JP7355726B2 - 航空機用推進システム - Google Patents

航空機用推進システム Download PDF

Info

Publication number
JP7355726B2
JP7355726B2 JP2020212820A JP2020212820A JP7355726B2 JP 7355726 B2 JP7355726 B2 JP 7355726B2 JP 2020212820 A JP2020212820 A JP 2020212820A JP 2020212820 A JP2020212820 A JP 2020212820A JP 7355726 B2 JP7355726 B2 JP 7355726B2
Authority
JP
Japan
Prior art keywords
engine
aircraft
output
operating
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020212820A
Other languages
English (en)
Other versions
JP2022099065A (ja
Inventor
章徳 北
健 松本
大昂 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020212820A priority Critical patent/JP7355726B2/ja
Priority to CN202111365597.6A priority patent/CN114655449A/zh
Priority to EP21211028.2A priority patent/EP4019398B1/en
Priority to US17/539,230 priority patent/US11591099B2/en
Publication of JP2022099065A publication Critical patent/JP2022099065A/ja
Application granted granted Critical
Publication of JP7355726B2 publication Critical patent/JP7355726B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • B64D31/12Initiating means actuated automatically for equalising or synchronising power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/093Purpose of the control system to cope with emergencies of one engine in a multi-engine system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、航空機用推進システムに関する。
従来、航空機本体に複数のエンジンが取り付けられ、エンジンに発電機が接続された航空機用推進システムが知られている(例えば引用文献1、2参照)。この航空機用推進システムは、発電機に供給される電力および/または蓄電池に供給される電力を電動機に供給し、電動機が複数のロータを駆動させる。
米国特許第8727271号明細書 米国特許第9493245号明細書
しかしながら、上記の航空機用推進システムにおいて、種々の状況によってはエンジンの稼働がスムーズに行えない場合があった。
本発明は、このような事情を考慮してなされたものであり、エンジンをよりスムーズに稼働させることができる航空機用推進システムを提供することを目的の一つとする。
この発明に係る航空機用推進システムは、以下の構成を採用した。
(1):航空機用推進システムは、航空機の機体に取り付けられる複数のエンジンと、前記エンジンのエンジン軸に接続された発電機と、前記発電機により発電された電力を蓄電する蓄電池と、前記発電機または前記蓄電池により供給される電力により駆動される複数の電動機と、前記航空機の機体に取り付けられ、且つ前記電動機により出力される駆動力により駆動される複数のロータと、前記複数のエンジンのそれぞれに関する温度を検出する検出部と、前記複数のエンジンの稼働状態を制御する制御部と、を備える航空機用推進システムであって、前記制御部は、前記航空機が所定の飛行モードで飛行している場合、前記複数のエンジンのうち少なくとも第1エンジンを停止させ、停止させていない第2エンジンを稼働させ、且つ、前記検出部が前記第1エンジンに関する温度が第1所定温度以下であると検出した場合、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる。
(2):上記(1)の態様において、前記制御部は、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させた後、前記検出部が前記第2エンジンに関する温度が第2所定温度以下であると検出した場合、前記第2エンジンを稼働させ、且つ前記第1エンジンを停止させる。
(3):上記(2)の態様において、前記制御部は、前記航空機が所定の飛行モードで飛行している場合、前記第1エンジンを停止させ、前記第2エンジンを稼働させ、且つ、前記検出部が前記第1エンジンに関する温度が第1所定温度以下であると検出した場合、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる処理と、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させた後、前記検出部が前記第2エンジンに関する温度が第2所定温度以下であると検出した場合、前記第2エンジンを稼働させ、且つ前記第1エンジンを停止させる処理と、を繰り返し実行する。
(4):上記(1)から(3)のいずれかの態様において、前記所定の飛行モードは、前記制御部が、前記航空機が所定の高度に到達した後に水平方向を含む方向に前記航空機を巡航させているモードである。
(5):上記(4)の態様において、前記制御部は、前記所定の飛行モードとは異なる飛行モードである場合、前記第1エンジンおよび前記第2エンジンを稼働させる。
(6):上記(1)から(5)のいずれかの態様において、前記制御部は、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる場合、所定の期間において、前記第1エンジンの出力を徐々に上昇させると共に、前記第2エンジンの出力を徐々に低下させて、前記所定の期間が経過後に、前記第1エンジンの出力を停止させる。
(7):上記(6)の態様において、前記制御部は、前記所定の期間において、前記第1エンジンの出力と、前記第2エンジンの出力とを合わせた出力が、要求される出力を維持するように、前記第1エンジンの出力を徐々に上昇させると共に、前記第2エンジンの出力を徐々に低下させ、前記所定の期間が経過後、前記第1エンジンの出力を、要求される出力に接近させる。
(1)~(5)によれば、航空機推進システムは、航空機が所定の飛行モードで飛行している場合、複数のエンジンのうち少なくとも第1エンジンを停止させ、停止させていない第2エンジンを稼働させ、且つ、検出部が第1エンジンに関する温度が第1所定温度以下であると検出した場合、第1エンジンを稼働させ、且つ第2エンジンを停止させることにより、エンジンをよりスムーズに稼働させることができる。
(6)または(7)によれば、航空機推進システムは、第1エンジンを稼働させ、且つ第2エンジンを停止させる場合、所定の期間において、第1エンジンの出力を徐々に上昇させると共に、第2エンジンの出力を徐々に低下させて、所定の期間が経過後に、第1エンジンの出力を停止させることにより、必要な出力を維持しつつスムーズにエンジンの稼働と停止とを行うことができる。
航空機用推進システムが搭載された飛行体1を概略的に示す図である。 飛行体1の機能構成の一例を示す図である。 GT60の効率稼働範囲について説明するための図である。 飛行体1の飛行状態について説明するための図である。 制御装置100により実行される処理の流れの一例を示すフローチャートである。 制御装置100により実行される処理の流れの他の一例を示すフローチャートを説明するための図である。 制御装置100が実行する凍結抑制制御に関する処理の流れの一例を示すフローチャートを説明するための図である。 飛行体1が離陸してから着陸するまでのGT60の稼働状態と要求される出力(例えば要求電力)の変化との一例を示す図である。 GT60の稼働と停止に関するタイミングの詳細について説明するための図である。 固定翼を有する飛行体の飛行状態で必要なパワーと、回転翼を有する飛行体の飛行状態のパワーとを比較するための図である。
以下、図面を参照し、本発明の航空機用推進システムの実施形態について説明する。
[全体構成]
図1は、航空機用推進システムが搭載された飛行体1を概略的に示す図である。飛行体1は、例えば、機体10と、複数のロータ12A~12Dと、複数の電動機14A~14Dと、アーム16A~16Dとを備える。以下、複数のロータ12A~12Dを互いに区別しない場合は、ロータ12と称し、複数の電動機14A~14Dを互いに区別しない場合は、電動機14と称する。飛行体1は、有人飛行体であってもよいし、無人飛行体であってもよい。飛行体1は、図示するマルチコプターに限らず、ヘリコプターや、回転翼と固定翼の両方を備えたコンパウンド型飛行体であってもよい。
ロータ12Aは、アーム16Aを介して機体10に取り付けられている。ロータ12Aの基部(回転軸)には、電動機14Aが取り付けられている。電動機14Aは、ロータ12Aを駆動させる。電動機14Aは、例えばブラシレスDCモータである。ロータ12Aは、飛行体1が水平姿勢である場合に、重力方向と平行な軸線周りに回転するブレードの固定翼である。ロータ12B~12D、アーム16B~16D、および電動機14B~14Dについても、上記と同様の機能構成を有するため説明を省略する。
制御信号に応じてロータ12が回転することで、飛行体1は、所望の飛行状態で飛行する。制御信号は、操作者の操作または自動操縦における指示に基づく飛行体1を制御するための信号である。例えば、ロータ12Aとロータ12Dとが第1方向(例えば時計方向)に回転し、ロータ12Bとロータ12Cとが第2方向(例えば反時計方向)に回転することで飛行体1が飛行する。また、上記のロータ12の他に、不図示の姿勢保持用あるいは水平推進用の補助ロータ等が設けられてもよい。
図2は、飛行体1の機能構成の一例を示す図である。飛行体1は、例えば、図1に示す構成に加え、例えば、第1制御回路20A、20B、20C、20Dと、蓄電池ユニット30と、第2制御回路40-1、40-2と、発電機50-1、50-2と、第1検出部52-1、第2検出部52-2と、ガスタービンエンジン(以下「GT」と称する)60-1、60-2とを備える。符号およびハイフンの後の数字「1」が付与された構成は、ロータ12A、ロータ12D、電動機14A、電動機14D、第1制御回路20A、および第1制御回路20Dに対応する第1構成であり、符号およびハイフンの後の数字「2」が付与された構成は、ロータ12B、ロータ12C、電動機14B、電動機14C、第1制御回路20A、および第1制御回路20Cに対応する第2構成である。以下、代表して、第1構成について説明し、第2構成は第1構成と同様の構成であるため、説明を省略する。以下、第1検出部52-1と、第2検出部52-2とを区別しない場合は、「検出部」と称することがある。
第1制御回路20Aは、インバータなどの駆動回路を含むPDU(Power Drive Unit)である。第1制御回路20Aは、蓄電池ユニット30により供給された電力をスイッチング等により変換した電力を、電動機14Aに供給する。第1制御回路20Dは、第1制御回路20Aと同様にPDUであり、蓄電池ユニット30により供給された電力を電動機14Dに供給する。電動機14Aはロータ12Aを駆動させ、電動機14Dはロータ12Dを駆動させる。
蓄電池ユニット30は、例えば、蓄電池32と、BMU(Battery Management Unit)34と、検出部36とを備える。蓄電池32は、例えば、複数の電池セルを直列、並列、または直並列に接続した組電池である。蓄電池32を構成する電池セルは、例えば、リチウムイオン電池(Lithium-Ion Battery:LIB)や、ニッケル水素電池など充電と放電とを繰り返すことができる二次電池である。
BMU34は、セルバランシング、蓄電池32の異常検出、蓄電池32のセル温度の導出、蓄電池32の充放電電流の導出、蓄電池32のSOCの推定などを行う。検出部36は、蓄電池32の充電状態を測定するための電圧センサ、電流センサ、温度センサなどである。検出部36は、測定された電圧、電流、温度などの測定結果をBMU34に出力する。
飛行体1は、複数の蓄電池ユニット30を備えてもよい。例えば、第1構成および第2構成のそれぞれに対応する蓄電池ユニット30が設けられてもよい。なお、本実施形態では、発電機50により生成された電力は蓄電池32に供給されるものとしたが、蓄電池32を介さずに(または蓄電池32を介すか選択的に)第1制御回路20および電動機14に供給されてもよい。
第2制御回路40-1は、コンバータなどを含むPCU(Power Conditioning Unit)である。第2制御回路40-1は、発電機50-1により発電された交流電力を直流電力に変換し、変換した電力を蓄電池32および/または第1制御回路20に供給する。
発電機50-1は、GT60-1の出力軸に接続されている。発電機50-1は、GT60-1が稼働することで駆動され、この駆動によって交流電力を生成する。発電機50-1は、減速機構を介してGT60-1の出力軸に接続されていてもよい。発電機50-1は、モータとして機能し、GT60-1へ燃料の供給が停止されているとき、GT60-1を回転(空転)させて、稼働可能な状態にする。その際、第2制御回路40-1が蓄電池32側から電力を持ち出して発電機50-1をモータリングする。上記の機能構成に代えて、GT60-1の出力軸には、スタータモータが接続され、スタータモータが、GT60-1を稼働可能な状態にしてもよい。
検出部52は、GT60に関する温度を検出する。検出部52は、例えば、GT60の軸受などに供給される潤滑油の温度を検出する。検出部52は、GT60の温度を推定することができる情報を取得するものであればよい。
GT60-1は、例えば、ターボシャフト・エンジンである。GT60-1は、例えば、不図示の吸気口や、圧縮機、燃焼室、タービンなどを備える。圧縮機は、吸気口から吸入される吸入空気を圧縮する。燃焼室は、圧縮機の下流に配置され、圧縮された空気と燃料とを混合した気体を燃焼させ、燃焼ガスを生成する。タービンは、圧縮機に接続され、燃焼ガスの力で圧縮機と一体回転する。タービンの出力軸が、上記の回転により回転することで、タービンの出力軸に接続された発電機50が稼働する。
制御装置100は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。制御装置100の機能のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め制御装置100のHDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで制御装置100のHDDやフラッシュメモリにインストールされてもよい。
各種センサ120は、例えば、回転数センサや、複数の温度センサ、複数の圧力センサ、高度センサ、ジャイロセンサなどを含む。回転数センサは、タービンの回転数を検出する。温度センサは、GT60の吸気口付近の温度や、燃焼室の下流付近の温度を検出する。圧力センサは、制御装置100を収容する容器の内部の圧力や、GT60の吸気口付近の圧力を検出する。高度センサは、飛行体1の高度を検出する。ジャイロセンサは、機体10の姿勢を検知する。
制御装置100は、上述した電動機14や、第1制御回路20、蓄電池ユニット30、第2制御回路40、発電機50、GT60などを、これらの稼働状態、検出部52の検出結果、または各種センサ120から取得した情報に基づいて制御する。例えば、制御装置100は、上述した各機能構成を制御して、飛行体1を離陸または着陸させたり、所定の飛行状態で飛行体1を飛行させたりする。
制御装置100は、飛行情報に基づいて飛行体1を制御する。飛行情報とは、例えば、各種センサ120の検出結果から得られた情報や、制御信号に応じた飛行体1の飛行状態である。制御装置100は、飛行体1の飛行状態が複数のGT60が稼働して飛行体1が離陸した後の第1状態である場合、複数のGT60のうち少なくとも1つのGT60を停止させ、停止させていない他のGT60を他のGT60が効率的に稼働することができる効率稼働範囲(詳細は後述する)で稼働させて他のGT60に対応する発電機50に電力を出力させる。制御装置100は、飛行体1の飛行状態が第1状態とは異なる第2状態である場合、複数のGT60を稼働させて、飛行体1を制御する。
[効率稼働範囲に関する説明]
図3は、GT60の効率稼働範囲について説明するための図である。図3は、第1推移線と第2推移線とを示している。図3の横軸はGT60の出力(運転パワー)[%]を示している。第1推移線は出力ごとの燃料消費量を示している。第1推移線について、縦軸(図中の左側の第1縦軸)は1時間連続運転した時に消費される燃料消費[kg/h]である。第1推移線は、燃料消費の点(例えば、図中の任意の△印の点)と原点を結ぶ直線の傾きが大きいほど効率が低いことを示し、燃料消費の点(例えば、図中の任意の△印の点)と原点を結ぶ直線の傾きが小さいほど効率が高いことを示している。なお、図示は省略するが、第1推移線の出力がゼロのとき、効率はオフセットされゼロ以上の値となる。
第2推移線は、出力ごとのSFC(Specific Fuel Consumption)を示している。第2推移線について、縦軸(図中の右側の第2縦軸)は燃料消費率[kg/kwh]を示している。SFCは、GT60が1時間連続運転したときに消費される燃料消費を出力で除算した値を示し、値が小さいほど効率が高いことを示している。GT60の定格最大電力を100%として図示している。
第1推移線および第2推移線が示すように、GT60の出力が低下するほど、GT60の稼働効率が低下する。最も効率が高い最高効率点は、例えば、GT60の出力が95%から100%の間である。制御装置100は、最高効率点に基づいて設定された効率稼働範囲内でGT60を稼働させることにより、発電効率を向上させることができる。図3に示す範囲Rは、効率稼働範囲の一例である。効率稼働範囲は、例えば、出力が60%前後を始点として、95%から100%程度の値を終点とした範囲である。
最高効率点または効率稼働範囲は、飛行体1の高度とGT60の温度ごとに設定される。この情報は、制御装置100の記憶装置に記憶されている。制御装置100は、記憶装置に記憶された情報を参照して、高度と温度とに応じた効率稼働範囲を特定する。
制御装置100は、飛行体1が所定の飛行モード(例えば第1状態)で飛行している場合、複数のGT60のうち少なくともGT60-2を停止させ、停止させていないGT60-1を稼働させ、且つ、第2検出部52-2がGT60-2に関する温度が第1所定温度以下であると検出した場合、GT60-2を稼働させ、且つGT60-1を停止させる。所定の飛行モードは、制御装置100が、飛行体1が離陸し、且つ飛行体1が所定の高度に到達した後に水平方向を含む方向に飛行体を巡航させているモードである(後述する図4参照)。
制御装置100は、GT60-2を稼働させ、且つGT60-1を停止させた後、第1検出部52-1がGT60-1に関する温度が第2所定温度以下であると検出した場合、GT60-1を稼働させ、且つGT60-2を停止させる。第1所定温度と、第2所定温度とは同じ温度であってもよいし、異なる温度であってもよい。
制御装置100は、所定の飛行モードとは異なる飛行モードである場合、GT60-1およびGT60-2を稼働させる。所定の飛行モードとは異なる飛行モードは、飛行体1が離陸または着陸する動作を行っている飛行モードである。
図4は、飛行体1の飛行状態について説明するための図である。図4に示すように、飛行体1は、(1)タキシングを行い、(2)離陸、ホバー(ホバリング)し、(3)上昇および加速して、(4)巡航する。そして、飛行体1は、(5)下降および減速して、(6)ホバー、着陸して、(7)タキシング、給油、駐機する。飛行体1が所定の高度に到達した後に水平方向を含む方向に移動している状態は、第1状態である。第1状態とは、例えば、図4に示す飛行体1が巡航している状態、或いは図4に示す飛行体1が、上昇および加速、巡航、および下降および減速している状態(3)-(5)である。以下の説明では、第1状態とは、飛行体1が、上昇および加速、巡航、および下降および減速している状態であるものとする。例えば、飛行体1が離陸する動作または着陸する動作を行っている状態、およびタキシング、給油、駐機している状態(1)、(2)、(6)、(7)は、第2状態である。
上記の飛行状態のうち、例えば、飛行体1が、離陸、ホバー、着陸している状態している場合、制御装置100は、GT60-1およびGT60-2を効率稼働範囲内で稼働させる。GT60-1およびGT60-2が効率稼働範囲内で稼働することで出力する電力は、飛行体1が、離陸、ホバー、または着陸している状態の要求電力以上または要求電力に近い電力である。
上記の飛行状態のうち、例えば、飛行体1が、上昇および加速、巡航、または下降および減速している場合(第1状態である場合)、制御装置100は、1つのGT60を効率稼働範囲内で稼働させて、他のGT60の稼働を停止させる。1つのGT60が効率稼働範囲内で稼働することで出力する電力は、飛行体1が、上昇および加速、巡航、または下降および減速している状態の要求電力以上の電力またはこれに近い電力である。GT60-1およびGT60-2は、例えば、上記の条件を満たすような仕様である。
要求電力とは、飛行体1が制御信号に応じた飛行状態に移行するため、または飛行状態を維持するために必要な電力である。制御装置100は、要求電力を電動機14に提供し、電動機14が要求電力に基づいてロータ12を駆動させることで、制御信号に応じた飛行状態に飛行体1を制御する。第1状態で要求される要求電力は、例えば、停止していない他のGT60が効率稼働範囲で稼働して他のGT60に対応する発電機50が出力可能な電力以下の電力である。また、第1状態で要求される要求電力は、上記の他のGT60が出力可能な電力を超える電力であるが、蓄電池32が供給可能な電力以下の電力であってもよい。換言すると、リアルタイムで発電される電力では不足するが蓄電池32に予め蓄電された電力から電力が補填されることで要求電力以上の電力が電動機14に供給される。また、第1状態で要求される要求電力は、GT60-1およびGT60-2の稼働が停止し、蓄電池32に電力が充電されていない場合、蓄電池32から供給可能である。
[フローチャート(離陸時の処理)]
図5は、制御装置100により実行される処理の流れの一例を示すフローチャートである。図5は、離陸時に実行される処理の流れの一例である。まず、制御装置100が、GT60-1およびGT60-2を稼働させる(ステップS100)。次に、制御装置100は、飛行体1が離陸したか否か(離陸した状態であるか否か)を判定する(ステップS102)。飛行体1が離陸していない場合、ステップS100に戻り、GT60-1およびGT60-2を稼働させた状態を維持する。
飛行体1が離陸した場合、制御装置100は、飛行体1が第1状態であるか否を判定する(ステップS104)。第1状態は、例えば、GT60-1が効率稼働範囲内で稼働することで、離陸後の飛行体1の要求電力以上の電力を供給することができることであってもよい。
飛行体1が第1状態である場合、制御装置100は、凍結抑制制御を実行する(ステップS106)。凍結抑制制御の詳細については後述する。
[フローチャート(着陸時の処理)]
図6は、制御装置100により実行される処理の流れの他の一例を示すフローチャートである。図6は、着陸時に実行される処理の流れの一例である。まず、制御装置100が、飛行体1が第1状態であるか否かを判定する(ステップS200)。飛行体1が第1状態である場合、制御装置100が、飛行体1が着陸する予定であるか否かを判定する(ステップS202)。例えば、制御装置100は、着陸予定であることを示す制御信号を取得した場合、飛行体1が着陸する予定であると判定する。
飛行体1が着陸する予定である場合、制御装置100は、凍結抑制制御を終了する(ステップS204)。次に、制御装置100は、GT60-1およびGT60-2が稼働しているか否かを判定する(ステップS206)。GT60-1およびGT60-2が稼働していない場合、制御装置100は、GT60-1およびGT60-2を稼働させる(ステップS208)。GT60-1およびGT60-2が稼働している場合、飛行体1は着陸を行う。これにより本フローチャートの処理が終了する。
上記のように、制御装置100は、飛行体1が離陸または着陸する場合、GT60-1およびGT60-2を稼働させて、飛行体1を離陸または着陸させる。
[フローチャート(凍結抑制制御に関する処理)]
図7は、制御装置100が実行する凍結抑制制御に関する処理の流れの一例を示すフローチャートを説明するための図である。図5のフローチャートのステップS106で凍結抑制制御が実行された場合、制御装置100は、GT60-1を稼働させた状態を維持して、GT60-2を停止させる(ステップS300)。次に、制御装置100は、第2検出部52-2により検出された温度Te1が第1所定温度以下であるか否かを判定する(ステップS302)。温度Te1が第1所定温度以下でない場合、運転状態を変化させず、前ステップ(ステップS300)に戻る。温度Te1が第1所定温度以下である場合、制御装置100は、GT60-1を停止させて、GT60-2を稼働させる(ステップS304)。
次に、制御装置100は、第1検出部52-1により検出された温度Te2が第2所定温度以下であるか否かを判定する(ステップS306)。温度Te2が第2所定温度以下でない場合、運転状態を変化させず、前ステップ(ステップS304)に戻る。温度Te2が第2所定温度以下である場合、制御装置100は、GT60-2を停止させて、GT60-1を稼働させる(ステップS308)。これにより、本フローチャートの1ルーチンの処理が終了する。図6のフローチャートのステップS204で凍結抑制制御が継続される限り、本フローチャートのルーチンが繰り返される。図6のフローチャートのステップS204で凍結抑制制御が終了する場合、本フローチャートの処理が終了する。なお、本フローチャートでは、最初にGT60-1を稼働させた状態を維持して、GT60-2を停止させる(ステップS300)ものとして説明しているが、1と2の順番は逆であってもよい。順番の決め方としては、前フライトの第1状態の最終状態(例えば、GT60-1を停止させ、GT60-2を稼働させた状態)を記録しておき、その逆の状態(例えば、GT60-1を稼働させ、GT60-2を停止させた状態)から始めるようにしておけば、GT60-1とGT60-2の稼働時間を平均化することができる。
例えば、飛行体1が第1状態である場合、複数のGT60のうち、所定のGT60を効率稼働範囲内で稼働させて、他のGT60を停止させて、発電効率を向上させる。この場合、停止させたGT60を停止させた状態が継続すると、上空の低い温度によってGT60の潤滑オイルなどの作動液が凍結したり、粘度が変化したりすることがある。そうすると、GT60が再始動する際に始動時間が通常よりも長くなったり、始動の応答性が低下したりすることがある。
航空機推進システムは、上述したように、停止しているGT60に関する温度が所定温度に到達した場合に、停止しているGT60を稼働させ、稼働しているGT60を停止させることにより、GT60をよりスムーズに稼働させ、更に発電効率を向上させることができる。
[タイミングチャート]
図8は、飛行体1が離陸してから着陸するまでのGT60の稼働状態と要求される出力(例えば要求電力)の変化との一例を示す図である。図8の縦軸は出力(電力)を示し、図8の横軸は時間を示している。離陸時、制御装置100は、GT60-1およびGT60-2を稼働させる。離陸時に要求される出力P1は、GT60-1およびGT60-2の出力(GT60-1およびGT60-2の電力)と、蓄電池32の出力(電力)とを合わせた出力(電力)によって賄われる。離陸後、制御装置100は、GT60-1の稼働を維持し、GT60-2の稼働を停止させる。離陸後に要求される出力P2は、GT60-1の稼働による出力(不足する場合は蓄電池32の出力)により賄われる。
例えば、GT60-2に関する温度が所定温度以下となった場合、制御装置100は、GT60-1の稼働を停止し、GT60-2を稼働させる。その後、GT60-1に関する温度が所定温度以下となった場合、制御装置100は、GT60-2の稼働を停止し、GT60-1を稼働させる。制御装置100は、これらの処理を飛行体1が着陸する動作を開始するまで繰り返す。
着陸時、制御装置100は、GT60-1およびGT60-2を稼働させる。着陸時に要求される要求出力P1は、GT60-1およびGT60-2により生成された電力と、蓄電池32により供給された電力とを合わせた電力によって賄われる。
上記の例において、GT60の稼働の出力が要求出力を上回る場合、上回った出力に対応する余剰電力は蓄電池32に蓄電され、GT60の稼働によって生成される出力に対応する電力が要求電力を下回る場合、不足する電力は蓄電池32に蓄電されている電力によって補完される。
上記のように、制御装置100は、GT60に関する温度に基づいて、GT60を制御することにより、発電効率を向上させるとともに、GT60をよりスムーズに稼働させることができる。
[GT60の稼働と停止に関するタイミングの詳細]
図9は、GT60の稼働と停止に関するタイミングの詳細について説明するための図である。図9の縦軸は、GT60の回転速度(Speed[%])またはGT60の出力(Power[%])を示している。それぞれ、GT60の定格最大回転速度と定格最大電力が100%である。図9の横軸は、時間を示している。
制御装置100は、GT60-2を稼働させ、且つGT60-1を停止させる場合、所定の期間Tにおいて、GT60-2の出力を徐々に上昇させるとともに、GT60-1の出力を徐々に低下させて、所定の期間Tが経過後に、GT60-1の出力を停止させる。制御装置100は、所定の期間Tにおいて、GT60-1の出力と、GT60-2の出力とを合わせた出力が、要求される要求出力Prを維持するように、GT60-2の出力を徐々に上昇させるとともに、GT60-1の出力を徐々に低下させ、所定の期間Tが経過後、GT60-2の出力を、要求出力Prに接近させる。
GT60-2に関する温度が所定温度以下となった場合、時刻t1で、制御装置100は、GT60-2を稼働させるための制御を開始させる(例えばスタータモータを稼働させる)。制御装置100は、GT60-2が所定の状態になると、GT60-2をアイドル状態に制御し、更に、GT60-2の出力を上昇させるようにGT60-2を稼働させる。これにより、GT60-2の出力は、所定期間Tにおいて徐々に上昇する。
また、時刻t1で、制御装置100は、GT60-1を停止させるための制御を開始し、所定期間Tの始期において、GT60-1の回転速度および出力を徐々に低下させる。制御装置100は、所定期間Tの終期において、GT60-1の出力をゼロまたはゼロ近くに制御し、GT60-1をアイドル状態に制御する。そして、制御装置100は、アイドル状態にGT60-1を制御した後、GT60-1の回転速度をゼロまたはゼロ付近に低下させる。例えば、制御装置100は、所定のマップを参照して、図9に示す出力および回転速度でGT60-1およびGT60-2が稼働するようにGT60-1およびGT60-2を制御する。所定のマップとは、例えば、GT60の温度と、出力と、回転速度と、燃料噴射量とが互いに関連付けられたマップである。
ここで、例えば、GT60-1の出力と60-2の出力とを合わせた出力が要求出力Prよりも小さい場合、飛行体1は所望の飛行状態を維持することができない場合がある。例えば、GT60-1の出力と60-2の出力とを合わせた出力が要求出力Prよりも大きい場合、要求出力Prを超過した出力に対応する電力(余剰電力)は、例えば、蓄電池32に供給されることがある。蓄電池32が受け付け可能な電力を余剰電力が超えていたり、余剰電力の発生が飛行体1の機能構成にとって好適でなかったりすることがある。
これに対して、本実施形態の制御装置100は、所定の期間Tにおいて、GT60-1の出力と、GT60-2の出力とを合わせた出力が、要求される要求出力Prを維持するように、GT60-1およびGT60-2を制御することにより、より滑らかにGT60の稼働と停止とを行うことができる。
[固定翼を有する飛行体と、回転翼を有する飛行体との比較]
図10は、固定翼を有する飛行体の飛行状態で必要なパワーと、回転翼を有する飛行体の飛行状態のパワーとを比較するための図である。図10の縦軸は飛行に必要なパワーの指標を示し、図10の横軸は時間を示している。図10の例では、離陸時に飛行に必要な力を100としている。例えば、飛行体1が2つのGT60を有する場合、2つのGT60が100%近くで出力するパワーを100とする。
固定翼の飛行体は、離陸時に飛行に必要な力と、巡航時に飛行に必要な力との差異は小さく、更に巡航時に飛行に必要な力は、100よりもやや小さい程度である。これに対して、回転翼の飛行体は、離陸時または着陸時には、飛行に必要な力は100近くであるが、巡航時では飛行に必要な力は50程度である。
このように、回転翼の飛行体1は、離陸時と着陸時の短い時間、100近くの飛行に必要な力を要するが、比較的、長い巡航時の時間では、例えば、飛行に必要な力は50程度となる。このため、巡航時において、GT60の稼働についてマネジメントを適切に行って、より適切な電力マネジメントを行う必要がある。
本実施形態では、制御装置100は、例えば、巡航時に1つのGT60を稼働させ、他のGT60を停止することで発電効率を向上させることができる。更に、制御装置100は、停止しているGT60に関する温度に応じて、停止しているGT60を稼働させることにより、GT60をよりスムーズに稼働させることができる。例えば、本実施形態の航空機推進システムは、固定翼の飛行体にも適用可能だが、回転翼の飛行体1に適用するとより好適である。
なお、実施形態では、航空機推進システムは、2つのGT60を有するものとして説明したが、これに代えて、航空機推進システムは、3つの以上のGT60を有するシステムであってもよい。この場合、航空機推進システムは、飛行体1の飛行状態が複数のGT60が稼働して飛行体1が離陸した後の第1状態である場合、要求電力を満たすように所定数のGT60を稼働させ、他のGT60の稼働を停止させる。更に、航空機推進システムは、停止しているGT60に関する温度が所定温度以下となった場合、所定温度以下となったGT60を稼働させる。航空機推進システムが3つ以上のGT60を有する場合の閾値である所定温度は、GT60の数に応じて変更されてもよい。例えば、航空機推進システムが3つ以上のGT60を有する場合の閾値である所定温度は、2つのG60を有する場合の閾値である所定温度よりも高い温度でもよい。
以上説明した実施形態によれば、制御装置100は、飛行体1が所定の飛行モードで飛行している場合、複数のGT60のうち少なくともGT60-2を停止させ、停止させていないGT60-1を稼働させ、且つ、検出部52がGT60-2に関する温度が第1所定温度以下であると検出した場合、GT60-1を稼働させ、且つGT60-2を停止させることにより、GT60をよりスムーズに稼働させることができる。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1‥飛行体、10‥機体、12‥ロータ、14‥電動機、16‥アーム、20‥第1制御回路、30‥蓄電池ユニット、32‥蓄電池、34‥BMU(Battery Management Unit)、36‥検出部、40‥第2制御回路、50‥発電機、52‥検出部、60‥ガスタービンエンジン(GT)、100‥制御装置、120‥各種センサ

Claims (7)

  1. 航空機の機体に取り付けられる複数のエンジンと、
    前記エンジンのエンジン軸に接続された発電機と、
    前記発電機により発電された電力を蓄電する蓄電池と、
    前記発電機または前記蓄電池により供給される電力により駆動される複数の電動機と、
    前記航空機の機体に取り付けられ、且つ前記電動機により出力される駆動力により駆動される複数のロータと、
    前記複数のエンジンのそれぞれに関する温度を検出する検出部と、
    前記複数のエンジンの稼働状態を制御する制御部と、を備える航空機用推進システムであって、
    前記制御部は、前記航空機が所定の飛行モードで飛行している場合、前記複数のエンジンのうち少なくとも第1エンジンを停止させ、停止させていない第2エンジンを稼働させ、且つ、前記検出部が前記第1エンジンに関する温度が第1所定温度以下であると検出した場合、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる、
    航空機用推進システム。
  2. 前記制御部は、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させた後、前記検出部が前記第2エンジンに関する温度が第2所定温度以下であると検出した場合、前記第2エンジンを稼働させ、且つ前記第1エンジンを停止させる、
    請求項1に記載の航空機用推進システム。
  3. 前記制御部は、
    前記航空機が所定の飛行モードで飛行している場合、
    前記第1エンジンを停止させ、前記第2エンジンを稼働させ、且つ、前記検出部が前記第1エンジンに関する温度が第1所定温度以下であると検出した場合、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる処理と、
    前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させた後、前記検出部が前記第2エンジンに関する温度が第2所定温度以下であると検出した場合、前記第2エンジンを稼働させ、且つ前記第1エンジンを停止させる処理と、を繰り返し実行する、
    請求項2に記載の航空機用推進システム。
  4. 前記所定の飛行モードは、前記制御部が、前記航空機が所定の高度に到達した後に水平方向を含む方向に前記航空機を巡航させているモードである、
    請求項1から3のうちいずれか1項に記載の航空機用推進システム。
  5. 前記制御部は、前記所定の飛行モードとは異なる飛行モードである場合、前記第1エンジンおよび前記第2エンジンを稼働させる、
    請求項4に記載の航空機用推進システム。
  6. 前記制御部は、前記第1エンジンを稼働させ、且つ前記第2エンジンを停止させる場合、所定の期間において、前記第1エンジンの出力を徐々に上昇させると共に、前記第2エンジンの出力を徐々に低下させて、前記所定の期間が経過後に、前記第1エンジンの出力を停止させる、
    請求項1から5のうちいずれか1項に記載の航空機用推進システム。
  7. 前記制御部は、前記所定の期間において、前記第1エンジンの出力と、前記第2エンジンの出力とを合わせた出力が、要求される出力を維持するように、前記第1エンジンの出力を徐々に上昇させると共に、前記第2エンジンの出力を徐々に低下させ、前記所定の期間が経過後、前記第1エンジンの出力を、要求される出力に接近させる、
    請求項6に記載の航空機用推進システム。
JP2020212820A 2020-12-22 2020-12-22 航空機用推進システム Active JP7355726B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020212820A JP7355726B2 (ja) 2020-12-22 2020-12-22 航空機用推進システム
CN202111365597.6A CN114655449A (zh) 2020-12-22 2021-11-17 飞行器用推进系统
EP21211028.2A EP4019398B1 (en) 2020-12-22 2021-11-29 Aircraft propulsion system
US17/539,230 US11591099B2 (en) 2020-12-22 2021-12-01 Aircraft propulsion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212820A JP7355726B2 (ja) 2020-12-22 2020-12-22 航空機用推進システム

Publications (2)

Publication Number Publication Date
JP2022099065A JP2022099065A (ja) 2022-07-04
JP7355726B2 true JP7355726B2 (ja) 2023-10-03

Family

ID=78819351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212820A Active JP7355726B2 (ja) 2020-12-22 2020-12-22 航空機用推進システム

Country Status (4)

Country Link
US (1) US11591099B2 (ja)
EP (1) EP4019398B1 (ja)
JP (1) JP7355726B2 (ja)
CN (1) CN114655449A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095354A (ko) * 2020-12-29 2022-07-07 현대자동차주식회사 항공모빌리티의 전력 관리 시스템 및 그 운영방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069975A (ja) 2018-11-02 2020-05-07 本田技研工業株式会社 ハイブリッド飛行体
WO2020225510A1 (fr) 2019-05-06 2020-11-12 Safran Helicopter Engines Systeme de propulsion hybride pour aeronef a decollage et atterrissage verticaux

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969890A (en) * 1974-07-17 1976-07-20 General Motors Corporation Helicopter power plant control
US3963372A (en) * 1975-01-17 1976-06-15 General Motors Corporation Helicopter power plant control
US5239830A (en) * 1992-03-05 1993-08-31 Avco Corporation Plural engine power producing system
US5363317A (en) * 1992-10-29 1994-11-08 United Technologies Corporation Engine failure monitor for a multi-engine aircraft having partial engine failure and driveshaft failure detection
US8727271B2 (en) 2008-01-11 2014-05-20 Ival O. Salyer Aircraft using turbo-electric hybrid propulsion system
FR2997382B1 (fr) * 2012-10-29 2014-11-21 Eurocopter France Procede de gestion d'une panne moteur sur un aeronef multimoteur muni d'une installation motrice hybride
FR3004164B1 (fr) * 2013-04-09 2016-06-10 Eurocopter France Procede d'entrainement d'un rotor principal de giravion dans le cadre d'une simulation d'un cas de panne de l'un des moteurs du giravion
US10633104B2 (en) * 2017-05-17 2020-04-28 General Electric Company Hybrid-electric propulsion system for an aircraft
US11008111B2 (en) * 2017-06-26 2021-05-18 General Electric Company Propulsion system for an aircraft
US10233768B1 (en) * 2018-03-22 2019-03-19 Florida Turbine Technologies, Inc. Apparatus and process for optimizing turbine engine performance via load control through a power control module
US10907494B2 (en) * 2019-04-30 2021-02-02 Rolls-Royce North American Technologies Inc. Parallel hybrid propulsion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069975A (ja) 2018-11-02 2020-05-07 本田技研工業株式会社 ハイブリッド飛行体
WO2020225510A1 (fr) 2019-05-06 2020-11-12 Safran Helicopter Engines Systeme de propulsion hybride pour aeronef a decollage et atterrissage verticaux
JP2022531693A (ja) 2019-05-06 2022-07-08 サフラン・ヘリコプター・エンジンズ 垂直離着陸航空機のためのハイブリッド推進システム

Also Published As

Publication number Publication date
US20220194616A1 (en) 2022-06-23
EP4019398B1 (en) 2023-05-24
US11591099B2 (en) 2023-02-28
CN114655449A (zh) 2022-06-24
EP4019398A1 (en) 2022-06-29
JP2022099065A (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
EP3299295B1 (en) Vertical take-off and landing aircraft using hybrid electric propulsion system
CN107878762B (zh) 一种长航时无人机油电混合动力系统及控制方法
KR101667330B1 (ko) 하이브리드 전기 추진시스템을 이용하는 수직이착륙 항공기
JP2019039420A (ja) 航空機用のハイブリッド電気推進システム
KR101638964B1 (ko) 하이브리드 전기 추진시스템을 이용하는 수직이착륙 항공기
US20220289395A1 (en) Propulsion system for aircraft and method of manufacturing aircraft
CN110155344B (zh) 混合动力无人直升机能量控制系统及具其的直升机
US11465518B2 (en) Charging scheme for electric propulsion systems
KR20170010295A (ko) 하이브리드 전기 추진시스템을 이용하는 수직이착륙 항공기
JP6955421B2 (ja) 航空機の制御システム、航空機の制御方法、航空機の制御プログラム及び航空機
JP7355726B2 (ja) 航空機用推進システム
JP7430133B2 (ja) 航空機用推進システム
JP2022137750A (ja) 航空機用推進システム、および航空機の製造方法
EP4019406B1 (en) Multicopter with propulsion system
JP7430134B2 (ja) 航空機用推進システム
US20230234717A1 (en) Aircraft control system, aircraft control method, and storage medium
JP2022137450A (ja) 航空機用推進システム
US20230278713A1 (en) Power unit control system, power unit control method, and power unit control program
WO2024080060A1 (ja) 制御装置、運航管理システム、および制御プログラム
JP7511536B2 (ja) 航空機の推進システム
US20230249839A1 (en) Control device for flight vehicle
Uhlár et al. Long-range UAV hybrid petrol-electric powertrain
JP2022167542A (ja) マルチコプタ
JP2023149094A (ja) 制御システム及び制御方法並びに航空機
JP2023047640A (ja) 航空機の推進システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150