JP7353536B1 - き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法 - Google Patents

き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法 Download PDF

Info

Publication number
JP7353536B1
JP7353536B1 JP2023532487A JP2023532487A JP7353536B1 JP 7353536 B1 JP7353536 B1 JP 7353536B1 JP 2023532487 A JP2023532487 A JP 2023532487A JP 2023532487 A JP2023532487 A JP 2023532487A JP 7353536 B1 JP7353536 B1 JP 7353536B1
Authority
JP
Japan
Prior art keywords
crack
shape
unit
crack growth
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023532487A
Other languages
English (en)
Other versions
JPWO2023175659A1 (ja
JPWO2023175659A5 (ja
Inventor
紀彦 葉名
政樹 梅田
賢治 天谷
倫也 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023175659A1 publication Critical patent/JPWO2023175659A1/ja
Application granted granted Critical
Publication of JP7353536B1 publication Critical patent/JP7353536B1/ja
Publication of JPWO2023175659A5 publication Critical patent/JPWO2023175659A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

構造物に生じるき裂の進展を予測するき裂の進展予測装置(1)であって、少なくとも、構造物の形状、構造物に加わる力、構造物の材料特性、き裂形状の初期値のそれぞれのパラメータを、それぞれのパラメータの不確かさを含めて確率分布で入力するパラメータ入力部(2)と、入力されたパラメータから、状態方程式と観測方程式とから構成されるき裂進展状態を予測する状態空間モデルを生成するモデル生成部(3)と、構造物のき裂形状を計測するき裂形状計測部(4)と、き裂形状計測部(4)で計測したき裂形状の計測値と計測誤差による不確かさの確率分布と、前記状態空間モデルで予測したき裂形状の事前分布とから、き裂形状とパラメータを含む事後分布を推定する推定部(5)と、を備え、推定部(5)により更新されたき裂形状とパラメータとからき裂の進展を予測する。

Description

本願は、き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法に関するものである。
従来の構造物のき裂検査では、発見されたき裂の進展量を予測する際に、計測したき裂の形状、検査対象の形状、検査対象に加わる力、変位、温度、検査対象に使われている材料などにより、き裂の進展特性には不確実性(不確かさ)が含まれる。不確かな情報から推定したき裂の進展量も不確かになり、できるだけ不確かさを少なくして、予測したき裂の進展量から検査対象の余寿命を推定している。(例えば、特許文献1参照)。
特開2009-31124号公報
しかし、推定したき裂の進展量の不確実性を低減するのと同時に、不確かさを定量的に示すことができないため、き裂の進展量から推定する余寿命の精度を定量的に示すことができないという問題があった。
本願は、上述のような問題を解決するためになされたもので、計測したき裂形状の不確かさを低減して、き裂の形状を推定できるとともに、き裂の進展量の不確かさを確率分布で定量的に示すことができるき裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法を提供することを目的とする。
本願に開示されるき裂の進展予測装置は、
構造物に生じるき裂の進展を予測するものであって、
少なくとも、構造物の形状、構造物に加わる力、構造物の材料特性、き裂形状の初期値のそれぞれのパラメータを、それぞれのパラメータの不確かさを含めて確率分布で入力するパラメータ入力部、
入力されたパラメータから、状態方程式と観測方程式とから構成されるき裂進展状態を予測する状態空間モデルを生成するモデル生成部、
構造物のき裂形状を計測するき裂形状計測部、
き裂形状計測部で計測したき裂形状の計測値と計測誤差による不確かさの確率分布と状態空間モデルで予測したき裂形状の事前分布とから、き裂形状とパラメータを含む事後分布を推定する推定部、
を備え、推定部により更新されたき裂形状とパラメータとからき裂の進展を予測することを特徴とする。
本願に開示されるき裂の進展予測装置によれば、
計測したき裂形状の不確かさを低減して、き裂の形状を推定できるとともに、き裂の進展量の不確かさを確率分布で定量的に示すことができる。
実施の形態1に係るき裂の進展予測装置の機能構成図である。 実施の形態1に係るき裂の進展予測装置の予測フロー図である。 き裂の進展を予測する構造物のパラメータを説明する図である。 図3で説明したパラメータを確率分布で示した図である。 実施の形態1に係るき裂の進展を予測するモデルの一例を説明する図である。 実施の形態1に係る構造物のき裂の形状の計測を説明する図である。 実施の形態1に係るき裂の形状とパラメータの推定のフロー図である。 実施の形態2に係るき裂の進展予測装置の機能構成図である。 実施の形態2に係るき裂の進展予測装置の予測フロー図である。 実施の形態2に係るき裂の進展予測装置を搭載したき裂の検査システムの動作を示すフロー図である。 実施の形態3に係るき裂の進展予測装置の機能構成図である。 実施の形態3に係るき裂の進展予測装置の予測フロー図である。 実施の形態3に係る運転条件予測部の予測の例を説明する図である。 実施の形態3に係るき裂の進展予測装置を搭載したき裂の検査システムの動作を示すフロー図である。 実施の形態4に係るき裂の進展予測装置の予測フロー図である。 実施の形態に係るき裂の進展予測装置のハードウェア構成の一例を説明する図である。 実施の形態に係るき裂の進展予測装置のハードウェア構成の別の一例を説明する図である。
以下、本願に係る、き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法の好適な実施の形態について、図面を参照して説明する。なお、同一内容および相当部については同一符号を配し、その詳しい説明は省略する。以降の実施形態も同様に、同一符号を付した構成について重複した説明は省略する。
実施の形態1.
図1に本願の実施の形態1に関するき裂の進展予測装置の機能構成図を示す。図2に本願の実施の形態1に関する予測フロー図を示す。
図1に示すように、き裂の進展予測装置1は、パラメータ入力部2、モデル生成部3、き裂形状計測部4、推定部5の各機能から成る。
図1に示す、き裂の進展予測装置1が、き裂の進展を予測する動作を、図2の予測フロー図により説明する。まず、パラメータ入力部2に、き裂の進展を予測する構造物のパラメータを入力する(ステップS1)。モデル生成部3において、き裂の進展を予測するモデルの作成が行われる(ステップS2)。き裂形状計測部4において、き裂の形状計測が行われ(ステップS3)、推定部5において、き裂形状計測部4で計測したき裂の形状を、入力したパラメータと、作成したモデルとから予測したき裂形状で更新して、き裂の形状とパラメータの推定が行われる(ステップS4)。
ステップS1からステップS4を更に詳細に説明する。
(1)ステップS1(パラメータ入力部2の動作)
図3(a)に示された構造物において、パラメータ入力部2に入力される、き裂の進展を予測するパラメータの一例を、図3(b)に示す。
図3(a)に示された構造物29内部のX-Y面である断面28にき裂27が存在し、繰り返しの力24が加わる状態を例にして説明する。き裂の検査は、後述する図6に示すように、面25から行い、き裂が存在する断面28の近傍を検査する。図3(b)に示すように、き裂の進展を予測する構造物のパラメータ20は、構造物の形状21、初期のき裂形状22、き裂進展特性23、加わる力(負荷、荷重、変位などの表現を含む)24の各要素からなる。さらに、構造物に生じる環境変化として、温度変化を入力してもよい。
構造物のパラメータの内、構造物の形状21は、構造物の幅W、厚さTからなる。初期のき裂形状22は、き裂長さa、き裂幅bからなる。き裂進展特性23は、以下の式Aからなる。また、加わる力24は、力Fで示す。式Aは、き裂の進展速度da/dNと応力拡大係数範囲ΔKとの関係で示される。式中、Cおよびnは材料定数である。
Figure 0007353536000001
図3(b)で示した各パラメータは、不確かさが存在する。不確かさを含め、パラメータを確率分布で示した例を図4に示す。すなわち、図3に示したパラメータxをベクトルで表記し、パラメータの確率分布を、正規分布N(x,v )として示した場合の平均xと分散vとを初期値として入力する。図4中、(i)はアンサンブルメンバーの番号を示す。0|0は、「予測したデータの時間|予測に使ったデータ時間」の初期値を示す。
(2)ステップS2(モデル生成部3の動作)
図5にき裂の進展を予測するモデルの一例を示す。状態変数となる構造物のパラメータのベクトル40を、平均のベクトルxと分散のベクトルvで定義する。次に、状態変数の内、き裂長さaの観測ベクトルyを、ベクトル41に定義する。ベクトル41に記載のaMは、計測誤差を含んだき裂長さを示す。ベクトル41は、き裂形状の計測値と計測誤差による不確かさの尤度分布である。定義された、状態変数となる構造物のパラメータのベクトル40と、き裂長さaの観測データのベクトル41とから、き裂の進展状態を予測する状態空間モデル42を作成する。
状態空間モデル42では、現在の状態ベクトルxと一定期間前の状態ベクトルxt-1、vt-1との関係を示す状態方程式を式(1)に示す。状態ベクトルxは、各パラメータで示される。また、観測データのベクトルyは、観測方程式である式(2)のように、状態ベクトルxと、計測誤差の確率分布のベクトルwとから示される。観測データは、状態ベクトルと計測誤差の確率分布とからなる尤度分布とする。式(1)中、き裂の長さat-1、き裂の幅bt-1、の関数で示すfは、き裂の進展特性を表す式(3)、式(4)、式(5)で示す関係がある。ここで、Nはサイクルを示し、応力拡大係数範囲ΔK、ΔKは、関数g、gで表される。
(3)ステップS3(き裂形状計測部4の動作)
図6に、実際にき裂の形状の計測を行う例を示す。構造物29に超音波探傷装置50を走査してき裂の長さa、き裂の幅bを計測する。超音波探傷装置50は、制御部51により制御され、計測を行う。計測したき裂の長さa、き裂の幅bを、図5のベクトル41に示した観測ベクトルyとする。き裂検査に超音波探傷を使用することで、非破壊で見えない箇所のき裂の検査が可能になり、検査により構造物の余寿命をより正確に見積もることができる。なお、き裂形状の計測は、モデル生成部の動作の後に行う必要はなく、モデル生成の動作の前、またはモデル生成と同時に行っても良い。
(4)ステップS4(推定部5の動作)
き裂形状計測部4で計測したき裂形状を、状態空間モデル42を使用して、予測したき裂形状で更新して、き裂の形状とパラメータを推定するフローを図7に示す。き裂の形状とパラメータの推定には、アンサンブルカルマンフィルタを用いる。カルマンフィルタでは、推定する事象を線形で近似する必要があるが、アンサンブルカルマンフィルタでは、非線形のき裂進展現象を、直接推定することが可能である。これにより、き裂の予測精度が向上する。
図7中、まず、入力したき裂の形状とパラメータの初期値の確率分布の範囲内で、ランダムに選択した初期値から、Nサイクル後の状態ベクトルをM個予測する(ステップS10)。予測したM個の状態ベクトルの平均と分散を求め、状態ベクトルの予測誤差の行列を求める(ステップS11)。予測した状態ベクトルを事前分布とする。状態ベクトルの予測誤差行列と、状態ベクトルを求めたき裂の形状と、パラメータの誤差行列からカルマンゲインを求める(ステップS12)。
次に、予測した状態ベクトル(事前分布)、観測データ(尤度分布)及びカルマンゲインから、状態ベクトルを求めたき裂の形状とパラメータの濾波推定値をM個求める(ステップS13)。状態ベクトルを求めたき裂の形状とパラメータのM個の濾波推定値から、濾波推定値の確率分布を求める(ステップS14)。濾波推定値の確率分布から、き裂形状とパラメータの確率分布を求める(ステップS15)(事後分布の推論)。
得られたき裂形状とパラメータの確率分布から、確率分布が正規分布の場合は、平均値をき裂形状とパラメータの推定結果とし、分散がき裂形状とパラメータの推定結果のばらつきを示す。
このように、本実施の形態では、計測したき裂形状の不確かさを低減して、き裂の形状を推定できるとともに、き裂の進展量の不確かさを確率分布で定量的に示すことができる。また、き裂だけでなく対象構造物のき裂の進展に関係するパラメータの推定値とそのばらつきを得られることで、構造物に発生しているき裂以外の変化も把握することができ、き裂部以外の検査の要否を判断できる。これにより、き裂以外の変化に対しても適切な対策が可能になり、経済的なメンテナンスが可能になる。
実施の形態2.
図8に、実施の形態2に関するき裂の進展予測装置1aの機能構成図を示し、図9に予測フロー図を示す。実施の形態1からの変化部分のみを説明し、他は実施の形態1と同様であるため省略する。図8に示すように、き裂の進展予測装置1aには、実施の形態1の構成に追加して、き裂形状予測部6が含まれる。この構成の追加により、図9で示すように、推定部5により更新したき裂形状とパラメータとからいずれか(任意)の時間におけるき裂形状の予測をすることができる(ステップS5)。
ステップS5の動作を説明する。図7のステップS10と同様、予測した状態ベクトルを、任意の時間におけるき裂形状の予測値とする。具体的には、任意の時間までにき裂の有る構造物に荷重または変位が繰返されるサイクル数を設定し、設定したサイクル数後の状態ベクトルを、ステップS4で推定したき裂の形状とパラメータを初期値としてM個求める。M個の状態ベクトルの確率分布を仮定することで、予測値とばらつきを求める。確率分布が正規分布の場合は、予測値が平均値、ばらつきが分散となる。き裂の進展量の予測値とばらつきを求めることで、検査対象の補修、交換時期を定量的に判断でき、効率的なメンテナンスが可能になる。
以上より、き裂形状予測部6により、推定部5で得られたき裂の形状から、計測以降の任意の時間におけるき裂形状の確率分布を予測する。これにより、計測したき裂形状の不確かさを低減したき裂の形状に基づき、き裂の進展量の不確かさを確率分布で定量的に示すことで、検査対象の補修、交換時期を定量的に判断でき、効率的なメンテナンスが可能となる。
図10は、実施の形態2で説明したき裂の進展予測装置1aを搭載したき裂の検査システム100の動作を示すフロー図である。き裂の検査システム100では、入力部101で構造物29の形状、構造物29に加わる力または変位、使われている材料のき裂進展特性、および初期き裂形状などを、パラメータとして入力する。入力手段として、キーボード、マウスによるデータの直接入力、メモリデバイスにより転送されたデータによる入力、他の機器から無線あるいは有線で送信されたデータの受信、またはインターネット、クラウドなどから送信されたデータの受信などが考えられるがこれに限るものではない。
入力されたパラメータは、き裂の進展予測装置1aにおいて、上述した動作を行う、すなわち、パラメータ入力部2で各パラメータの確率分布が算出され、モデル生成部3において、き裂の進展状態を予測する状態空間モデル42を作成する。また、き裂形状計測部4により、き裂の形状を計測し、推定部5により、計測したき裂の形状を、状態空間モデル42を使用して予測したき裂形状で更新し、き裂の形状とパラメータを推定する。推定部5で得られたき裂の形状から、き裂形状予測部6により、計測以降の任意の時間におけるき裂形状の確率分布を予測する。予測した確率分布に基づいて、次の検査時期、補修時期および交換時期に関するデータなどの保守に関する情報を、その他の要因も考慮した上で出力部102から出力する。その他の要因とは、構造物そのものに関する要因のほか、検査者のスケジュール、検査および補修のための費用、補修部品の在庫なども含む。その他の要因に関する情報は、入力部101から入力してもよい。
出力部102には、これらの時期を判断する判定部を備えていてもよい。判定部で検査時期、補修の時期または交換時期を判定する方法として、計測から次の検査時期、補修の時期または交換時期におけるき裂形状の応力拡大係数を求め、回転子部品の破壊靭性値を比較し、予め定めた安全率以下になるかどうかで判定してもよい。また、出力部102は表示部を備えていてもよく、予測した確率分布、次の検査時期、補修時期および交換時期を表示部に表示させてもよい。また、交換時期、検査時期などを知らせるためにブザーなどの警告装置を備えていても良い。さらに、出力部には通信手段を備えていてもよく、有線あるいは無線により他の機器へ判定結果およびそのデータ、予測したデータを送信してもよい。さらにネットワークに接続し、これらデータをクラウドなどに蓄積し、多数の部品のデータを集積することにより、集積データを保守だけではなく、製造、販売などに活用してもよい。
次に、発電機の回転子の部品を検査する場合の具体例を説明する。構造物の形状のパラメータとして回転子部品の直径または内径、その寸法誤差などがある。構造物に加わる力または変位のパラメータとして、温度変化、回転子が回転中と停止中に繰り返される遠心力、回転子中の回転速度の変動による遠心力などがある。回転子の材料特性のパラメータとして、回転子部品に使われるき裂進展の特性がある。それぞれのパラメータは、不確かさを有している。
き裂形状計測部4により計測するき裂の形状と不確かさは、計測値と計測方法毎に想定される計測誤差である。仮に与える初期のき裂形状と不確かさは任意に決定できるが、計測する方法に合わせたき裂形状と不確かさとしてもよい。
以上のように、き裂の進展予測装置1aを搭載したき裂の検査システム100により、き裂の進展量の不確かさを確率分布で定量的に示すことで、構造物の次の検査時期または、構造物の補修、交換時期を定量的に判断でき、効率的なメンテナンスが可能になる。
実施の形態3.
図11に実施の形態3に関するき裂の進展予測装置1bの機能構成図を示し、図12に予測フロー図を示す。実施の形態1からの変化部分のみ説明し、その他は実施の形態1と同様のため、省略する。図11に示すように、き裂の進展予測装置1bには、実施の形態1の構成に追加して、運転条件予測部7が含まれる。運転条件予測部7では、図12のフロー図で示すように、推定部5により更新したき裂の形状とパラメータを基準として、予め定められた(所定の)き裂形状になるまでの時間の確率分布と、構造物に加わる更新された荷重の確率分布とから、所定の保守の時間まで動作可能である荷重の値と信頼度を算出する(ステップS6)。
ステップS6で示す運転条件予測部7の予測の例を、図13で説明する。図13(a)は、計測時に構造物29に与えられる力(荷重)と、所定のき裂形状になるまでの時間との関係を示した図であり、図13(b)は、予測した結果に基づいて荷重を変更した場合と、所定のき裂形状になるまでの時間との関係を示した図である。図13(a)、(b)で示されたグラフの縦軸は荷重を示し、横軸は、所定のき裂形状になるまでの時間を示す。グラフ中、等高線114、117は確率分布を示す。き裂は荷重または変位を繰り返すことで進展するが、単位時間当たりの繰り返しの回数を、実測または仮定することで、時間と繰り返し数を換算できる。
図13(a)では、推定部5で推定した荷重の確率分布111と、所定のき裂形状になるまでの時間の確率分布112とから、等高線114が得られる。所定のき裂形状になるまでの時間の確率分布112と、補修する時点113との関係から、補修するまでに、予測したき裂が、所定の大きさのき裂形状になるかが、ばらつきを含めて確率として把握できる。
補修するまで計測対象の構造物29を使用する場合には、荷重を変更する(下げる)方法がある。補修する時点113まで、予め定めた信頼度で構造物29を使用するため、図13(b)で示すように、変更後の荷重分布115と、ステップS4で求めたき裂形状とパラメータから推定した、所定のき裂形状になるまでの時間の確率分布から得られた荷重変更後の時間の確率分布116とを求める。時間の確率分布116と、補修する時点113との関係から信頼度が算出できる。また、等高線(新しい確率分布)117を得る。
得られた新しい確率分布117から、例えば平均値を出力することで、交換または補修可能なタイミングまで構造物29が動作可能な運転条件となる荷重または変位を算出し、対象となる機械構造物に出力できる。さらに、構造物29を制御する制御装置を備えてもよく、図12の予測フロー図のステップS6の後に、得られた出力から構造物29を制御する制御信号を与えるステップを追加してもよい。
このように、き裂の進展量の不確かさを確率分布で定量的に示すことで、交換または補修可能なタイミングまで構造物が動作可能にできる運転条件を信頼度と共に出力して、適切な時期まで保守を調整できる。
図14は、実施の形態3で説明したき裂の進展予測装置1bを搭載したき裂の検査システム200の動作を示すフロー図である。き裂の検査システム200では、入力部101で構造物29の形状、構造物29に加わる力または変位、使われている材料のき裂進展特性、および初期き裂形状などを、パラメータとして入力する。入力手段として、キーボード、マウスによるデータの直接入力、メモリデバイスにより転送されたデータによる入力、他の機器から無線あるいは有線で送信されたデータの受信、またはインターネット、クラウドなどから送信されたデータの受信などが考えられるがこれに限るものではない。
入力されたパラメータは、き裂の進展予測装置1bにおいて、上述した動作を行う、すなわち、パラメータ入力部2で各パラメータの確率分布が算出され、モデル生成部3において、き裂の進展状態を予測する状態空間モデル42を作成する。また、き裂形状計測部4により、き裂の形状を計測し、推定部5により、計測したき裂の形状を、状態空間モデル42を使用して予測したき裂形状で更新し、き裂の形状とパラメータを推定する。推定部5で推定されたき裂の形状が、所定のき裂の形状になるまでの進展時間の確率分布と、推定されたパラメータのうち、構造物に加わる力の確率分布との関係を、運転条件予測部7で求め、計測時以降で保守可能なタイミングまで構造物を動作可能にする力を与える機械構造物の制御条件を算出し、出力部201から制御条件に応じた制御信号あるいは制御条件に関する確率分布および信頼度などの保守に関する情報を出力する。また、出力部201は表示部を備えていてもよく、図13(a)、(b)のように、確率分布および信頼度を表示させてもよい。さらに、出力部には通信手段を備えていてもよく、有線あるいは無線により他の機器へ制御条件に基づいたデータを送信してもよい。さらにネットワークに接続し、これらデータをクラウドなどに蓄積し、多数の部品の制御条件に関するデータを集積してもよい。これにより、集積データを保守だけではなく、保守に関する制御装置の製造、販売などに活用してもよい。また、実施の形態2で説明したき裂形状予測部6と運転条件予測部7とを両方備えてもよい。この場合の出力部は出力部102と出力部201の双方の機能を有していてもよく、き裂形状予測部6と運転条件予測部7のそれぞれに、出力部102と出力部201の機能を有する別々の出力部を有していてもよい。
発電機の回転子の部品の具体例を記載する。所定の保守の時間まで動作可能である荷重の値と信頼度を算出する好適な例として、発電機の出力変動に伴う回転子の温度変化がある。回転子の温度が発電機の運転中と停止中で変動することによる熱応力でき裂が進展する可能性がある。上述した方法で発電機の出力を低下させる制御を行うことで、回転子の温度が一定以上にならないようして所定の保守の時間まで動作可能とすることができる。
さらに、発電機の出力の変化と回転子部品の温度変化には、発電機毎に差があり出力変化の制御に対する回転子部品の温度変化には不確かさが含まれる。上述した運転条件予測部7で出力された回転子部品の温度とその信頼度と、出力変化の制御に対する回転子部品の温度変化の不確かさを考慮して、制御装置に出力する出力変化を出力部201にて決定する。これにより、運転条件予測部7が出力した温度となるように回転子部品を制御することができる。ここでは温度を例に説明したが、加わる力により、出力が変化する構造物についても同様の制御を行うことができる。発電機の仕様および同種類の他の発電機の情報などは、入力部101から取得してもよい。
実施の形態4.
図15に、本願の実施の形態のき裂の進展予測装置1の予測フロー図を示す。実施の形態1からの変化部分のみ説明し、その他は実施の形態1と同様のため、省略する。図15では、次のき裂検査の実施の要否を判断し(ステップS7)、実施する場合、ステップS4で推定したパラメータをステップS1に入力するパラメータとする(ステップS8)。実施しない場合は、き裂の形状とパラメータを出力する(ステップS9)。
このように、き裂の形状を繰り返し計測し、パラメータを更新することで不確かさを小さくして、推定するき裂の長さの不確かさを減らすことができる。さらに、不確かさを減らしたき裂の推定結果から、構造物の補修、交換時期を出来るだけ後ろ倒しし、経済的なメンテナンスを行うことが可能となる。
各実施の形態について、き裂の進展予測装置1、1a、1bの機能を実行するための処理回路が備えられている。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)などともいう)であってもよい。
図16は、き裂の進展予測装置1、1a、1bのハードウェア構成の一例を説明する図である。図16においては、処理回路601がバス602に接続されている。処理回路601が専用のハードウェアである場合、例えば、単一回路、複合回路、プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)又はこれらを組み合わせたものが該当する。き裂の進展予測装置1、1a、1bの機能のそれぞれが、処理回路601で実現されてもよいし、機能をまとめて処理回路601で実現してもよい。
図17は、き裂の進展予測装置1、1a、1bのハードウェア構成の別の一例を説明する図である。図17においては、プロセッサ603及びメモリ604がバス602に接続されている。プロセッサがCPUの場合、き裂の進展予測装置1、1a、1bの機能のそれぞれは、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ604に格納される。処理回路は、メモリ604に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。ここで、メモリ604とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性若しくは揮発性の半導体メモリ又は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。
また、き裂の進展予測装置1、1a、1bの各機能は、一部が専用のハードウェアで実現され、他の一部がソフトウェア又はファームウェアで実現されるようにしてもよい。例えば、専用のハードウェアとしての処理回路で各機能のうち、モデル生成部3を実現させ、推定部5を、メモリ604に格納されたプログラムを読み出してプロセッサ603を実行してもよい。
また、実施の形態1で説明した、図5中の式(4)および(5)を数値解析で求めてもよい。き裂の進展を予測する際に使用する応力拡大係数範囲は、実験または理論により数式化されているものもある。しかし、実際の構造では数式化されていないき裂形状も発生する。数式化されていないき裂形の応力拡大係数範囲を数値解析で求めることで、実験または理論により数式化をする必要が無く、予測装置をつかうための準備に必要な時間が短縮される。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1、1a、1b:き裂の進展予測装置、2:パラメータ入力部 、3:モデル生成部 、4:き裂形状計測部 、5:推定部、6:き裂形状予測部、7:運転条件予測部。

Claims (16)

  1. 構造物に生じるき裂の進展を予測するき裂進展予測装置において、
    少なくとも、前記構造物の形状、前記構造物に加わる力、前記構造物の材料特性、き裂形状の初期値のそれぞれのパラメータを、それぞれのパラメータの不確かさを含めて確率分布で入力するパラメータ入力部、
    入力された前記パラメータから、状態方程式と観測方程式とから構成されるき裂進展状態を予測する状態空間モデルを生成するモデル生成部、
    前記構造物のき裂形状を計測するき裂形状計測部、
    前記き裂形状計測部で計測したき裂形状の計測値と計測誤差による不確かさの尤度分布と前記状態空間モデルで予測したき裂形状の事前分布とから、き裂形状とパラメータを含む事後分布を推定する推定部、
    を備えたことを特徴とするき裂の進展予測装置。
  2. 前記パラメータとして、温度の変化を加えることを特徴とする請求項1に記載のき裂の進展予測装置。
  3. 前記構造物の材料特性は、き裂進展特性であることを特徴とする請求項1または2に記載のき裂の進展予測装置。
  4. 前記推定部で推定したき裂の形状から前記き裂形状計測部で計測した以降のいずれかの時間におけるき裂形状の確率分布を予測する、き裂形状予測部を備えたことを特徴とする請求項1から3のいずれか1項に記載のき裂の進展予測装置。
  5. 前記推定部で推定した事後分布から、き裂の形状が予め定められた形状になるまでの時間の確率分布を算出する運転条件予測部を備えたことを特徴とする請求項1から3のいずれか1項に記載のき裂の進展予測装置。
  6. 前記推定部で推定した事後分布から、き裂の形状が予め定められた形状になるまでの時間の確率分布と、前記構造物に加わる力または温度との関係を算出することにより、計測時点以降、あらかじめ定めたき裂の補修時点まで、前記構造物が動作可能となる力または温度の制御条件を算出する運転条件予測部を備えたことを特徴とする請求項2に記載のき裂の進展予測装置。
  7. 前記運転条件予測部で算出された前記制御条件に基づいて前記構造物を制御する制御装置を備えたことを特徴とする請求項6に記載のき裂の進展予測装置。
  8. 前記運転条件予測部において、前記制御条件により変更された力または温度により、あらかじめ定めたき裂の形状になるまでの時間の確率分布と前記補修時点との関係から信頼度を算出することを特徴とする請求項6に記載のき裂の進展予測装置。
  9. 前記運転条件予測部で算出された前記制御条件と前記信頼度とに基づいて前記構造物を制御する制御装置を備えたことを特徴とする請求項8に記載のき裂の進展予測装置。
  10. 前記き裂形状計測部でき裂の形状を計測する毎に、前記推定部により更新されたパラメータをパラメータ入力部に入力することを特徴とする請求項1から9のいずれか1項に記載のき裂の進展予測装置。
  11. 前記推定部に、アンサンブルカルマンフィルタを用いたことを特徴とする請求項1から10のいずれか1項に記載のき裂の進展予測装置。
  12. 前記き裂形状計測部に超音波探傷を使用することを特徴とする請求項1から11のいずれか1項に記載のき裂の進展予測装置。
  13. 少なくとも、構造物の形状、前記構造物に加わる力、前記構造物の材料特性、き裂形状の初期値のそれぞれのパラメータを、それぞれのパラメータの不確かさを含めて確率分布で入力するパラメータ入力部と、
    入力された前記パラメータから、状態方程式と観測方程式とから構成されるき裂進展状態を予測する状態空間モデルを生成するモデル生成部と、
    前記構造物のき裂形状を計測するき裂形状計測部と、
    前記き裂形状計測部で計測したき裂形状の計測値と計測誤差による不確かさの尤度分布と前記状態空間モデルで予測したき裂形状の事前分布とから、き裂形状とパラメータを含む事後分布を推定する推定部と、
    前記推定部で推定したき裂の形状から前記き裂形状計測部で計測した以降のいずれかの時間におけるき裂形状の確率分布を予測するき裂形状予測部と、
    を備えたき裂の進展予測装置、
    前記き裂の進展予測装置に前記パラメータを入力する入力部、
    前記き裂の進展予測装置の出力に基づいて、少なくとも次回の検査時期の情報を含む保守に関する情報を出力する出力部、
    を備えたき裂の検査システム。
  14. 前記推定部で推定した事後分布から、き裂の形状が予め定められた形状になるまでの時間の確率分布と、前記構造物に加わる力との関係を算出することにより、計測時点以降、あらかじめ定めたき裂の補修時点まで、前記構造物が動作可能となる力の制御条件を算出する運転条件予測部を備え、前記運転条件予測部からの前記制御条件に関する出力に基づいて前記出力部または異なる出力部において、前記制御条件に応じた制御信号または保守に関する情報を出力することを特徴とする請求項13に記載のき裂の検査システム。
  15. 前記パラメータに温度を加え、前記推定部で得られた前記構造物のき裂形状と前記パラメータから、計測以降で保守可能なタイミングまで前記構造物が動作可能になる力または温度を信頼度と併せて出力する運転条件予測部を備え、前記運転条件予測部で出力された運転条件、前記信頼度、制御信号を入力し、前記構造物が実際に動作した状態と制御信号の指示との差異から求められる制御の不確かさから前記運転条件予測部が出力した力または温度となるように前記構造物を制御する信号を前記出力部または異なる出力部から出力することを特徴とする請求項13に記載のき裂の検査システム。
  16. 構造物に生じるき裂の進展を予測するき裂進展予測方法において、
    少なくとも、前記構造物の形状、前記構造物に加わる力、前記構造物の材料特性、き裂形状の初期値のそれぞれのパラメータを、それぞれのパラメータの不確かさを含めて確率分布で入力するステップ、
    入力された前記パラメータから、状態方程式と観測方程式とから構成されるき裂進展状態を予測する状態空間モデルを生成するステップ、
    前記構造物のき裂形状を計測するステップ、
    前記き裂形状計測部で計測したき裂形状の計測値と計測誤差による不確かさの確率分布と前記状態空間モデルで予測したき裂形状の事前分布とから、き裂形状とパラメータを含む事後分布を推定するステップ、
    を備え、推定により更新されたき裂形状とパラメータとからき裂の進展を予測するき裂の進展予測方法。
JP2023532487A 2022-03-14 2022-03-14 き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法 Active JP7353536B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011234 WO2023175659A1 (ja) 2022-03-14 2022-03-14 き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法

Publications (3)

Publication Number Publication Date
JPWO2023175659A1 JPWO2023175659A1 (ja) 2023-09-21
JP7353536B1 true JP7353536B1 (ja) 2023-09-29
JPWO2023175659A5 JPWO2023175659A5 (ja) 2024-02-22

Family

ID=88022823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023532487A Active JP7353536B1 (ja) 2022-03-14 2022-03-14 き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法

Country Status (2)

Country Link
JP (1) JP7353536B1 (ja)
WO (1) WO2023175659A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020139194A1 (en) 2000-08-31 2002-10-03 Cooper Tire & Rubber Company Method and article of manufacture for estimating material failure due to crack formation and growth
WO2009017013A1 (ja) 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. き裂進展予測方法及びプログラム
JP2019045218A (ja) 2017-08-30 2019-03-22 三菱日立パワーシステムズ株式会社 余寿命評価方法及び保守管理方法
WO2021152811A1 (ja) 2020-01-31 2021-08-05 三菱電機株式会社 亀裂推定装置と故障診断装置および亀裂推定方法と回転電機の故障診断方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3243065B2 (ja) * 1993-06-30 2002-01-07 株式会社東芝 構造部品の劣化・損傷予測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020139194A1 (en) 2000-08-31 2002-10-03 Cooper Tire & Rubber Company Method and article of manufacture for estimating material failure due to crack formation and growth
WO2009017013A1 (ja) 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. き裂進展予測方法及びプログラム
JP2019045218A (ja) 2017-08-30 2019-03-22 三菱日立パワーシステムズ株式会社 余寿命評価方法及び保守管理方法
WO2021152811A1 (ja) 2020-01-31 2021-08-05 三菱電機株式会社 亀裂推定装置と故障診断装置および亀裂推定方法と回転電機の故障診断方法

Also Published As

Publication number Publication date
WO2023175659A1 (ja) 2023-09-21
JPWO2023175659A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
CN108700852B (zh) 模型参数值推定装置及推定方法、记录介质、模型参数值推定系统
Ye et al. A state-of-the-art review on fatigue life assessment of steel bridges
Tygesen et al. The true digital twin concept for fatigue re-assessment of marine structures
EP2909760B1 (en) Method and system for probabilistic fatigue crack life estimation
KR101677015B1 (ko) Eifs 불확실성을 고려하여 초음파 검사 데이터를 사용한 확률적 피로 수명 예측
JP2016509670A (ja) 疲労損傷予知および構造健全性評価のための非破壊検査における内部欠陥の確率論的モデリングおよびサイジング
JP7230958B2 (ja) 配管診断装置、配管診断方法、及びプログラム
JP2007226774A (ja) 推論および資産管理のサービスを提供するための方法、システム、およびコンピュータプログラム製品
CN110197288A (zh) 故障影响下设备的剩余使用寿命预测方法
KR101526313B1 (ko) 피로수명 예측방법
EP3168811B1 (en) Pass fail sentencing of hollow components
JP5696354B2 (ja) 信頼度判断装置
RU2699918C1 (ru) Способ диагностики технического состояния зданий и строительных сооружений
JP7353536B1 (ja) き裂の進展予測装置、き裂の検査システムおよびき裂の進展予測方法
JP7039784B2 (ja) 寿命評価装置及び寿命評価方法
JP2010164430A (ja) 金属材料のクリープ損傷評価方法及びクリープ損傷評価装置
WO2024013878A1 (ja) き裂検査装置、き裂監視システムおよびき裂検査方法
JPWO2023175659A5 (ja)
Cui et al. A framework for corrosion assessment in metallic structures, from data analysis to risk based inspection
Leem et al. Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads
Hines et al. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation
Sankararaman et al. Confidence assessment in model-based structural health monitoring
JPH0142381B2 (ja)
JP2021002295A (ja) 異常検知装置、異常検知システム、及び異常検知方法
JPWO2018147215A1 (ja) 異常判定装置、異常判定方法、及び、異常判定プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R151 Written notification of patent or utility model registration

Ref document number: 7353536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151