。
The cross-linking process
A step of treating the resin molded product precursor in warm water at a temperature of 40 to 100 ° C. for 0.5 to 10 hours, or a moist heat environment in which the resin molded product precursor is treated at a temperature of 0 to 100 ° C. and a relative humidity of 10 to 100% RH. Including the step of processing for 0.5 to 720 hours in the
The method for producing a resin molded product according to claim 11.
JP2019048390A 2019-03-15 2019-03-15 Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product Pending JP2020147715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019048390A JP2020147715A (en) 2019-03-15 2019-03-15 Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019048390A JP2020147715A (en) 2019-03-15 2019-03-15 Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product

Publications (1)

Publication Number Publication Date
JP2020147715A true JP2020147715A (en) 2020-09-17

Family

ID=72431807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048390A Pending JP2020147715A (en) 2019-03-15 2019-03-15 Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product

Country Status (1)

Country Link
JP (1) JP2020147715A (en)

Similar Documents

Publication Publication Date Title
CN108350125B (en) Methacrylic resin, methacrylic resin composition, film, and production method
KR101143055B1 (en) Thermoplastic moulding materials having improved mechanical and optical properties
JP5138220B2 (en) Resin composition and polymer containing polymer particles
JP6733548B2 (en) Copolymer, method for producing copolymer, resin composition, molded article and vehicle
JP5968368B2 (en) Methacrylic resin for injection molding
JP2021503534A (en) Thermoplastic resin composition
JP2012087251A (en) Impact-resistive acrylic resin composition, molded body, and vehicular member
KR101553886B1 (en) - thermoplastic molding compound with processing-independent viscosity
JP6932965B2 (en) Resin composition, manufacturing method of resin composition, molded body and vehicle parts
KR20110079011A (en) Thermoplastic resin composition having excellent impact strength and weather resistance
JPWO2021039368A1 (en) A transparent thermoplastic resin composition, a method for producing the same, a molded product obtained by molding the transparent thermoplastic resin composition, and a method for producing the molded product.
JP7203622B2 (en) Thermoplastic resin composition and molded article thereof
JP2020147715A (en) Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product
JP6042645B2 (en) Methacrylic resin composition and molded body
JP2021116315A (en) Polymer for melt molding, resin composition and resin molding for melt molding, as well as, manufacturing method of polymer for melt molding and resin molding
JP5008155B2 (en) Acrylic resin production method, acrylic resin, and molded article
JP7359194B2 (en) Resin compositions, molded bodies, and vehicle parts
JP6246149B2 (en) Injection molded body
JP2016169365A (en) Methacrylic resin composition, method for producing the same, and molded body
WO2017154722A1 (en) Resin composition, method of manufacturing resin composition, molded article, and vehicle
JP2019183026A (en) Resin composition, molded body, component for vehicle, and lamp cover for vehicle
JP2017128685A (en) Thermoplastic resin composition, molding and vehicle
JP2019131667A (en) Resin composition for vehicle lamp cover, molded body for vehicle lamp cover, laminate for vehicle lamp cover, and vehicle lamp cover
JPH07216007A (en) Production of methacrylic resin
JP4320170B2 (en) Styrenic resin and sheet thereof