WO2017154722A1 - Resin composition, method of manufacturing resin composition, molded article, and vehicle - Google Patents

Resin composition, method of manufacturing resin composition, molded article, and vehicle Download PDF

Info

Publication number
WO2017154722A1
WO2017154722A1 PCT/JP2017/008260 JP2017008260W WO2017154722A1 WO 2017154722 A1 WO2017154722 A1 WO 2017154722A1 JP 2017008260 W JP2017008260 W JP 2017008260W WO 2017154722 A1 WO2017154722 A1 WO 2017154722A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mol
meth
less
unit
Prior art date
Application number
PCT/JP2017/008260
Other languages
French (fr)
Japanese (ja)
Other versions
WO2017154722A8 (en
Inventor
松本 晃和
春樹 岡田
野上 弘之
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2017516190A priority Critical patent/JP6299927B2/en
Publication of WO2017154722A1 publication Critical patent/WO2017154722A1/en
Publication of WO2017154722A8 publication Critical patent/WO2017154722A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255

Definitions

  • the present invention relates to a resin composition, a method for producing the resin composition, a molded body, and a vehicle.
  • Polymethyl methacrylate and polycarbonate are widely used in various fields such as optical materials, vehicle parts, lighting materials, and building materials because of their excellent transparency and dimensional stability.
  • molded products of polymethylmethacrylate and polycarbonate have been required to have higher performance as the parts are made thinner and finer.
  • One of the performances is heat resistance.
  • vehicle parts such as tail lamps and head lamps are required to have better heat resistance because vehicles such as automobiles are used even under high temperature and high humidity.
  • polymethyl methacrylate has excellent transparency and weather resistance, the heat resistance is not sufficient.
  • Polycarbonate has excellent heat resistance and impact resistance, but has a large birefringence, which is an optical distortion, and causes optical anisotropy in the molded product.
  • it has molding processability, scratch resistance, and oil resistance. Remarkably inferior.
  • Patent Document 1 discloses a method in which a copolymer of methyl methacrylate, methacrylic acid, and methyl-2- (hydroxymethyl) acrylate is subjected to a condensation cyclization reaction with a cyclization catalyst of a phosphate ester compound.
  • Patent Document 1 has a problem of coloring because the time required for the condensation cyclization reaction is long and inferior in productivity, and uses a phosphate ester compound as a cyclization catalyst.
  • a strongly acidic phosphate compound such as methyl phosphate corrodes a metal and is difficult to apply to a continuous production process.
  • an object of the present invention is to solve these problems and provide a resin composition having excellent heat resistance and transparency. Moreover, the objective of this invention is providing the manufacturing method of the resin composition which is excellent in productivity and excellent in the heat resistance of the resin composition obtained, and transparency.
  • a copolymer (A) comprising a methyl (meth) acrylate unit (A1), a (meth) acrylic acid unit (A2) and a glutaric anhydride unit (A3), and a compound represented by the following general formula (1) ( B).
  • R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
  • the compound (B) is at least one selected from the group consisting of triphenylphosphine, diphenylcyclohexylphosphine, parastyryldiphenylphosphine, tris (4-methoxyphenyl) phosphine, and tris (4-fluorophenyl) phosphine.
  • the resin composition according to any one of [1] to [3].
  • the content of the compound (B) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the copolymer (A), according to any one of [1] to [4] The resin composition as described.
  • methyl (meth) acrylate unit (A1) is 70 mol% or more
  • (meth) acrylic acid unit (A2) is 0.5 mol% or more and 20 mol% or less
  • anhydrous glutar The resin composition according to any one of [1] to [5], wherein the acid unit (A3) is 0.3 mol% or more and 10 mol% or less.
  • a monomer containing methyl (meth) acrylate (a1) and (meth) acrylic acid (a2) is polymerized to obtain a precursor, and the obtained precursor and a compound represented by the following general formula (1) (B) The manufacturing method of the resin composition which melt-kneads.
  • R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
  • [14] A molded article obtained by molding the resin composition according to any one of [1] to [9].
  • [15] A vehicle part including the molded article according to [14].
  • [16] A vehicle using the vehicle component according to [15].
  • the resin composition of the present invention is excellent in heat resistance and transparency.
  • the method for producing the resin composition of the present invention is excellent in productivity, and by including the unit (A3) accordingly, it has excellent low water absorption, resulting in a decrease in saturated water absorption, and heat resistance under water absorption conditions. Since it is excellent and can reduce silver streaks during molding, a resin composition having excellent transparency can be produced.
  • the resin composition of the present invention contains a copolymer (A).
  • the copolymer (A) comprises a methyl (meth) acrylate unit (A1) (hereinafter sometimes simply referred to as “unit (A1)”), a (meth) acrylic acid unit (A2) (hereinafter simply referred to as “unit ( A2) ”and glutaric anhydride units (A3) (hereinafter sometimes simply referred to as“ units (A3) ”).
  • the unit (A1) is a methyl (meth) acrylate unit, but the resin composition is excellent in the thermal decomposition resistance of the copolymer (A) while maintaining the original performance of the acrylic resin. It preferably contains both acrylate units.
  • Methyl (meth) acrylate refers to methyl methacrylate, methyl acrylate, or both.
  • the content of the methyl methacrylate unit is preferably 50 mol% or more and 99.9 mol% or less, and 75 mol% or more and 99.99% or less in 100 mol% of the unit (A1). 5 mol% or less is more preferable.
  • a resin composition does not impair the original performance of an acrylic resin as the content rate of a methyl methacrylate unit is 50 mol% or more. Moreover, it is excellent in the thermal decomposition resistance of a copolymer (A) as the content rate of a methylmethacrylate unit is 99.9 mol% or less.
  • the content of the methyl acrylate unit is preferably 0.1 mol% or more and 50 mol% or less, and 0.5 mol% or more in 100 mol% of the unit (A1). 25 mol% or less is more preferable.
  • the content of the methyl acrylate unit is 0.1 mol% or more, the copolymer (A) is excellent in thermal decomposition resistance.
  • a resin composition does not impair the original performance of an acrylic resin as the content rate of a methyl acrylate unit is 50 mol% or less.
  • the content of the methyl (meth) acrylate unit (A1) is preferably from 70 mol% to 99.2 mol%, more preferably from 80 mol% to 99 mol%, and more preferably from 85 mol% to 98.98 mol in 100 mol% of the copolymer (A). 5 mol% or less is still more preferable.
  • the content of the unit (A1) is 70 mol% or more, the resin composition does not deteriorate the original performance of the acrylic resin, and when it is 99.2 mol% or less, the heat resistance of the resin composition is excellent.
  • the unit (A2) is a (meth) acrylic acid unit, but is preferably a methacrylic acid unit because the resin composition is excellent in heat resistance.
  • (Meth) acrylic acid refers to methacrylic acid, acrylic acid or both.
  • the content of the (meth) acrylic acid unit (A2) is preferably 0.5 mol% or more, more preferably 0.7 mol% or more, and further preferably 1.0 mol% or more in 100 mol% of the copolymer (A). Moreover, 20 mol% or less is preferable, 15 mol% or less is more preferable, and 10 mol% or less is still more preferable. It is excellent in the heat resistance of a resin composition as the content rate of a unit (A2) is 0.5 mol% or more. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of a unit (A2) is 20 mol% or less.
  • the unit (A3) is a glutaric anhydride unit and is a structural unit represented by the following general formula (2).
  • R 4 and R 5 are each independently hydrogen or a methyl group.
  • the content of the glutaric anhydride unit (A3) is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and still more preferably 0.6 mol% or more in 100 mol% of the copolymer (A). Moreover, 10 mol% or less is preferable, 7 mol% or less is more preferable, and 5 mol% or less is still more preferable.
  • the content of the unit (A3) is 0.3 mol% or more, the water absorption of the resin composition can be reduced, and the dimensional stability of the molded body and the heat resistance of the resin composition under water absorption conditions are excellent. In addition, it is possible to suppress the occurrence of silver streaks when the resin is injection molded. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of a unit (A3) is 10 mol% or less.
  • the copolymer (A) may be referred to as another monomer unit (A4) (hereinafter simply referred to as “unit (A4)”). ) May be included.
  • the content of the unit (A4) is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 3 mol% or less in 100 mol% of the copolymer (A) because the resin composition does not impair the original performance of the acrylic resin. Is more preferable.
  • the conversion rate to the glutaric anhydride unit (A3) represented by the following formula (I) is preferably 5% or more, and more preferably 10% or more. Moreover, it is preferable that it is 90% or less, and it is more preferable that it is 80% or less.
  • Conversion rate to glutaric anhydride unit (A3) (%) ⁇ [ratio of glutaric anhydride unit (A3) in copolymer (mol%)] / ([(meth) acrylic in copolymer Ratio of acid unit (A2) (mol%)] + [Proportion of glutaric anhydride unit (A3) in copolymer (mol%)]) ⁇ ⁇ 100 (I)
  • the conversion rate to the glutaric anhydride unit (A3) is 5% or more, the water absorption of the resin composition can be reduced, the dimensional stability of the molded product, and the heat resistance of the resin composition under water absorption conditions. Excellent. In addition, it is possible to suppress the occurrence of silver streaks when the resin is injection molded.
  • the conversion rate to the glutaric anhydride unit (A3) is 90% or less, the resin composition does not impair the original performance of the acrylic resin.
  • the resin composition of the present invention includes a compound (B) represented by the following general formula (1).
  • R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
  • the compound (B) include, for example, monophosphine such as methylphosphine, ethylphosphine, n-butylphosphine, tert-butylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, di-n-butylphosphine, Dialkylphosphines such as tert-butylphosphine and dioctylphosphine; trialkylphosphines such as trimethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine and trioctylphosphine; phenylphosphine, (p-tolyl) Monoarylphosphine such as phosphine, (o-tolyl) phosphine, (m-tolyl) phosphine; diphenylpho
  • These compounds (B) may be used individually by 1 type, and may use 2 or more types together.
  • these compounds (B) since the activity as a cyclization catalyst is high and the transparency of the resin composition is excellent, at least one of R 1 , R 2 and R 3 is an aryl group.
  • Aryl phosphine, diaryl phosphine, and triaryl phosphine are preferable, and R 1 , R 2, and R 3 are each a cyclic alkyl group or an aryl group, more preferably monoaryl phosphine, diaryl phosphine, and triaryl phosphine, triphenyl phosphine, diphenyl More preferred are cyclohexylphosphine, parastyryldiphenylphosphine, tris (4-methoxyphenyl) phosphine and tris (4-fluorophenyl) phosphine.
  • the content of the compound (B) is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the copolymer (A). More preferably, it is 1 to 3 parts by mass.
  • a unit (A3) can be formed efficiently as content of a compound (B) is 0.01 mass part or more. Moreover, it is excellent in transparency of a resin composition as content of a compound (B) is 10 mass parts or less.
  • the weight average molecular weight of the resin composition is preferably 30,000 or more, more preferably 50,000 or more, and still more preferably 70,000 or more. Moreover, 200,000 or less is preferable, 150,000 or less is more preferable, and 130,000 or less is still more preferable.
  • the mass average molecular weight of the resin composition is 30,000 or more, the mechanical properties are excellent. Moreover, it is excellent in melt fluidity that the mass average molecular weight of a resin composition is 200,000 or less.
  • the mass average molecular weight of the resin composition is a value measured using gel permeation chromatography using standard polystyrene as a standard sample.
  • the Vicat softening temperature in the absolutely dry condition of the resin composition is preferably 115 ° C.
  • the Vicat softening temperature under the absolutely dry condition of the resin composition is 115 ° C. or higher, the resin composition is excellent in heat resistance in the absolutely dry state, and when it is 128 ° C. or less, the resin composition is excellent in low water absorption.
  • the Vicat softening temperature in the water absorption state of the resin composition is preferably 110 ° C. or higher.
  • the Vicat softening temperature in the water absorption condition of the resin composition is 110 ° C. or higher, the resin composition is excellent in heat resistance in the water absorption state.
  • the Vicat softening temperature is a value measured according to ISO 306 A50 method.
  • the saturated water absorption of the resin composition is preferably 3% by mass or less, more preferably 2.5% by mass or less, and further preferably 2% by mass or less.
  • the saturated water absorption rate of the resin composition is 3% by mass or less, the resin composition is excellent in low water absorption, excellent in the dimensional stability of the molded article and in heat resistance in the water absorption state.
  • the haze of the resin composition is preferably from 0.1 to 1.0, more preferably from 0.2 to 0.8. When the haze of the resin composition is 0.1 or more, the productivity of the resin composition is excellent, and when it is 1.0 or less, the appearance of the resin composition is excellent. In the present specification, the haze is a value obtained by molding a resin composition into a molded body having a thickness of 2 mm and measuring in accordance with ISO14782.
  • the yellow index (YI) of the resin composition is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.5. When the yellow index (YI) of the resin composition is 0.1 or more, the productivity of the resin composition is excellent, and when it is 2.0 or less, the appearance of the resin composition is excellent. In the present specification, the yellow index (YI) is a value measured in accordance with ISO 17223 after a copolymer is molded into a molded body having a thickness of 2 mm.
  • the melt flow rate of the resin composition is preferably 6 g / 10 min or more and 20 g / 10 min or less, more preferably 10 g / 10 min or more and 15 g / 10 min or less.
  • the melt flow rate of the resin composition is 6 g / 10 min or more, the fluidity of the resin composition is excellent, and when it is 20 g / 10 min or less, the mechanical properties of the resin composition are excellent.
  • the melt flow rate is a value measured under conditions of a load of 13.65 kgf and a temperature of 230 ° C.
  • the resin composition of the present invention may contain other additives in addition to the copolymer (A) and the compound (B).
  • other additives include ultraviolet absorbers, antioxidants, plasticizers, light diffusing agents, matting agents, lubricants, mold release agents, antistatic agents, and coloring agents such as pigments. These other additives may be used alone or in combination of two or more.
  • the resin composition contains an ultraviolet absorber.
  • an antioxidant is contained in the resin composition.
  • the resin composition of the present invention can be obtained through the following steps.
  • a monomer containing methyl (meth) acrylate (a1) and (meth) acrylic acid (a2) is polymerized to obtain a precursor of copolymer (A).
  • the resulting precursor and the following general formula (1) The compound (B) functions as a catalyst for the condensation cyclization reaction, and the unit (A3) is formed from the unit (A1) and the unit (A2).
  • the resin composition of this invention containing a copolymer (A) and a compound (B) can be obtained.
  • R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
  • Methyl (meth) acrylate (a1) is methyl methacrylate, methyl acrylate or both, but the resin composition is excellent in the thermal decomposition resistance of the copolymer (A) while maintaining the original performance of the acrylic resin. It is preferable to contain both methyl methacrylate and methyl acrylate.
  • methyl (meth) acrylate (a1) contains both methyl methacrylate and methyl acrylate
  • the content of methyl methacrylate is preferably 50 mol% or more and 99.9 mol% or less in 100 mol% of methyl (meth) acrylate (a1), 75 mol% or more and 99.5 mol% or less are more preferable.
  • the content of methyl methacrylate is 50 mol% or more, the resin composition does not impair the original performance of the acrylic resin. Moreover, it is excellent in the thermal decomposability
  • methyl (meth) acrylate (a1) contains both methyl methacrylate and methyl acrylate
  • the content of methyl acrylate is preferably 0.1 mol% or more and 50 mol% or less in 100 mol% of methyl (meth) acrylate (a1), 0.5 mol% or more and 25 mol% or less are more preferable.
  • the content of methyl acrylate is 0.1 mol% or more, the copolymer (A) is excellent in thermal decomposition resistance. Further, when the content of methyl acrylate is 50 mol% or less, the resin composition does not impair the original performance of the acrylic resin.
  • the content of methyl (meth) acrylate (a1) is preferably from 70 mol% to 99.5 mol%, more preferably from 80 mol to 99.3 mol%, more preferably from 85 mol% to 99.0 mol%, based on 100 mol% of all monomers. The following is more preferable.
  • the content of methyl (meth) acrylate (a1) is 70 mol% or more, the resin composition does not impair the original performance of the acrylic resin, and when it is 99.5 mol% or less, the heat resistance of the resin composition is excellent.
  • (Meth) acrylic acid (a2) is methacrylic acid, acrylic acid, or both, and methacrylic acid is preferred because the resin composition is excellent in heat resistance.
  • the content of (meth) acrylic acid (a2) is preferably 0.5 mol% or more, more preferably 0.7 mol% or more, and even more preferably 1.0 mol% or more in 100 mol% of all monomers. Moreover, 20 mol% or less is preferable, 15 mol% or less is more preferable, and 10 mol% or less is still more preferable.
  • the content of (meth) acrylic acid (a2) is 0.5 mol% or more, the resin composition is excellent in heat resistance. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of (meth) acrylic acid (a2) is 20 mol% or less.
  • the monomer may contain other copolymerizable monomer (a4) in addition to methyl (meth) acrylate (a1) and (meth) acrylic acid (a2).
  • Examples of the other monomer (a4) include ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, and iso-butyl (meth) acrylate.
  • the content of the other monomer (a4) is preferably 10 mol% or less, more preferably 5 mol% or less, more preferably 3 mol% or less in 100 mol% of all monomers because the resin composition does not impair the original performance of the acrylic resin. % Or less is more preferable.
  • Examples of the monomer polymerization method include bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization.
  • block polymerization, suspension polymerization, and solution polymerization are preferable because of excellent transparency of the resin composition, and block polymerization and suspension polymerization are preferable because of excellent productivity of the copolymer (A). Is more preferable, and suspension polymerization is more preferable.
  • a chain transfer agent may be used in the polymerization of the monomers.
  • the chain transfer agent include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycol.
  • Mercaptan compounds such as phthalate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopropionate), pentaerythritol tetrakisthiopropionate ⁇ -methylstyrene dimer; terpinolene and the like.
  • chain transfer agents may be used individually by 1 type, and may use 2 or more types together.
  • the mercaptan compound is preferable because the adjustment of the mass average molecular weight of the copolymer (A) is easy and the productivity of the copolymer (A) is excellent, and the monofunctional alkyl mercaptan compound is more preferable. preferable.
  • the amount of the chain transfer agent used is preferably 0.1 parts by mass or more and 0.5 parts by mass or less, and more preferably 0.25 parts by mass or more and 0.45 parts by mass or less with respect to 100 parts by mass of all monomers. It is excellent in the melt fluidity of a resin composition as the usage-amount of a chain transfer agent is 0.1 mass part or more. Moreover, it is excellent in the mechanical characteristic of a resin composition as the usage-amount of a chain transfer agent is 0.5 mass part or less.
  • melt-kneading method of the precursor and the compound (B) examples include a method of mixing a solid precursor and the compound (B) and heating and kneading with an extruder or a kneader; the precursor and the compound (B) Can be dissolved in a solvent, heated and stirred.
  • melt-kneading methods a method of mixing a solid precursor and the compound (B) and heating and kneading with an extruder or a kneader is preferable because the resin composition is excellent in productivity.
  • the content of the compound (B) is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.05 parts by mass or more and 5 parts by mass or less, with respect to 100 parts by mass of the precursor, and 0.2 parts by mass. More preferred is 3 parts by mass or less.
  • a unit (A3) can be formed efficiently as content of a compound (B) is 0.01 mass part or more. Moreover, it is excellent in transparency of a resin composition as content of a compound (B) is 10 mass parts or less.
  • the melt-kneading temperature of the precursor and the compound (B) is preferably 150 ° C. or higher and 270 ° C. or lower, more preferably 180 ° C. or higher and 270 ° C. or lower, and further preferably 210 ° C. or higher and 250 ° C. or lower.
  • the melt kneading temperature is 150 ° C. or higher, the unit (A3) can be efficiently formed. Moreover, it is excellent in transparency of a resin composition as melt-kneading temperature is 270 degrees C or less.
  • the melt-kneading time of the precursor and the compound (B) is preferably from 10 seconds to 3000 seconds, and more preferably from 30 seconds to 1000 seconds.
  • the melt kneading time is 10 seconds or longer, the unit (A3) can be formed efficiently. Moreover, it is excellent in transparency of a resin composition as melt-kneading time is 3000 second or less.
  • the molded product of the present invention is obtained by molding the resin composition of the present invention.
  • Examples of a molding method for obtaining a molded body include injection molding, extrusion molding, and pressure molding. Further, the obtained molded body may be further subjected to secondary molding such as pressure molding or vacuum molding.
  • the molding temperature is preferably 200 ° C. or higher and 270 ° C. or lower, and more preferably 210 ° C. or higher and 260 ° C. or lower.
  • the molding temperature is 200 ° C. or higher, the melt flowability of the resin composition is excellent, and the appearance of the molded article is excellent.
  • thermal decomposition of a resin composition can be suppressed as molding temperature is 270 degrees C or less.
  • the molded body of the present invention is excellent in heat resistance and transparency, it can be used for optical materials, vehicle parts, lighting materials, building materials, etc., and is particularly suitable for automotive vehicle parts, It is suitable for a vehicle using the vehicle component.
  • automotive vehicle parts include a rear lamp outer cover, an optical member inside the rear lamp, an inner lens for a headlight (sometimes referred to as a projector lens or a PES lens), a meter cover, a door mirror housing, a pillar cover ( Sash cover), license garnish, front grille, fog garnish, emblem and the like.
  • a headlight sometimes referred to as a projector lens or a PES lens
  • a meter cover sometimes referred to as a projector lens or a PES lens
  • a meter cover sometimes referred to as a projector lens or a PES lens
  • a meter cover sometimes referred to as a projector lens or a PES lens
  • door mirror housing sometimes referred to as a projector lens or a PES lens
  • a pillar cover Sash cover
  • TKgel SuperHZM-H trade name, manufactured by Tosoh Corporation, inner diameter 4.6 mm ⁇ length 15 cm
  • tetrahydrofuran as solvent
  • differential refractometer as detector
  • standard sample Standard polystyrene was used under the conditions of a flow rate of 0.6 ml / min, a measurement temperature of 40 ° C., and an injection amount of 0.1 ml.
  • the ratio of the unit (A1) and the unit (A2) in the resin composition was calculated by taking the ratio with the integral value of the benzyl protons of the unreacted benzylamine of the singlet peak existing in the vicinity of 3.7 ppm. .
  • the resin compositions obtained in the Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and 80 mm ⁇ 8 mm ⁇ 4 mm. A molded body of was obtained. The obtained 80 mm ⁇ 8 mm ⁇ 4 mm molded body was cut to obtain a 40 mm ⁇ 8 mm ⁇ 4 mm molded body, and then annealed at 80 ° C. for 16 hours, and the obtained molded body was evaluated for heat resistance under absolutely dry conditions. It was used as a test piece. Moreover, a part of the test piece which was completely dried was left to stand at 25 ° C.
  • HDT / VICAT tester model name “No. 148-HAD heat distortion tester”, manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • a Vicat softening temperature test is conducted in accordance with ISO 306 A50 method. The Vicat softening temperature was measured. In addition, each copolymer 3 times Vicat softening temperature test was done, and the average value was made into Vicat softening temperature.
  • the resin compositions obtained in Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and molded to 80 mm ⁇ 8 mm ⁇ 4 mm. Got the body.
  • the obtained molded body of 80 mm ⁇ 8 mm ⁇ 4 mm was used as a test piece for water absorption evaluation.
  • the obtained test piece was dried in a vacuum dryer at 80 ° C. for 16 hours, and the mass at the time of drying was precisely weighed. Thereafter, the test piece was allowed to stand in a small environmental tester (model name “SH-241”, manufactured by ESPEC Corporation) set to 60 ° C. and relative humidity 90%.
  • the resin compositions obtained in the examples and comparative examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and 100 mm ⁇ 50 mm ⁇ 2 mm A molded body was obtained.
  • the 10 molded bodies obtained were visually confirmed, and “A” indicates that no silver streak was confirmed in all the molded bodies, and 1 to 5 molded body silver streaks were confirmed.
  • “B” and five or more molded bodies in which silver streaks were confirmed were evaluated as “C”.
  • methyl methacrylate (96 mol%) (trade name “Acryester M”, manufactured by Mitsubishi Rayon Co., Ltd.) 1351.6 parts by mass, methyl acrylate (1 mol%) 12.1 parts by mass, methacrylic acid (3 mol%) 3 parts by mass, 2,2′-azobis-2-methylbutyronitrile (polymerization initiator, trade name “V-59”, manufactured by Wako Pure Chemical Industries, Ltd.) 2.8 parts by mass and n-octyl mercaptan ( A chain transfer agent, manufactured by Tokyo Chemical Industry Co., Ltd. (4.2 parts by mass) was supplied to a separable flask and stirred for 5 minutes.
  • Example 1 100 parts by mass of the precursor (1) obtained in Production Example 1 and 0.3 part by mass of triphenylphosphine as the compound (B) were mixed, and the kneading temperature was determined using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mm ⁇ ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition. The evaluation results of the obtained resin composition are shown in Table 2.
  • Examples 2 to 10 Except having changed the kind of compound (B), the usage-amount of a compound (B), and melt-kneading time as shown in Table 2, operation similar to Example 1 was performed and the resin composition was obtained. The evaluation results of the obtained resin composition are shown in Table 2.
  • Example 1 A resin composition was obtained in the same manner as in Example 1 except that only the precursor (1) was melt kneaded without using the compound (B). The evaluation results of the obtained resin composition are shown in Table 2.
  • the resin compositions obtained in Examples 1 to 10 were excellent in transparency.
  • the resin compositions obtained in Examples 1 to 10 contain units (A3) correspondingly, they are excellent in low water absorption, resulting in a decrease in saturated water absorption and good heat resistance under water absorption conditions. It has become.
  • the resin composition obtained in Comparative Example 1 contains almost no unit (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions. Since the resin composition obtained in Comparative Example 2 used a phosphate ester compound, the resin composition became cloudy, and the transparency of the resin composition was lowered. Moreover, the unit (A3) can hardly be formed, the water absorption is inferior, and the heat resistance under water absorption conditions is lowered.
  • the resin composition obtained in Comparative Example 3 was cloudy because it used a metal salt compound, and was inferior in transparency. Further, since the metal salt itself is water-soluble, the water absorption of the resin composition after kneading is deteriorated, and the heat resistance under water absorption conditions is reduced. Furthermore, the fluidity of the resin composition was inferior.
  • Example 11 100 parts by mass of the precursor (2) obtained in Production Example 2 and 0.1 part by mass of triphenylphosphine as a compound (B) were mixed, and a kneading temperature was obtained using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mm ⁇ ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition. Table 3 shows the evaluation results of the obtained resin composition.
  • Example 12 to 16 Except having changed the kind of compound (B), the usage-amount of a compound (B), and melt-kneading time as shown in Table 3, operation similar to Example 11 was performed and the resin composition was obtained. Table 3 shows the evaluation results of the obtained resin composition.
  • the resin compositions obtained in Examples 11 to 16 were excellent in transparency.
  • the resin compositions obtained in Examples 11 to 16 contain units (A3) correspondingly, they are excellent in low water absorption, as a result, the saturated water absorption is decreased, and the heat resistance under water absorption conditions is good. It has become.
  • silver streaks during molding could be reduced.
  • the resin composition obtained in Comparative Example 4 contains almost no units (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions. Further, silver streaks occurred in the molded body.
  • Example 17 100 parts by mass of the precursor (3) obtained in Production Example 3 and 0.1 part by mass of triphenylphosphine as the compound (B) were mixed, and the kneading temperature was determined using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mm ⁇ ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition.
  • Table 4 shows the evaluation results of the obtained resin composition.
  • Examples 18 and 19 Except having changed the usage-amount of the compound (B) like Table 4, operation similar to Example 17 was performed and the resin composition was obtained. Table 4 shows the evaluation results of the obtained resin composition.
  • the resin compositions obtained in Examples 17 to 19 were excellent in transparency.
  • the resin compositions obtained in Examples 11 to 16 contain units (A3) correspondingly, they are excellent in low water absorption, as a result, the saturated water absorption is decreased, and the heat resistance under water absorption conditions is good. It has become.
  • silver streaks during molding could be reduced.
  • the resin composition obtained in Comparative Example 4 contains almost no units (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions. Further, silver streaks occurred in the molded body. Furthermore, the fluidity of the resin composition was inferior.
  • the present invention can provide a resin composition having excellent productivity, heat resistance and transparency. Moreover, this invention can provide the manufacturing method of the said resin composition.

Abstract

Provided is a resin composition having excellent heat resistance and transparency. Also provided is a method for manufacturing a resin composition, which is excellent in productivity, and by which the resin composition obtained has excellent heat resistance and transparency. The resin composition includes: a copolymer (A), including a methyl (meth)acrylate unit (A1), a (meth)acrylic acid unit (A2) and an anhydrous glutaric acid unit (A3); and a compound (B) represented by general formula (1). In the method for manufacturing the resin composition, monomers including methyl (meth)acrylate (a1) and (meth)acrylic acid (a2) are polymerized to obtain a precursor, and the precursor obtained is melt-kneaded with the compound (B) represented by general formula (1). 

Description

樹脂組成物、樹脂組成物の製造方法、成形体及び車両Resin composition, method for producing resin composition, molded article, and vehicle
 本発明は、樹脂組成物、樹脂組成物の製造方法、成形体及び車両に関する。
 本願は、2016年3月7日に、日本出願された特願2016-042941号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin composition, a method for producing the resin composition, a molded body, and a vehicle.
This application claims priority on March 7, 2016 based on Japanese Patent Application No. 2016-029441 filed in Japan, the contents of which are incorporated herein by reference.
 ポリメチルメタクリレートやポリカーボネートは、優れた透明性や寸法安定性から、光学材料、車両用部品、照明用材料、建築用材料等、様々な分野で幅広く用いられている。
 近年、ポリメチルメタクリレートやポリカーボネートの成形体は、部品の薄肉化や細密化に伴い、より高性能化が求められている。その性能の1つとして、耐熱性が挙げられる。特に、テールランプやヘッドランプ等の車両用部品は、自動車等の車両が高温多湿下でも用いられるため、より優れた耐熱性が求められている。
Polymethyl methacrylate and polycarbonate are widely used in various fields such as optical materials, vehicle parts, lighting materials, and building materials because of their excellent transparency and dimensional stability.
In recent years, molded products of polymethylmethacrylate and polycarbonate have been required to have higher performance as the parts are made thinner and finer. One of the performances is heat resistance. In particular, vehicle parts such as tail lamps and head lamps are required to have better heat resistance because vehicles such as automobiles are used even under high temperature and high humidity.
 しかしながら、ポリメチルメタクリレートは、優れた透明性や耐候性を有するものの、耐熱性が十分ではなかった。また、ポリカーボネートは、優れた耐熱性や耐衝撃性を有するものの、光学的歪みである複屈折率が大きく成形体に光学的異方性が生じる、また、成形加工性や耐傷性や耐油性に著しく劣る。 However, although polymethyl methacrylate has excellent transparency and weather resistance, the heat resistance is not sufficient. Polycarbonate has excellent heat resistance and impact resistance, but has a large birefringence, which is an optical distortion, and causes optical anisotropy in the molded product. In addition, it has molding processability, scratch resistance, and oil resistance. Remarkably inferior.
 そのため、ポリメチルメタクリレートに代表されるアクリル樹脂の耐熱性を改善する検討が行われている。例えば、特許文献1には、メチルメタクリレートとメタクリル酸とメチル-2-(ヒドロキシメチル)アクリレートとの共重合体をリン酸エステル化合物の環化触媒で縮合環化反応させる方法が開示されている。 Therefore, studies are being made to improve the heat resistance of acrylic resins typified by polymethyl methacrylate. For example, Patent Document 1 discloses a method in which a copolymer of methyl methacrylate, methacrylic acid, and methyl-2- (hydroxymethyl) acrylate is subjected to a condensation cyclization reaction with a cyclization catalyst of a phosphate ester compound.
特開2002-60424号公報Japanese Patent Laid-Open No. 2002-60424
 しかしながら、特許文献1で開示されている方法は、縮合環化反応に要する時間が長時間で生産性に劣り、環化触媒としてリン酸エステル化合物を用いているので着色の課題を有する。また、リン酸メチル等の強酸性のリン酸エステル化合物は、金属を腐食させるため、連続生産プロセスに適用するのが困難である。 However, the method disclosed in Patent Document 1 has a problem of coloring because the time required for the condensation cyclization reaction is long and inferior in productivity, and uses a phosphate ester compound as a cyclization catalyst. In addition, a strongly acidic phosphate compound such as methyl phosphate corrodes a metal and is difficult to apply to a continuous production process.
 そこで、本発明の目的は、これらの課題を解決し、耐熱性、透明性に優れる樹脂組成物を提供することにある。また、本発明の目的は、生産性に優れ、得られる樹脂組成物の耐熱性、透明性に優れる樹脂組成物の製造方法を提供することにある。 Therefore, an object of the present invention is to solve these problems and provide a resin composition having excellent heat resistance and transparency. Moreover, the objective of this invention is providing the manufacturing method of the resin composition which is excellent in productivity and excellent in the heat resistance of the resin composition obtained, and transparency.
 本発明は、以下の構成を有する。
 [1] メチル(メタ)アクリレート単位(A1)、(メタ)アクリル酸単位(A2)及び無水グルタル酸単位(A3)を含む共重合体(A)と、下記一般式(1)に示す化合物(B)とを含む樹脂組成物。
The present invention has the following configuration.
[1] A copolymer (A) comprising a methyl (meth) acrylate unit (A1), a (meth) acrylic acid unit (A2) and a glutaric anhydride unit (A3), and a compound represented by the following general formula (1) ( B).
Figure JPOXMLDOC01-appb-C000003
(R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。)
 [2] 前記化合物(B)のR、R及びRの少なくとも1つが、アリール基である、[1]に記載の樹脂組成物。
 [3] 前記化合物(B)のR、R及びRが、それぞれ環状アルキル基又はアリール基である、[1]又は[2]に記載の樹脂組成物。
 [4] 前記化合物(B)が、トリフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、パラスチリルジフェニルホスフィン、トリス(4-メトキシフェニル)ホスフィン及びトリス(4-フルオロフェニル)ホスフィンからなる群より選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の樹脂組成物。
 [5] 前記化合物(B)の含有量が、共重合体(A)100質量部に対して、0.01質量部以上10質量部以下である、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 共重合体(A)100mol%中、メチル(メタ)アクリレート単位(A1)が、70mol%以上、(メタ)アクリル酸単位(A2)が、0.5mol%以上20mol%以下、無水グルタル酸単位(A3)が、0.3mol%以上10mol%以下である、[1]~[5]のいずれかに記載の樹脂組成物。
 [7] 下記式(I)で示すグルタル酸無水物単位(A3)への変換率が、5%以上90%以下である、[1]~[6]のいずれかに記載の樹脂組成物。
 グルタル酸無水物単位(A3)への変換率(%)={[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)]/([共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)])}×100・・・(I)
 [8] 厚さ2mmの成形片のヘイズ値が、1以下である、[1]~[7]のいずれかに記載の樹脂組成物。
 [9] 荷重13.65kgf、温度230℃におけるメルトフローレートが、6g/10min以上である、[1]~[8]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.)
[2] The resin composition according to [1], wherein at least one of R 1 , R 2 and R 3 of the compound (B) is an aryl group.
[3] The resin composition according to [1] or [2], wherein R 1 , R 2 and R 3 of the compound (B) are each a cyclic alkyl group or an aryl group.
[4] The compound (B) is at least one selected from the group consisting of triphenylphosphine, diphenylcyclohexylphosphine, parastyryldiphenylphosphine, tris (4-methoxyphenyl) phosphine, and tris (4-fluorophenyl) phosphine. The resin composition according to any one of [1] to [3].
[5] The content of the compound (B) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the copolymer (A), according to any one of [1] to [4] The resin composition as described.
[6] In 100 mol% of copolymer (A), methyl (meth) acrylate unit (A1) is 70 mol% or more, (meth) acrylic acid unit (A2) is 0.5 mol% or more and 20 mol% or less, anhydrous glutar The resin composition according to any one of [1] to [5], wherein the acid unit (A3) is 0.3 mol% or more and 10 mol% or less.
[7] The resin composition according to any one of [1] to [6], wherein the conversion rate to the glutaric anhydride unit (A3) represented by the following formula (I) is 5% or more and 90% or less.
Conversion rate to glutaric anhydride unit (A3) (%) = {[ratio of glutaric anhydride unit (A3) in copolymer (mol%)] / ([(meth) acrylic in copolymer Ratio of acid unit (A2) (mol%)] + [Proportion of glutaric anhydride unit (A3) in copolymer (mol%)])} × 100 (I)
[8] The resin composition according to any one of [1] to [7], wherein the molded piece having a thickness of 2 mm has a haze value of 1 or less.
[9] The resin composition according to any one of [1] to [8], wherein the melt flow rate at a load of 13.65 kgf and a temperature of 230 ° C. is 6 g / 10 min or more.
 [10] メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体を重合して前駆体を得て、得られた前駆体と下記一般式(1)に示す化合物(B)とを溶融混練する、樹脂組成物の製造方法。 [10] A monomer containing methyl (meth) acrylate (a1) and (meth) acrylic acid (a2) is polymerized to obtain a precursor, and the obtained precursor and a compound represented by the following general formula (1) (B) The manufacturing method of the resin composition which melt-kneads.
Figure JPOXMLDOC01-appb-C000004
(R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。)
 [11] 重合方法が、懸濁重合である、[10]に記載の樹脂組成物の製造方法。
 [12] 化合物(B)の含有量が、前駆体100質量部に対して、0.01質量部以上10質量以下である、[10]又は[11]に記載の樹脂組成物の製造方法。
 [13] 溶融混練温度が、150℃以上270℃以下である、[10]~[12]のいずれかに記載の樹脂組成物の製造方法。
Figure JPOXMLDOC01-appb-C000004
(R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.)
[11] The method for producing a resin composition according to [10], wherein the polymerization method is suspension polymerization.
[12] The method for producing a resin composition according to [10] or [11], wherein the content of the compound (B) is 0.01 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the precursor.
[13] The method for producing a resin composition according to any one of [10] to [12], wherein the melt kneading temperature is 150 ° C. or higher and 270 ° C. or lower.
 [14] [1]~[9]のいずれかに記載の樹脂組成物を成形した成形体。
 [15] [14]に記載の成形体を含む車両用部品。
 [16] [15]に記載の車両用部品を使用した車両。
[14] A molded article obtained by molding the resin composition according to any one of [1] to [9].
[15] A vehicle part including the molded article according to [14].
[16] A vehicle using the vehicle component according to [15].
 本発明の樹脂組成物は、耐熱性、透明性に優れる。
 また、本発明の樹脂組成物の製造方法は、生産性に優れ、単位(A3)を相応に含むことにより、低吸水性に優れ、その結果飽和吸水率が低下し、吸水条件における耐熱性に優れ、また、成形時のシルバーストリークスを低減することができるため、透明性に優れる樹脂組成物を製造することができる。
The resin composition of the present invention is excellent in heat resistance and transparency.
In addition, the method for producing the resin composition of the present invention is excellent in productivity, and by including the unit (A3) accordingly, it has excellent low water absorption, resulting in a decrease in saturated water absorption, and heat resistance under water absorption conditions. Since it is excellent and can reduce silver streaks during molding, a resin composition having excellent transparency can be produced.
 (共重合体(A))
 本発明の樹脂組成物は、共重合体(A)を含む。
 共重合体(A)は、メチル(メタ)アクリレート単位(A1)(以下、単に「単位(A1)」ということがある。)、(メタ)アクリル酸単位(A2)(以下、単に「単位(A2)」ということがある。)及び無水グルタル酸単位(A3)(以下、単に「単位(A3)」ということがある。)を含む。
(Copolymer (A))
The resin composition of the present invention contains a copolymer (A).
The copolymer (A) comprises a methyl (meth) acrylate unit (A1) (hereinafter sometimes simply referred to as “unit (A1)”), a (meth) acrylic acid unit (A2) (hereinafter simply referred to as “unit ( A2) ”and glutaric anhydride units (A3) (hereinafter sometimes simply referred to as“ units (A3) ”).
 (単位(A1))
 単位(A1)は、メチル(メタ)アクリレート単位であるが、樹脂組成物がアクリル樹脂本来の性能を維持しつつ、共重合体(A)の耐熱分解性に優れることから、メチルメタクリレート単位とメチルアクリレート単位の両者を含むことが好ましい。
 メチル(メタ)アクリレートは、メチルメタクリレート、メチルアクリレート又はその両者をいう。
(Unit (A1))
The unit (A1) is a methyl (meth) acrylate unit, but the resin composition is excellent in the thermal decomposition resistance of the copolymer (A) while maintaining the original performance of the acrylic resin. It preferably contains both acrylate units.
Methyl (meth) acrylate refers to methyl methacrylate, methyl acrylate, or both.
 単位(A1)がメチルメタクリレート単位とメチルアクリレート単位の両者を含む場合、メチルメタクリレート単位の含有率は、単位(A1)100mol%中、50mol%以上99.9mol%以下が好ましく、75mol%以上99.5mol%以下がより好ましい。メチルメタクリレート単位の含有率が50mol%以上であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。また、メチルメタクリレート単位の含有率が99.9mol%以下であると、共重合体(A)の耐熱分解性に優れる。 When the unit (A1) includes both a methyl methacrylate unit and a methyl acrylate unit, the content of the methyl methacrylate unit is preferably 50 mol% or more and 99.9 mol% or less, and 75 mol% or more and 99.99% or less in 100 mol% of the unit (A1). 5 mol% or less is more preferable. A resin composition does not impair the original performance of an acrylic resin as the content rate of a methyl methacrylate unit is 50 mol% or more. Moreover, it is excellent in the thermal decomposition resistance of a copolymer (A) as the content rate of a methylmethacrylate unit is 99.9 mol% or less.
 単位(A1)がメチルメタクリレート単位とメチルアクリレート単位の両者を含む場合、メチルアクリレート単位の含有率は、単位(A1)100mol%中、0.1mol%以上50mol%以下が好ましく、0.5mol%以上25mol%以下がより好ましい。メチルアクリレート単位の含有率が0.1mol%以上であると、共重合体(A)の耐熱分解性に優れる。また、メチルアクリレート単位の含有率が50mol%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。 When the unit (A1) contains both a methyl methacrylate unit and a methyl acrylate unit, the content of the methyl acrylate unit is preferably 0.1 mol% or more and 50 mol% or less, and 0.5 mol% or more in 100 mol% of the unit (A1). 25 mol% or less is more preferable. When the content of the methyl acrylate unit is 0.1 mol% or more, the copolymer (A) is excellent in thermal decomposition resistance. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of a methyl acrylate unit is 50 mol% or less.
 メチル(メタ)アクリレート単位(A1)の含有率は、共重合体(A)100mol%中、70mol%以上99.2mol%以下が好ましく、80mol%以上99mol%以下がより好ましく、85mol%以上98.5mol%以下が更に好ましい。単位(A1)の含有率が70mol%以上であると、樹脂組成物がアクリル樹脂本来の性能を損なわず、99.2mol%以下であると樹脂組成物の耐熱性に優れる。 The content of the methyl (meth) acrylate unit (A1) is preferably from 70 mol% to 99.2 mol%, more preferably from 80 mol% to 99 mol%, and more preferably from 85 mol% to 98.98 mol in 100 mol% of the copolymer (A). 5 mol% or less is still more preferable. When the content of the unit (A1) is 70 mol% or more, the resin composition does not deteriorate the original performance of the acrylic resin, and when it is 99.2 mol% or less, the heat resistance of the resin composition is excellent.
 (単位(A2))
 単位(A2)は、(メタ)アクリル酸単位であるが、樹脂組成物の耐熱性に優れることから、メタクリル酸単位であることが好ましい。
 (メタ)アクリル酸は、メタクリル酸、アクリル酸又はその両者をいう。
(Unit (A2))
The unit (A2) is a (meth) acrylic acid unit, but is preferably a methacrylic acid unit because the resin composition is excellent in heat resistance.
(Meth) acrylic acid refers to methacrylic acid, acrylic acid or both.
 (メタ)アクリル酸単位(A2)の含有率は、共重合体(A)100mol%中、0.5mol%以上が好ましく、0.7mol%以上がより好ましく、1.0mol%以上が更に好ましい。また20mol%以下が好ましく、15mol%以下がより好ましく、10mol%以下が更に好ましい。単位(A2)の含有率が0.5mol%以上であると、樹脂組成物の耐熱性に優れる。また、単位(A2)の含有率が20mol%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。 The content of the (meth) acrylic acid unit (A2) is preferably 0.5 mol% or more, more preferably 0.7 mol% or more, and further preferably 1.0 mol% or more in 100 mol% of the copolymer (A). Moreover, 20 mol% or less is preferable, 15 mol% or less is more preferable, and 10 mol% or less is still more preferable. It is excellent in the heat resistance of a resin composition as the content rate of a unit (A2) is 0.5 mol% or more. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of a unit (A2) is 20 mol% or less.
 (単位(A3))
 単位(A3)は、無水グルタル酸単位であり、下記一般式(2)に示す構造単位である。
(Unit (A3))
The unit (A3) is a glutaric anhydride unit and is a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
 R、Rは、それぞれ独立して、水素又はメチル基である。
Figure JPOXMLDOC01-appb-C000005
R 4 and R 5 are each independently hydrogen or a methyl group.
 無水グルタル酸単位(A3)の含有率は、共重合体(A)100mol%中、0.3mol%以上が好ましく、0.5mol%以上がより好ましく、0.6mol%以上が更に好ましい。また10mol%以下が好ましく、7mol%以下がより好ましく、5mol%以下が更に好ましい。単位(A3)の含有率が0.3mol%以上であると、樹脂組成物の吸水性を低下させることが出来、成形体の寸法安定性、吸水条件下における樹脂組成物の耐熱性に優れる。また、樹脂を射出成型する際のシルバーストリークスの発生を抑制することが可能となる。また、単位(A3)の含有率が10mol%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。 The content of the glutaric anhydride unit (A3) is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and still more preferably 0.6 mol% or more in 100 mol% of the copolymer (A). Moreover, 10 mol% or less is preferable, 7 mol% or less is more preferable, and 5 mol% or less is still more preferable. When the content of the unit (A3) is 0.3 mol% or more, the water absorption of the resin composition can be reduced, and the dimensional stability of the molded body and the heat resistance of the resin composition under water absorption conditions are excellent. In addition, it is possible to suppress the occurrence of silver streaks when the resin is injection molded. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of a unit (A3) is 10 mol% or less.
 (単位(A4))
 共重合体(A)は、単位(A1)、単位(A2)、単位(A3)以外にも、他の単量体単位(A4)(以下、単に「単位(A4)」ということがある。)を含んでもよい。
(Unit (A4))
In addition to the unit (A1), the unit (A2), and the unit (A3), the copolymer (A) may be referred to as another monomer unit (A4) (hereinafter simply referred to as “unit (A4)”). ) May be included.
 単位(A4)の含有率は、樹脂組成物がアクリル樹脂本来の性能を損なわないことから、共重合体(A)100mol%中、10mol%以下が好ましく、5mol%以下がより好ましく、3mol%以下が更に好ましい。 The content of the unit (A4) is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 3 mol% or less in 100 mol% of the copolymer (A) because the resin composition does not impair the original performance of the acrylic resin. Is more preferable.
 (単位(A3)への変換率)
 下記式(I)で示すグルタル酸無水物単位(A3)への変換率が、5%以上であることが好ましく、10%以上であることがより好ましい。また90%以下であることが好ましく、80%以下であることがより好ましい。
 グルタル酸無水物単位(A3)への変換率(%)={[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)]/([共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)])}×100・・・(I)
 グルタル酸無水物単位(A3)への変換率が5%以上であると、樹脂組成物の吸水性を低下させることが出来、成形体の寸法安定性、吸水条件下における樹脂組成物の耐熱性に優れる。また、樹脂を射出成型する際のシルバーストリークスの発生を抑制することが可能となる。グルタル酸無水物単位(A3)への変換率が90%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。
(Conversion rate to unit (A3))
The conversion rate to the glutaric anhydride unit (A3) represented by the following formula (I) is preferably 5% or more, and more preferably 10% or more. Moreover, it is preferable that it is 90% or less, and it is more preferable that it is 80% or less.
Conversion rate to glutaric anhydride unit (A3) (%) = {[ratio of glutaric anhydride unit (A3) in copolymer (mol%)] / ([(meth) acrylic in copolymer Ratio of acid unit (A2) (mol%)] + [Proportion of glutaric anhydride unit (A3) in copolymer (mol%)])} × 100 (I)
When the conversion rate to the glutaric anhydride unit (A3) is 5% or more, the water absorption of the resin composition can be reduced, the dimensional stability of the molded product, and the heat resistance of the resin composition under water absorption conditions. Excellent. In addition, it is possible to suppress the occurrence of silver streaks when the resin is injection molded. When the conversion rate to the glutaric anhydride unit (A3) is 90% or less, the resin composition does not impair the original performance of the acrylic resin.
 (化合物(B))
 本発明の樹脂組成物は、下記一般式(1)に示す化合物(B)と含む。
(Compound (B))
The resin composition of the present invention includes a compound (B) represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
 R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。
Figure JPOXMLDOC01-appb-C000006
R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
 化合物(B)の具体例としては、例えば、メチルホスフィン、エチルホスフィン、n-ブチルホスフィン、tert-ブチルホスフィン、オクチルホスフィン等のモノアルキルホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジ-n-ブチルホスフィン、ジ-tert-ブチルホスフィン、ジオクチルホスフィン等のジアルキルホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン;フェニルホスフィン、(p-トリル)ホスフィン、(o-トリル)ホスフィン、(m-トリル)ホスフィン等のモノアリールホスフィン;ジフェニルホスフィン、ジ(p-トリル)ホスフィン、ジ(o-トリル)ホスフィン、ジ(m-トリル)ホスフィン、ジフェニルシクロヘキシルホスフィン、p-スチリルジフェニルホスフィン等のジアリールホスフィン;トリフェニルホスフィン、トリ(p-トリル)ホスフィン、トリ(o-トリル)ホスフィン、トリ(m-トリル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-フルオロフェニル)ホスフィン等のトリアリールホスフィン等が挙げられる。これらの化合物(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの化合物(B)の中でも、環化触媒としての活性が高く、樹脂組成物の透明性に優れることから、R、R、Rのうち、少なくとも一つはアリール基である、モノアリールホスフィン、ジアリールホスフィン、トリアリールホスフィンが好ましく、R、R及びRが、それぞれ環状アルキル基又はアリール基であるモノアリールホスフィン、ジアリールホスフィン、トリアリールホスフィンがより好ましく、トリフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、パラスチリルジフェニルホスフィン、トリス(4-メトキシフェニル)ホスフィン及びトリス(4-フルオロフェニル)ホスフィンであることがさらに好ましい。 Specific examples of the compound (B) include, for example, monophosphine such as methylphosphine, ethylphosphine, n-butylphosphine, tert-butylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, di-n-butylphosphine, Dialkylphosphines such as tert-butylphosphine and dioctylphosphine; trialkylphosphines such as trimethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine and trioctylphosphine; phenylphosphine, (p-tolyl) Monoarylphosphine such as phosphine, (o-tolyl) phosphine, (m-tolyl) phosphine; diphenylphosphine, di (p-tolyl) phosphine, di (o-tolyl) phosphine Diarylphosphine such as diphenyl, di (m-tolyl) phosphine, diphenylcyclohexylphosphine, p-styryldiphenylphosphine; triphenylphosphine, tri (p-tolyl) phosphine, tri (o-tolyl) phosphine, tri (m-tolyl) And triarylphosphine such as phosphine, tris (4-methoxyphenyl) phosphine, and tris (4-fluorophenyl) phosphine. These compounds (B) may be used individually by 1 type, and may use 2 or more types together. Among these compounds (B), since the activity as a cyclization catalyst is high and the transparency of the resin composition is excellent, at least one of R 1 , R 2 and R 3 is an aryl group. Aryl phosphine, diaryl phosphine, and triaryl phosphine are preferable, and R 1 , R 2, and R 3 are each a cyclic alkyl group or an aryl group, more preferably monoaryl phosphine, diaryl phosphine, and triaryl phosphine, triphenyl phosphine, diphenyl More preferred are cyclohexylphosphine, parastyryldiphenylphosphine, tris (4-methoxyphenyl) phosphine and tris (4-fluorophenyl) phosphine.
 化合物(B)の含有量は、共重合体(A)100質量部に対して、0.01質量部以上10質量部以下が好ましく、0.05質量部以上5質量部以下がより好ましく、0.1質量部以上3質量部以下が更に好ましい。化合物(B)の含有量が0.01質量部以上であると、単位(A3)を効率的に形成することができる。また、化合物(B)の含有量が10質量部以下であると、樹脂組成物の透明性に優れる。 The content of the compound (B) is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the copolymer (A). More preferably, it is 1 to 3 parts by mass. A unit (A3) can be formed efficiently as content of a compound (B) is 0.01 mass part or more. Moreover, it is excellent in transparency of a resin composition as content of a compound (B) is 10 mass parts or less.
 (樹脂組成物)
 樹脂組成物の質量平均分子量は、30,000以上が好ましく、50,000以上がより好ましく、70,000以上が更に好ましい。また200,000以下が好ましく、150,000以下がより好ましく、130,000以下が更に好ましい。樹脂組成物の質量平均分子量が30,000以上であると、機械特性に優れる。また、樹脂組成物の質量平均分子量が200,000以下であると、溶融流動性に優れる。
 樹脂組成物の質量平均分子量は、標準試料として標準ポリスチレンを用い、ゲルパーミエーションクロマトグラフィーを用いて測定した値とする。
 樹脂組成物の絶乾条件におけるビカット軟化温度は、115℃以上128℃以下が好ましい。樹脂組成物の絶乾条件におけるビカット軟化温度が115℃以上であると、樹脂組成物の絶乾状態での耐熱性に優れ、128℃以下であると、樹脂組成物の低吸水性に優れる。
 樹脂組成物の吸水状態におけるビカット軟化温度は110℃以上が好ましい。樹脂組成物の吸水条件におけるビカット軟化温度が110℃以上であると、樹脂組成物の吸水状態での耐熱性に優れる。
 尚、本明細書において、ビカット軟化温度は、ISO306のA50法に準拠して測定した値とする。
(Resin composition)
The weight average molecular weight of the resin composition is preferably 30,000 or more, more preferably 50,000 or more, and still more preferably 70,000 or more. Moreover, 200,000 or less is preferable, 150,000 or less is more preferable, and 130,000 or less is still more preferable. When the mass average molecular weight of the resin composition is 30,000 or more, the mechanical properties are excellent. Moreover, it is excellent in melt fluidity that the mass average molecular weight of a resin composition is 200,000 or less.
The mass average molecular weight of the resin composition is a value measured using gel permeation chromatography using standard polystyrene as a standard sample.
The Vicat softening temperature in the absolutely dry condition of the resin composition is preferably 115 ° C. or higher and 128 ° C. or lower. When the Vicat softening temperature under the absolutely dry condition of the resin composition is 115 ° C. or higher, the resin composition is excellent in heat resistance in the absolutely dry state, and when it is 128 ° C. or less, the resin composition is excellent in low water absorption.
The Vicat softening temperature in the water absorption state of the resin composition is preferably 110 ° C. or higher. When the Vicat softening temperature in the water absorption condition of the resin composition is 110 ° C. or higher, the resin composition is excellent in heat resistance in the water absorption state.
In this specification, the Vicat softening temperature is a value measured according to ISO 306 A50 method.
 樹脂組成物の飽和吸水率は3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましい。樹脂組成物の飽和吸水率が3質量%以下であると、樹脂組成物の低吸水性に優れ、成形体の寸法安定性、吸水状態における耐熱性に優れる。 The saturated water absorption of the resin composition is preferably 3% by mass or less, more preferably 2.5% by mass or less, and further preferably 2% by mass or less. When the saturated water absorption rate of the resin composition is 3% by mass or less, the resin composition is excellent in low water absorption, excellent in the dimensional stability of the molded article and in heat resistance in the water absorption state.
 樹脂組成物のヘイズは0.1以上1.0以下が好ましく、0.2以上0.8以下であることがより好ましい。樹脂組成物のヘイズが0.1以上であると、樹脂組成物の生産性に優れ1.0以下であると、樹脂組成物の外観に優れる。
 尚、本明細書において、ヘイズは、樹脂組成物を厚さ2mmの成形体に成形し、ISO14782に準拠して測定した値とする。
 樹脂組成物のイエローインデックス(YI)は0.1以上2.0以下が好ましく、0.2以上1.5以下がより好ましい。樹脂組成物のイエローインデックス(YI)が0.1以上であると樹脂組成物の生産性に優れ、2.0以下であると、樹脂組成物の外観に優れる。
 尚、本明細書において、イエローインデックス(YI)は、共重合体を厚さ2mmの成形体に成形し、ISO17223に準拠して測定した値とする。
The haze of the resin composition is preferably from 0.1 to 1.0, more preferably from 0.2 to 0.8. When the haze of the resin composition is 0.1 or more, the productivity of the resin composition is excellent, and when it is 1.0 or less, the appearance of the resin composition is excellent.
In the present specification, the haze is a value obtained by molding a resin composition into a molded body having a thickness of 2 mm and measuring in accordance with ISO14782.
The yellow index (YI) of the resin composition is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.5. When the yellow index (YI) of the resin composition is 0.1 or more, the productivity of the resin composition is excellent, and when it is 2.0 or less, the appearance of the resin composition is excellent.
In the present specification, the yellow index (YI) is a value measured in accordance with ISO 17223 after a copolymer is molded into a molded body having a thickness of 2 mm.
 樹脂組成物のメルトフローレートは、6g/10min以上20g/10min以下が好ましく、10g/10min以上15g/10min以下がより好ましい。樹脂組成物のメルトフローレートが6g/10min以上であると、樹脂組成物の流動性に優れ、20g/10min以下であると樹脂組成物の機械物性に優れる。
 尚、本明細書において、メルトフローレートは、荷重13.65kgf、温度230℃の条件で測定した値とする。
The melt flow rate of the resin composition is preferably 6 g / 10 min or more and 20 g / 10 min or less, more preferably 10 g / 10 min or more and 15 g / 10 min or less. When the melt flow rate of the resin composition is 6 g / 10 min or more, the fluidity of the resin composition is excellent, and when it is 20 g / 10 min or less, the mechanical properties of the resin composition are excellent.
In this specification, the melt flow rate is a value measured under conditions of a load of 13.65 kgf and a temperature of 230 ° C.
 本発明の樹脂組成物は、共重合体(A)、化合物(B)以外に、他の添加剤を含んでもよい。
 他の添加剤としては、例えば、紫外線吸収剤、酸化防止剤、可塑剤、光拡散剤、艶消剤、滑剤、離型剤、帯電防止剤、顔料等の着色剤等が挙げられる。これらの他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 日光等の紫外線による共重合体の劣化を抑制することから、樹脂組成物中に紫外線吸収剤を含むことが好ましい。
 溶融混練や溶融成形の際に共重合体の熱劣化を抑制することから、樹脂組成物中に酸化防止剤を含むことが好ましい。
The resin composition of the present invention may contain other additives in addition to the copolymer (A) and the compound (B).
Examples of other additives include ultraviolet absorbers, antioxidants, plasticizers, light diffusing agents, matting agents, lubricants, mold release agents, antistatic agents, and coloring agents such as pigments. These other additives may be used alone or in combination of two or more.
In order to suppress deterioration of the copolymer due to ultraviolet rays such as sunlight, it is preferable that the resin composition contains an ultraviolet absorber.
In order to suppress thermal degradation of the copolymer during melt kneading or melt molding, it is preferable that an antioxidant is contained in the resin composition.
 (樹脂組成物の製造方法)
 本発明の樹脂組成物は、以下のような工程を経て得ることができる。
 メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体を重合して共重合体(A)の前駆体を得て、得られた前駆体と下記一般式(1)に示す化合物(B)とを溶融混練することで、化合物(B)が縮合環化反応の触媒としての機能を果たし、単位(A1)と単位(A2)とから単位(A3)が形成され、共重合体(A)と化合物(B)とを含む本発明の樹脂組成物を得ることができる。
(Production method of resin composition)
The resin composition of the present invention can be obtained through the following steps.
A monomer containing methyl (meth) acrylate (a1) and (meth) acrylic acid (a2) is polymerized to obtain a precursor of copolymer (A). The resulting precursor and the following general formula (1) The compound (B) functions as a catalyst for the condensation cyclization reaction, and the unit (A3) is formed from the unit (A1) and the unit (A2). The resin composition of this invention containing a copolymer (A) and a compound (B) can be obtained.
Figure JPOXMLDOC01-appb-C000007
 R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。
Figure JPOXMLDOC01-appb-C000007
R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.
 メチル(メタ)アクリレート(a1)は、メチルメタクリレート、メチルアクリレート又はその両者であるが、樹脂組成物がアクリル樹脂本来の性能を維持しつつ、共重合体(A)の耐熱分解性に優れることから、メチルメタクリレートとメチルアクリレートの両者を含むことが好ましい。 Methyl (meth) acrylate (a1) is methyl methacrylate, methyl acrylate or both, but the resin composition is excellent in the thermal decomposition resistance of the copolymer (A) while maintaining the original performance of the acrylic resin. It is preferable to contain both methyl methacrylate and methyl acrylate.
 メチル(メタ)アクリレート(a1)がメチルメタクリレートとメチルアクリレートの両者を含む場合、メチルメタクリレートの含有率は、メチル(メタ)アクリレート(a1)100mol%中、50mol%以上99.9mol%以下が好ましく、75mol%以上99.5mol%以下がより好ましい。メチルメタクリレートの含有率が50mol%以上であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。また、メチルメタクリレートの含有率が99.9mol%以下であると、共重合体(A)の耐熱分解性に優れる。 When methyl (meth) acrylate (a1) contains both methyl methacrylate and methyl acrylate, the content of methyl methacrylate is preferably 50 mol% or more and 99.9 mol% or less in 100 mol% of methyl (meth) acrylate (a1), 75 mol% or more and 99.5 mol% or less are more preferable. When the content of methyl methacrylate is 50 mol% or more, the resin composition does not impair the original performance of the acrylic resin. Moreover, it is excellent in the thermal decomposability | decomposability of a copolymer (A) as the content rate of methyl methacrylate is 99.9 mol% or less.
 メチル(メタ)アクリレート(a1)がメチルメタクリレートとメチルアクリレートの両者を含む場合、メチルアクリレートの含有率は、メチル(メタ)アクリレート(a1)100mol%中、0.1mol%以上50mol%以下が好ましく、0.5mol%以上25mol%以下がより好ましい。メチルアクリレートの含有率が0.1mol%以上であると、共重合体(A)の耐熱分解性に優れる。また、メチルアクリレートの含有率が50mol%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。 When methyl (meth) acrylate (a1) contains both methyl methacrylate and methyl acrylate, the content of methyl acrylate is preferably 0.1 mol% or more and 50 mol% or less in 100 mol% of methyl (meth) acrylate (a1), 0.5 mol% or more and 25 mol% or less are more preferable. When the content of methyl acrylate is 0.1 mol% or more, the copolymer (A) is excellent in thermal decomposition resistance. Further, when the content of methyl acrylate is 50 mol% or less, the resin composition does not impair the original performance of the acrylic resin.
 メチル(メタ)アクリレート(a1)の含有率は、全単量体100mol%中、70mol%以上99.5mol%以下が好ましく、80mol以上99.3mol%以下がより好ましく、85mol%以上99.0mol%以下が更に好ましい。メチル(メタ)アクリレート(a1)の含有率が70mol%以上であると、樹脂組成物がアクリル樹脂本来の性能を損なわず、99.5mol%以下であると樹脂組成物の耐熱性に優れる。 The content of methyl (meth) acrylate (a1) is preferably from 70 mol% to 99.5 mol%, more preferably from 80 mol to 99.3 mol%, more preferably from 85 mol% to 99.0 mol%, based on 100 mol% of all monomers. The following is more preferable. When the content of methyl (meth) acrylate (a1) is 70 mol% or more, the resin composition does not impair the original performance of the acrylic resin, and when it is 99.5 mol% or less, the heat resistance of the resin composition is excellent.
 (メタ)アクリル酸(a2)は、メタクリル酸、アクリル酸又はその両者であるが、樹脂組成物の耐熱性に優れることから、メタクリル酸であることが好ましい。 (Meth) acrylic acid (a2) is methacrylic acid, acrylic acid, or both, and methacrylic acid is preferred because the resin composition is excellent in heat resistance.
 (メタ)アクリル酸(a2)の含有率は、全単量体100mol%中、0.5mol%以上が好ましく、0.7mol%以上がより好ましく、1.0mol%以上が更に好ましい。また20mol%以下が好ましく、15mol%以下がより好ましく、10mol%以下が更に好ましい。(メタ)アクリル酸(a2)の含有率が0.5mol%以上であると、樹脂組成物の耐熱性に優れる。また、(メタ)アクリル酸(a2)の含有率が20mol%以下であると、樹脂組成物がアクリル樹脂本来の性能を損なわない。 The content of (meth) acrylic acid (a2) is preferably 0.5 mol% or more, more preferably 0.7 mol% or more, and even more preferably 1.0 mol% or more in 100 mol% of all monomers. Moreover, 20 mol% or less is preferable, 15 mol% or less is more preferable, and 10 mol% or less is still more preferable. When the content of (meth) acrylic acid (a2) is 0.5 mol% or more, the resin composition is excellent in heat resistance. Moreover, a resin composition does not impair the original performance of an acrylic resin as the content rate of (meth) acrylic acid (a2) is 20 mol% or less.
 単量体は、メチル(メタ)アクリレート(a1)、(メタ)アクリル酸(a2)以外に、共重合可能な他の単量体(a4)を含んでもよい。 The monomer may contain other copolymerizable monomer (a4) in addition to methyl (meth) acrylate (a1) and (meth) acrylic acid (a2).
 他の単量体(a4)としては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等のメチル(メタ)アクリレート以外の(メタ)アクリレート;(メタ)アクリロニトリル;(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;ビニルメチルエーテル、ビニルエチルエーテル、2-ヒドロキシエチルビニルエーテル等のビニルエーテル;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル;エチレン、プロピレン、ブテン、イソブテン等のオレフィン等が挙げられる。これらの他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 (メタ)アクリレートとは、アクリレート、メタクリレート又はその両者をいう。
Examples of the other monomer (a4) include ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, and iso-butyl (meth) acrylate. , Sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) ) Acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate and other (meth) acrylates other than methyl (meth) acrylate; (meth) acrylonitrile; (meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (Meth) acrylamide compounds such as (meth) acrylamide; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and 2-hydroxyethyl vinyl ether; vinyl carboxylates such as vinyl acetate and vinyl butyrate; olefins such as ethylene, propylene, butene and isobutene Is mentioned. These other monomers may be used individually by 1 type, and may use 2 or more types together.
(Meth) acrylate refers to acrylate, methacrylate, or both.
 他の単量体(a4)の含有率は、樹脂組成物がアクリル樹脂本来の性能を損なわないことから、全単量体100mol%中、10mol%以下が好ましく、5mol%以下がより好ましく、3mol%以下が更に好ましい。 The content of the other monomer (a4) is preferably 10 mol% or less, more preferably 5 mol% or less, more preferably 3 mol% or less in 100 mol% of all monomers because the resin composition does not impair the original performance of the acrylic resin. % Or less is more preferable.
 単量体の重合方法としては、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等が挙げられる。これらの重合方法の中でも、樹脂組成物の透明性に優れることから、塊状重合、懸濁重合、溶液重合が好ましく、共重合体(A)の生産性に優れることから、塊状重合、懸濁重合がより好ましく、懸濁重合が更に好ましい。 Examples of the monomer polymerization method include bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization. Among these polymerization methods, block polymerization, suspension polymerization, and solution polymerization are preferable because of excellent transparency of the resin composition, and block polymerization and suspension polymerization are preferable because of excellent productivity of the copolymer (A). Is more preferable, and suspension polymerization is more preferable.
 単量体の重合における重合温度、重合開始剤種類、重合開始剤量は、用いる重合方法や得ようとする共重合体(A)に応じて、適宜設定すればよい。 What is necessary is just to set suitably the polymerization temperature in the superposition | polymerization of a monomer, a polymerization initiator kind, and the amount of polymerization initiators according to the polymerization method to be used and the copolymer (A) to be obtained.
 共重合体(A)の質量平均分子量を調整するために、単量体の重合において、連鎖移動剤を用いてもよい。
 連鎖移動剤としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネート等のメルカプタン化合物;α-メチルスチレンダイマー;テルピノレン等が挙げられる。これらの連鎖移動剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの連鎖移動剤の中でも、共重合体(A)の質量平均分子量の調整が容易で、共重合体(A)の生産性に優れることから、メルカプタン化合物が好ましく、単官能アルキルメルカプタン化合物がより好ましい。
In order to adjust the mass average molecular weight of the copolymer (A), a chain transfer agent may be used in the polymerization of the monomers.
Examples of the chain transfer agent include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycol. Mercaptan compounds such as phthalate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- (β-thiopropionate), pentaerythritol tetrakisthiopropionate Α-methylstyrene dimer; terpinolene and the like. These chain transfer agents may be used individually by 1 type, and may use 2 or more types together. Among these chain transfer agents, the mercaptan compound is preferable because the adjustment of the mass average molecular weight of the copolymer (A) is easy and the productivity of the copolymer (A) is excellent, and the monofunctional alkyl mercaptan compound is more preferable. preferable.
 連鎖移動剤の使用量は、全単量体100質量部に対して、0.1質量部以上0.5質量部以下が好ましく、0.25質量部以上0.45質量部以下がより好ましい。連鎖移動剤の使用量が0.1質量部以上であると、樹脂組成物の溶融流動性に優れる。また、連鎖移動剤の使用量が0.5質量部以下であると、樹脂組成物の機械特性に優れる。 The amount of the chain transfer agent used is preferably 0.1 parts by mass or more and 0.5 parts by mass or less, and more preferably 0.25 parts by mass or more and 0.45 parts by mass or less with respect to 100 parts by mass of all monomers. It is excellent in the melt fluidity of a resin composition as the usage-amount of a chain transfer agent is 0.1 mass part or more. Moreover, it is excellent in the mechanical characteristic of a resin composition as the usage-amount of a chain transfer agent is 0.5 mass part or less.
 前駆体と化合物(B)との溶融混練方法としては、例えば、固体の前駆体と化合物(B)とを混合して押出機又は混練機により加熱し混練する方法;前駆体と化合物(B)とを溶剤に溶解させて加熱し撹拌する方法等が挙げられる。これらの溶融混練方法の中でも、樹脂組成物の生産性に優れることから、固体の前駆体と化合物(B)とを混合して押出機又は混練機により加熱し混練する方法が好ましい。 Examples of the melt-kneading method of the precursor and the compound (B) include a method of mixing a solid precursor and the compound (B) and heating and kneading with an extruder or a kneader; the precursor and the compound (B) Can be dissolved in a solvent, heated and stirred. Among these melt-kneading methods, a method of mixing a solid precursor and the compound (B) and heating and kneading with an extruder or a kneader is preferable because the resin composition is excellent in productivity.
 化合物(B)の含有量は、前駆体100質量部に対して、0.01質量部以上10質量部以下が好ましく、0.05質量部以上5質量部以下がより好ましく、0.2質量部以上3質量部以下が更に好ましい。化合物(B)の含有量が0.01質量部以上であると、単位(A3)を効率的に形成することができる。また、化合物(B)の含有量が10質量部以下であると、樹脂組成物の透明性に優れる。 The content of the compound (B) is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.05 parts by mass or more and 5 parts by mass or less, with respect to 100 parts by mass of the precursor, and 0.2 parts by mass. More preferred is 3 parts by mass or less. A unit (A3) can be formed efficiently as content of a compound (B) is 0.01 mass part or more. Moreover, it is excellent in transparency of a resin composition as content of a compound (B) is 10 mass parts or less.
 前駆体と化合物(B)との溶融混練温度は、150℃以上270℃以下が好ましく、180℃以上270℃以下がより好ましく、210℃以上250℃以下が更に好ましい。溶融混練温度が150℃以上であると、単位(A3)を効率的に形成することができる。また、溶融混練温度が270℃以下であると、樹脂組成物の透明性に優れる。 The melt-kneading temperature of the precursor and the compound (B) is preferably 150 ° C. or higher and 270 ° C. or lower, more preferably 180 ° C. or higher and 270 ° C. or lower, and further preferably 210 ° C. or higher and 250 ° C. or lower. When the melt kneading temperature is 150 ° C. or higher, the unit (A3) can be efficiently formed. Moreover, it is excellent in transparency of a resin composition as melt-kneading temperature is 270 degrees C or less.
 前駆体と化合物(B)との溶融混練時間は、10秒以上3000秒以下が好ましく、30秒以上1000秒以下がより好ましい。溶融混練時間が10秒以上であると、単位(A3)を効率的に形成することができる。また、溶融混練時間が3000秒以下であると、樹脂組成物の透明性に優れる。 The melt-kneading time of the precursor and the compound (B) is preferably from 10 seconds to 3000 seconds, and more preferably from 30 seconds to 1000 seconds. When the melt kneading time is 10 seconds or longer, the unit (A3) can be formed efficiently. Moreover, it is excellent in transparency of a resin composition as melt-kneading time is 3000 second or less.
 (成形体)
 本発明の成形体は、本発明の樹脂組成物を成形して得られる。
(Molded body)
The molded product of the present invention is obtained by molding the resin composition of the present invention.
 成形体を得るための成形方法としては、例えば、射出成形、押出成形、加圧成形等が挙げられる。また、得られた成形体を、更に圧空成形や真空成形等の二次成形してもよい。 Examples of a molding method for obtaining a molded body include injection molding, extrusion molding, and pressure molding. Further, the obtained molded body may be further subjected to secondary molding such as pressure molding or vacuum molding.
 成形温度は、200℃以上270℃以下が好ましく、210℃以上260℃以下がより好ましい。成形温度が200℃以上であると、樹脂組成物の溶融流動性に優れ、成形体の外観に優れる。また、成形温度が270℃以下であると、樹脂組成物の熱分解を抑制することができる。 The molding temperature is preferably 200 ° C. or higher and 270 ° C. or lower, and more preferably 210 ° C. or higher and 260 ° C. or lower. When the molding temperature is 200 ° C. or higher, the melt flowability of the resin composition is excellent, and the appearance of the molded article is excellent. Moreover, thermal decomposition of a resin composition can be suppressed as molding temperature is 270 degrees C or less.
 本発明の成形体は、耐熱性、透明性に優れることから、光学材料、車両用部品、照明用材料、建築用材料等に用いることができ、特に、自動車の車両用部品に好適であり、前記車両用部品を使用した車両に好適である。 Since the molded body of the present invention is excellent in heat resistance and transparency, it can be used for optical materials, vehicle parts, lighting materials, building materials, etc., and is particularly suitable for automotive vehicle parts, It is suitable for a vehicle using the vehicle component.
 自動車の車両用部品としては、例えば、リアランプアウターカバー、リアランプ内部の光学部材、ヘッドライト用のインナーレンズ(プロジェクターレンズやPESレンズと称される場合がある)、メーターカバー、ドアミラーハウジング、ピラーカバー(サッシュカバー)、ライセンスガーニッシュ、フロントグリル、フォグガーニッシュ、エンブレム等が挙げられる。 Examples of automotive vehicle parts include a rear lamp outer cover, an optical member inside the rear lamp, an inner lens for a headlight (sometimes referred to as a projector lens or a PES lens), a meter cover, a door mirror housing, a pillar cover ( Sash cover), license garnish, front grille, fog garnish, emblem and the like.
(質量平均分子量)
 実施例、比較例で得られた樹脂組成物10mgを、10mlのテトラヒドロフランに溶解し、0.5μmメンブレンフィルターで濾過して、試料溶液を得た。得られた試料溶液について、ゲルパーミエーションクロマトグラフィー(機種名「HLC-8320 GPC Eco SEC」、東ソー(株)製)を用い、質量平均分子量を測定した。分離カラムとして「TSKgel SuperHZM-H」(商品名、東ソー(株)製、内径4.6mm×長さ15cm)を2本直列にしたもの、溶媒としてテトラヒドロフラン、検出器として示差屈折計、標準試料として標準ポリスチレンを用い、流量0.6ml/min、測定温度40℃、注入量0.1mlの条件とした。
(Mass average molecular weight)
10 mg of the resin compositions obtained in Examples and Comparative Examples were dissolved in 10 ml of tetrahydrofuran and filtered through a 0.5 μm membrane filter to obtain a sample solution. The obtained sample solution was measured for mass average molecular weight using gel permeation chromatography (model name “HLC-8320 GPC Eco SEC”, manufactured by Tosoh Corporation). Two separation columns “TSKgel SuperHZM-H” (trade name, manufactured by Tosoh Corporation, inner diameter 4.6 mm × length 15 cm), tetrahydrofuran as solvent, differential refractometer as detector, standard sample Standard polystyrene was used under the conditions of a flow rate of 0.6 ml / min, a measurement temperature of 40 ° C., and an injection amount of 0.1 ml.
 (樹脂組成物中の各単位の含有率)
 実施例、比較例で得られた樹脂組成物及び重ジメチルスルホキシドを、撹拌子を備えた20mlのシュレンク管に供給し、撹拌しながら80℃に加熱し、樹脂組成物を溶解させた。その後、23℃まで冷却し、ベンジルアミンをシュレンク管に供給し、撹拌しながら80℃に加熱した。1時間反応させた後、反応溶液を抜き取り、核磁気共鳴装置(varian社製、270MHz)を用い、測定温度80℃、積算回数32回の条件で、H-NMR測定を行った。
 得られたH-NMR測定結果から、3.7ppm付近に存在するシングレットピークの未反応ベンジルアミンのベンジルプロトンの積分値と、4.2ppm付近に存在するシングレットピークのグルタル酸ベンジルアミドのベンジルプロトンの積分値と、の比から、樹脂組成物中の単位(A3)の含有率を算出した。また、3.5ppm付近に存在するシングレットピークの単位(A1)由来のプロトンの積分値、0.5ppm以上2.5ppm以下付近に存在する単位(A1)と単位(A2)由来のプロトンの積分値をそれぞれ、3.7ppm付近に存在するシングレットピークの未反応ベンジルアミンのベンジルプロトンの積分値と比をとることで、樹脂組成物中の単位(A1)及び単位(A2)の含有率を算出した。
(Content of each unit in the resin composition)
The resin compositions and heavy dimethyl sulfoxide obtained in Examples and Comparative Examples were supplied to a 20 ml Schlenk tube equipped with a stirrer and heated to 80 ° C. with stirring to dissolve the resin composition. Then, it cooled to 23 degreeC, benzylamine was supplied to the Schlenk pipe | tube, and it heated at 80 degreeC, stirring. After reacting for 1 hour, the reaction solution was taken out, and 1 H-NMR measurement was performed using a nuclear magnetic resonance apparatus (manufactured by varian, 270 MHz) under the conditions of a measurement temperature of 80 ° C. and an integration count of 32 times.
From the obtained 1 H-NMR measurement results, the integrated value of the unreacted benzylamine of the unreacted benzylamine at the singlet peak present near 3.7 ppm and the benzyl proton of the glutaric acid benzylamide at the singlet peak present near 4.2 ppm. From the ratio of the integrated value, the content of the unit (A3) in the resin composition was calculated. Moreover, the integral value of the proton derived from the unit (A1) of the singlet peak existing in the vicinity of 3.5 ppm, the integral value of the proton derived from the unit (A1) and the unit (A2) present in the vicinity of 0.5 ppm to 2.5 ppm. The ratio of the unit (A1) and the unit (A2) in the resin composition was calculated by taking the ratio with the integral value of the benzyl protons of the unreacted benzylamine of the singlet peak existing in the vicinity of 3.7 ppm. .
 (耐熱性評価)
 実施例、比較例で得られた樹脂組成物を、射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し、80mm×8mm×4mmの成形体を得た。得られた80mm×8mm×4mmの成形体を切断し、40mm×8mm×4mmの成形体を得た後、80℃で16時間アニールを行い、得られた成形体を絶乾条件における耐熱性評価の試験片として用いた。また、絶乾状態にした試験片の一部は25℃、湿度50%の条件下に1週間静置し、吸水条件における耐熱性評価の試験片として用いた。
 耐熱性評価として、HDT/VICAT試験機(機種名「No.148-HAD ヒートデストーションテスター」、(株)安田精機製作所製)を用い、ISO306のA50法に準拠し、ビカット軟化温度試験を行い、ビカット軟化温度を測定した。
 尚、各共重合体3回ビカット軟化温度試験を行い、その平均値をビカット軟化温度とした。
(Heat resistance evaluation)
The resin compositions obtained in the Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and 80 mm × 8 mm × 4 mm. A molded body of was obtained. The obtained 80 mm × 8 mm × 4 mm molded body was cut to obtain a 40 mm × 8 mm × 4 mm molded body, and then annealed at 80 ° C. for 16 hours, and the obtained molded body was evaluated for heat resistance under absolutely dry conditions. It was used as a test piece. Moreover, a part of the test piece which was completely dried was left to stand at 25 ° C. and a humidity of 50% for 1 week, and used as a test piece for heat resistance evaluation under water absorption conditions.
For heat resistance evaluation, HDT / VICAT tester (model name “No. 148-HAD heat distortion tester”, manufactured by Yasuda Seiki Seisakusho Co., Ltd.) is used, and a Vicat softening temperature test is conducted in accordance with ISO 306 A50 method. The Vicat softening temperature was measured.
In addition, each copolymer 3 times Vicat softening temperature test was done, and the average value was made into Vicat softening temperature.
 (吸水性評価)
 実施例、比較例で得られた樹脂組成物を射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し80mm×8mm×4mmの成形体を得た。得られた80mm×8mm×4mmの成形体を吸水性評価の試験片として用いた。
 得られた試験片を、80℃、16時間真空乾燥機内で乾燥し、乾燥時の質量を精秤した。その後、60℃、相対湿度90%に設定した小型環境試験機(機種名「SH-241」、エスペック(株)製)内に試験片を静置した。試験期間60日の時点で飽和吸水したと判断し、飽和吸水時の質量を精秤した。飽和吸水率を、下記式(II)により算出した。
 飽和吸水率(%)={([飽和吸水時の質量]-[乾燥時の質量])/[乾燥時の質量]}×100・・・(II)
 尚、各共重合体3回試験を行い、その平均値を飽和吸水率とした。
(Water absorption evaluation)
The resin compositions obtained in Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and molded to 80 mm × 8 mm × 4 mm. Got the body. The obtained molded body of 80 mm × 8 mm × 4 mm was used as a test piece for water absorption evaluation.
The obtained test piece was dried in a vacuum dryer at 80 ° C. for 16 hours, and the mass at the time of drying was precisely weighed. Thereafter, the test piece was allowed to stand in a small environmental tester (model name “SH-241”, manufactured by ESPEC Corporation) set to 60 ° C. and relative humidity 90%. It was judged that saturated water was absorbed at the time of the test period of 60 days, and the mass at the time of saturated water absorption was precisely weighed. The saturated water absorption was calculated by the following formula (II).
Saturated water absorption (%) = {([mass when saturated water absorption] − [mass when drying]) / [mass when drying]} × 100 (II)
In addition, each copolymer was tested 3 times and the average value was made into the saturated water absorption.
 (外観評価)
・透明性
 実施例、比較例で得られた樹脂組成物を、射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し、100mm×50mm×2mmの成形体を得た。得られた100mm×50mm×2mmの成形体を透明性の評価の試験片として用いた。
 透明性の評価として、ヘイズメーター(機種名「NDH-2000」、日本電色工業(株)製)を用い、ISO14782に準拠し、厚さ2mmの成形体のヘイズを測定した。
 尚、各共重合体3回試験を行い、その平均値をヘイズとした。
・色味
 実施例、比較例で得られた樹脂組成物を、射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し、100mm×50mm×2mmの成形体を得た。得られた100mm×50mm×2mmの成形体を色味の評価の試験片として用いた。
 色味の評価として、瞬間マルチ測光システム(機種名「MCPD-3000」、大塚電子(株)製)を用い、ISO17223に準拠し、厚さ2mmの成形体のイエローインデックス(YI)を測定した。
 尚、各共重合体3回試験を行い、その平均値をイエローインデックス(YI)とした。
(Appearance evaluation)
-Transparency The resin compositions obtained in Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), 100 mm × A molded body of 50 mm × 2 mm was obtained. The obtained molded body of 100 mm × 50 mm × 2 mm was used as a test piece for transparency evaluation.
As a transparency evaluation, a haze meter (model name “NDH-2000”, manufactured by Nippon Denshoku Industries Co., Ltd.) was used, and the haze of a molded product having a thickness of 2 mm was measured in accordance with ISO14782.
Each copolymer was tested three times, and the average value was defined as haze.
Color The resin compositions obtained in the examples and comparative examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), 100 mm × A molded body of 50 mm × 2 mm was obtained. The obtained molded body of 100 mm × 50 mm × 2 mm was used as a test piece for evaluation of color.
As a color evaluation, an instantaneous multi-photometry system (model name “MCPD-3000”, manufactured by Otsuka Electronics Co., Ltd.) was used, and the yellow index (YI) of a 2 mm-thick molded article was measured in accordance with ISO 17223.
Each copolymer was tested three times, and the average value was taken as the yellow index (YI).
(機械特性評価)
 実施例、比較例で得られた樹脂組成物を、射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し、80mm×8mm×4mmの成形体を得た。得られた80mm×8mm×4mmの成形体を機械特性評価の試験片として用いた。
 機械特性評価として、テンシロン万能試験機(機種名「RTC-1250A-PL」、(株)オリエンテック製)を用い、ISO178に準拠し、3点曲げ試験を行い、曲げ弾性率を測定した。
 尚、各共重合体5回3点曲げ試験を行い、その平均値を曲げ弾性率とした。
(Mechanical property evaluation)
The resin compositions obtained in the Examples and Comparative Examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and 80 mm × 8 mm × 4 mm. A molded body of was obtained. The obtained 80 mm × 8 mm × 4 mm molded body was used as a test piece for mechanical property evaluation.
As a mechanical property evaluation, a Tensilon universal testing machine (model name “RTC-1250A-PL”, manufactured by Orientec Co., Ltd.) was used, a three-point bending test was performed in accordance with ISO178, and the flexural modulus was measured.
Each copolymer was subjected to a five-point three-point bending test, and the average value was defined as the flexural modulus.
 (流動性評価)
 実施例、比較例で得られた樹脂組成物を、メルトインデクサー(機種名「メルトインデクサーL244」、(株)テクノ・セブン製)に供給し、樹脂組成物のメルトフローレートを測定した。温度230℃、荷重13.65kgの条件で試験を行い、試験切り取り間隔は、樹脂組成物の流動性に応じ10秒以上120秒以下とした。
 尚、各樹脂組成物5回試験を行い、その平均値をメルトフローレートとした。
(Liquidity assessment)
The resin compositions obtained in Examples and Comparative Examples were supplied to a melt indexer (model name “Melt Indexer L244”, manufactured by Techno Seven Co., Ltd.), and the melt flow rate of the resin composition was measured. The test was conducted under the conditions of a temperature of 230 ° C. and a load of 13.65 kg, and the test cut-off interval was set to 10 seconds or longer and 120 seconds or shorter according to the fluidity of the resin composition.
Each resin composition was tested five times, and the average value was taken as the melt flow rate.
 (成形性評価)
 実施例、比較例で得られた樹脂組成物を射出成形機(機種名「IS-100」、東芝機械(株)製)を用い、成形温度250℃で射出成形し、100mm×50mm×2mmの成形体を得た。
 得られた10個の成形体を目視により確認し、すべての成形体でシルバーストリークスが確認されなかったものを「A」と、1~5個の成形体シルバーストリークスが確認されたものを「B」と、5個以上の成形体でシルバーストリークスが確認されたものを「C」として評価した。
(Formability evaluation)
The resin compositions obtained in the examples and comparative examples were injection molded at a molding temperature of 250 ° C. using an injection molding machine (model name “IS-100”, manufactured by Toshiba Machine Co., Ltd.), and 100 mm × 50 mm × 2 mm A molded body was obtained.
The 10 molded bodies obtained were visually confirmed, and “A” indicates that no silver streak was confirmed in all the molded bodies, and 1 to 5 molded body silver streaks were confirmed. “B” and five or more molded bodies in which silver streaks were confirmed were evaluated as “C”.
 [分散剤の製造例]
 脱イオン水900質量部、メタクリル酸2-スルホエチルナトリウム60質量部、メタクリル酸カリウム10質量部及びメチルメタクリレート12質量部を、撹拌機、温度計及び冷却管を備えたフラスコに供給し、窒素を放流しながら、フラスコの内温が50℃になるよう加熱した。その後、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩0.08質量部を供給し、フラスコの内温が60℃になるよう加熱した。その後、滴下ポンプを用いて、メチルメタクリレートを0.24質量部/分の速度で75分間滴下した。その後、6時間保持し、分散剤(固形分10質量%)を得た。
[Production Example of Dispersant]
Supply 900 parts by weight of deionized water, 60 parts by weight of sodium 2-sulfoethyl methacrylate, 10 parts by weight of potassium methacrylate and 12 parts by weight of methyl methacrylate to a flask equipped with a stirrer, a thermometer and a condenser, and supply nitrogen. While discharging, the flask was heated to an internal temperature of 50 ° C. Thereafter, 0.08 part by mass of 2,2′-azobis (2-methylpropionamidine) dihydrochloride was supplied, and the flask was heated so that the internal temperature of the flask became 60 ° C. Thereafter, methyl methacrylate was added dropwise at a rate of 0.24 parts by mass / min for 75 minutes using a dropping pump. Then, it hold | maintained for 6 hours and obtained the dispersing agent (10 mass% of solid content).
 [製造例1]
 脱イオン水2000質量部及び硫酸ナトリウム4.2質量部を、攪拌機、温度計、冷却管及び窒素ガス導入管を備えたセパラブルフラスコに供給し、320rpmの撹拌速度で15分間撹拌した。その後、メチルメタクリレート(96mol%)(商品名「アクリエステルM」、三菱レイヨン(株)製)1351.6質量部、メチルアクリレート(1mol%)12.1質量部、メタクリル酸(3mol%)36.3質量部、2,2’-アゾビス-2-メチルブチロニトリル(重合開始剤、商品名「V-59」、和光純薬工業(株)製)2.8質量部及びn-オクチルメルカプタン(連鎖移動剤、東京化成工業(株)製)4.2質量部(単量体合計100質量部に対する含有量が0.3質量部)をセパラブルフラスコに供給し、5分間撹拌した。その後、前記分散剤の製造例に示した方法で製造した分散剤6.72質量部をセパラブルフラスコに供給し、撹拌し、セパラブルフラスコ中の単量体混合物を水中に分散させた。その後、窒素ガスを15分間放流した。
 その後、セパラブルフラスコの内温が75℃になるよう加熱し、重合発熱ピークが観測されるまでその温度を保持した。重合発熱ピークが観測された後、セパラブルフラスコの内温が90℃になるよう加熱し、60分間保持し、重合を完了させた。その後、セパラブルフラスコ内の混合物を濾過し、濾過物を脱イオン水で洗浄し、80℃で16時間乾燥し、ビーズ状の前駆体(1)を得た。
 単量体混合物中の組成比を表1に示す。
[Production Example 1]
2000 parts by mass of deionized water and 4.2 parts by mass of sodium sulfate were supplied to a separable flask equipped with a stirrer, a thermometer, a cooling pipe and a nitrogen gas introduction pipe, and stirred for 15 minutes at a stirring speed of 320 rpm. Thereafter, methyl methacrylate (96 mol%) (trade name “Acryester M”, manufactured by Mitsubishi Rayon Co., Ltd.) 1351.6 parts by mass, methyl acrylate (1 mol%) 12.1 parts by mass, methacrylic acid (3 mol%) 3 parts by mass, 2,2′-azobis-2-methylbutyronitrile (polymerization initiator, trade name “V-59”, manufactured by Wako Pure Chemical Industries, Ltd.) 2.8 parts by mass and n-octyl mercaptan ( A chain transfer agent, manufactured by Tokyo Chemical Industry Co., Ltd. (4.2 parts by mass) was supplied to a separable flask and stirred for 5 minutes. Thereafter, 6.72 parts by mass of the dispersant produced by the method shown in the production example of the dispersant was supplied to a separable flask and stirred to disperse the monomer mixture in the separable flask in water. Thereafter, nitrogen gas was discharged for 15 minutes.
Then, it heated so that the internal temperature of a separable flask might be 75 degreeC, and the temperature was hold | maintained until the polymerization exothermic peak was observed. After the polymerization exothermic peak was observed, the separable flask was heated to an internal temperature of 90 ° C. and held for 60 minutes to complete the polymerization. Thereafter, the mixture in the separable flask was filtered, and the filtrate was washed with deionized water and dried at 80 ° C. for 16 hours to obtain a bead-like precursor (1).
The composition ratio in the monomer mixture is shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [製造例2~3]
 単量体混合物中の組成比を表1のように変更した以外は製造例1と同様の操作を行い、ビーズ状の前駆体(2)~(3)を得た。
[Production Examples 2 to 3]
Except that the composition ratio in the monomer mixture was changed as shown in Table 1, the same operations as in Production Example 1 were performed to obtain bead-like precursors (2) to (3).
 [実施例1]
 製造例1で得られた前駆体(1)100質量部及び化合物(B)としてトリフェニルホスフィン0.3質量部を混合し、二軸混練押出機(Werner&Pfleiderer社製、30mmφ)を用い、混練温度250℃、混練時間60秒で溶融混練し、グルタル酸無水物単位(A3)を形成させ、ペレット状の樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表2に示す。
[Example 1]
100 parts by mass of the precursor (1) obtained in Production Example 1 and 0.3 part by mass of triphenylphosphine as the compound (B) were mixed, and the kneading temperature was determined using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mmφ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition.
The evaluation results of the obtained resin composition are shown in Table 2.
 [実施例2~10]
 化合物(B)の種類、化合物(B)の使用量、溶融混練時間を表2のように変更した以外は、実施例1と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表2に示す。
[Examples 2 to 10]
Except having changed the kind of compound (B), the usage-amount of a compound (B), and melt-kneading time as shown in Table 2, operation similar to Example 1 was performed and the resin composition was obtained.
The evaluation results of the obtained resin composition are shown in Table 2.
 [比較例1]
 化合物(B)を用いずに前駆体(1)のみを溶融混練する以外は、実施例1と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表2に示す。
[Comparative Example 1]
A resin composition was obtained in the same manner as in Example 1 except that only the precursor (1) was melt kneaded without using the compound (B).
The evaluation results of the obtained resin composition are shown in Table 2.
 [比較例2]
 化合物(B)を用いる代わりに、リン酸エステル化合物としてリン酸ステアリルとリン酸ジステアリルとの混合物(商品名「アデカスタブAX-71」、(株)ADEKA製)、を混合して溶融混練する以外は、実施例1と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表2に示す。
[Comparative Example 2]
Instead of using the compound (B), a mixture of stearyl phosphate and distearyl phosphate (trade name “ADK STAB AX-71”, manufactured by ADEKA Corporation) as a phosphate ester compound is mixed and melt-kneaded. Performed the same operation as Example 1, and obtained the resin composition.
The evaluation results of the obtained resin composition are shown in Table 2.
 [比較例3]
 化合物(B)を用いる代わりに、金属塩として酢酸リチウムを混合して溶融混練する以外は、実施例1と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表2に示す。
[Comparative Example 3]
A resin composition was obtained in the same manner as in Example 1 except that lithium acetate as a metal salt was mixed and melt-kneaded instead of using the compound (B).
The evaluation results of the obtained resin composition are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~10で得られた樹脂組成物は、透明性に優れた。また、実施例1~10で得られた樹脂組成物は、単位(A3)を相応に含むので、低吸水性に優れ、その結果飽和吸水率が低下し、吸水条件における耐熱性が良好な結果となっている。
 比較例1で得られた樹脂組成物は、単位(A3)をほとんど含まず、低吸水性に劣り、吸水条件における耐熱性が低下している。
 比較例2で得られた樹脂組成物は、リン酸エステル化合物を用いたために、曇ってしまい、樹脂組成物の透明性が低下した。また、単位(A3)をほとんど形成出来ず、低吸水性に劣り、吸水条件における耐熱性が低下している。
 比較例3で得られた樹脂組成物は、金属塩化合物を用いているので曇ってしまい、透明性に劣った。また、金属塩自体が水溶性であることから混練後の樹脂組成物の吸水性が悪化し、吸水条件における耐熱性が低下している。さらに、樹脂組成物の流動性にも劣った。
The resin compositions obtained in Examples 1 to 10 were excellent in transparency. In addition, since the resin compositions obtained in Examples 1 to 10 contain units (A3) correspondingly, they are excellent in low water absorption, resulting in a decrease in saturated water absorption and good heat resistance under water absorption conditions. It has become.
The resin composition obtained in Comparative Example 1 contains almost no unit (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions.
Since the resin composition obtained in Comparative Example 2 used a phosphate ester compound, the resin composition became cloudy, and the transparency of the resin composition was lowered. Moreover, the unit (A3) can hardly be formed, the water absorption is inferior, and the heat resistance under water absorption conditions is lowered.
The resin composition obtained in Comparative Example 3 was cloudy because it used a metal salt compound, and was inferior in transparency. Further, since the metal salt itself is water-soluble, the water absorption of the resin composition after kneading is deteriorated, and the heat resistance under water absorption conditions is reduced. Furthermore, the fluidity of the resin composition was inferior.
 [実施例11]
 製造例2で得られた前駆体(2)100質量部及び化合物(B)としてトリフェニルホスフィン0.1質量部を混合し、二軸混練押出機(Werner&Pfleiderer社製、30mmφ)を用い、混練温度250℃、混練時間60秒で溶融混練し、グルタル酸無水物単位(A3)を形成させ、ペレット状の樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表3に示す。
[Example 11]
100 parts by mass of the precursor (2) obtained in Production Example 2 and 0.1 part by mass of triphenylphosphine as a compound (B) were mixed, and a kneading temperature was obtained using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mmφ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition.
Table 3 shows the evaluation results of the obtained resin composition.
 [実施例12~16]
 化合物(B)の種類、化合物(B)の使用量、溶融混練時間を表3のように変更した以外は、実施例11と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表3に示す。
[Examples 12 to 16]
Except having changed the kind of compound (B), the usage-amount of a compound (B), and melt-kneading time as shown in Table 3, operation similar to Example 11 was performed and the resin composition was obtained.
Table 3 shows the evaluation results of the obtained resin composition.
 [比較例4]
 化合物(B)を用いずに前駆体(2)のみを溶融混練する以外は、実施例11と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表3に示す。
[Comparative Example 4]
A resin composition was obtained in the same manner as in Example 11 except that only the precursor (2) was melt kneaded without using the compound (B).
Table 3 shows the evaluation results of the obtained resin composition.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例11~16で得られた樹脂組成物は、透明性に優れた。また、実施例11~16で得られた樹脂組成物は、単位(A3)を相応に含むので、低吸水性に優れ、その結果飽和吸水率が低下し、吸水条件における耐熱性が良好な結果となっている。また、成形時のシルバーストリークスを低減することが出来た。
 比較例4で得られた樹脂組成物は、単位(A3)をほとんど含まず、低吸水性に劣り、吸水条件における耐熱性が低下している。また、成形体においてシルバーストリークスが発生した。
The resin compositions obtained in Examples 11 to 16 were excellent in transparency. In addition, since the resin compositions obtained in Examples 11 to 16 contain units (A3) correspondingly, they are excellent in low water absorption, as a result, the saturated water absorption is decreased, and the heat resistance under water absorption conditions is good. It has become. In addition, silver streaks during molding could be reduced.
The resin composition obtained in Comparative Example 4 contains almost no units (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions. Further, silver streaks occurred in the molded body.
 [実施例17]
 製造例3で得られた前駆体(3)100質量部及び化合物(B)としてトリフェニルホスフィン0.1質量部を混合し、二軸混練押出機(Werner&Pfleiderer社製、30mmφ)を用い、混練温度250℃、混練時間60秒で溶融混練し、グルタル酸無水物単位(A3)を形成させ、ペレット状の樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表4に示す。
[Example 17]
100 parts by mass of the precursor (3) obtained in Production Example 3 and 0.1 part by mass of triphenylphosphine as the compound (B) were mixed, and the kneading temperature was determined using a twin-screw kneading extruder (manufactured by Werner & Pfleiderer, 30 mmφ). Melting and kneading was performed at 250 ° C. for 60 seconds to form a glutaric anhydride unit (A3) to obtain a pellet-shaped resin composition.
Table 4 shows the evaluation results of the obtained resin composition.
 [実施例18、19]
 化合物(B)の使用量を表4のように変更した以外は、実施例17と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表4に示す。
[Examples 18 and 19]
Except having changed the usage-amount of the compound (B) like Table 4, operation similar to Example 17 was performed and the resin composition was obtained.
Table 4 shows the evaluation results of the obtained resin composition.
 [比較例5]
 化合物(B)を用いずに前駆体(3)のみを溶融混練する以外は、実施例17と同様の操作を行い、樹脂組成物を得た。
 得られた樹脂組成物の評価結果を、表4に示す。
[Comparative Example 5]
A resin composition was obtained in the same manner as in Example 17 except that only the precursor (3) was melt kneaded without using the compound (B).
Table 4 shows the evaluation results of the obtained resin composition.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例17~19で得られた樹脂組成物は、透明性に優れた。また、実施例11~16で得られた樹脂組成物は、単位(A3)を相応に含むので、低吸水性に優れ、その結果飽和吸水率が低下し、吸水条件における耐熱性が良好な結果となっている。また、成形時のシルバーストリークスを低減することが出来た。
 比較例4で得られた樹脂組成物は、単位(A3)をほとんど含まず、低吸水性に劣り、吸水条件における耐熱性が低下している。また、成形体においてシルバーストリークスが発生した。さらに、樹脂組成物の流動性にも劣った。
The resin compositions obtained in Examples 17 to 19 were excellent in transparency. In addition, since the resin compositions obtained in Examples 11 to 16 contain units (A3) correspondingly, they are excellent in low water absorption, as a result, the saturated water absorption is decreased, and the heat resistance under water absorption conditions is good. It has become. In addition, silver streaks during molding could be reduced.
The resin composition obtained in Comparative Example 4 contains almost no units (A3), is inferior in low water absorption, and has low heat resistance under water absorption conditions. Further, silver streaks occurred in the molded body. Furthermore, the fluidity of the resin composition was inferior.
 本発明は、生産性に優れ、耐熱性、透明性に優れる樹脂組成物を提供することが可能である。また、本発明は、前記樹脂組成物の製造方法を提供することが可能である。 The present invention can provide a resin composition having excellent productivity, heat resistance and transparency. Moreover, this invention can provide the manufacturing method of the said resin composition.

Claims (16)

  1.  メチル(メタ)アクリレート単位(A1)、(メタ)アクリル酸単位(A2)及び無水グルタル酸単位(A3)を含む共重合体(A)と、下記一般式(1)に示す化合物(B)とを含む樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。)
    A copolymer (A) comprising a methyl (meth) acrylate unit (A1), a (meth) acrylic acid unit (A2) and a glutaric anhydride unit (A3), and a compound (B) represented by the following general formula (1): A resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001
    (R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.)
  2.  前記化合物(B)のR、R及びRの少なくとも1つが、アリール基である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein at least one of R 1 , R 2 and R 3 of the compound (B) is an aryl group.
  3.  前記化合物(B)のR、R及びRが、それぞれ環状アルキル基又はアリール基である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein R 1 , R 2 and R 3 of the compound (B) are each a cyclic alkyl group or an aryl group.
  4.  前記化合物(B)が、トリフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、パラスチリルジフェニルホスフィン、トリス(4-メトキシフェニル)ホスフィン及びトリス(4-フルオロフェニル)ホスフィンからなる群より選ばれる少なくとも1種である、請求項1~3のいずれかに記載の樹脂組成物。 The compound (B) is at least one selected from the group consisting of triphenylphosphine, diphenylcyclohexylphosphine, parastyryldiphenylphosphine, tris (4-methoxyphenyl) phosphine and tris (4-fluorophenyl) phosphine. Item 4. The resin composition according to any one of Items 1 to 3.
  5.  前記化合物(B)の含有量が、共重合体(A)100質量部に対して、0.01質量部以上10質量部以下である、請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the content of the compound (B) is 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the copolymer (A). .
  6.  共重合体(A)100mol%中、メチル(メタ)アクリレート単位(A1)が、70mol%以上、(メタ)アクリル酸単位(A2)が、0.5mol%以上20mol%以下、無水グルタル酸単位(A3)が、0.3mol%以上10mol%以下である、請求項1~5のいずれかに記載の樹脂組成物。 In 100 mol% of copolymer (A), methyl (meth) acrylate units (A1) are 70 mol% or more, (meth) acrylic acid units (A2) are 0.5 mol% or more and 20 mol% or less, glutaric anhydride units ( The resin composition according to any one of claims 1 to 5, wherein A3) is 0.3 mol% or more and 10 mol% or less.
  7.  下記式(I)で示すグルタル酸無水物単位(A3)への変換率が、5%以上90%以下である、請求項1~6いずれかに記載の樹脂組成物。
     グルタル酸無水物単位(A3)への変換率(%)={[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)]/([共重合体中の(メタ)アクリル酸単位(A2)の割合(mol%)]+[共重合体中のグルタル酸無水物単位(A3)の割合(mol%)])}×100・・・(I)
    The resin composition according to any one of claims 1 to 6, wherein the conversion rate to a glutaric anhydride unit (A3) represented by the following formula (I) is 5% or more and 90% or less.
    Conversion rate to glutaric anhydride unit (A3) (%) = {[ratio of glutaric anhydride unit (A3) in copolymer (mol%)] / ([(meth) acrylic in copolymer Ratio of acid unit (A2) (mol%)] + [Proportion of glutaric anhydride unit (A3) in copolymer (mol%)])} × 100 (I)
  8.  厚さ2mmの成形片のヘイズ値が、1以下である、請求項1~7いずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the molded piece having a thickness of 2 mm has a haze value of 1 or less.
  9.  荷重13.65kgf、温度230℃におけるメルトフローレートが、6g/10min以上である、請求項1~8いずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the melt flow rate at a load of 13.65 kgf and a temperature of 230 ° C is 6 g / 10 min or more.
  10.  メチル(メタ)アクリレート(a1)及び(メタ)アクリル酸(a2)を含む単量体を重合して前駆体を得て、得られた前駆体と下記一般式(1)に示す化合物(B)とを溶融混練する、樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (R、R、Rは、それぞれ独立して、水素、直鎖状、分岐上、環状アルキル基又はアリール基である。)
    A monomer containing methyl (meth) acrylate (a1) and (meth) acrylic acid (a2) is polymerized to obtain a precursor, and the resulting precursor and compound (B) represented by the following general formula (1) And a method for producing a resin composition.
    Figure JPOXMLDOC01-appb-C000002
    (R 1 , R 2 and R 3 are each independently hydrogen, linear, branched, cyclic alkyl group or aryl group.)
  11.  重合方法が、懸濁重合である、請求項10に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 10, wherein the polymerization method is suspension polymerization.
  12.  化合物(B)の含有量が、前駆体100質量部に対して、0.01質量部以上10質量以下である、請求項10又は11に記載の樹脂組成物の製造方法。 The manufacturing method of the resin composition of Claim 10 or 11 whose content of a compound (B) is 0.01 mass part or more and 10 mass or less with respect to 100 mass parts of precursors.
  13.  溶融混練温度が、150℃以上270℃以下である、請求項10~12のいずれかに記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 10 to 12, wherein the melt-kneading temperature is 150 ° C or higher and 270 ° C or lower.
  14.  請求項1~9のいずれかに記載の樹脂組成物を成形した成形体。 A molded body obtained by molding the resin composition according to any one of claims 1 to 9.
  15.  請求項14に記載の成形体を含む車両用部品。 A vehicle part including the molded body according to claim 14.
  16.  請求項15に記載の車両用部品を使用した車両。 A vehicle using the vehicle component according to claim 15.
PCT/JP2017/008260 2016-03-07 2017-03-02 Resin composition, method of manufacturing resin composition, molded article, and vehicle WO2017154722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017516190A JP6299927B2 (en) 2016-03-07 2017-03-02 Resin composition, method for producing resin composition, molded article, and vehicle component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042941 2016-03-07
JP2016-042941 2016-03-07

Publications (2)

Publication Number Publication Date
WO2017154722A1 true WO2017154722A1 (en) 2017-09-14
WO2017154722A8 WO2017154722A8 (en) 2018-02-15

Family

ID=59790582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008260 WO2017154722A1 (en) 2016-03-07 2017-03-02 Resin composition, method of manufacturing resin composition, molded article, and vehicle

Country Status (2)

Country Link
JP (1) JP6299927B2 (en)
WO (1) WO2017154722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202743A1 (en) * 2021-03-23 2022-09-29 三菱ケミカル株式会社 Monomer mixture, resin composition, resin molded article, panel for aquariums, illuminated sign, building component, method for producing resin composition, and method for manufacturing resin cast board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093125A (en) * 1995-04-21 1997-01-07 Kuraray Co Ltd Production of thermoplastic resin excellent in heat resistance
JP2002060424A (en) * 2000-06-09 2002-02-26 Nippon Shokubai Co Ltd Transparent heat-resistant resin and method for producing the same
JP2007262396A (en) * 2006-03-01 2007-10-11 Nippon Shokubai Co Ltd Thermoplastic resin composition and method for producing the same
WO2013161905A1 (en) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 Resin composition, metal foil with resin layer, metal clad laminated board, and printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093125A (en) * 1995-04-21 1997-01-07 Kuraray Co Ltd Production of thermoplastic resin excellent in heat resistance
JP2002060424A (en) * 2000-06-09 2002-02-26 Nippon Shokubai Co Ltd Transparent heat-resistant resin and method for producing the same
JP2007262396A (en) * 2006-03-01 2007-10-11 Nippon Shokubai Co Ltd Thermoplastic resin composition and method for producing the same
WO2013161905A1 (en) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 Resin composition, metal foil with resin layer, metal clad laminated board, and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202743A1 (en) * 2021-03-23 2022-09-29 三菱ケミカル株式会社 Monomer mixture, resin composition, resin molded article, panel for aquariums, illuminated sign, building component, method for producing resin composition, and method for manufacturing resin cast board

Also Published As

Publication number Publication date
JP6299927B2 (en) 2018-03-28
WO2017154722A8 (en) 2018-02-15
JPWO2017154722A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6114454B1 (en) Methacrylic resin composition
KR102018004B1 (en) Copolymers, Methods of Making Copolymers, Resin Compositions, Molded Products, and Vehicles
JP6204649B2 (en) Vehicle member cover containing methacrylic resin
JP6299927B2 (en) Resin composition, method for producing resin composition, molded article, and vehicle component
US11286371B2 (en) Thermoplastic resin composition, shaped article, and vehicle component
JP6932965B2 (en) Resin composition, manufacturing method of resin composition, molded body and vehicle parts
KR102367637B1 (en) Methacrylic resin composition and molded article
JP2018162404A (en) Resin composition, method for producing resin composition, molded body and component for vehicle
JP2018162403A (en) Resin composition, method for producing resin composition, molded body and component for vehicle
JP2017128685A (en) Thermoplastic resin composition, molding and vehicle
JP7359194B2 (en) Resin compositions, molded bodies, and vehicle parts
TW201443134A (en) Methacrylic resin composition, method for producing methacrylic resin composition, and molded article
JP7415580B2 (en) Vehicle indicator lights, vehicles
JP2021143268A (en) (meth)acrylic resin composition and resin molding
JP2020147715A (en) Polymer for melt molding, resin composition for melt molding, resin molded product, and method for producing polymer for melt molding and resin molded product
JPH07216007A (en) Production of methacrylic resin
JP3413360B2 (en) Method for producing methacrylic resin
JPH0912822A (en) Methacrylic resin composition
JPH07331018A (en) Methacrylic resin composition
BR112020000795B1 (en) THERMOPLASTIC RESIN COMPOSITION, SHAPED ARTICLE AND VEHICLE COMPONENT
JP2019131667A (en) Resin composition for vehicle lamp cover, molded body for vehicle lamp cover, laminate for vehicle lamp cover, and vehicle lamp cover
JP2019183026A (en) Resin composition, molded body, component for vehicle, and lamp cover for vehicle
JP2013185024A (en) Method for producing methacrylic resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763062

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763062

Country of ref document: EP

Kind code of ref document: A1