JP7356653B2 - 蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスク - Google Patents

蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスク Download PDF

Info

Publication number
JP7356653B2
JP7356653B2 JP2022141074A JP2022141074A JP7356653B2 JP 7356653 B2 JP7356653 B2 JP 7356653B2 JP 2022141074 A JP2022141074 A JP 2022141074A JP 2022141074 A JP2022141074 A JP 2022141074A JP 7356653 B2 JP7356653 B2 JP 7356653B2
Authority
JP
Japan
Prior art keywords
point
vapor deposition
deposition mask
dimension
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022141074A
Other languages
English (en)
Other versions
JP2022172296A (ja
Inventor
知加雄 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2022172296A publication Critical patent/JP2022172296A/ja
Priority to JP2023159190A priority Critical patent/JP2024001059A/ja
Application granted granted Critical
Publication of JP7356653B2 publication Critical patent/JP7356653B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0015Production of aperture devices, microporous systems or stamps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8874Taking dimensions of defect into account
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本開示は、蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスクに関する。
近年、スマートフォンやタブレットPC等の持ち運び可能なデバイスで用いられる表示装置に対して、高精細であること、例えば画素密度が500ppi以上であることが求められている。また、持ち運び可能なデバイスにおいても、ウルトラハイディフィニションに対応することへの需要が高まっており、この場合、表示装置の画素密度が例えば800ppi以上であることが求められる。
表示装置の中でも、応答性の良さ、消費電力の低さやコントラストの高さのため、有機EL表示装置が注目されている。有機EL表示装置の画素を形成する方法として、所望のパターンで配列された貫通孔が形成された蒸着マスクを用い、所望のパターンで画素を形成する方法が知られている(例えば、特許文献1参照)。具体的には、はじめに、有機EL表示装置用の基板に対して蒸着マスクを張設した状態で密着させ、次に、密着させた蒸着マスクおよび基板を共に蒸着装置に投入し、有機材料を基板に蒸着させる蒸着工程を行う。この場合、高い画素密度を有する有機EL表示装置を精密に作製するためには、張設時の蒸着マスクの貫通孔の位置を設計に沿って精密に再現することが求められる。
特開2001-234385号公報
本開示は、張設時の貫通孔の位置精度を向上させることができる蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスクを提供することを目的とする。
本開示の第1の態様は、
第1方向に延びる蒸着マスクであって、前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備えた蒸着マスクの良否を判定する良否判定方法であって、
前記P1点から前記Q1点までの寸法X1と、前記P2点から前記Q2点までの寸法X2とを測定する測定工程と、
前記測定工程において測定された前記寸法X1および前記寸法X2に基づいて、前記蒸着マスクの良否を判定する判定工程と、を備えた、蒸着マスクの良否判定方法、
である。
本開示の第2の態様として、上述した第1の態様による蒸着マスクの良否判定方法において、
前記判定工程において、前記寸法X1および前記寸法X2の設計値をαとしたとき、
Figure 0007356653000001
を満たしているか否かを判定する、
ようにしてもよい。
本開示の第3の態様として、上述した第1の態様または第2の態様よる蒸着マスクの良否判定方法において、
前記蒸着マスクは、複数の貫通孔を有し、
前記判定工程において、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000002
を満たしているか否かを判定する、
ようにしてもよい。
本開示の第4の態様として、上述した第1の態様から上述した第3の態様のそれぞれによる蒸着マスクの良否判定方法において、
前記P1点と前記P2点とは、蒸着時に前記第1中心軸線に対して互いに対称に配置されることが意図され、前記Q1点と前記Q2点とは、蒸着時に前記第1中心軸線に対して互いに対称に配置されることが意図される、
ようにしてもよい。
本開示の第5の態様として、上述した第1の態様から上述した第4の態様のそれぞれによる蒸着マスクの良否判定方法において、
前記P1点および前記P2点は、前記第1方向の中心位置に配置された第2中心軸線に対して一側に配置され、
前記Q1点および前記Q2点は、前記第2中心軸線に対して他側に配置されている、
ようにしてもよい。
本開示の第6の態様として、上述した第5の態様による蒸着マスクの良否判定方法において、
前記P1点と前記Q1点とは、蒸着時に前記第2中心軸線に対して互いに対称に配置されることが意図され、前記P2点と前記Q2点とは、蒸着時に前記第2中心軸線に対して互いに対称に配置されることが意図される、
ようにしてもよい。
本開示の第7の態様は、
蒸着マスクを準備する工程と、
上述した第1の態様から上述した第6の態様のそれぞれによる蒸着マスクの良否判定方法により前記蒸着マスクの良否を判定する工程と、を備えた、蒸着マスクの製造方法、
である。
本開示の第8の態様は、
第1方向に延びる蒸着マスクであって、前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備えた蒸着マスクを製造する製造方法であって、
前記蒸着マスクを準備する工程と、
前記P1点から前記Q1点までの寸法X1と、前記P2点から前記Q2点までの寸法X2とを測定する測定工程と、
前記測定工程において測定された前記寸法X1および前記寸法X2が、前記寸法X1および前記寸法X2の設計値をαとしたとき、
Figure 0007356653000003
を満たしている前記蒸着マスクを選定する選定工程と、を備えた、蒸着マスクの製造方法、
である。
本開示の第9の態様として、上述した第8の態様による蒸着マスクの製造方法において、
前記蒸着マスクは、複数の貫通孔を有し、
前記選定工程において、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000004
を満たしている前記蒸着マスクを選定する、
ようにしてもよい。
本開示の第10の態様は、
第1方向に延びる、複数の貫通孔を有する蒸着マスクであって、前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備えた蒸着マスクを製造する製造方法であって、
前記蒸着マスクを準備する工程と、
前記P1点から前記Q1点までの寸法X1と、前記P2点から前記Q2点までの寸法X2とを測定する測定工程と、
前記測定工程において測定された前記寸法X1および前記寸法X2が、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000005
を満たしている前記蒸着マスクを選定する選定工程と、を備えた、蒸着マスクの製造方法、
である。
なお、第7の態様から第10の態様は、第7の態様から第10の態様の蒸着マスクの製造方法により製造された蒸着マスクでもよい。
本開示の第11の態様は、
上述した第7の態様から上述した第10の態様のそれぞれによる蒸着マスクの製造方法により前記蒸着マスクを準備する工程と、
前記蒸着マスクに前記第1方向に張力を付与して前記蒸着マスクをフレームに張設する工程と、を備えた、蒸着マスク装置の製造方法、
である。
なお、第11の態様は、第11の態様の蒸着マスク装置の製造方法により製造された蒸着マスク装置でもよい。
本開示の第12の態様は、
第1方向に延びる蒸着マスクであって、前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備えた蒸着マスクを選定する選定方法であって、
前記P1点から前記Q1点までの寸法X1と、前記P2点から前記Q2点までの寸法X2とを測定する測定工程と、
前記測定工程において測定された前記寸法X1および前記寸法X2が、前記寸法X1および前記寸法X2の設計値をαとしたとき、
Figure 0007356653000006
を満たしている前記蒸着マスクを選定する選定工程と、を備えた、蒸着マスクの選定方法である。
本開示の第13の態様は、
第1方向に延びる、複数の貫通孔を有する蒸着マスクであって、前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備えた蒸着マスクを選定する選定方法であって、
前記P1点から前記Q1点までの寸法X1と、前記P2点から前記Q2点までの寸法X2とを測定する測定工程と、
前記測定工程において測定された前記寸法X1および前記寸法X2が、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000007
を満たしている前記蒸着マスクを選定する選定工程と、を備えた、蒸着マスクの選定方法である。
本開示の第14の態様は、
第1方向に延びる蒸着マスクであって、
前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備え、
前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をαとしたとき、
Figure 0007356653000008
を満たしている、蒸着マスクである。
本開示の第15の態様は、
第1方向に延びる、複数の貫通孔を有する蒸着マスクであって、
前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備え、
前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000009
を満たしている、蒸着マスクである。
本開示の第16の態様は、
上述した第11の態様による蒸着マスク装置の製造方法により前記蒸着マスク装置を準備する工程と、
前記蒸着マスク装置の前記蒸着マスクを、基板に密着させる工程と、
前記蒸着マスクの前記貫通孔を通して蒸着材料を前記基板に蒸着させる工程と、を備えた、蒸着方法である。
本開示によれば、張設時の貫通孔の位置精度を向上させることができる。
本開示の一実施形態による蒸着マスク装置を備えた蒸着装置を示す図である。 図1に示す蒸着マスク装置を用いて製造した有機EL表示装置を示す断面図である。 本開示の一実施形態による蒸着マスク装置を示す平面図である。 図3に示された蒸着マスクの有効領域を示す部分平面図である。 図4のV-V線に沿った断面図である。 図4のVI-VI線に沿った断面図である。 図4のVII-VII線に沿った断面図である。 図5に示す貫通孔およびその近傍の領域を拡大して示す断面図である。 図3の蒸着マスクにおける寸法X1および寸法X2を説明するための模式図である。 図9Aの変形例として、図3の蒸着マスクにおける寸法X1および寸法X2を説明するための模式図である。 図9Aの他の変形例として、図3の蒸着マスクにおける寸法X1および寸法X2を説明するための模式図である。 母材を圧延して、所望の厚みを有する金属板を得る工程を示す図である。 圧延によって得られた金属板をアニールする工程を示す図である。 本開示の一実施形態による蒸着マスクの製造方法を全体的に説明するための模式図である。 本開示の一実施形態による製造方法において、金属板上にレジスト膜を形成する工程を示す図である。 本開示の一実施形態による製造方法において、レジスト膜に露光マスクを密着させる工程を示す図である。 本開示の一実施形態による製造方法において、レジスト膜を現像する工程を示す図である。 本開示の一実施形態による製造方法において、第1面エッチング工程を示す図である。 本開示の一実施形態による製造方法において、第1凹部を樹脂によって被覆する工程を示す図である。 本開示の一実施形態による製造方法において、第2面エッチング工程を示す図である。 本開示の一実施形態による製造方法において、図18に続く第2面エッチング工程を示す図である。 本開示の一実施形態による製造方法において、長尺金属板から樹脂およびレジストパターンを除去する工程を示す図である。 圧延によって得られた長尺金属板の一例を示す斜視図である。 波打ち形状が圧縮されてほぼ平坦な状態になった長尺金属板に蒸着マスクを形成することを説明する斜視図である。 長尺金属板に形成された複数の蒸着マスクを示す斜視図である。 図23に示す長尺金属板から切り出された蒸着マスクを示す平面図である。 本開示の一実施形態による蒸着マスクの良否判定方法で用いる蒸着マスクの良否判定システムの一例を示す図である。 本開示の一実施形態による蒸着マスク装置の製造方法において、張力付与装置の一例を示す図である。 図24に示す蒸着マスクの張設状態の一例を示す平面図である。 図24に示す蒸着マスクの張設状態の他の一例を示す平面図である。 本開示の一実施例において、α=200mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=200mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=200mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=300mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=300mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=300mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=400mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=400mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=400mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=600mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=600mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=600mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=800mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=800mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=800mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=900mm、α=65.0mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=900mm、α=43.3mmでの蒸着マスクの良否判定結果を示す図である。 本開示の一実施例において、α=900mm、α=21.7mmでの蒸着マスクの良否判定結果を示す図である。
本明細書および本図面において、特別な説明が無い限りは、「板」、「シート」、「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「板」はシートやフィルムと呼ばれ得るような部材も含む概念である。また、「面(シート面、フィルム面)」とは、対象となる板状(シート状、フィルム状)の部材を全体的かつ大局的に見た場合において対象となる板状部材(シート状部材、フィルム状部材)の平面方向と一致する面のことを指す。また、板状(シート状、フィルム状)の部材に対して用いる法線方向とは、当該部材の面(シート面、フィルム面)に対する法線方向のことを指す。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
本明細書および本図面において、特別な説明が無い限りは、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
本明細書および本図面において、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に(又は下に)」、「上側に(又は下側に)」、または「上方に(又は下方に)」とする場合、特別な説明が無い限りは、ある構成が他の構成に直接的に接している場合のみでなく、ある構成と他の構成との間に別の構成が含まれている場合も含めて解釈することとする。また、特別な説明が無い限りは、上(または、上側や上方)又は下(または、下側、下方)という語句を用いて説明する場合があるが、上下方向が逆転してもよい。
本明細書および本図面において、特別な説明が無い限りは、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
本明細書および本図面において、特別な説明が無い限りは、矛盾の生じない範囲で、その他の実施形態や変形例と組み合わせられ得る。また、その他の実施形態同士や、その他の実施形態と変形例も、矛盾の生じない範囲で組み合わせられ得る。また、変形例同士も、矛盾の生じない範囲で組み合わせられ得る。
本明細書および本図面において、特別な説明が無い限りは、製造方法などの方法に関して複数の工程を開示する場合に、開示されている工程の間に、開示されていないその他の工程が実施されてもよい。また、開示されている工程の順序は、矛盾の生じない範囲で任意である。
本明細書および本図面において、特別な説明が無い限りは、「~」という記号によって表現される数値範囲は、「~」という符号の前後に置かれた数値を含んでいる。例えば、「34~38質量%」という表現によって画定される数値範囲は、「34質量%以上且つ38質量%以下」という表現によって画定される数値範囲と同一である。
本明細書の一実施形態において、有機EL表示装置を製造する際に有機材料を所望のパターンで基板上にパターニングするために用いられる蒸着マスクやその製造方法に関した例をあげて説明する。ただし、このような適用に限定されることなく、種々の用途に用いられる蒸着マスクに対し、本実施形態を適用することができる。
以下、本開示の一実施形態について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態のみに限定して解釈されるものではない。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
まず、対象物に蒸着材料を蒸着させる蒸着処理を実施する蒸着装置90について、図1を参照して説明する。図1に示すように、蒸着装置90は、その内部に、蒸着源(例えばるつぼ94)、ヒータ96、および蒸着マスク装置10を備えていてもよい。また、蒸着装置90は、蒸着装置90の内部を真空雰囲気にするための排気手段を更に備えていてもよい。るつぼ94は、有機発光材料などの蒸着材料98を収容する。ヒータ96は、るつぼ94を加熱して、真空雰囲気の下で蒸着材料98を蒸発させる。蒸着マスク装置10は、るつぼ94と対向するよう配置されている。
以下、蒸着マスク装置10について説明する。図1に示すように、蒸着マスク装置10は、蒸着マスク20と、蒸着マスク20を支持するフレーム15と、を備えていてもよい。フレーム15は、蒸着マスク20が撓んでしまうことがないように、蒸着マスク20をその面方向に引っ張った状態で支持する。蒸着マスク装置10は、図1に示すように、蒸着マスク20が、蒸着材料98を付着させる対象物である基板、例えば有機EL基板92に対面するよう、蒸着装置90内に配置される。以下の説明において、蒸着マスク20の面のうち、有機EL基板92側の面を第1面20aと称し、第1面20aの反対側に位置する面を第2面20bと称する。
蒸着マスク装置10は、図1に示すように、有機EL基板92の、蒸着マスク20と反対の側の面に配置された磁石93を備えていてもよい。磁石93を設けることにより、磁力によって蒸着マスク20を磁石93側に引き寄せて、蒸着マスク20を有機EL基板92に密着させることができる。
図3は、蒸着マスク装置10を蒸着マスク20の第1面20a側から見た場合を示す平面図である。図3に示すように、蒸着マスク装置10は、平面視において略矩形状の形状を有する複数の蒸着マスク20を備え、各蒸着マスク20は、蒸着マスク20の長手方向D1における一対の端部26a,26bにおいて、フレーム15に固定されている。
蒸着マスク20は、蒸着マスク20を貫通する複数の貫通孔25が形成された金属板を含んでいてもよい。るつぼ94から蒸発して蒸着マスク装置10に到達した蒸着材料98は、蒸着マスク20の貫通孔25を通って有機EL基板92に付着する。これによって、蒸着マスク20の貫通孔25の位置に対応した所望のパターンで、蒸着材料98を有機EL基板92の表面に成膜することができる。
図2は、図1の蒸着装置90を用いて製造した有機EL表示装置100を示す断面図である。有機EL表示装置100は、有機EL基板92と、パターン状に設けられた蒸着材料98を含む画素と、を備えていてもよい。
なお、複数の色によるカラー表示を行いたい場合には、各色に対応する蒸着マスク20が搭載された蒸着装置90をそれぞれ準備し、有機EL基板92を各蒸着装置90に順に投入してもよい。これによって、例えば、赤色用の有機発光材料、緑色用の有機発光材料および青色用の有機発光材料を順に有機EL基板92に蒸着させることができる。
ところで、蒸着処理は、高温雰囲気となる蒸着装置90の内部で実施される場合がある。この場合、蒸着処理の間、蒸着装置90の内部に配置される蒸着マスク20、フレーム15および有機EL基板92も加熱される。この際、蒸着マスク20、フレーム15および有機EL基板92は、各々の熱膨張係数に基づいた寸法変化の挙動を示すことになる。この場合、蒸着マスク20やフレーム15と有機EL基板92の熱膨張係数が大きく異ならないことが好ましい。このことにより、それらの寸法変化の差異に起因した位置ずれが生じることを抑制でき、この結果、有機EL基板92上に付着する蒸着材料の寸法精度や位置精度を向上させることができる。
そこで、蒸着マスク20およびフレーム15の熱膨張係数が、有機EL基板92の熱膨張係数と同等の値であってもよい。例えば、有機EL基板92としてガラス基板が用いられる場合、蒸着マスク20およびフレーム15の主要な材料として、ニッケルを含む鉄合金を用いてもよい。例えば、蒸着マスク20を構成する金属板の材料として、30質量%以上且つ54質量%以下のニッケルを含む鉄合金を用いてもよい。ニッケルを含む鉄合金の具体例としては、34質量%以上且つ38質量%以下のニッケルを含むインバー材、30質量%以上且つ34質量%以下のニッケルに加えてさらにコバルトを含むスーパーインバー材、38質量%以上且つ54質量%以下のニッケルを含む低熱膨張Fe-Ni系めっき合金などを挙げることができる。
なお蒸着処理の際に、蒸着マスク20、フレーム15および有機EL基板92の温度が高温には達しない場合には、蒸着マスク20およびフレーム15の熱膨張係数を、有機EL基板92の熱膨張係数と同等の値にしなくてもよい。この場合、蒸着マスク20を構成する材料として、上述の鉄合金以外の材料を用いてもよい。例えば、クロムを含む鉄合金など、上述のニッケルを含む鉄合金以外の鉄合金を用いてもよい。クロムを含む鉄合金としては、例えば、いわゆるステンレスと称される鉄合金を用いてもよい。また、ニッケルやニッケル-コバルト合金など、鉄合金以外の合金を用いてもよい。
次に、蒸着マスク20について詳細に説明する。図3に示すように、本実施形態における蒸着マスク20は、細長状またはスティック状の平面形状を有していてもよい。蒸着マスク20は、蒸着マスク20の長手方向D1における一対の端部(第1端部26aおよび第2端部26b)を構成する一対の耳部(第1耳部17aおよび第2耳部17b)と、一対の耳部17a,17bの間に位置する中間部18と、を備えていてもよい。
まず、耳部17a,17bについて詳細に説明する。耳部17a,17bは、蒸着マスク20のうちフレーム15に固定される部分である。本実施形態において、中間部18と一体的に構成されていてもよい。なお、耳部17a,17bは、中間部18とは別の部材によって構成されていてもよい。この場合、耳部17a,17bは、例えば溶接によって中間部18に接合される。
次に、中間部18について説明する。中間部18は、第1面20aから第2面20bに至る貫通孔25が形成された有効領域22と、有効領域22の周囲に位置し、有効領域22を取り囲む周囲領域23と、を含んでいてもよい。有効領域22は、蒸着マスク20のうち、有機EL基板92の表示領域に対面する領域であってもよい。
図3に示すように、中間部18は、蒸着マスク20の長手方向D1に沿って所定の間隔を空けて配列された複数の有効領域22を含んでいてもよい。一つの有効領域22は、一つの有機EL表示装置100の表示領域に対応してもよい。このため、図1に示す蒸着マスク装置10のように、有機EL表示装置100の多面付蒸着が可能であってもよい。
図3に示すように、有効領域22は、例えば、平面視において略矩形状の輪郭を有していてもよい。なお図示はしないが、各有効領域22は、有機EL基板92の表示領域の形状に応じて、様々な形状の輪郭を有していてもよい。例えば各有効領域22は、円形状の輪郭を有していてもよい。
以下、有効領域22について詳細に説明する。図4は、蒸着マスク20の第2面20b側から有効領域22を拡大して示す平面図である。図4に示すように、図示された例において、各有効領域22に形成された複数の貫通孔25は、当該有効領域22において、互いに直交する二方向に沿ってそれぞれ所定のピッチで配列されていてもよい。貫通孔25は、平面視において、図4や後述する図9Aに示すように格子状に配置されていてもよい。この場合、第1方向D1に沿って配列された貫通孔25の列を第1列および第2列とし、第1列および第2列が第2方向D2において互いに隣り合っているとすると、第1列をなす貫通孔25の第1方向D1における位置と、第2列をなす貫通孔25の第1方向D1における位置とが、互いに等しくなっている。あるいは、第1列をなす貫通孔25の第1方向D1における位置は、第2列をなす貫通孔25の第1方向D1における位置とずれていてもよい。例えば、後述する図9Bに示すように、第1列をなす貫通孔25のうち第1方向D1において互いに隣り合う貫通孔25の中間位置に対応する位置に、第2列をなす貫通孔25が配置されていてもよい。この場合においても、図9Bに示すように、第1列をなす貫通孔25のピッチと、第2列をなす貫通孔25のピッチは等しくてもよい。後述する図9Bに示す貫通孔25の配置は千鳥状配置と言うこともできる。この場合、貫通孔25が格子状や千鳥状に配置されている場合、貫通孔25の配置に規則性(場合によっては対称性)を持たせることができる。このことにより、後述するように、多数存在する貫通孔25のうちP1点、P2点、Q1点およびQ2点に相当する4つの貫通孔25を代表的に用いるだけでも、蒸着マスク20の良否を良好に判定することが可能になる。また、貫通孔25の平面形状は任意であり、矩形状若しくは多角形状(例えば、長方形状やひし形状等)でもよい。この場合、各辺が内側に凹んでいたり、外側に凸となっていたりしてもよい。また、貫通孔25の平面形状は、円形状、楕円形状等でもよい。図4では、角部が丸みを帯びた矩形状の例が示されている。
貫通孔25の一例について、図5~図7を主に参照して更に詳述する。図5~図7はそれぞれ、図4の有効領域22のV-V方向~VII-VII方向に沿った断面図である。
図5~図7に示すように、複数の貫通孔25は、蒸着マスク20の法線方向Nに沿った一方の側となる第1面20aから、蒸着マスク20の法線方向Nに沿った他方の側となる第2面20bへ貫通している。図示された例では、後に詳述するように、蒸着マスク20の法線方向Nにおける一方の側となる金属板21の第1面21aに第1凹部30がエッチングによって形成され、蒸着マスク20の法線方向Nにおける他方の側となる金属板21の第2面21bに第2凹部35が形成されていてもよい。第1凹部30は、第2凹部35に接続され、これによって第2凹部35と第1凹部30とが互いに通じ合うように形成されてもよい。貫通孔25は、第2凹部35と、第2凹部35に接続された第1凹部30とによって構成されていてもよい。
図5~図7に示すように、蒸着マスク20の第2面20bの側から第1面20aの側へ向けて、蒸着マスク20の法線方向Nに沿った各位置における蒸着マスク20の板面に沿った断面での各第2凹部35の開口面積は、しだいに小さくなっていてもよい。同様に、蒸着マスク20の法線方向Nに沿った各位置における蒸着マスク20の板面に沿った断面での各第1凹部30の開口面積は、蒸着マスク20の第1面20aの側から第2面20bの側へ向けて、しだいに小さくなっていてもよい。
図5~図7に示すように、第1凹部30の壁面31と、第2凹部35の壁面36とは、周状の接続部41を介して接続されていてもよい。接続部41は、蒸着マスク20の法線方向Nに対して傾斜した第1凹部30の壁面31と、蒸着マスク20の法線方向Nに対して傾斜した第2凹部35の壁面36とが合流する張り出し部の稜線によって、画成されていてもよい。そして、接続部41は、蒸着マスク20の平面視において貫通孔25の開口面積が最小になる貫通部42を画成してもよい。
図5~図7に示すように、蒸着マスク20の法線方向Nに沿った他方の側の面、すなわち、蒸着マスク20の第1面20a上において、隣り合う二つの貫通孔25は、蒸着マスク20の板面に沿って互いから離間していてもよい。すなわち、後述する製造方法のように、蒸着マスク20の第1面20aに対応するようになる金属板21の第1面21a側から当該金属板21をエッチングして第1凹部30を作製する場合、隣り合う二つの第1凹部30の間に金属板21の第1面21aが残存するようにしてもよい。
同様に、図5および図7に示すように、蒸着マスク20の法線方向Nに沿った一方の側、すなわち、蒸着マスク20の第2面20bの側においても、隣り合う二つの第2凹部35が、蒸着マスク20の板面に沿って互いから離間していてもよい。すなわち、隣り合う二つの第2凹部35の間に金属板21の第2面21bが残存していてもよい。以下の説明において、金属板21の第2面21bの有効領域22のうちエッチングされずに残っている部分のことを、トップ部43とも称する。このようなトップ部43が残るように蒸着マスク20を作製することにより、蒸着マスク20に十分な強度を持たせることができる。このことにより、例えば取り扱い中などに蒸着マスク20が破損してしまうことを抑制することができる。なおトップ部43の幅βが大きすぎると、蒸着工程においてシャドーが発生し、これによって蒸着材料98の利用効率が低下することがある。従って、トップ部43の幅βが過剰に大きくならないように蒸着マスク20が作製されることが好ましい。例えば、トップ部43の幅βが2μm以下であることが好ましい。なおトップ部43の幅βは一般的に、蒸着マスク20を切断する方向に応じて変化する。例えば、図5および図7に示すトップ部43の幅βは互いに異なることがある。この場合、いずれの方向で蒸着マスク20を切断した場合にもトップ部43の幅βが2μm以下になるよう、蒸着マスク20が構成されていてもよい。
なお図6に示すように、場所によっては隣り合う二つの第2凹部35が接続されるようにエッチングが実施されてもよい。すなわち、隣り合う二つの第2凹部35の間に、金属板21の第2面21bが残存していない場所が存在していてもよい。また、図示はしないが、第2面21bの全域にわたって隣り合う二つの第2凹部35が接続されるようにエッチングが実施されてもよい。
図1に示すようにして蒸着マスク装置10が蒸着装置90に収容された場合、図5に二点鎖線で示すように、蒸着マスク20の第1面20aが、有機EL基板92に対面し、蒸着マスク20の第2面20bが、蒸着材料98を収容したるつぼ94側に位置する。したがって、蒸着材料98は、次第に開口面積が小さくなっていく第2凹部35を通過して有機EL基板92に付着する。図5において第2面20b側から第1面20aへ向かう矢印で示すように、蒸着材料98は、るつぼ94から有機EL基板92に向けて有機EL基板92の法線方向Nに沿って移動するだけでなく、有機EL基板92の法線方向Nに対して大きく傾斜した方向に移動することもある。
このとき、蒸着マスク20の厚みが大きいと、斜めに移動する蒸着材料98の多くは、貫通孔25を通って有機EL基板92に到達するよりも前に、第2凹部35の壁面36に到達して付着し得る。従って、蒸着材料98の利用効率を高めるためには、蒸着マスク20の厚みtを小さくし、これによって、第2凹部35の壁面36や第1凹部30の壁面31の高さを小さくすることが好ましいと考えられる。すなわち、蒸着マスク20を構成するための金属板21として、蒸着マスク20の強度を確保できる範囲内で可能な限り厚みtの小さな金属板21を用いることが好ましいと言える。このことにより、貫通孔25の壁面の高さを小さくすることができ、蒸着材料98のうち貫通孔25の壁面に付着する比率を低くすることができる。このため、有機EL基板92に付着する蒸着材料98の厚みを均等化させることができ、有機EL表示装置の画素を形成するために蒸着マスク20を用いる場合には、画素の寸法精度や位置精度を向上させて有機EL表示装置の発光効率を向上させることができる。
本実施の形態において、蒸着マスク20の厚みtの範囲の下限は、例えば、5μm以上であってもよく、8μm以上であってもよく、10μm以上であってもよく、12μm以上であってもよく、13μm以上であってもよく、15μm以上であってもよい。このことにより、蒸着マスク20の強度を確保して、蒸着マスク20に損傷や変形が生じることを抑制することができる。また、蒸着マスク20の厚みtの範囲の上限は、例えば、20μm以下であってもよく、25μm以下であってもよく、35μm以下であってもよく、40μm以下であってもよく、50μm以下であってもよく、100μm以下であってもよい。このことにより、上述したように、蒸着材料98のうち貫通孔25の壁面に付着する比率を低くすることができる。蒸着マスク20の厚みtの範囲は、上述の複数の下限の候補値のうちの任意の1つと、上述の複数の上限の候補値のうちの任意の1つの組み合わせによって定められてもよく、例えば、5μm以上100μm以下であってもよく、8μm以上50μm以下であってもよく、10μm以上40μm以下であってもよく、12μm以上35μm以下であってもよく、13μm以上30μm以下であってもよく、15μm以上20μm以下であってもよい。また、蒸着マスク20の厚みtの範囲は、上述の複数の下限の候補値のうちの任意の2つの組み合わせによって定められてもよく、例えば、5μm以上15μm以下であってもよく、5μm以上13μm以下であってもよく、8μm以上15μm以下であってもよく、8μm以上13μm以下であってもよい。また、蒸着マスク20の厚みtの範囲は、上述の複数の上限の候補値のうちの任意の2つの組み合わせによって定められてもよく、例えば、20μm以上100μm以下であってもよく、20μm以上50μm以下であってもよく、25μm以上100μm以下であってもよく、25μm以上50μm以下であってもよい。なお厚みtは、周囲領域23の厚み、すなわち蒸着マスク20のうち第1凹部30および第2凹部35が形成されていない部分の厚みである。従って厚みtは、金属板21の厚みであると言うこともできる。
図5において、貫通孔25の最小開口面積を持つ部分となる接続部41と、第2凹部35の壁面36の他の任意の位置と、を通過する直線L1が、蒸着マスク20の法線方向Nに対してなす最小角度が、符号θ1で表されている。斜めに移動する蒸着材料98を、壁面36に到達させることなく可能な限り有機EL基板92に到達させるためには、角度θ1を大きくすることが有利となる。角度θ1を大きくする上では、蒸着マスク20の厚みtを小さくすることの他にも、上述のトップ部43の幅βを小さくすることも有効である。
図7において、符号αは、金属板21の第1面21aの有効領域22のうちエッチングされずに残っている部分(以下、リブ部とも称する)の幅を表している。リブ部の幅αおよび貫通部42の寸法rは、有機EL表示装置の寸法および表示画素数に応じて適宜定められる。表1に、5インチの有機EL表示装置において、表示画素数、および表示画素数に応じて求められるリブ部の幅αおよび貫通部42の寸法rの値の一例を示す。
Figure 0007356653000010
限定はされないが、本実施形態による蒸着マスク20は、450ppi以上の画素密度の有機EL表示装置を作製する場合に特に有効であると考えられる。以下、図8を参照して、そのような高い画素密度の有機EL表示装置を作製するために求められる蒸着マスク20の寸法の一例について説明する。図8は、図5に示す蒸着マスク20の貫通孔25およびその近傍の領域を拡大して示す断面図である。
図8においては、貫通孔25の形状に関連するパラメータとして、蒸着マスク20の第1面20aから接続部41までの、蒸着マスク20の法線方向Nに沿った方向における距離、すなわち第1凹部30の壁面31の高さが符号rで表されている。さらに、第1凹部30が第2凹部35に接続する部分における第1凹部30の寸法、すなわち貫通部42の寸法が符号rで表されている。また図8において、接続部41と、金属板21の第1面21a上における第1凹部30の先端縁と、を結ぶ直線L2が、金属板21の法線方向Nに対して成す角度が、符号θ2で表されている。
450ppi以上の画素密度の有機EL表示装置を作製する場合、貫通部42の寸法rは、好ましくは10以上且つ60μm以下に設定される。これによって、高い画素密度の有機EL表示装置を作製することができる蒸着マスク20を提供することができる。好ましくは、第1凹部30の壁面31の高さrは、6μm以下に設定される。
次に、図8に示す上述の角度θ2について説明する。角度θ2は、金属板21の法線方向Nに対して傾斜するとともに接続部41近傍で貫通部42を通過するように飛来した蒸着材料98のうち、有機EL基板92に到達することができる蒸着材料98の傾斜角度の最大値に相当する。なぜなら、接続部41を通って角度θ2よりも大きな傾斜角度で飛来した蒸着材料98は、有機EL基板92に到達するよりも前に第1凹部30の壁面31に付着するからと考えられる。従って、角度θ2を小さくすることにより、大きな傾斜角度で飛来して貫通部42を通過した蒸着材料98が有機EL基板92に付着することを抑制することができ、これによって、有機EL基板92のうち貫通部42に重なる部分よりも外側の部分に蒸着材料98が付着してしまうことを抑制することができる。すなわち、角度θ2を小さくすることは、有機EL基板92に付着する蒸着材料98の面積や厚みのばらつきの抑制を導くと考えられる。このような観点から、例えば貫通孔25は、角度θ2が45度以下になるように形成されてもよい。なお図8においては、第1面21aにおける第1凹部30の寸法、すなわち、第1面21aにおける貫通孔25の開口寸法が、接続部41における第1凹部30の寸法r2よりも大きくなっている例を示した。すなわち、角度θ2の値が正の値である例を示した。しかしながら、図示はしないが、接続部41における第1凹部30の寸法r2が、第1面21aにおける第1凹部30の寸法よりも大きくなっていてもよい。すなわち、角度θ2の値は負の値であってもよい。
ところで、図3に示すように、蒸着マスク20は、上述したように、第1端部26aを構成する第1耳部17aから第2端部26bを構成する第2耳部17bにわたって、長手方向D1(第1方向)に延びるように形成されていてもよい。ここで、長手方向D1は、母材55(図10参照)を圧延する際の搬送方向に平行な方向であり、複数の有効領域22が配列された蒸着マスク20の長手方向であってもよい。なお、搬送という用語は、後述するようにロール・ツー・ロールによる母材55の搬送を意味するものとして用いている。また、後述する幅方向D2(第2方向)は、金属板21や長尺金属板64の面方向において、長手方向D1に直交する方向であってもよい。そして、蒸着マスク20は、長手方向D1に延び、幅方向D2の中心位置に配置された第1中心軸線AL1と、幅方向D2に延び、長手方向D1の中心位置に配置された第2中心軸線AL2と、を有していてもよい。第1中心軸線AL1は、幅方向D2における貫通孔25の個数が奇数の場合には、幅方向D2の中央の貫通孔25の中心点を通るようになる。一方、第1中心軸線AL1は、幅方向D2における貫通孔25の個数が偶数の場合には、幅方向D2の中央近傍で互いに隣り合う2つの貫通孔25の間の中間点を通るようになる。
本実施形態による蒸着マスク20は、図9Aに示すように、後述するP1点からQ1点までの寸法をX1とし、P2点からQ2点までの寸法をX2とし、寸法X1および寸法X2の設計値をαとしたとき、
Figure 0007356653000011
を満たしていてもよい。式(1)の左辺は、設計値と寸法X1との差と、設計値と寸法X2との差との平均値の絶対値を意味している。
また、本実施形態による蒸着マスク20は、P1点からP2点までの寸法の設計値であって、Q1点からQ2点までの寸法の設計値をα、幅方向D2における2つの貫通孔25の中心点間の距離のうち最大値をWとしたとき、
Figure 0007356653000012
を満たしていてもよい。式(2)の左辺は、寸法X1と寸法X2の差の絶対値を意味している。Wは、最も第1側縁27aの側に配置された貫通孔25の中心点と、最も第2側縁27bの側に配置された貫通孔25の中心点との間の距離(設計値)を意味する。式(2)のようにWを用いることにより、式(2)を用いた蒸着マスク20の良否判定が、蒸着マスク20(あるいは有効領域22)の幅方向寸法に依存することを回避できる。
ここで、P1点およびQ1点は、蒸着マスク20の第1中心軸線AL1の一側(図9Aにおける左側)に設けられており、長手方向D1に沿って互いに離間していてもよい。P2点およびQ2点は、蒸着マスク20の第1中心軸線AL1の他側(図9Aにおける右側)に設けられており、長手方向D1に沿って互いに離間していてもよい。P1点とP2点は、蒸着時に第1中心軸線AL1に対して互いに対称に配置されていてもよい。例えば、P1点とP2点とは、蒸着時に第1中心軸線AL1に対して互いに対称に配置されることが意図された点であって、設計時では第1中心軸線AL1に対して互いに対称に配置される点であってもよい。同様に、Q1点とQ2点は、蒸着時に第1中心軸線AL1に対して互いに対称に配置されていてもよい。
P1点とQ1点は、設計時(または張設時、蒸着時)にP1点からQ1点までの寸法X1が設計値αとなるような2つの点として設定されていてもよい。すなわち、設計時に、所望の設計値αに等しい距離で離間している任意の2つの点に、P1点とQ1点とが設定されていてもよい。P1点およびQ1点は、図9Aに示すように、第1耳部17aと第2耳部17bとの間に設けられた貫通孔25であって、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点にそれぞれ位置付けられていてもよい。このようにしてP1点とQ1点とが設定された蒸着マスク20が後述するステージ81等に静置された状態におけるP1点とQ1点との間の直線距離が、寸法X1であってもよい。
P2点およびQ2点は、設計時にP2点からQ2点までの寸法X2が設計値αとなるような2つの点として設定されていてもよい。すなわち、P1点およびQ1点と同様に、設計時に所望の設計値αに等しい距離で離間するような任意の2つの点に、P2点とQ2点とが設定されていてもよい。このようにしてP2点とQ2点とが設定された蒸着マスク20が後述するステージ81等に静置された状態におけるP2点とQ2点との間の直線距離が、寸法X2であってもよい。
ステージ81等に静置された蒸着マスク20は、後述するようにC字状に湾曲していてもよい(図24参照)。しかしながら、寸法X1およびX2は、C字状に湾曲して静置された蒸着マスク20から測定される直線距離であってもよい。
P1点とP2点は、蒸着マスク20の第2中心軸線AL2に対して一側(すなわち、第1耳部17aの側)に配置されていてもよい。また、Q1点とQ2点は、蒸着マスク20の第2中心軸線AL2に対して他側(すなわち、第2耳部17bの側)に配置されていてもよい。しかしながら、このことに限られることはなく、P1点およびP2点と、Q1点およびQ2点が、第2中心軸線AL2に対して同じ側に配置されていてもよい。また、P1点およびP2点が、第2中心軸線AL2に配置されていてもよく、またはQ1点およびQ2点が、第2中心軸線AL2に配置されていてもよい。
また、P1点とP2点は、設計時(または張設時、蒸着時)にP1点からP2点までの寸法が設計値αとなるような2つの点として設定されていてもよい。すなわち、設計時に所望の設計値αに等しい距離で離間するような任意の2つの点に、P1点とP2点とが設定されていてもよい。P1点およびP2点は、図9Aに示すように、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点にそれぞれ位置付けられていてもよい。
Q1点とQ2点は、設計時にQ1点からQ2点までの寸法が設計値αとなるような2つの点として設定されていてもよい。すなわち、設計時に所望の設計値αに等しい距離で離間するような任意の2つの点に、Q1点とQ2点とが設定されていてもよい。Q1点およびQ2点は、図9Aに示すように、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点にそれぞれ位置付けられていてもよい。
なお、図9Aでは、P1点およびP2点を、有効領域22における複数の貫通孔25のうち、最も第1耳部17aの側(図9Aの上側)に配置された貫通孔25よりも貫通孔25の1つ分だけ第2耳部17bの側(図9Aの下側)の貫通孔25に設定している例を示しているが、これに限られることはない。同様に、Q1点およびQ2点を、有効領域22における複数の貫通孔25のうち、最も第2耳部17bの側(図9Aの下側)に配置された貫通孔25よりも貫通孔25の1つ分だけ第1耳部17aの側(図9Aの上側)の貫通孔25に設定している例を示しているが、これに限られることはない。また、P1点およびQ1点を、有効領域22における複数の貫通孔25のうち、最も第1側縁27aの側(図9Aの左側)に配置された貫通孔25よりも貫通孔25の1つ分だけ第2側縁27bの側(図9Aの右側)の貫通孔25に設定している例を示しているが、これに限られることはない。同様に、P2点およびQ2点を、有効領域22における複数の貫通孔25のうち、最も第2側縁27bの側(図9Aの右側)に配置された貫通孔25よりも貫通孔25の1つ分だけ第1側縁27aの側(図9Aの左側)の貫通孔25に設定している例を示しているが、これに限られることはない。すなわち、P1点、Q1点、P2点およびQ2点は、上述したように、設計時に設計値αおよびαとなるような4つの点となれば、任意の貫通孔25の中心点に設定することができる。
ところで、P1点およびP2点は、最も第1耳部17aの側に配置された貫通孔25を除く貫通孔25から設定されるようにしてもよい。最も第1耳部17aの側の貫通孔25は、最も第1耳部17aの側に配置された有効領域22の中で最も外側(第1耳部17aの側)に配置されており、周囲領域23に隣り合っている。このことから、当該貫通孔25よりも、当該有効領域22の他の貫通孔25の方が位置精度が高い場合があるため、最も第1耳部17aの側の貫通孔25よりも第2耳部17bの側に配置された貫通孔25(例えば、図9AにおいてP1点およびP2点が設定された貫通孔25や当該貫通孔25よりも下側の貫通孔25)をP1点およびP2点に設定してもよい。
また、Q1点およびQ2点には、最も第2耳部17bの側に配置された貫通孔25を除く貫通孔25から設定されるようにしてもよい。最も第2耳部17bの側の貫通孔25は、最も第2耳部17bの側に配置された有効領域22の中で最も外側(第2耳部17bの側)に配置されており、周囲領域23に隣り合っている。このことから、当該貫通孔25よりも、当該有効領域22の他の貫通孔25の方が位置精度が高い場合があるため、最も第2耳部17bの側の貫通孔25よりも第1耳部17aの側に配置された貫通孔25(例えば、図9AにおいてQ1点およびQ2点が設定された貫通孔25や当該貫通孔25よりも上側の貫通孔25)をQ1点およびQ2点に設定してもよい。
また、P1点およびQ1点には、最も第1側縁27aの側に配置された貫通孔25を除く貫通孔25から設定されるようにしてもよい。最も第1側縁27aの側の貫通孔25は、有効領域22の中で最も外側(第1側縁27aの側)に配置されており、周囲領域23に隣り合っている。このことから、当該貫通孔25よりも、当該有効領域22の他の貫通孔25の方が位置精度が高い場合があるため、最も第1側縁27aの側の貫通孔25よりも第2側縁27bの側に配置された貫通孔25(例えば、図9AにおいてP1点およびQ1点が設定された貫通孔25や当該貫通孔25よりも右側の貫通孔25)をP1点およびQ1点に設定してもよい。
また、P2点およびQ2点には、最も第2側縁27bの側に配置された貫通孔25を除く貫通孔25から設定されるようにしてもよい。最も第2側縁27bの側の貫通孔25は、有効領域22の中で最も外側(第2側縁27bの側)に配置されており、周囲領域23に隣り合っている。このことから、当該貫通孔25よりも、当該有効領域22の他の貫通孔25の方が位置精度が高い場合があるため、最も第2側縁27bの側の貫通孔25よりも第2側縁27bの側に配置された貫通孔25(例えば、図9AにおいてP2点およびQ2点が設定された貫通孔25や当該貫通孔25よりも左側の貫通孔25)をP2点およびQ2点に設定してもよい。
式(1)および式(2)に示された設計値αは、寸法X1の設計値であってもよく、寸法X2の設計値でもあってもよい。設計時には、P1点およびQ1点と、P2点およびQ2点とが、蒸着マスク20の第1中心軸線AL1に対して対称に配置されるため、寸法X1と寸法X2とは同一になり得るからである。また、式(2)に示された設計値αは、P1点からP2点までの寸法の設計値であってもよく、Q1点からQ2点までの寸法の設計値でもあってもよい。設計時には、P1点およびQ1点が長手方向D1に沿って配置されているとともに、P2点およびQ2点が長手方向D1に沿って配置されているため、P1点からP2点までの寸法の設計値と、Q1点からQ2点までの寸法の設計値は同一になり得る。ここで、設計値とは、フレーム15に張設された場合に貫通孔25が所望の位置(蒸着目標位置)に配置されることを意図して設定された数値であって、張設時の数値に相当していてもよい。
本実施の形態において、設計値αの範囲の下限は、例えば、200mm以上であってもよく、300mm以上であってもよく、400mm以上であってもよい。また、設計値αの範囲の上限は、例えば、600mm以下であってもよく、800mm以下であってもよく、900mm以下であってもよい。設計値αの範囲は、上述の複数の下限の候補値のうちの任意の1つと、上述の複数の上限の候補値のうちの任意の1つの組み合わせによって定められてもよく、例えば、200mm以上900mm以下であってもよく、300mm以上800mm以下であってもよく、400mm以上600mm以下であってもよい。また、設計値αの範囲は、上述の複数の下限の候補値のうちの任意の2つの組み合わせによって定められてもよく、例えば、200mm以上400mm以下であってもよく、200mm以上300mm以下であってもよく、300mm以上400mm以下であってもよい。また、設計値αの範囲は、上述の複数の上限の候補値のうちの任意の2つの組み合わせによって定められてもよく、例えば、600mm以上900mm以下であってもよく、600mm以上800mm以下であってもよく、800mm以上900m以下であってもよい。
本実施の形態において、設計値αは、21.7mm以上65.0mm以下であってもよく、21.7mm以上43.3mm以下であってもよく、43.3mm以上65.0mm以下であってもよい。
本実施の形態において、設計値αが200mmで設計値αが65.0mmである場合には、寸法X1は、169.0mm以上232.0mm以下であってもよい。設計値αが200mmで設計値αが43.3mmの場合には、寸法X1は、172.8mm以上225.8mm以下であってもよい。設計値αが200mmで設計値αが21.7mmの場合には、寸法X1は、176.0mm以上221.2mm以下であってもよい。
本実施の形態において、設計値αが300mmで設計値αが65.0mmである場合には、寸法X1は、253.5mm以上348.2mm以下であってもよい。設計値αが300mmで設計値αが43.3mmの場合には、寸法X1は、258.7mm以上339.3mm以下であってもよい。設計値αが300mmで設計値αが21.7mmの場合には、寸法X1は、263.9mm以上331.7mm以下であってもよい。
本実施の形態において、設計値αが400mmで設計値αが65.0mmである場合には、寸法X1は、338.3mm以上464.2mm以下であってもよい。設計値αが400mmで設計値αが43.3mmの場合には、寸法X1は、344.8mm以上451.9mm以下であってもよい。設計値αが400mmで設計値αが21.7mmの場合には、寸法X1は、351.7mm以上442.3mm以下であってもよい。
本実施の形態において、設計値αが600mmで設計値αが65.0mmである場合には、寸法X1は、507.4mm以上696.3mm以下であってもよい。設計値αが600mmで設計値αが43.3mmの場合には、寸法X1は、517.5mm以上678.1mm以下であってもよい。設計値αが600mmで設計値αが21.7mmの場合には、寸法X1は、527.7mm以上663.4mm以下であってもよい。
本実施の形態において、設計値αが800mmで設計値αが65.0mmである場合には、寸法X1は、676.2mm以上927.8mm以下であってもよい。設計値αが800mmで設計値αが43.3mmの場合には、寸法X1は、689.9mm以上904.2mm以下であってもよい。設計値αが800mmで設計値αが21.7mmの場合には、寸法X1は、703.5mm以上884.8mm以下であってもよい。
本実施の形態において、設計値αが900mmで設計値αが65.0mmである場合には、寸法X1は、761.9mm以上1044.9mm以下であってもよい。設計値αが900mmで設計値αが43.3mmの場合には、寸法X1は、776.8mm以上1017.3mm以下であってもよい。設計値αが900mmで設計値αが21.7mmの場合には、寸法X1は、791.8mm以上995.6mm以下であってもよい。
本実施の形態において、設計値αが200mmで、設計値αが65.0mmであるの場合には、寸法X2は、176.5mm以上217.3mm以下であってもよい。設計値αが200mmで設計値αが43.3mmの場合には、寸法X1は、179.9mm以上216.7mm以下であってもよい。設計値αが200mmで設計値αが21.7mmの場合には、寸法X1は、182.7mm以上216.4mm以下であってもよい。
本実施の形態において、設計値αが300mmで設計値αが65.0mmである場合には、寸法X2は、265.0mm以上326.2mm以下であってもよい。設計値αが300mmで設計値αが43.3mmの場合には、寸法X2は、269.9mm以上325.0mm以下であってもよい。設計値αが300mmで設計値αが21.7mmの場合には、寸法X2は、274.2mm以上324.5mm以下であってもよい。
本実施の形態において、設計値αが400mmで設計値αが65.0mmである場合には、寸法X2は、352.9mm以上435.0mm以下であってもよい。設計値αが400mmで設計値αが43.3mmの場合には、寸法X2は、359.8mm以上434.0mm以下であってもよい。設計値αが400mmで設計値αが21.7mmの場合には、寸法X2は、365.5mm以上432.8mm以下であってもよい。
本実施の形態において、設計値αが600mmで設計値αが65.0mmである場合には、寸法X2は、529.8mm以上652.3mm以下であってもよい。設計値αが600mmで設計値αが43.3mmの場合には、寸法X2は、539.8mm以上650.4mm以下であってもよい。設計値αが600mmで設計値αが21.7mmの場合には、寸法X2は、548.1mm以上648.9mm以下であってもよい。
本実施の形態において、設計値αが800mmで設計値αが65.0mmである場合には、寸法X2は、706.8mm以上869.8mm以下であってもよい。設計値αが800mmで設計値αが43.3mmの場合には、寸法X2は、720.0mm以上867.7mm以下であってもよい。設計値αが800mmで設計値αが21.7mmの場合には、寸法X2は、730.8mm以上865.2mm以下であってもよい。
本実施の形態において、設計値αが900mmで設計値αが65.0mmである場合には、寸法X2は、794.8mm以上977.9mm以下であってもよい。設計値αが900mmで設計値αが43.3mmの場合には、寸法X2は、809.4mm以上975.8mm以下であってもよい。設計値αが900mmで設計値αが21.7mmの場合には、寸法X2は、822.3mm以上973.9mm以下であってもよい。
本実施の形態において、最も第1側縁27aの側に配置された貫通孔25の中心点と、最も第2側縁27bの側に配置された貫通孔25の中心点との間の距離(設計値)であるWは、20mm以上350mm以下であってもよく、20mm以上65.0mm以下であってもよく、65.0mm以上350mm以下であってもよい。また、Wは、65.0mmであってもよい。
貫通孔25は、図9Aに示すように格子状に配置されることに限られない。例えば、図9Bに示すように、貫通孔25は、千鳥状に配置されていてもよい。この場合には、図9Bに示すように、P1点、P2点、Q1点およびQ2点を設定してもよい。
なお、P1点およびQ1点は、蒸着マスク20の長手方向D1に沿って配置された任意の2点であれば、蒸着時に蒸着材料98が通過する貫通孔25の中心点に位置付けられていなくてもよい。例えば、蒸着マスク20の第1面20aまたは第2面20bに形成された任意の凹部であってもよく、あるいは、蒸着材料98の通過を意図していない他の貫通孔(ダミー孔)、さらには蒸着マスク20の外形寸法であってもよい。ダミー孔は、各有効領域22において、外側(第1耳部17aの側、第2耳部17bの側、第1側縁27aの側または第2側縁27bの側)に配置される場合がある。例えば、有効領域22の最も外側に配置された貫通孔25だけでなく、当該貫通孔25から1つ分または複数個分だけ内側の貫通孔25までもが、ダミー孔として構成される場合がある。このようなダミー孔としての貫通孔25は、蒸着時に蒸着材料98が通過するが、通過して有機EL基板92に付着した蒸着材料98は、画素としては使用されない。
例えば、図9Cに示すように、P1点、Q1点、P2点およびQ2点を、トータルピッチマーク28の中心点に位置付けるようにしてもよい。トータルピッチマーク28は、各有効領域22の角部の近傍であって有効領域22の外側(すなわち、周囲領域23)に配置されたマークである。トータルピッチマーク28は、後述する第1面エッチング工程または第2面エッチング工程において、第1面20aまたは第2面20bにおける所望の位置にハーフエッチングで凹状に形成してもよい。あるいは、第1面20aから第2面20bに延びる貫通孔を形成して、これをトータルピッチマーク28としてもよい。また、図9Cでは、トータルピッチマーク28の平面形状が円形である例を示しているが、これに限られることはなく、矩形など任意の形状としてもよい。
次に、蒸着マスク20を製造する方法について説明する。
はじめに、蒸着マスクを製造するために用いられる金属板の製造方法の一例について説明する。
はじめに図10に示すように、圧延工程として、ニッケルを含む鉄合金から構成された母材55を準備し、この母材55を、一対の圧延ロール56a,56bを含む圧延装置56に向けて、矢印D1で示す方向に沿って搬送してもよい。一対の圧延ロール56a,56bの間に到達した母材55は、一対の圧延ロール56a,56bによって圧延され、この結果、母材55は、その厚みが低減されるとともに、搬送方向に沿って伸ばされる。これによって、厚みtの板材64Xを得ることができる。図10に示すように、板材64Xをコア61に巻き取ることによって巻き体62を形成してもよい。厚みtの具体的な値は、好ましくは上述のように5μm以上且つ85μm以下である。
なお図10は、圧延工程の概略を示す図に過ぎず、圧延工程を実施するための具体的な構成や手順が特に限られることはない。例えば圧延工程は、母材55を構成するインバー材の結晶配列を変化させる温度以上の温度で母材を加工する熱間圧延工程や、インバー材の結晶配列を変化させる温度以下の温度で母材を加工する冷間圧延工程を含んでいてもよい。また、一対の圧延ロール56a,56bの間に母材55や板材64Xを通過させる際の向きが一方向に限られることはない。例えば、図10および図11において、紙面左側から右側への向き、および紙面右側から左側への向きで繰り返し母材55や板材64Xを一対の圧延ロール56a,56bの間に通過させることにより、母材55や板材64Xを徐々に圧延してもよい。
その後、板材64Xの幅が所定の範囲内になるよう、圧延工程によって得られた板材64Xの幅方向における両端をそれぞれ所定の範囲にわたって切り落とすスリット工程を実施してもよい。このスリット工程は、圧延に起因して板材64Xの両端に生じ得るクラックを除去するために実施される。このようなスリット工程を実施することにより、板材64Xが破断してしまう現象、いわゆる板切れが、クラックを起点として生じてしまうことを抑制することができる。
その後、圧延によって板材64X内に蓄積された残留応力(内部応力)を取り除くため、図11に示すように、アニール装置57を用いて板材64Xをアニールするアニール工程を実施してもよく、これによって長尺金属板64を得る。アニール工程は、図11に示すように、板材64Xや長尺金属板64を搬送方向(長手方向)に引っ張りながら実施されてもよい。すなわち、アニール工程は、いわゆるバッチ式の焼鈍ではなく、搬送しながらの連続焼鈍として実施されてもよい。
好ましくは上述のアニール工程は、非還元雰囲気や不活性ガス雰囲気で実施される。ここで非還元雰囲気とは、水素などの還元性ガスを含まない雰囲気のことである。「還元性ガスを含まない」とは、水素などの還元性ガスの濃度が4%以下であることを意味している。また不活性ガス雰囲気とは、アルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスが90%以上存在する雰囲気のことである。非還元雰囲気や不活性ガス雰囲気でアニール工程を実施することにより、上述のニッケル水酸化物が長尺金属板64の第1面64aや第2面64bに生成されることを抑制することができる。
アニール工程を実施することにより、残留歪がある程度除去された、厚みtの長尺金属板64を得ることができる。なお厚みtは、蒸着マスク20の厚みtに等しくなっていてもよい。
なお、上述の圧延工程、スリット工程およびアニール工程を複数回繰り返すことによって、厚みtの長尺の金属板64を作製してもよい。また図11においては、アニール工程が、長尺金属板64を長手方向に引っ張りながら実施される例を示したが、これに限られることはなく、アニール工程を、長尺金属板64がコア61に巻き取られた状態で実施してもよい。すなわちバッチ式の焼鈍が実施されてもよい。なお、長尺金属板64がコア61に巻き取られた状態でアニール工程を実施する場合、長尺金属板64に、巻き体62の巻き取り径に応じた反りの癖がついてしまうことがある。従って、巻き体62の巻き径や母材55を構成する材料によっては、長尺金属板64を長手方向に引っ張りながらアニール工程を実施することが有利である。
その後、長尺金属板64の幅方向における両端をそれぞれ所定範囲にわたって切り落とし、これによって、長尺金属板64の幅を所望の幅に調整する切断工程を実施してもよい。このようにして、所望の厚みおよび幅を有する長尺金属板64を得ることができる。
次に、長尺金属板64を用いて蒸着マスク20を製造する方法の一例について、主に図12~図20を参照して説明する。以下に説明する蒸着マスク20の製造方法では、図12に示すように、長尺金属板64が供給され、この長尺金属板64に貫通孔25が形成され、さらに長尺金属板64を断裁することによって枚葉状の金属板21からなる蒸着マスク20が得られる。
より具体的には、蒸着マスク20の製造方法は、帯状に延びる長尺の金属板64を供給する工程と、フォトリソグラフィー技術を用いたエッチングを長尺の金属板64に施して、長尺金属板64に第1面64aの側から第1凹部30を形成する工程と、フォトリソグラフィー技術を用いたエッチングを長尺金属板64に施して、長尺金属板64に第2面64bの側から第2凹部35を形成する工程と、を含んでいてもよい。そして、長尺金属板64に形成された第1凹部30と第2凹部35とが互いに通じ合うことによって、長尺金属板64に貫通孔25が作製されてもよい。図13~図20に示された例では、第1凹部30の形成工程が、第2凹部35の形成工程の前に実施され、且つ、第1凹部30の形成工程と第2凹部35の形成工程の間に、作製された第1凹部30を封止する工程が、さらに設けられている。以下において、各工程の詳細を説明する。
図12には、蒸着マスク20を製造するための製造装置60が示されている。図12に示すように、まず、長尺金属板64をコア61に巻き取った巻き体(金属板ロール)62が準備される。そして、このコア61が回転して巻き体62が巻き出されることにより、図12に示すように帯状に延びる長尺金属板64が供給される。なお、長尺金属板64は、貫通孔25を形成されて枚葉状の金属板21、さらには蒸着マスク20をなすようになる。
供給された長尺金属板64は、搬送ローラー72によって、エッチング装置(エッチング手段)70に搬送されてもよい。エッチング装置70によって、図13~図20に示された各処理が施されてもよい。なお本実施形態においては、長尺金属板64の幅方向に複数の蒸着マスク20が割り付けられる例について説明する。すなわち、複数の蒸着マスク20が、長手方向において長尺金属板64の所定の位置を占める領域から作製される。この場合、好ましくは、蒸着マスク20の長手方向が長尺金属板64の圧延方向に一致するよう、複数の蒸着マスク20が長尺金属板64に割り付けられる。
まず、図13に示すように、長尺金属板64の第1面64a上および第2面64b上にネガ型の感光性レジスト材料を含むレジスト膜65c、65dを形成してもよい。レジスト膜65c、65dを形成する方法としては、アクリル系光硬化性樹脂などの感光性レジスト材料を含む層が形成されたフィルム、いわゆるドライフィルムを長尺金属板64の第1面64a上および第2面64b上に貼り付ける方法が採用されてもよい。
次に、レジスト膜65c、65dのうちの除去したい領域に光を透過させないようにした露光マスク68a、68bを準備し、露光マスク68a、68bをそれぞれ図14に示すようにレジスト膜65c、65d上に配置してもよい。露光マスク68a、68bとしては、例えば、レジスト膜65c、65dのうちの除去したい領域に光を透過させないようにしたガラス乾板が用いられてもよい。その後、真空密着によって露光マスク68a、68bをレジスト膜65c、65dに十分に密着させてもよい。なお感光性レジスト材料として、ポジ型のものが用いられてもよい。この場合、露光マスクとして、レジスト膜のうちの除去したい領域に光を透過させるようにした露光マスクが用いられてもよい。
その後、レジスト膜65c、65dを露光マスク68a、68b越しに露光してもよい(露光工程)。さらに、露光されたレジスト膜65c、65dに像を形成するためにレジスト膜65c、65dを現像してもよい(現像工程)。以上のようにして、図15に示すように、長尺金属板64の第1面64a上に第1レジストパターン65aを形成し、長尺金属板64の第2面64b上に第2レジストパターン65bを形成することができる。なお現像工程は、レジスト膜65c、65dの硬度を高めるための、または長尺金属板64に対してレジスト膜65c、65dをより強固に密着させるためのレジスト熱処理工程を含んでいてもよい。レジスト熱処理工程は、アルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスの雰囲気において、例えば100℃以上且つ400℃以下で実施されてもよい。
次に、図16に示すように、長尺金属板64の第1面64aのうち第1レジストパターン65aによって覆われていない領域を、第1エッチング液を用いてエッチングする第1面エッチング工程を実施してもよい。例えば、第1エッチング液が、搬送される長尺金属板64の第1面64aに対面する側に配置されたノズルから、第1レジストパターン65a越しに長尺金属板64第1面64aに向けて噴射されてもよい。この結果、図16に示すように、長尺金属板64のうちの第1レジストパターン65aによって覆われていない領域で、第1エッチング液による浸食が進むことができる。これによって、長尺金属板64の第1面64aに多数の第1凹部30が形成され得る。第1エッチング液としては、例えば塩化第2鉄溶液および塩酸を含む液が用いられてもよい。
その後、図17に示すように、後の第2面エッチング工程において用いられる第2エッチング液に対する耐性を有した樹脂69によって、第1凹部30が被覆されてもよい。すなわち、第2エッチング液に対する耐性を有した樹脂69によって、第1凹部30が封止されてもよい。図17に示す例において、樹脂69の膜が、形成された第1凹部30だけでなく、第1面64a(第1レジストパターン65a)も覆うように形成されていてもよい。
次に、図18に示すように、長尺金属板64の第2面64bのうち第2レジストパターン65bによって覆われていない領域をエッチングし、第2面64bに第2凹部35を形成する第2面エッチング工程を実施してもよい。第2面エッチング工程は、第1凹部30と第2凹部35とが互いに通じ合い、これによって貫通孔25が形成されるようになるまで実施されてもよい。第2エッチング液としては、上述の第1エッチング液と同様に、例えば塩化第2鉄溶液および塩酸を含む液が用いられてもよい。
なお第2エッチング液による浸食は、長尺金属板64のうちの第2エッチング液に触れている部分において行われていく。従って、浸食は、長尺金属板64の法線方向N(厚み方向)のみに進むのではなく、長尺金属板64の板面に沿った方向にも進んでいくことができる。ここで好ましくは、第2面エッチング工程は、第2レジストパターン65bの隣り合う二つの孔66aに対面する位置にそれぞれ形成された二つの第2凹部35が、二つの孔66aの間に位置するブリッジ部67aの裏側において合流するよりも前に終了されてもよい。これによって、図19に示すように、長尺金属板64の第2面64bに上述のトップ部43を残すことができる。
その後、図20に示すように、長尺金属板64から樹脂69が除去されてもよい。樹脂69は、例えばアルカリ系剥離液を用いることによって、除去することができる。アルカリ系剥離液が用いられる場合、図20に示すように、樹脂69と同時にレジストパターン65a,65bも除去され得る。なお、樹脂69を除去した後、樹脂69を剥離させるための剥離液とは異なる剥離液を用いて、樹脂69とは別途にレジストパターン65a,65bを除去してもよい。
このようにして多数の貫通孔25が形成された長尺金属板64は、当該長尺金属板64を狭持した状態で回転する搬送ローラー72,72により、切断装置(切断手段)73へ搬送されてもよい。なお、この搬送ローラー72,72の回転によって長尺金属板64に作用するテンション(引っ張り応力)を介し、上述した供給コア61が回転させられ、巻き体62から長尺金属板64が供給されるようになっていてもよい。
その後、多数の貫通孔25が形成された長尺金属板64を切断装置73によって所定の長さおよび幅に切断してもよい。このことにより、多数の貫通孔25が形成された枚葉状の金属板21、すなわち蒸着マスク20を得ることができる。
次に、上述のようにして準備された蒸着マスク20の寸法X1および寸法X2を測定して蒸着マスク20の良否を判定する方法の一例について、図21~図24を参照して説明する。ここでは、以下に述べる良否判定システム80を用いて、寸法X1および寸法X2を測定し、測定結果に基づいて、蒸着マスク20の良否を判定する方法について説明する。すなわち、寸法X1および寸法X2を測定することにより、蒸着マスク20の貫通孔25が設計通りに配置されているか否かを確認することができ、これによって、蒸着マスク20の貫通孔25の位置精度が所定の基準を満たすか否かを判定することができる。
ところで、厚みの小さな金属板21を得るためには、母材を圧延して金属板21を製造する際の圧延率を大きくしてもよい。ここで圧延率とは、(母材の厚み-金属板の厚み)/(母材の厚み)によって算出される値のことである。しかしながら、幅方向D2(母材の搬送方向に直交する方向)の位置に応じて金属板64の伸び率は異なる。そして、圧延率が大きいほど、圧延に基づく変形の不均一さの程度が大きくなり得る。このため、大きな圧延率で圧延された金属板64には、波打ち形状が現れることが知られている。具体的には、耳伸びと呼ばれる、金属板64の幅方向D2における側縁64eに形成される波打ち形状が挙げられる。また、中伸びと呼ばれる、金属板64の幅方向D2における中央に形成される波打ち形状が挙げられる。圧延後にアニールなどの熱処理を施した場合であっても、このような波打ち形状は現れ得る。例えば、図21に示すように、長尺金属板64は、長手方向D1における長さが幅方向D2の位置に応じて異なることに起因する波打ち形状を少なくとも部分的に有している。例えば、長尺金属板64のうち長手方向D1に沿って延びる側縁64eには、波打ち形状が現れている。
なお、めっき処理を利用した製箔工程によって、所定の厚みを有する金属板が作製される場合もある。しかしながら、製箔工程において、電流密度が不均一であると、作製される金属板の厚みが不均一になり得る。このことにより、金属板の幅方向における側縁に、同様な波打ち形状が現れる可能性もある。
一方、レジスト膜65c、65dを露光する上述の露光工程においては、真空吸着などによって露光マスクを長尺金属板64上のレジスト膜65c、65dに密着させる。このため、露光マスクとの密着により、図22に示すように、長尺金属板64の側縁64eの波打ち形状が圧縮され、長尺金属板64がほぼ平坦な状態になる。この状態で、図22において点線で示すように、長尺金属板64に設けられたレジスト膜65c、65dが所定のパターンで露光される。
露光マスクが長尺金属板64から取り外されると、長尺金属板64の側縁64eには、再び波打ち形状が現れる。このように波打ち形状が形成された金属板64から蒸着マスク20を作製して張設した場合、蒸着マスク20の伸びは幅方向D2において異なり、これによって、貫通孔25の位置がずれる場合がある。より具体的には、金属板64のうち波打ち形状が大きい部分は、蒸着マスク20として形成された場合に、波打ち形状が小さい部分よりも長手方向寸法が長くなる。ここで、幅方向D2において互いに異なる第1位置部分および第2位置部分に引張力を与えて蒸着マスク20を張設する場合を想定する。この場合、第1位置部分における蒸着マスク20の長手方向長さが、第2位置部分における長手方向長さよりも短いと、第1位置部分の長手方向長さが第2位置部分の長手方向長さと等しくなるように蒸着マスク20に引張力が付与される。このため、第1位置部分が、第2位置部分よりも大きく伸び、蒸着マスク20の長手方向中央部が、幅方向D2で第1位置部分の側にずれる可能性がある。張設時の貫通孔25の位置ずれは小さいことが好ましく、これにより、貫通孔25を介して有機EL基板92に蒸着される蒸着材料98の位置がずれることを抑制でき、有機EL表示装置の画素の寸法精度や位置精度を向上させることができる。
図23は、エッチングされることによって複数の蒸着マスク20が幅方向D2に沿って割り付けられた状態の長尺金属板64を示す図である。図23に示すように、割り付けられた3つの蒸着マスク20のうち少なくとも長尺金属板64の側縁64eに向かい合う蒸着マスク20は、波打ち形状が比較的大きい部分から形成される。図23において、符号27aは、長尺金属板64の側縁64eに対向するよう割り付けられた蒸着マスク20の側縁のうち、長尺金属板64の中央側に位置する側縁(以下、第1側縁と称する)を表す。また、図23において、符号27bは、第1側縁27aの反対側に位置し、長尺金属板64の側縁64eに対向する側縁(以下、第2側縁と称する)を表す。図23に示すように、長尺金属板64の側縁64eに対向する蒸着マスク20において、第2側縁27bの側の部分は、第1側縁27aの側の部分よりも波打ち形状が大きい部分から形成される。
図24は、長尺金属板64の側縁64eに対向していた蒸着マスク20を長尺金属板64から切り出すことによって得られた蒸着マスク20を示す平面図である。上述したように、蒸着マスク20の第2側縁27bの側の部分が、第1側縁27aの側の部分よりも波打ち形状が大きい部分から形成される場合には、第2側縁27bの側の部分の長手方向D1の長さが、第1側縁27aの側の部分の長手方向D1の長さよりも長くなる。すなわち、長手方向D1における第2側縁27bの寸法(第2側縁27bに沿った寸法)は、第1側縁27aの寸法(第1側縁27aに沿った寸法)よりも大きくなる。この場合、図24に示すように、蒸着マスク20には、第1側縁27a側から第2側縁27b側へ向かう方向において凸となるよう湾曲した形状が現れる。以下、このような湾曲形状を、C字形状とも称する。
本実施形態では、蒸着マスク20の寸法X1および寸法X2の測定は、蒸着マスク20に張力を付与することなく行われる。以下、本実施形態による良否判定方法について説明する。
図25は、蒸着マスク20の寸法を測定して良否を判定する良否判定システムを示す図である。図25に示すように、良否判定システム80は、蒸着マスク20が載置されるステージ81と、寸法測定装置82と、判定装置83と、を備えていてもよい。
寸法測定装置82は、例えば、ステージ81の上方に設けられ、蒸着マスク20を撮像して画像を作成する測定カメラ(撮像部)を含んでいてもよい。ステージ81および寸法測定装置82のうちの少なくとも一方は、互いに対して移動可能になっていてもよい。本実施形態においては、ステージ81が静止し、寸法測定装置82が、ステージ81に平行で互いに直交する2方向と、ステージ81に垂直な方向に移動可能になっていてもよい。このことにより、寸法測定装置82を、所望の位置に移動させることが可能に構成されている。なお、寸法測定装置82が静止し、ステージ81が移動可能であるよう、良否判定システム80を構成してもよい。
蒸着マスク20の寸法の測定は、蒸着マスク20のうち測定対象となる部分の寸法の大小に応じて、異なる方法で行うことができる。
測定対象の寸法が比較的小さい場合(例えば、数百μm以下の場合)には、寸法測定装置82の測定カメラの視野内に測定対象を収めることができるため、測定カメラを移動させることなく、測定対象の寸法を測定してもよい。
一方、測定対象の寸法が比較的大きい場合(例えば、mmオーダ以上の場合)には、寸法測定装置82の測定カメラの視野内に測定対象を収めることが困難になるため、測定カメラを移動させて測定対象の寸法を測定してもよい。この場合、寸法測定装置82は、測定カメラにより撮像された画像と、測定カメラの移動量(ステージ81が移動する場合にはその移動量)とに基づいて、蒸着マスク20の寸法を算出してもよい。
判定装置83は、寸法測定装置82による測定結果に基づいて、上述した式(1)と式(2)とが満たされているか否かを判定してもよい。判定装置83は、演算装置および記憶媒体を含んでいてもよい。演算装置は、例えばCPUである。記憶媒体は、例えばROMやRAMなどのメモリーである。判定装置83は、記憶媒体に記憶されたプログラムを演算装置が実行することによって、蒸着マスク20の寸法の判定処理を実施してもよい。
本実施形態による蒸着マスク20の良否判定方法では、はじめに、蒸着マスク20の寸法X1および寸法X2を測定する測定工程を実施してもよい。
この場合、まず、ステージ81上に、蒸着マスク20が静かに載置されてもよい。この際、蒸着マスク20は、ステージ81に固定されることなく、載置されてもよい。すなわち、蒸着マスク20には張力が付与されなくてもよい。ステージ81に載置された蒸着マスク20は、例えば図24に示すようにC字状に湾曲し得る。
次に、P1点、Q1点、P2点およびQ2点を設定してもよい。ここでは、P1点およびQ1点は、設計時(または張設時、蒸着時)に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点に設定される例について説明する。同様に、P2点およびQ2点は、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点に設定されてもよい。また、P1点およびP2点は、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点に設定されてもよい。同様に、Q1点およびQ2点は、設計時に所望の設計値αに等しい距離で離間するような2つの貫通孔25の中心点に設定されてもよい。
例えば、所望の設計値αを200mmとするとともに、αを65.0mmとした場合、200mm×65.0mmの長方形の頂点(角部)に位置付けられている貫通孔25の中心点を、P1点、Q1点、P2点およびQ2点に設定してもよい。ここで、この長方形の頂点に一致する貫通孔25の中心点が存在しない場合には、頂点近傍の(好ましくは頂点に最も近い)貫通孔25の中心点を、P1点、Q1点、P2点、Q2点に設定してもよい。この場合には、このようにして設定されたP1点、Q1点、P2点、Q2点に対応する設計値αおよびαを求め、後述する判定工程で用いればよい。なお、頂点に最も近い貫通孔25が2つ以上ある場合には、いずれか一つの貫通孔25に設定すればよい。
貫通孔25の中心点は、上述した接続部41の平面形状の中心点であってもよい。この中心点は、接続部41と同一の平面形状の密度一定の形状物を想定したときに、当該形状物を1点で支持することができる図心として定義されていてもよい。これにより、貫通孔25の平面形状が、複雑な形状であっても、中心点を決定することができる。中心点を求める装置としては、座標測定機であるAMIC1710-D(新東Sプレシジョン株式会社製)が挙げられる。なお、貫通孔25の中心点は、第1面20aにおける第1凹部30の平面形状の中心点であってもよい。
続いて、ステージ81上の蒸着マスク20の寸法X1および寸法X2(図24参照)が測定されてもよい。この場合、図25に示す上述した寸法測定装置82の測定カメラにより、蒸着マスク20のP1点、Q1点、P2点およびQ2点が撮像されて、撮像された画像と、測定カメラが移動した場合にはその移動量とに基づいて、P1点、Q1点、P2点およびQ2点の座標を算出してもよい。そして、算出された各点の座標に基づいて、P1点からQ1点までの直線距離である寸法X1と、P2点からQ2点までの直線距離である寸法X2とが算出されてもよい。
次に、寸法測定工程において測定された寸法X1および寸法X2に基づいて、蒸着マスク20の良否を判定する判定工程を実施してもよい。
例えば、寸法測定装置82による測定結果に基づいて、算出された寸法X1と寸法X2とが、上述した式(1)および式(2)の少なくとも一方を満たしているか否かを判定してもよい。すなわち、上述のように算出された寸法X1と寸法X2とが上述した式(1)に代入されるとともに、αに設計値が代入され、式(1)の左辺が絶対値として算出されてもよい。この左辺の値が、設計値αに基づく右辺の値以下であるか否かが判定されてもよい。式(1)を満たした蒸着マスク20が良品(OK)と判定されてもよく、式(1)を満たしていない蒸着マスク20は、不良品(NG)と判定されてもよい。
同様にして、算出された寸法X1と寸法X2とが上述した式(2)に代入され、式(2)の左辺が絶対値として算出され、この左辺の値が、設計値αおよびαに基づく右辺の値以下であるか否かが判定されてもよい。式(2)を満たした蒸着マスク20が良品(OK)と判定されてもよく、式(2)を満たしていない蒸着マスク20は、不良品(NG)と判定されてもよい。
このようにして、式(1)および式(2)の少なくとも一方を満たす蒸着マスク20が良品であると判定されてもよい。しかしながら、これに限られることはなく、式(1)および式(2)の両方を満たす蒸着マスク20を良品として判定してもよい。しかしながら、式(1)を満たしていれば式(2)は満たしていない蒸着マスク20を良品として判定してもよく、若しくは式(2)を満たしていれば式(1)は満たしていない蒸着マスク20を良品として判定してもよい。
次に、蒸着マスク20を選定する。ここでは、式(1)および式(2)の少なくとも一方を満たす蒸着マスク20を選定する選定方法の例について説明する。
すなわち、式(1)に関して良品と判定された蒸着マスク20と、不良品と判定された蒸着マスク20が選別されてもよい。そして、式(1)を満たした良品である蒸着マスク20が、本実施形態による製造方法で製造される蒸着マスクとして選定されてもよい。
また、式(1)に関して不良品と判定された蒸着マスク20のうち、式(2)に関して良品と判定された蒸着マスク20と、不良品と判定された蒸着マスク20が選別されてもよい。そして、式(2)を満たした良品である蒸着マスク20が、本実施形態による製造方法で製造される蒸着マスクとして選定されてもよい。なお、式(1)を満たした蒸着マスク20を選定する前に、式(2)を満たした蒸着マスク20を選定してもよい。
このようにして、式(1)および式(2)の少なくとも一方を満たした蒸着マスク20が、本実施形態による製造方法で製造された蒸着マスクとして選定され得る。選定された蒸着マスク20は、後述する蒸着マスク装置の製造方法で用いられてもよい。なお、選定工程において選定される蒸着マスク20は、式(1)および式(2)の両方を満たした蒸着マスク20としてもよい。しかしながら、式(1)を満たしていれば式(2)は満たしていない蒸着マスク20を選定してもよく、若しくは式(2)を満たしていれば式(1)は満たしていない蒸着マスク20を選定してもよい。
次に、良品と判定されて選定された蒸着マスク20を用いて蒸着マスク装置10を製造する方法の一例について説明する。この場合、図3に示すように、複数の蒸着マスク20がフレーム15に張設されてもよい。より具体的には、蒸着マスク20に、当該蒸着マスク20の長手方向D1の張力を付与し、張力が付与された状態の蒸着マスク20の耳部17a,17bを、フレーム15に固定してもよい。耳部17a,17bはフレーム15に、例えばスポット溶接で固定される。
蒸着マスク20をフレーム15に張設する際、蒸着マスク20には長手方向D1の張力が付与されてもよい。この場合、図26に示すように、蒸着マスク20の第1端部26aが、第1中心軸線AL1の両側に配置された第1クランプ86aおよび第2クランプ86bによって把持されるとともに、第2端部26bが、第1中心軸線AL1の両側に配置された第3クランプ86cおよび第4クランプ86dによって把持されてもよい。第1クランプ86aには第1引張部87aが連結されていてもよく、第2クランプ86bには第2引張部87bが連結されていてもよい。第3クランプ86cには第3引張部87cが連結されていてもよく、第4クランプ86dには第4引張部87dが連結されていてもよい。蒸着マスク20に張力を付与する場合には、第1引張部87aおよび第2引張部87bを駆動して、第3クランプ86cおよび第4クランプ86dに対して第1クランプ86aおよび第2クランプ86bを移動させることにより、長手方向D1において蒸着マスク20に張力T1、T2を付与することができる。この場合に蒸着マスク20に付与される張力は、第1引張部87aの張力T1と、第2引張部87bの張力T2との和になる。なお、各引張部87a~87dは、例えばエアシリンダを含んでいてもよい。また、第3引張部87cおよび第4引張部87dを用いることなく、第3クランプ86cおよび第4クランプ86dを移動不能にしてもよい。
蒸着マスク20に長手方向D1の張力T1、T2が付与されると、蒸着マスク20は長手方向D1で伸びるが、幅方向D2では縮む。張設時には、このようにして弾性変形する蒸着マスク20の全ての貫通孔25が、所望の位置(蒸着目標位置)に対して許容範囲内に位置付けられるように、第1引張部87aの張力T1と第2引張部87bの張力T2とが調整されてもよい。このことにより、蒸着マスク20の長手方向D1における伸びと幅方向D2における縮みを、局所的に調整することができ、各貫通孔25を許容範囲内に位置付けることができる。例えば、張力が付与されていない状態の蒸着マスク20が、図24に示すように第1側縁27aの側から第2側縁27bの側へ向かう方向において凸となるようにC字状に湾曲している場合、第1側縁27aの側の第1引張部87aの張力T1を第2引張部87bの張力T2よりも大きくしてもよい。このことにより、第1側縁27aの側の部分に、第2側縁27bの側の部分よりも大きな張力を付与することができる。このため、第1側縁27aの側の部分を、第2側縁27bの側の部分よりも多く伸ばすことができ、各貫通孔25を、許容範囲内に容易に位置付けることができる。これとは反対に、張力が付与されていない状態の蒸着マスク20が、第2側縁27bの側から第1側縁27aの側へ向かう方向において凸となるようにC字状に湾曲している場合、第2側縁27bの側の第2引張部87bの張力T2を第1引張部87aの張力T1よりも大きくしてもよい。このことにより、第2側縁27bの側の部分に、第1側縁27aの側の部分よりも大きな張力を付与することができる。このため、第2側縁27bの側の部分を、第1側縁27aの側の部分よりも多く伸ばすことができ、各貫通孔25を、許容範囲内に容易に位置付けることができる。
しかしながら、蒸着マスク20に付与する張力を局所的に調整する場合であっても、蒸着マスク20に形成された貫通孔25の位置精度によっては、各貫通孔25を許容範囲内に位置付けることが困難になる場合が考えられる。例えば、寸法X1と寸法X2が、設計値に対して大きくずれている場合には、蒸着マスク20の長手方向D1の伸びが大きくなって幅方向D2の縮みが大きくなったり、逆に、長手方向D1の伸びが少なくて幅方向D2の縮みが少なくなったりする。張設時に、各貫通孔25を、所望の位置(蒸着目標位置)に対して許容範囲内に位置付けることが好ましい。式(1)は、このような原因で張設時の各貫通孔25の位置不良が発生することを抑制するための式である。
すなわち、本実施形態のように、ステージ81等に静置された蒸着マスク20の寸法X1および寸法X2が式(1)を満たしていることにより、張設時における蒸着マスク20の長手方向D1の伸び量を所望の範囲内に収めることができる。このため、張設時における蒸着マスク20の幅方向D2の縮み量を所望の範囲内に収めることができる。この結果、寸法X1および寸法X2が式(1)を満たすことにより、張設時に各貫通孔25の位置調整を容易化させることができる。
また、一般的に、波打ち形状が形成された長尺金属板64から蒸着マスク20が形成されている場合にも、波打ち形状の程度によっては、張設時に各貫通孔25を所望の位置に位置付けることが困難になる場合も考えられる。長尺金属板64の幅方向D2における波打ち形状の程度の違いによって、幅方向D2において長手方向寸法が異なると考えられるからである。この場合、寸法X1と寸法X2とが相違し、張設されていない状態では、蒸着マスク20は、図24に示すようなC字状に湾曲し得る。
例えば、図24に示すように湾曲している蒸着マスク20では、張設されていない状態では、寸法X1は寸法X2よりも短くなっている。このため、蒸着マスク20の張設時には、図27に示すように、寸法X1が、寸法X2と等しくなるように蒸着マスク20に引張力が付与される。この場合、第1側縁27aの側の部分が、第2側縁27bの側の部分よりも大きく伸び、蒸着マスク20の長手方向D1における中心位置が、第1側縁27aの側にずれ、これにより、貫通孔25が幅方向D2で変位し得る。また、寸法X1と寸法X2が等しくなるように張設した場合であっても、図28に示すように、蒸着マスク20の湾曲形状が反転する場合がある。この場合、第1側縁27aが凸状になるとともに第2側縁27bが凹状に湾曲する。この場合においても、貫通孔25が幅方向D2で変位し得る。
このため、幅方向D2での貫通孔25の位置ずれを小さくすることが好ましく、全ての貫通孔25を、所望の位置(蒸着目標位置)に対して許容範囲内に位置付けることが好ましい。式(2)は、このような原因で張設時の各貫通孔25の位置不良が発生することを抑制するための式である。
すなわち、本実施形態のように、ステージ81等に静置された蒸着マスク20の寸法X1および寸法X2が式(2)を満たしていることにより、蒸着マスク20の長手方向D1の長さが幅方向D2において異なることを抑制でき、張設時に、長手方向D1の伸びが幅方向D2において異なることを抑制できる。このため、張設時に、貫通孔25の幅方向D2での位置ずれを抑制できる。この結果、寸法X1および寸法X2が式(2)を満たすことにより、張設時に各貫通孔25を、許容範囲内に容易に位置付けることができる。
次に、得られた蒸着マスク装置10を用いて有機EL基板92上に蒸着材料98を蒸着させる方法の一例について説明する。
この場合、まず、図1に示すように、蒸着マスク20が有機EL基板92に対向するようフレーム15を配置する。続いて、磁石93を用いて蒸着マスク20を有機EL基板92に密着させる。その後、この状態で、蒸着材料98を蒸発させて、蒸着マスク20の貫通孔25を通して有機EL基板92に蒸着材料98を飛来させる。このことにより、所定のパターンで蒸着材料98を有機EL基板92に付着させることができる。
このように本実施形態によれば、蒸着マスク20の第1中心軸線AL1の一側におけるP1点からQ1点までの寸法X1と、他側におけるP2点からQ2点までの寸法X2とに基づいて、蒸着マスク20の良否を判定する。このような寸法X1およびX2を用いることにより、張設時に、蒸着マスク20の長手方向D1の伸びが幅方向D2において異なることを抑制でき、貫通孔25の幅方向D2での位置ずれを抑制できる。このため、良品と判定された蒸着マスク20を用いて蒸着マスク装置10を作製することができ、蒸着マスク装置10における蒸着マスク20の各貫通孔25の位置精度を向上させることができる。この結果、張設時の貫通孔25の位置精度を向上させることができる。この場合、高い位置精度で蒸着材料98を基板92に蒸着させることができ、高精細な有機EL表示装置100を作製することが可能になる。
また、本実施形態によれば、P1点からQ1点までの寸法X1と、P2点からQ2点までの寸法X2とが、上述した式(1)を満たしているか否かを判定する。このことにより、式(1)によって寸法X1と寸法X2とが所定条件を満たして良品と判定された蒸着マスク20において、寸法X1および寸法X2の設計値からのずれを低減することができる。このため、蒸着マスク20の張設時に、幅方向D2の縮み量を所望の範囲内に収めることができ、貫通孔25の位置精度を向上させることができる。
また、本実施形態によれば、P1点からQ1点までの寸法X1と、P2点からQ2点までの寸法X2とが、上述した式(2)を満たしているか否かを判定する。このことにより、式(2)によって寸法X1と寸法X2とが所定条件を満たして良品と判定された蒸着マスク20において、寸法X1と寸法X2との差を低減することができる。このため、蒸着マスク20の張設時に、蒸着マスク20の長手方向D1の伸びが幅方向D2において異なることを抑制でき、貫通孔25の幅方向D2での位置ずれを抑制できる。この結果、張設時の貫通孔25の位置精度を向上させることができる。
また、本実施形態によれば、P1点とP2点とは、蒸着時に蒸着マスク20の第1中心軸線AL1に対して互いに対称に配置されることが意図され、Q1点とQ2点とは、蒸着時に蒸着マスク20の第1中心軸線AL1に対して互いに対称に配置されることが意図されている。このことにより、蒸着マスク20の長手方向D1における同じ位置であって、第1中心軸線AL1からの距離が等しい位置に、P1点、Q1点、P2点およびQ2点を設定することができる。このため、蒸着マスク20の良否判定精度を向上させることができる。
また、本実施形態によれば、P1点およびP2点は、蒸着マスク20の第2中心軸線AL2に対して一側に配置され、Q1点およびQ2点は、他側に配置されている。このことにより、第2中心軸線AL2の両側に、P1点、P2点、Q1点およびQ2点を設定することができる。このため、蒸着マスク20の良否判定精度を向上させることができる。
また、本実施形態によれば、P1点とQ1点とは、蒸着時に蒸着マスク20の第2中心軸線AL2に対して互いに対称に配置されることが意図され、P2点とQ2点とは、蒸着時に当該第2中心軸線AL2に対して互いに対称に配置されることが意図されている。このことにより、蒸着マスク20の幅方向D2における同じ位置であって、第2中心軸線AL2からの距離が等しい位置にP1点、Q1点、P2点およびQ2点を設定することができる。このため、蒸着マスク20の良否判定精度を向上させることができる。
さらに、本実施形態によれば、式(1)を満たしている蒸着マスク20が選定されて、蒸着マスク20として製造される。このことにより、寸法X1および寸法X2の設計値からのずれを低減することができる蒸着マスク20を得ることができる。このため、蒸着マスク20の張設時に、幅方向D2の縮み量を所望の範囲内に収めることができ、貫通孔25の位置精度を向上させることができる。
また、本実施形態によれば、式(2)を満たしている蒸着マスク20が選定されて、蒸着マスク20として製造される。このことにより、寸法X1と寸法X2との差を低減することができる蒸着マスク20を得ることができる。このため、蒸着マスク20の張設時に、蒸着マスク20の長手方向D1の伸びが幅方向D2において異なることを抑制でき、貫通孔25の幅方向D2での位置ずれを抑制できる。この結果、張設時の貫通孔25の位置精度を向上させることができる。
なお、上述した実施形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施形態と同様に構成され得る部分について、上述の実施形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
なお、上述の本実施形態においては、圧延された金属板をエッチングすることによって作製された蒸着マスク20の寸法を測定する例を示した。しかしながら、上述の寸法測定方法および良否判定システム80を用いて、めっき処理などのその他の方法によって作製された蒸着マスク20の寸法を測定することもできる。
また、上述の本実施形態においては、式(1)および式(2)の少なくとも一方を満たす蒸着マスク20を良品として判定し、本実施形態による製造方法で製造される蒸着マスクとして選定される例を示した。しかしながら、寸法X1と寸法X2とに基づいて蒸着マスク20の良否を判定することができれば、その判定方法や判定に用いる数式などは、特に限られることはない。すなわち、蒸着マスク20の第1中心軸線AL1の一側におけるP1点からQ1点までの寸法X1と、他側におけるP2点からQ2点までの寸法X2とを用いて良品判定をすることにより、良品と判定された蒸着マスク20では、張設時に、蒸着マスク20の長手方向D1の伸びが幅方向D2において異なることを抑制することができる。このため、貫通孔25の幅方向D2での位置ずれを抑制でき、蒸着マスク装置10における蒸着マスク20の各貫通孔25の位置精度を向上させることができる。
本発明は上記実施形態そのままおよび変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化してもよい。また、上記実施形態および変形例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成してもよい。実施形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。
次に、本実施形態を実施例により更に具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
25個の蒸着マスク20を準備し、第1サンプル~第25サンプルとした。各サンプルについて、寸法X1および寸法X2を測定した。
まず、図25に示すように、蒸着マスク20をステージ81上に水平に載置した。その際、蒸着マスク20に部分的な凹みが生じないよう、蒸着マスク20を静かにステージ81に載置した。
次に、蒸着マスク20のP1点からQ1点までの寸法X1を測定するとともに、P2点からQ2点までの寸法X2を測定した。その測定結果を、α-X1と、α-X2として図29~図46に示す。図29~図46では、αが200mm、300mm、400mm、600mm、800mm、900mmとなるとともに、αが65.0mm、43.3mm、21.7mmとなるような貫通孔25の中心に、P1点とQ1点、およびP2点とQ2点を設定した。図29~図46中に示す数値は、μm単位で示している。図29~図46に示す第1~第25サンプルは同じサンプルである。第1サンプルについて各αおよび各αで寸法を測定して、図29~図46に示す。第2サンプル~第25サンプルについても同様である。第1サンプル~第25サンプルは、いずれもWが65.0mmである。
図29には、αが200mm、αが65.0mmとなるような貫通孔25の中心に、P1点とQ1点、およびP2点とQ2点を設定した場合の測定結果を示している。この場合に測定された寸法X1と寸法X2を、上述した式(1)に代入して、式(1)の左辺を算出した。その算出結果を、|α-(X1+X2)/2|として図29に示した。図29においては、25個のサンプルからそれぞれ得られた25個の蒸着マスク20についての寸法測定結果を示している。ここではαが200mmであるため、式(1)の右辺の値(左辺の閾値)は、13.3μmとなる。第1~第25サンプルのうち、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルでは、式(1)を満たしていた。このため、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
また、蒸着マスク20の寸法X1と寸法X2を、上述した式(2)に代入して、式(2)の左辺を算出した。その算出結果を、|X1-X2|として図29に示した。ここでは、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、20μmとなる。第1~第25サンプルのうち、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルでは、式(2)を満たしていた。このため、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
更に言えば、図29において総合判定結果で示すように、第1~第25サンプルのうち、第1~第6サンプルおよび第21サンプルでは、式(1)および式(2)を満たしている。このため、第1~第6サンプルおよび第21サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度をより一層向上させることができる蒸着マスク20である(良品である)と判定された。
ここで、上述した式(1)および式(2)を満たすことが、張設時の貫通孔25の位置精度を向上させることができる理由について説明する。
まず、式(1)について説明する。上述したように、式(1)は、寸法X1および寸法X2が設計値に対してずれることを原因として、張設時に各貫通孔25の位置不良が発生することを抑制するためのものである。すなわち、寸法X1および寸法X2が式(1)を満たすことにより、張設時における蒸着マスク20の長手方向D1の伸び量を所望の範囲内に収めることができ、これにより、張設時における蒸着マスク20の幅方向D2の縮み量を所望の範囲内に収めることができる。そこで、式(1)を満たすことが張設時の貫通孔25の位置精度向上に寄与することを確かめるために、張設時における蒸着マスク20の幅寸法U1(図24参照)に着目する。この寸法U1は、長手方向D1における中心位置(第2中心軸線AL2)での幅寸法に相当する。この中心位置での幅方向D2の縮み量が、最も大きくなり得る。なお、図24では、張力が付与されていない蒸着マスク20が示されているが、便宜上、張設時における寸法U1を図24に示している。後述する寸法U2についても同様である。
次に、式(2)について説明する。上述したように、式(2)は、寸法X1と寸法X2とが互いにずれることを原因として張設時に各貫通孔25の位置不良が発生することを抑制するためのものである。すなわち、寸法X1および寸法X2が式(2)を満たすことにより、張設時に、長手方向D1の伸びが幅方向D2において異なることを抑制でき、貫通孔25の幅方向D2での位置ずれを抑制できる。そこで、式(2)を満たすことが張設時の貫通孔25の位置精度向上に寄与することを確かめるために、蒸着マスク20のC字状に湾曲した第1側縁27aの凹み深さ寸法U2に着目する。この寸法U2は、長手方向D1における中心位置での凹み深さ寸法に相当する。より具体的には、蒸着マスク20の第1端部26aと第1側縁27aとの交点PU1と、第2端部26bと第1側縁27aとの交点PU2と、を結ぶ線分から、第1側縁27aのうち長手方向D1における中心位置までの距離を寸法U2とする。このような寸法U2は、第1側縁27aの最大の凹み深さを示すことになる。なお、図28に示すように張設時の蒸着マスク20の湾曲形状が反転した場合には、寸法U2は、第2側縁27bの凹み深さ寸法とすればよい。
以下に、寸法U1および寸法U2の測定方法について説明する。
まず、寸法X1および寸法X2の測定が終了した後、蒸着マスク20に張力を付与した。より具体的には、まず、蒸着マスク20の第1端部26aおよび第2端部26bを、例えば図26に示すようなクランプ86a~86dで把持して、第1引張部87a~第4引張部87dから蒸着マスク20に張力を付与した。付与した張力は、各貫通孔25が、長手方向D1において、所望の位置(蒸着目標位置)に対して許容範囲内に位置付けられるような力とした。続いて、張力が付与された蒸着マスク20を図25に示すステージ81上に固定した。次に、ステージ81上に固定された蒸着マスク20の寸法U1および寸法U2を測定した。寸法U1の測定結果を、α-U1として図29に示した。ここでαは、長手方向D1における中心位置での蒸着マスク20の幅寸法の設計値とした。なお、αは、張設時の設計値である。また、寸法U2の測定結果を、U2として図29に示した。
測定された寸法U1および寸法U2を評価した。
寸法U1については、α-U1が閾値(±4.0μm)以下であるか否かで評価した。ここで、閾値は、蒸着によって形成された画素の発光効率や、隣り合う他の色の画素との混色を抑制可能な範囲内で位置ずれを許容できる値として設定した。なお、蒸着マスク20に長手方向D1の張力を付与した場合、長手方向D1における中心位置で蒸着マスク20の幅寸法が低減し得る。この場合、長手方向D1における中心位置で、第1側縁27aと第2側縁27bとが互いに近づくように変形する。そこで、第1側縁27aおよび第2側縁27bにおける変形の許容値をそれぞれ2μmと考え、その合計として、閾値を±4.0μmとした。図29に示すサンプルのうち第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルでは、α-U1が閾値以下であった。第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルでは、蒸着マスク20の幅寸法U1のずれが抑制されているため、張設時における貫通孔25の幅方向D2の位置ずれを抑制できる。一方、これらの第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルは、上述したように式(1)を満たしている。このため、式(1)を満たすことが、張設時の貫通孔25の位置精度を向上させることができると言える。
とりわけ、寸法U1は、長手方向D1における中心位置での蒸着マスク20の幅寸法を示している。この中心位置は、貫通孔25が最も幅方向D2に位置ずれし得る位置である。このため、この中心位置におけるα-U1が閾値以下である場合には、長手方向D1において中心位置以外の位置における貫通孔25の幅方向D2の位置ずれをより一層抑制することができると言える。
寸法U2については、寸法U2が、閾値(3.0μm)以下であるか否かで評価した。ここで、閾値は、蒸着によって形成された画素の発光効率や、隣り合う他の色の画素との混色を抑制可能な範囲内で位置ずれを許容できる値として設定した。図29に示すサンプルのうち第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルでは、寸法U2が閾値以下であった。このことにより、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルでは、蒸着マスク20の第1側縁27aの凹みの程度が小さくなるため、張設時における貫通孔25の幅方向D2の位置ずれを抑制できる。一方、これらの第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルは、上述したように式(2)を満たしている。このため、式(2)を満たすことが、張設時の貫通孔25の位置精度を向上させることができると言える。
とりわけ、寸法U2は、長手方向D1における中心位置での蒸着マスク20の第1側縁27aの凹みの深さ寸法を示している。この中心位置は、貫通孔25が最も幅方向D2に位置ずれし得る位置である。このため、この中心位置における寸法U2が閾値以下である場合には、長手方向D1において中心位置以外の位置における貫通孔25の幅方向D2の位置ずれをより一層抑制することができると言える。
図30には、αが200mm、αが43.3mm(65mmの2/3)となるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果を示している。この場合に測定された寸法X1と寸法X2を、上述した式(1)に代入して、式(1)の左辺を算出した。その算出結果を、|α-(X1+X2)/2|として図30に示した。図30においては、25個のサンプルからそれぞれ得られた25個の蒸着マスク20についての寸法測定結果を示している。ここではαが200mmであるため、式(1)の右辺の値(左辺の閾値)は、13.3μmとなる。第1~第25サンプルのうち、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルでは、式(1)を満たしていた。このため、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
また、蒸着マスク20の寸法X1と寸法X2を、上述した式(2)に代入して、式(2)の左辺を算出した。その算出結果を、|X1-X2|として図30に示した。ここでは、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、13.3μmとなる。第1~第25サンプルのうち、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルでは、式(2)を満たしていた。このため、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
更に言えば、図30において総合判定結果で示すように、第1~第25サンプルのうち、第1~第6サンプルおよび第21サンプルでは、式(1)および式(2)を満たしている。このため、第1~第6サンプルおよび第21サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度をより一層向上させることができる蒸着マスク20である(良品である)と判定された。
図31には、αが200mm、αが21.7mm(65mmの1/3)となるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果を示している。この場合に測定された寸法X1と寸法X2を、上述した式(1)に代入して、式(1)の左辺を算出した。その算出結果を、|α-(X1+X2)/2|として図31に示した。図31においては、25個のサンプルからそれぞれ得られた25個の蒸着マスク20についての寸法測定結果を示している。ここではαが200mmであるため、式(1)の右辺の値(左辺の閾値)は、13.3μmとなる。第1~第25サンプルのうち、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルでは、式(1)を満たしていた。このため、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
また、蒸着マスク20の寸法X1と寸法X2を、上述した式(2)に代入して、式(2)の左辺を算出した。その算出結果を、|X1-X2|として図31に示した。ここでは、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、6.7μmとなる。第1~第25サンプルのうち、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルでは、式(2)を満たしていた。このため、第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルの蒸着マスク20は、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。
更に言えば、図31において総合判定結果で示すように、第1~第25サンプルのうち、第1~第6サンプルおよび第21サンプルでは、式(1)および式(2)を満たしている。このため、張設時の貫通孔25の位置精度をより一層向上させることができる蒸着マスク20である(良品である)と判定された。
図29~図31に示すように、異なるαで設定されたP1点、Q1点、P2点およびQ2点に基づいて良否判定を行った場合においても、同じ判定結果が得られた。このように、P1点とP2点との間の距離(Q1点とQ2点との間の距離)によらずに、適切な良否判定を行うことができることを示している。すなわち、式(1)および式(2)の少なくとも一方を用いることで、良否判定結果が、P1点とP2点との間の距離(Q1点とQ2点との間の距離)の影響を受けることを抑制できると言える。
図32~図34には、αが300mmとなるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果と良否判定結果を示している。このうち図32では、αを65.0mmとし、図33では、αを43.3mmとし、図34では、αを21.7mmとしている。図32~図34では、αが300mmであるため、式(1)の右辺の値(左辺の閾値)は、20.0μmとなる。図32では、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、30.0μmとなる。図33では、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、20.0μmとなり、図34では、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、10.0μmとなる。
図32~図34に示す場合においても、図29~図31に示す場合と同じ判定結果が得られた。すなわち、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルの蒸着マスク20は、式(1)を満たしているため、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルの蒸着マスク20は、式(2)を満たしているため、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。更に、第1~第6サンプルおよび第21サンプルの蒸着マスク20は、式(1)および式(2)を満たしているため、張設時の貫通孔25の位置精度をより一層向上させることができる蒸着マスク20である(良品である)と判定された。また、式(1)および式(2)の少なくとも一方を用いることで、良否判定結果が、P1点とP2点との間の距離(Q1点とQ2点との間の距離)の影響を受けることを抑制できることが示された。
図35~図37には、αが400mmとなるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果と良否判定結果を示している。このうち図35では、αを65.0mmとし、図36では、αを43.3mmとし、図37では、αを21.7mmとしている。図35~図37では、αが400mmであるため、式(1)の右辺の値(左辺の閾値)は、26.7μmとなる。図35では、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、40.0μmとなる。図36では、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、26.7μmとなり、図37では、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、13.3μmとなる。
図38~図40には、αが600mmとなるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果と良否判定結果を示している。このうち図38では、αを65.0mmとし、図39では、αを43.3mmとし、図40では、αを21.7mmとしている。図38~図40では、αが600mmであるため、式(1)の右辺の値(左辺の閾値)は、40.0μmとなる。図38では、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、60.0μmとなる。図39では、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、40.0μmとなり、図40では、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、20.0μmとなる。
図41~図43には、αが800mmとなるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果と良否判定結果を示している。このうち図41では、αを65.0mmとし、図42では、αを43.3mmとし、図43では、αを21.7mmとしている。図41~図43では、αが800mmであるため、式(1)の右辺の値(左辺の閾値)は、53.3μmとなる。図41では、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、80.0μmとなる。図42では、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、53.3μmとなり、図43では、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、26.7μmとなる。
図44~図46には、αが900mmとなるような貫通孔25の中心に、P1点、Q1点、P2点およびQ2点を設定した場合の測定結果と良否判定結果を示している。このうち図44では、αを65.0mmとし、図45では、αを43.3mmとし、図46では、αを21.7mmとしている。図44~図46では、αが900mmであるため、式(1)の右辺の値(左辺の閾値)は、60.0μmとなる。図44では、αが65.0mmであるため、式(2)の右辺の値(左辺の閾値)は、90.0μmとなる。図45では、αが43.3mmであるため、式(2)の右辺の値(左辺の閾値)は、60.0μmとなり、図46では、αが21.7mmであるため、式(2)の右辺の値(左辺の閾値)は、30.0μmとなる。
図35~図46に示す場合においても、図29~図31に示す場合と同じ判定結果が得られた。すなわち、各αに対して、第1~第10サンプル、第21サンプル、第22サンプル、第24サンプルおよび第25サンプルの蒸着マスク20は、式(1)を満たしているため、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。第1~第6サンプル、第11~第16サンプル、第21サンプルおよび第23サンプルの蒸着マスク20は、式(2)を満たしているため、張設時の貫通孔25の位置精度を向上させることができる蒸着マスク20である(良品である)と判定された。更に、第1~第6サンプルおよび第21サンプルの蒸着マスク20は、式(1)および式(2)を満たしているため、張設時の貫通孔25の位置精度をより一層向上させることができる蒸着マスク20である(良品である)と判定された。また、式(1)および式(2)の少なくとも一方を用いることで、良否判定結果が、P1点とP2点との間の距離(Q1点とQ2点との間の距離)の影響を受けることを抑制できることが示された。
このように、図29~図46に示すように、異なるαで設定されたP1点、Q1点、P2点およびQ2点に基づいて良否判定を行った場合においても、同じ判定結果が得られた。このことは、P1点とQ1点との間の距離(P2点とQ2点との間の距離)によらずに、適切な良否判定を行うことができることを示している。すなわち、式(1)および式(2)の少なくとも一方を用いることで、良否判定結果が、P1点とQ1点との間の距離(P2点とQ2点との間の距離)の影響を受けることを抑制できると言える。

Claims (10)

  1. 第1方向に延びる蒸着マスクの製造方法であって、
    帯状に延びる長尺の金属板を供給する工程と、
    フォトリソグラフィー技術を用いたエッチングを前記金属板に施して、前記金属板に第1面の側から第1凹部を形成する工程と、
    フォトリソグラフィー技術を用いたエッチングを前記金属板に施して、前記金属板に第2面の側から第2凹部を形成する工程と、を含み、
    前記蒸着マスクは、
    前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
    前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
    前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、
    前記第1凹部と前記第2凹部とが互いに通じ合うことによって作製された複数の貫通孔と、を備え、
    前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をαとしたとき、
    を満たし、
    前記蒸着マスクは、前記第1方向における一対の端部を構成する第1耳部および第2耳部と、前記第1耳部と前記第2耳部との間に位置する複数の有効領域であって、前記第1方向に配列された複数の有効領域と、を備え、
    前記有効領域の各々に、複数の前記貫通孔が形成され、
    前記P1点および前記P2点は、最も前記第1耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられ、
    前記Q1点および前記Q2点は、最も前記第2耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられている、蒸着マスクの製造方法。
  2. 前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
    を満たしている、請求項1に記載の蒸着マスクの製造方法。
  3. 第1方向に延びる蒸着マスクの製造方法であって、
    帯状に延びる長尺の金属板を供給する工程と、
    フォトリソグラフィー技術を用いたエッチングを前記金属板に施して、前記金属板に第1面の側から第1凹部を形成する工程と、
    フォトリソグラフィー技術を用いたエッチングを前記金属板に施して、前記金属板に第2面の側から第2凹部を形成する工程と、を含み、
    前記蒸着マスクは、
    前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
    前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
    前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、
    前記第1凹部と前記第2凹部とが互いに通じ合うことによって作製された複数の貫通孔と、
    を備え、
    前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
    を満たし、
    前記蒸着マスクは、前記第1方向における一対の端部を構成する第1耳部および第2耳部と、前記第1耳部と前記第2耳部との間に位置する複数の有効領域であって、前記第1方向に配列された複数の有効領域と、を備え、
    前記有効領域の各々に、複数の前記貫通孔が形成され、
    前記P1点および前記P2点は、最も前記第1耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられ、
    前記Q1点および前記Q2点は、最も前記第2耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられている、蒸着マスクの製造方法。
  4. 前記P1点が位置付けられた前記貫通孔と前記第1耳部との間に、他の前記貫通孔が位置し、
    前記P2点が位置づけられた前記貫通孔と前記第1耳部との間に、他の前記貫通孔が位置している、請求項1~3のいずれか一項に記載の蒸着マスクの製造方法。
  5. 前記Q1点が位置付けられた前記貫通孔と前記第2耳部との間に、他の前記貫通孔が位置し、
    前記Q2点が位置づけられた前記貫通孔と前記第2耳部との間に、他の前記貫通孔が位置している、請求項1~4のいずれか一項に記載の蒸着マスクの製造方法。
  6. 請求項1~5のいずれか一項に記載の前記蒸着マスクの製造方法により前記蒸着マスクを準備する工程と、
    前記蒸着マスクに前記第1方向に張力を付与して前記蒸着マスクをフレームに張設する工程と、を備えた、蒸着マスク装置の製造方法。
  7. 第1方向に延びる、複数の貫通孔を有する蒸着マスクであって、
    前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
    前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
    前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備え、
    前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をαとしたとき、
    を満たし、
    前記蒸着マスクは、前記第1方向における一対の端部を構成する第1耳部および第2耳部と、前記第1耳部と前記第2耳部との間に位置する複数の有効領域であって、前記第1方向に配列された複数の有効領域と、を備え、
    前記有効領域の各々に、複数の前記貫通孔が形成され、
    前記P1点および前記P2点は、最も前記第1耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられ、
    前記Q1点および前記Q2点は、最も前記第2耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられている、蒸着マスク。
  8. 第1方向に延びる、複数の貫通孔を有する蒸着マスクであって、
    前記第1方向に延び、前記第1方向に直交する第2方向の中心位置に配置された第1中心軸線と、
    前記第1中心軸線の一側に設けられ、前記第1方向に沿って互いに離間したP1点およびQ1点と、
    前記第1中心軸線の他側に設けられ、前記第1方向に沿って互いに離間したP2点およびQ2点と、を備え、
    前記P1点から前記Q1点までの寸法をX1とし、前記P2点から前記Q2点までの寸法をX2とし、前記寸法X1および前記寸法X2の設計値をα、前記P1点から前記P2点までの寸法および前記Q1点から前記Q2点までの寸法の設計値をα、前記第2方向における2つの前記貫通孔の中心点間の距離のうち最大値をWとしたとき、
    を満たし、
    前記蒸着マスクは、前記第1方向における一対の端部を構成する第1耳部および第2耳部と、前記第1耳部と前記第2耳部との間に位置する複数の有効領域であって、前記第1方向に配列された複数の有効領域と、を備え、
    前記有効領域の各々に、複数の前記貫通孔が形成され、
    前記P1点および前記P2点は、最も前記第1耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられ、
    前記Q1点および前記Q2点は、最も前記第2耳部の側に位置する前記有効領域に形成された前記貫通孔の中心点に位置付けられている、蒸着マスク。
  9. 前記P1点が位置付けられた前記貫通孔と前記第1耳部との間に、他の前記貫通孔が位置し、
    前記P2点が位置づけられた前記貫通孔と前記第1耳部との間に、他の前記貫通孔が位置している、請求項7または8に記載の蒸着マスク。
  10. 前記Q1点が位置付けられた前記貫通孔と前記第2耳部との間に、他の前記貫通孔が位置し、
    前記Q2点が位置づけられた前記貫通孔と前記第2耳部との間に、他の前記貫通孔が位置している、請求項7~9のいずれか一項に記載の蒸着マスク。
JP2022141074A 2018-07-09 2022-09-05 蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスク Active JP7356653B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023159190A JP2024001059A (ja) 2018-07-09 2023-09-22 成膜マスクの製造方法、成膜マスク装置の製造方法および成膜マスク

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018130259 2018-07-09
JP2018130259 2018-07-09
JP2020530050A JP7137793B2 (ja) 2018-07-09 2019-06-12 蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスク
PCT/JP2019/023374 WO2020012862A1 (ja) 2018-07-09 2019-06-12 蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスク

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020530050A Division JP7137793B2 (ja) 2018-07-09 2019-06-12 蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスク

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023159190A Division JP2024001059A (ja) 2018-07-09 2023-09-22 成膜マスクの製造方法、成膜マスク装置の製造方法および成膜マスク

Publications (2)

Publication Number Publication Date
JP2022172296A JP2022172296A (ja) 2022-11-15
JP7356653B2 true JP7356653B2 (ja) 2023-10-05

Family

ID=69142369

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020530050A Active JP7137793B2 (ja) 2018-07-09 2019-06-12 蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスク
JP2022141074A Active JP7356653B2 (ja) 2018-07-09 2022-09-05 蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスク
JP2023159190A Pending JP2024001059A (ja) 2018-07-09 2023-09-22 成膜マスクの製造方法、成膜マスク装置の製造方法および成膜マスク

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020530050A Active JP7137793B2 (ja) 2018-07-09 2019-06-12 蒸着マスクの良否判定方法、蒸着マスクの製造方法、蒸着マスク装置の製造方法、蒸着マスクの選定方法および蒸着マスク

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023159190A Pending JP2024001059A (ja) 2018-07-09 2023-09-22 成膜マスクの製造方法、成膜マスク装置の製造方法および成膜マスク

Country Status (7)

Country Link
US (2) US20210242405A1 (ja)
EP (1) EP3822387A4 (ja)
JP (3) JP7137793B2 (ja)
KR (2) KR102520811B1 (ja)
CN (4) CN210683919U (ja)
TW (2) TWI738217B (ja)
WO (1) WO2020012862A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825405B (zh) * 2021-03-31 2023-12-11 達運精密工業股份有限公司 金屬遮罩檢測方法
TWI810563B (zh) * 2021-05-14 2023-08-01 達運精密工業股份有限公司 遮罩的製造方法及遮罩製造裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078401A (ja) 2013-10-15 2015-04-23 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP2017020080A (ja) 2015-07-10 2017-01-26 大日本印刷株式会社 蒸着マスクおよび蒸着マスクの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214563A (en) * 1991-12-31 1993-05-25 Compaq Computer Corporation Thermally reactive lead assembly and method for making same
US5456771A (en) * 1992-01-24 1995-10-10 Nkk Corporation Thin Fe-Ni alloy sheet for shadow mask
JP2001234385A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法
KR100490534B1 (ko) * 2001-12-05 2005-05-17 삼성에스디아이 주식회사 유기 전자 발광 소자의 박막 증착용 마스크 프레임 조립체
US8334015B2 (en) * 2007-09-05 2012-12-18 Intermolecular, Inc. Vapor based combinatorial processing
US20120217474A1 (en) * 2011-02-25 2012-08-30 Agency For Science, Technology And Research Photonic device and method of making the same
KR101945684B1 (ko) * 2012-05-23 2019-02-07 가부시키가이샤 니콘 절단 기구, 접합 기구, 기판 처리 시스템, 기판 처리 장치, 및 기판 처리 방법
JP5382259B1 (ja) * 2013-01-10 2014-01-08 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5382257B1 (ja) * 2013-01-10 2014-01-08 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
US20160010201A1 (en) * 2013-01-29 2016-01-14 Sharp Kabushiki Kaisha Vapor deposition unit and vapor deposition device
WO2016129534A1 (ja) * 2015-02-10 2016-08-18 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
CN107615557A (zh) * 2015-05-15 2018-01-19 应用材料公司 制造薄膜电池中的锂沉积工艺中使用的掩蔽装置、用于锂沉积工艺的设备、制造薄膜电池的电极的方法和薄膜电池
KR102375261B1 (ko) * 2016-04-01 2022-03-17 엘지이노텍 주식회사 증착용마스크 및 이를 이용한 oled 패널
TWI713899B (zh) * 2016-04-14 2020-12-21 日商凸版印刷股份有限公司 蒸鍍遮罩用基材、蒸鍍遮罩用基材的製造方法、及蒸鍍遮罩的製造方法
JP6548085B2 (ja) * 2016-04-26 2019-07-24 大日本印刷株式会社 蒸着マスクの製造方法
CN106129270B (zh) * 2016-07-01 2018-06-12 武汉华星光电技术有限公司 监测掩膜板形成图案位置的方法以及基板
JP6796281B2 (ja) * 2016-09-30 2020-12-09 大日本印刷株式会社 蒸着マスクの製造方法、及び蒸着マスクを製造するために用いられる金属板の製造方法
KR20220104846A (ko) * 2016-10-07 2022-07-26 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법, 증착 마스크가 배치된 중간 제품 및 증착 마스크
JP7037768B2 (ja) * 2016-11-18 2022-03-17 大日本印刷株式会社 蒸着マスク
KR102333411B1 (ko) * 2017-01-10 2021-12-02 다이니폰 인사츠 가부시키가이샤 증착 마스크, 증착 마스크 장치의 제조 방법 및 증착 마스크의 제조 방법
JP6299922B1 (ja) * 2017-10-13 2018-03-28 凸版印刷株式会社 蒸着マスク用基材、蒸着マスク用基材の製造方法、蒸着マスクの製造方法、および、表示装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078401A (ja) 2013-10-15 2015-04-23 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP2017020080A (ja) 2015-07-10 2017-01-26 大日本印刷株式会社 蒸着マスクおよび蒸着マスクの製造方法

Also Published As

Publication number Publication date
WO2020012862A1 (ja) 2020-01-16
US20230329077A1 (en) 2023-10-12
JP2022172296A (ja) 2022-11-15
CN110699636B (zh) 2022-09-06
KR102520811B1 (ko) 2023-04-12
TW202022142A (zh) 2020-06-16
CN212476863U (zh) 2021-02-05
CN210683919U (zh) 2020-06-05
CN115323321A (zh) 2022-11-11
TWI738217B (zh) 2021-09-01
JP7137793B2 (ja) 2022-09-15
CN110699636A (zh) 2020-01-17
TWI718562B (zh) 2021-02-11
KR20210025664A (ko) 2021-03-09
CN115323321B (zh) 2024-02-09
JPWO2020012862A1 (ja) 2021-08-02
EP3822387A1 (en) 2021-05-19
US20210242405A1 (en) 2021-08-05
KR20230051717A (ko) 2023-04-18
TW202012658A (zh) 2020-04-01
JP2024001059A (ja) 2024-01-09
EP3822387A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP7356653B2 (ja) 蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスク
JP7288594B2 (ja) 蒸着マスクおよび蒸着マスク装置の製造方法
JP7269556B2 (ja) 金属板の製造方法およびマスクの製造方法
TWI774702B (zh) 蒸鍍遮罩
KR102333411B1 (ko) 증착 마스크, 증착 마스크 장치의 제조 방법 및 증착 마스크의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7356653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150