JP7352536B2 - 磁気記録再生装置 - Google Patents

磁気記録再生装置 Download PDF

Info

Publication number
JP7352536B2
JP7352536B2 JP2020217583A JP2020217583A JP7352536B2 JP 7352536 B2 JP7352536 B2 JP 7352536B2 JP 2020217583 A JP2020217583 A JP 2020217583A JP 2020217583 A JP2020217583 A JP 2020217583A JP 7352536 B2 JP7352536 B2 JP 7352536B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic recording
layer
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020217583A
Other languages
English (en)
Other versions
JP2021192327A (ja
Inventor
想 松山
成人 笠田
拓都 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to US17/338,694 priority Critical patent/US20210383827A1/en
Publication of JP2021192327A publication Critical patent/JP2021192327A/ja
Application granted granted Critical
Publication of JP7352536B2 publication Critical patent/JP7352536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Heads (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録再生装置に関する。
記録媒体にデータを記録する方式の1つとして、磁気記録が挙げられる(例えば特許文献1参照)。
特開2018-170058号公報
磁気記録では、磁気記録媒体の磁性層に記録素子を用いてデータを磁気的に書き込むことにより、データの記録が行われる。データの再生は、こうして記録されたデータを再生素子を用いて磁気的に読み取ることによって行われる。
近年の情報量の莫大な増大に伴い、磁気記録媒体には、記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気記録媒体に記録されるデータの記録密度を高めることが挙げられる。しかし、記録密度を高めるほど、再生素子によってデータを再生する際、再生すべき記録トラックの中心から再生素子がずれること(オフトラック)によってビットエラーレートが高くなってしまう傾向がある。再生すべき記録トラックの中心から再生素子がずれた距離を「オフトラック量」と呼び、低ビットエラーレートでの再生が可能なオフトラック量を「オフトラックマージン」と呼ぶと、オフトラックマージンがより大きいことは、高密度記録されたデータを再生する際の再生品質向上の観点から望ましい。以下に記載の「オフトラックマージン特性」については、オフトラックマージンがより大きいほど、かかる特性がより良好であることをいうものとする。
以上に鑑み本発明の一態様は、良好なオフトラックマージン特性でのデータ再生を可能にするための新たな手段を提供することを目的とする。
本発明の一態様は、
磁気記録媒体と、
記録素子と、
再生素子と、
を含む磁気記録再生装置であって、
上記記録素子は、
磁界を発生させる第一の磁極と、
ライトギャップを挟んで上記第一の磁極と離隔する第二の磁極と、
を有するインダクティブ型記録素子であって、
上記第一の磁極の先端部幅は、上記第二の磁極の先端部幅と略同一幅であり、
上記再生素子の再生素子幅は、0.2μm以上0.5μm未満であり、
上記磁気記録媒体は、
非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
上記磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数が面積40μm×40μmあたり100個以上2000個以下である、磁気記録再生装置、
に関する。
一形態では、上記磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像において、円相当径が50nm以上100nm未満の明部領域(以下、「円相当径50nm以上100nm未満の明部領域」または単に「明部領域」とも記載する。)の数は、7000個以上25000個以下であることができる。
一形態では、上記磁気記録媒体の総厚は、5.2μm以下であることができる。
一形態では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
一形態では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
一形態では、上記バックコート層の非磁性粉末は、カーボンブラックを含むことができる。
一形態では、上記強磁性粉末は、六方晶バリウムフェライト粉末であることができる。
一形態では、上記強磁性粉末は、六方晶ストロンチウムフェライト粉末であることができる。
一形態では、上記強磁性粉末は、ε-酸化鉄粉末であることができる。
一形態では、上記磁気記録媒体は、磁気テープであることができる。
本発明の一態様によれば、良好なオフトラックマージン特性でのデータ再生が可能な磁気記録再生装置を提供することができる。
第一の磁極の先端部幅を第二の磁極の先端部幅と略同一幅にするための加工が施される記録素子の一例の一部拡大図である。 図1に示す記録素子10に対して第一の磁極の先端部幅を第二の磁極の先端部幅と略同一幅にするための加工を施した後のライトギャップ側先端部の構成を示す概略図である。
本発明の一態様は、磁気記録媒体と、記録素子と、再生素子と、を含む磁気記録再生装置に関する。
以下に、上記磁気記録再生装置の詳細について説明する。
磁気記録再生装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。磁気記録再生装置は、通常、データ用素子を備えた磁気ヘッドを1つまたは2つ以上含む。ここで「データ用素子」とは、データの記録のための素子とデータの再生のための素子との総称として使用される。本発明および本明細書において、「記録素子」とはデータの記録のための素子をいい、「再生素子」とはデータの再生のための素子をいうものとする。更に、磁気記録再生装置は、磁気記録媒体を着脱可能に含むことができる。
[磁気ヘッド]
上記磁気記録再生装置は、一形態では、記録素子と再生素子とを同一の磁気ヘッドに含むことができる。他の一形態では、別々の磁気ヘッドに、それぞれ記録素子と再生素子とを含み得る。また、記録素子および/または再生素子を含む磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、記録素子および/または再生素子を含む磁気ヘッドとは別の磁気ヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、記録素子および/または再生素子を含む磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することもできる。磁気ヘッドに含まれる各素子の数および磁気ヘッドにおける各素子の配置は、磁気記録再生装置の規格にしたがい決定することができる。
<記録素子>
上記磁気記録再生装置は、磁界を発生させる第一の磁極と、ライトギャップを挟んで第一の磁極と離隔する第二の磁極と、を有するインダクティブ型記録素子を含む。インダクティブ型記録素子は、一般に電磁誘導型記録素子または磁気誘導型記録素子とも呼ばれる。インダクティブ型記録素子は、コイルに電流を流してヘッドコアのギャップ部(ライトギャップ)から漏れ磁界を発生させ、この漏れ磁界によって、磁気記録媒体の磁性層に磁化領域を形成(即ちデータを記録)する。上記磁気記録再生装置に含まれる記録素子において、第一の磁極の先端部幅は、第二の磁極の先端部幅と、略同一幅である。一方、現在市場に流通している磁気記録再生装置に搭載されているインダクティブ型記録素子は、第一の磁極の先端部幅が、第二の磁極の先端部幅より広い。かかるインダクティブ型記録素子と比べて、第一の磁極の先端部幅が第二の磁極の先端部幅と略同一幅であるインダクティブ型記録素子では、磁極の端部からの漏れ磁界は小さくなる、これにより、記録トラック端部における磁化状態の歪みを低減することが可能となり、結果的に実効的な記録トラック幅を増大させることができると推察される。このことが、良好なオフトラックマージン特性が得られることに寄与できると本発明者は考えている。
以下に、図面を参照して上記記録素子について更に詳細に説明する。ただし、図面に示す形態は例示であって、上記磁気記録再生装置に含まれる記録素子は、例示した形態に限定されるものではない。
図1は、第一の磁極の先端部幅を第二の磁極の先端部幅と略同一幅にするための加工が施される記録素子の一例の一部拡大図である。図1中、左図の更なる一部拡大図が、右図である。図1の左図中、点線矢印は、磁気記録媒体にデータを記録する際の磁気記録媒体の走行方向を示している。図1に示す記録素子10は、第一の磁極11と、第二の磁極12と、コイル13とを含む。第二の磁極12は、ライトギャップGを挟んで第一の磁極11と離隔している。
第一の磁極11は、一般にリーディング(leading)側磁極と呼ばれる磁極であり、磁界を発生させる磁極である。第一の磁極から発生する磁界は、ライトギャップから漏れて漏れ磁界となり、この漏れ磁界によって磁気記録媒体へのデータの記録が行われる。
コイル13に電流を流すことによって、第一の磁極11に磁束を流して磁界を発生させることができる。
第二の磁極12は、一般にトレーリング(trailing)側磁極と呼ばれる磁極であり、磁気記録媒体との間で磁路を閉じる磁極である。
図2は、図1に示す記録素子10に対して第一の磁極の先端部幅を第二の磁極の先端部幅と略同一幅にするための加工を施した後のライトギャップ側先端部の構成を示す概略図である。第一の磁極11は、データ記録時の磁気記録媒体との摺動面となる面110を有する。第二の磁極12は、データ記録時の磁気記録媒体との摺動面となる面120を有する。
本発明および本明細書において、第一の磁極の「先端部幅」とは、第一の磁極において、データ記録時の磁気記録媒体との摺動面となる面のライトギャップ側最端辺の長さをいう。図2に示す例では、L1が、かかるライトギャップ側最端辺である。第二の磁極の「先端部幅」とは、第二の磁極において、データ記録時に磁気記録媒体との摺動面となる面のライトギャップ側最端辺の長さをいう。図2に示す例では、L2が、かかるライトギャップ側最端辺である。第一の磁極の先端部幅をW1、第二の磁極の先端部幅をW2とすると、第一の磁極の先端部幅が、第二の磁極の先端部幅と「略同一幅である」とは、W1が、「W2×0.9~W2×1.1」の範囲であることをいうものとする。尚、ライトギャップ側最端辺は、図2に示す例のように角張った端部の最端辺であることもでき、または、例えば面取り加工等が施される等して丸みを帯びた端部の最端辺であることもできる。
第一の磁極の先端部幅が第二の磁極の先端部幅と略同一幅である記録素子は、市販の磁気記録再生装置に搭載されている記録素子、市販の磁気ヘッドに搭載されている記録素子等の入手可能な記録素子の第一の磁極の先端部をトリミング(trimming)加工することによって作製することができる。または、公知の方法で作製した記録素子の第一の磁極の先端部をトリミング加工することによって、第一の磁極の先端部幅を、第二の磁極の先端部幅と略同一幅にすることもできる。トリミング加工は、イオンビームの使用等の公知の方法で行うことができる。
上記磁気記録再生装置が有する上記記録素子は、上記の構成を有する点以外は、公知のインダクティブ型記録素子と同様の構成を有することができる。公知のインダクティブ型記録素子の構成については、例えば、US2011/0273797A1のFig.1~Fig.6およびこれら図面の説明等を参照できる。
<再生素子>
上記磁気記録再生装置は、再生素子幅が0.2μm以上0.5μm未満の再生素子を含む。本発明および本明細書において、「再生素子幅」とは、再生素子幅の物理的な寸法をいうものとする。かかる物理的な寸法は、光学顕微鏡、走査型電子顕微鏡等により測定が可能である。再生素子幅が狭い再生素子は、再生すべき記録トラックから食み出しにくいため、詳細を後述する状態で凹みが存在する磁性層を有する磁気記録媒体との組み合わせにおいて良好なオフトラックマージン特性が得られることに寄与することができる。この点から、再生素子幅は、0.5μm未満であり、0.4μm以下であることが好ましい。また、上記再生素子の再生素子幅は、詳細を後述する状態で凹みが存在する磁性層を有する磁気記録媒体との組み合わせにおいて良好なオフトラックマージン特性でのデータ再生を可能にする観点から、0.2μm以上であり、0.3μm以上であることが好ましい。
上記磁気記録再生装置に含まれる上記再生素子は、再生素子幅が0.2μm以上0.5μm未満である点以外、公知の再生素子の構成を有することができる。再生素子としては、磁気記録媒体に記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子が好ましい。MR素子としては、AMR(Anisotropic Magnetoresistive)素子、GMR(Giant Magnetoresistive)素子、TMR(Tunnel Magnetoresistive)素子等の各種MR素子を挙げることができる。
[磁気記録媒体]
上記磁気記録再生装置は、非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、上記磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数が、面積40μm×40μmあたり100個以上2000個以下である磁気記録媒体を含む。
<磁性層表面の凹みの存在状態>
本発明および本明細書において、磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数は、以下のように、原子間力顕微鏡(AFM;Atomic Force Microscope)を用いて磁気記録媒体の磁性層の表面において測定を行うことによって求められる。本発明および本明細書において、「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。以下のように求められる磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数(面積40μm×40μmあたり)を、「上記範囲の円相当径を有する凹みの数」または単に「凹みの数」とも記載する。
測定領域は、磁性層表面の無作為に選択した40μm角(40μm×40μm)の領域とする。測定は、磁性層表面の3箇所の異なる測定箇所において行う(n=3)。かかる測定により得られる3つの測定結果の算術平均を、測定対象の磁気記録媒体の磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数とする。AFMを用いて得られた磁性層表面の平面画像において、測定領域中の凸成分と凹成分の体積が等しくなる面を基準面として定め、この基準面より凹んでいる部分として検出された部分を、「凹み」として特定する。凹みとして特定される部分の中には、一部分が測定領域内にあってその他の部分が測定領域外にある凹みもあり得る。凹みの数を求める際には、そのような凹みも含めて凹みの数を計測するものとする。AFMを用いて得られた磁性層表面の平面画像において、凹みとして特定された部分の面積(以下、「面積A」)を測定し、(A/π)^(1/2)×2=Lにより、円相当径Lを算出する。ここで、演算子「^」は、べき乗を表す。円相当径は、単位μmの値として求め、小数点以下3桁を四捨五入し、小数点以下4桁以降は切り捨てて、0.01μm刻みで求めるものとする。AFMの測定条件の一例としては、下記の測定条件を挙げることができる。
AFM(BRUKER社製Nanoscope5)をピークフォースタッピングモードで用いて磁気記録媒体の磁性層の表面の面積40μm×40μmの領域を測定する。探針としてはBRUKER社製SCANASYST-AIRを使用し、分解能は512pixel×512pixelとし、スキャン速度は1画面(512pixel×512pixel)を512秒で測定する速度とする。
上記磁気記録媒体の磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数は、面積40μm×40μmあたり100個以上2000個以下である。
再生素子幅が0.2μm以上0.5μm未満の再生素子によって再生を行うことにより再生トラック幅を狭トラック化すると、上記範囲の円相当径を有する凹みが、再生時に欠陥(磁気信号の部分的な欠落)の発生原因になり得ると考えられる。一方、欠陥の発生を抑制することは、エラーレートを低減することによってオフトラックマージン特性を向上させることに寄与し得る。そして上記範囲の円相当径を有する凹みの数が2000個以下の磁気記録媒体によれば、再生時の欠陥の発生を抑制することができ、このことが良好なオフトラックマージン特性が得られることに寄与し得ると考えられる。この点から、上記範囲の円相当径を有する凹みの数は、2000個以下であり、1500個以下であることが好ましく、1000個以下であることがより好ましく、800個以下であることが更に好ましく、500個以下であることが一層好ましく、300個以下であることがより一層好ましい。
他方、磁性層表面における上記範囲の円相当径を有する凹みの存在は、上記再生素子幅の再生素子によって再生を行う際、デブリ(debris)と呼ばれる異物起因と想定される再生品質の劣化が生じることを抑制することに寄与し得ると考えられる。デブリ発生を抑制することによってオフトラックマージン特性の向上に寄与し得るという観点から、上記範囲の円相当径を有する凹みの数は、100個以上であり、150個以上であることが好ましく、200個以上であることがより好ましい。
上記凹みの数の制御方法の一例について、詳細は後述する。
<円相当径50nm以上100nm未満の明部領域の数>
一形態では、上記磁気記録媒体の磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像において、円相当径が50nm以上100nm未満の明部領域の数は、25000個以下であることができる。また一形態では、上記明部領域の数は、7000個以上であることができる。
本発明および本明細書において、円相当径50nm以上100nm未満の明部領域の数を求めるために使用される走査型電子顕微鏡は、電界放射型走査型電子顕微鏡(FE-SEM;Field Emission-Scanning Electron Microscope)である。FE-SEMとしては、例えば、日立製作所製FE-SEM S4800を用いることができ、後述の実施例ではこのFE-SEMを用いた。
また、上記明部領域の数を求める際、SEM像を撮像する前に磁性層表面へのコーティング処理は行わない。
撮像は、磁性層表面の未撮像領域を選択して実施する。
撮像されるSEM像は、二次電子(Secondary Electron)像である。
円相当径は、小数点以下1桁を四捨五入し、小数点以下2桁以降は切り捨てて、1nm刻みで求めるものとする。
明部領域の数の計測において、一部分のみが二値化処理済み画像に含まれ残りの部分が二値化処理済み画像の外にある明部領域は、計測対象から除外するものとする。
本発明および本明細書において、上記明部領域の数は、以下の方法によって求められる。
走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気記録媒体の磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は5kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
以上の操作を、測定対象の磁気記録媒体の磁性層表面の異なる箇所において100回実施する。
こうして取得された二次電子像を、画像処理ソフトに取り込み、以下の手順により二値化処理を行う。画像解析ソフトとしては、例えば、フリーソフトのImageJを使用することができる。二値化処理によって、画像は明部領域(白色部分)と暗部領域(黒色部分)とに区分けされる。
上記で取得された二次電子像を二値化処理するための閾値は、下限値を210諧調、上限値を255諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後に画像解析ソフトによってノイズ成分除去処理を行う。ノイズ成分除去処理は、例えば以下の方法により行うことができる。画像解析ソフトImageJにおいて、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
こうして得られた二値化処理済み画像について、画像解析ソフトによって、明部領域(即ち白色部分)の個数および各明部領域の面積を求める。ここで求められた明部領域の面積から、各明部領域の円相当径を求める。具体的には、求められた面積Aから、(A/π)^(1/2)×2=Lにより、円相当径Lを算出する。ここで、演算子「^」は、べき乗を表す。
以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。
こうして、100画像における数の合計として、円相当径50nm以上100nm未満の明部領域の数が求められる。
本発明者は、上記明部領域の数を7000個以上25000個以下とすることは、オフトラックマージン特性をより一層向上させることに寄与し得ると考えている。この点について、本発明者は以下のように推察している。
磁性層は、通常、強磁性粉末に加えて非磁性粉末の1種以上を含む磁性層形成用組成物を用いて形成される。本発明者は、先に記載の方法により求められる明部領域の数は、磁性層表面に研磨性を付与するために磁性層に含まれる非磁性粉末(以下、「研磨剤」とも呼ぶ。)の磁性層表面における存在状態の指標となり得るものであると考えている。
一方、再生素子幅が0.2μm以上0.5μm未満の再生素子によって再生を行うことにより再生トラック幅を狭トラック化すると、上記範囲の円相当径を有する明部領域として観察される研磨剤も、再生時に欠陥(磁気信号の部分的な欠落)の発生原因になり得ると考えられる。一方、そのような欠陥の発生を抑制することは、エラーレートをより一層低減することによってオフトラックマージン特性を更に向上させることに寄与し得る。そして上記範囲の円相当径を有する明部領域の数が25000個以下の磁気記録媒体によれば、再生時の欠陥の発生をより一層抑制することができ、このことが更に良好なオフトラックマージン特性が得られることに寄与し得ると考えられる。この点から、上記範囲の円相当径を有する明部領域の数は、25000個以下であることが好ましく、20000個以下であることがより好ましく、15000個以下であることが更に好ましい。
他方、磁性層表面における上記範囲の円相当径を有する明部領域として観察される研磨剤の存在は、上記再生素子幅の再生素子によって再生を行う際、デブリ(debris)と呼ばれる異物起因と想定される再生品質の劣化が生じることをより一層抑制することに寄与し得ると考えられる。デブリ発生をより一層抑制することによってオフトラックマージン特性を更に向上させるという観点から、上記範囲の円相当径を有する明部領域の数は、7000個以上であることが好ましく、10000個以上であることがより好ましい。
上記明部領域の数の制御方法の一例について、詳細は後述する。
以下、上記磁気記録媒体について、更に詳細に説明する。
<磁性層>
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下を抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率は、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下を抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下を抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものをいう。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤)
上記磁気記録媒体は塗布型の磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
(硬化剤)
結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(添加剤)
磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤は任意の量で使用することができる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030~0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。また、ポリアルキレンイミン鎖およびビニルポリマー鎖を有する化合物は、強磁性粉末の分散性向上のための分散剤としての働きを示すことができる。更に、上記化合物は、磁性層の強度向上にも寄与し得る。磁性層の強度を高めることは、後述する裏写りの発生を抑制することにつながり得る。ポリアルキレンイミン鎖およびビニルポリマー鎖を有する化合物については、特開2019-169225号公報の段落0024~0064および同公報の実施例を参照できる。上記化合物は、磁性層に、強磁性粉末100.0質量部あたり0.5質量部以上含まれることが好ましく、1.0質量部以上含まれることがより好ましく、3.0質量部以上含まれることが更に好ましく、5.0質量部以上含まれることが一層好ましく、10.0質量部以上含まれることがより一層好ましく、15.0質量部以上含まれることが更により一層好ましい。また、上記化合物の磁性層における含有量は、強磁性粉末100.0質量部あたり25.0質量部以下とすることが好ましい。尚、上記化合物等の分散剤の1種以上を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061も参照できる。また、磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。例えば研磨剤については、特開2004-273070号公報の段落0030~0032を参照できる。突起形成剤としては、コロイド粒子が好ましく、入手容易性の点から無機コロイド粒子が好ましく、無機酸化物コロイド粒子がより好ましく、シリカコロイド粒子(コロイダルシリカ)がより一層好ましい。研磨剤および突起形成剤の平均粒子サイズは、それぞれ好ましくは30~200nmの範囲であり、より好ましくは50~100nmの範囲である。
先に記載した明部領域の数は、研磨剤の磁性層表面における存在状態の指標になり得ると考えられる。したがって、かかる明部領域の数は、研磨剤として添加する非磁性粉末の種類、研磨剤液の調製方法等によって制御できる。研磨剤としては、モース硬度8超の非磁性粉末が好ましく、モース硬度9以上の非磁性粉末がより好ましい。モース硬度の最大値は10である。研磨剤は、無機物質の粉末であることができ、有機物質の粉末であることもできる。研磨剤は、無機または有機の酸化物の粉末または炭化物(カーバイド)の粉末であることができる。カーバイドとしては、ボロンカーバイド(例えばBC)、チタンカーバイド(例えばTiC)等を挙げることができる。また、研磨剤としては、ダイヤモンドも使用可能である。研磨剤は、一形態では、無機酸化物の粉末であることが好ましい。具体的には、無機酸化物としては、アルミナ(例えばAl)、酸化チタン(例えばTiO)、酸化セリウム(例えばCeO)、酸化ジルコニウム(例えばZrO)等を挙げることができ、中でもアルミナが好ましい。アルミナのモース硬度は約9である。アルミナ粉末については、特開2013-229090号公報の段落0021も参照できる。磁性層における研磨剤の含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましく、1.0~15.0質量部であることがより好ましい。研磨剤としては、1種の非磁性粉末のみ使用することもでき、組成および/または物性(例えばサイズ)の異なる2種以上の非磁性粉末を使用することもできる。研磨剤として2種以上の非磁性粉末を使用する場合、研磨剤の含有量とは、それら2種以上の非磁性粉末の合計含有量をいうものとする。以上の点は、本発明および本明細書における各種成分の含有量についても同様である。研磨剤は、強磁性粉末と別に分散処理に付すこと(別分散)が好ましく、突起形成剤とも別に分散処理に付すこと(別分散)がより好ましい。磁性層形成用組成物の調製時、研磨剤の分散液(以下、「研磨剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することもできる。
研磨剤液の分散状態の調整のために、分散剤を使用することもできる。研磨剤の分散性を高めるための分散剤として機能し得る化合物としては、フェノール性ヒドロキシ基を有する芳香族炭化水素化合物を挙げることができる。「フェノール性ヒドロキシ基」とは、芳香環に直接結合したヒドロキシ基をいう。上記芳香族炭化水素化合物に含まれる芳香環は、単環であってもよく、多環構造であってもよく、縮合環であってもよい。研磨剤の分散性向上の観点からは、ベンゼン環またはナフタレン環を含む芳香族炭化水素化合物が好ましい。また、上記芳香族炭化水素化合物は、フェノール性ヒドロキシ基以外の置換基を有していてもよい。フェノール性ヒドロキシ基以外の置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、アシル基、ニトロ基、ニトロソ基、ヒドロキシアルキル基等を挙げることができ、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシアルキル基が好ましい。上記芳香族炭化水素化合物1分子中に含まれるフェノール性ヒドロキシ基は、1つであってもよく、2つ、3つ、またはそれ以上であってもよい。
フェノール性ヒドロキシ基を有する芳香族炭化水素化合物の好ましい一形態としては、下記式100で表される化合物を挙げることができる。
[式100中、X101~X108のうちの2つはヒドロキシ基であり、他の6つはそれぞれ独立に水素原子または置換基を表す。]
式100で表される化合物において、2つのヒドロキシ基(フェノール性ヒドロキシ基)の置換位置は特に限定されるものではない。
式100で表される化合物は、X101~X108のうちの2つがヒドロキシ基(フェノール性ヒドロキシ基)であり、他の6つはそれぞれ独立に水素原子または置換基を表す。また、X101~X108のうち、2つのヒドロキシ基以外の部分がすべて水素原子であってもよく、一部またはすべてが置換基であってもよい。置換基としては、先に記載した置換基を例示することができる。2つのヒドロキシ基以外の置換基として、1つ以上のフェノール性ヒドロキシ基が含まれていてもよい。研磨剤の分散性向上の観点からは、X101~X108のうちの2つのヒドロキシ基以外はフェノール性ヒドロキシ基ではないことが好ましい。即ち、式100で表される化合物は、ジヒドロキシナフタレンまたはその誘導体であることが好ましく、2,3-ジヒドロキシナフタレンまたはその誘導体であることがより好ましい。X101~X108で表される置換基として好ましい置換基としては、ハロゲン原子(例えば塩素原子、臭素原子)、アミノ基、炭素数1~6(好ましくは1~4)のアルキル基、メトキシ基およびエトキシ基、アシル基、ニトロ基およびニトロソ基、ならびに-CHOH基を挙げることができる。
また、研磨剤の分散性を高めるための分散剤については、特開2014-179149号公報の段落0024~0028も参照できる。
研磨剤の分散性を高めるための分散剤は、例えば研磨剤液の調製時、研磨剤100.0質量部に対して、例えば0.5~20.0質量部の割合で使用することができ、1.0~10.0質量部の割合で使用することが好ましい。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体表面上に非磁性粉末を含む非磁性層を介して磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質の粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040および0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。
非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さなくてもよい。バックコート層の非磁性粉末については、非磁性層の非磁性粉末に関する上記記載を参照できる。
磁性層表面の凹みは、磁気記録媒体の製造工程等において、ロール状に巻かれた状態で磁性層表面と裏面とが接触した状態で、裏面の表面形状が磁性層表面に転写されること(いわゆる裏写り)によって形成され得る。上記裏面とは、バックコート層を有する場合にはバックコート層表面であり、有さない場合には支持体表面である。磁性層表面の凹みの存在状態の制御方法の一例としては、裏面の表面形状を調整すべく、例えばバックコート層を形成するための組成物に添加する成分の種類を選択することを挙げることができる。この点から、バックコート層の非磁性粉末としては、カーボンブラックとカーボンブラック以外の非磁性粉末を併用するか、またはカーボンブラックを用いる(即ち、バックコート層の非磁性粉末がカーボンブラックからなる)ことが好ましい。カーボンブラック以外の非磁性粉末としては、例えば、非磁性層に含有され得るものとして先に例示した非磁性粉末を挙げることができる。バックコート層の非磁性粉末について、非磁性粉末全量100.0質量部に占めるカーボンブラックの割合が、50.0~100.0質量部の範囲であることが好ましく、70.0~100.0質量部の範囲であることがより好ましく、90.0~100.0質量部の範囲であることが更に好ましい。また、バックコート層の非磁性粉末の全量がカーボンブラックであることも好ましい。バックコート層における非磁性粉末の含有量は、バックコート層の全質量に対して、50~90質量%の範囲であることが好ましく、60~90質量%の範囲であることがより好ましい。
磁性層表面に存在する上記範囲の円相当径を有する凹みの数の制御の容易性の観点から、一形態では、バックコート層の非磁性粉末として、平均粒子サイズが50nm以下の非磁性粉末を用いることが好ましい。バックコート層の非磁性粉末として、非磁性粉末を1種のみ用いてもよく、2種以上を用いることもできる。2種以上(例えばカーボンブラックとカーボンブラック以外の非磁性粉末)を用いる場合、それぞれの平均粒子サイズが50nm以下であることが好ましい。非磁性粉末の平均粒子サイズは、より好ましくは10~50nmの範囲であり、更に好ましくは10~30nmの範囲である。一形態では、バックコート層に含まれる非磁性粉末の全量がカーボンブラックであり、その平均粒子サイズが50nm以下であることが好ましい。
磁性層表面における凹みの存在状態を制御するためには、バックコート層形成用組成物は、この組成物に含まれる非磁性粉末の分散性を高めることができる成分(分散剤)を含むことが好ましい。バックコート層形成用組成物は、平均粒子サイズが50nm以下の非磁性粉末と、この非磁性粉末の分散性を高めることができる成分を含むことがより好ましく、平均粒子サイズが50nm以下のカーボンブラックと、カーボンブラックの分散性を高めることができる成分を含むことが更に好ましい。
そのような分散剤の一例としては、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を使用することができる。尚、「アルキルエステルアニオン」は、「アルキルカルボキシラートアニオン」と呼ぶこともできる。
式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Zはアンモニウムカチオンを表す。
また、カーボンブラックの分散性向上の観点から、一形態では、上記塩構造を有する化合物を形成し得る2種以上の成分を、バックコート層形成用組成物の調製時に使用することができる。これにより、バックコート層形成用組成物の調製時、それら成分の少なくとも一部が、上記塩構造を有する化合物を形成し得る。
特記しない限り、以下に記載されている基は置換基を有してもよく無置換であってもよい。また、置換基を有する基について「炭素数」とは、特記しない限り、置換基の炭素数を含まない炭素数を意味するものとする。本発明および本明細書において、置換基としては、例えば、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子等)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、スルホン酸基の塩等を挙げることができる。
以下、式1について更に詳細に説明する。
式1中、Rは、炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表す。フッ化アルキル基は、アルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有する。Rで表されるアルキル基またはフッ化アルキル基は、直鎖構造であってもよく、分岐を有する構造であってもよく、環状のアルキル基またはフッ化アルキル基でもよく、直鎖構造であることが好ましい。Rで表されるアルキル基またはフッ化アルキル基は、置換基を有していてもよく、無置換であってもよく、無置換であることが好ましい。Rで表されるアルキル基は、例えばC2n+1-で表すことができる。ここでnは7以上の整数を表す。また、Rで表されるフッ化アルキル基は、例えばC2n+1-で表されるアルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有することができる。Rで表されるアルキル基またはフッ化アルキル基の炭素数は、7以上であり、8以上であることが好ましく、9以上であることがより好ましく、10以上であることが更に好ましく、11以上であることが一層好ましく、12以上であることがより一層好ましく、13以上であることが更に一層好ましい。また、Rで表されるアルキル基またはフッ化アルキル基の炭素数は、20以下であることが好ましく、19以下であることがより好ましく、18以下であることが更に好ましい。
式1中、Zはアンモニウムカチオンを表す。アンモニウムカチオンは、詳しくは、以下の構造を有する。本発明および本明細書において、化合物の一部を表す式中の「*」は、その一部の構造と隣接する原子との結合位置を表す。
アンモニウムカチオンの窒素カチオンNと式1中の酸素アニオンOとが塩架橋基を形成して式1で表されるアルキルエステルアニオンのアンモニウム塩構造が形成され得る。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物がバックコート層に含まれていることは、磁気記録媒体についてX線光電子分光法(ESCA;Electron Spectroscopy for Chemical Analysis)、赤外分光法(IR;infrared spectroscopy)等により分析を行うことによって確認できる。
一形態では、Zで表されるアンモニウムカチオンは、例えば、含窒素ポリマーの窒素原子がカチオンとなることによってもたらされ得る。含窒素ポリマーとは、窒素原子を含むポリマーを意味する。本発明および本明細書において、「ポリマー」および「重合体」との語は、ホモポリマーとコポリマーとを包含する意味で用いられる。窒素原子は、一形態ではポリマーの主鎖を構成する原子として含まれることができ、また一形態ではポリマーの側鎖を構成する原子として含まれることができる。
含窒素ポリマーの一形態としては、ポリアルキレンイミンを挙げることができる。ポリアルキレンイミンは、アルキレンイミンの開環重合体であって、下記式2で表される繰り返し単位を複数有するポリマーである。
式2中の主鎖を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
以下、式2について更に詳細に説明する。
式2中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表し、n1は2以上の整数を表す。
またはRで表されるアルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。RまたはRで表されるアルキル基は、好ましくは無置換アルキル基である。式2中のRおよびRの組み合わせとしては、一方が水素原子であって他方がアルキル基である形態、両方が水素原子である形態および両方がアルキル基(同一または異なるアルキル基)である形態があり、好ましくは両方が水素原子である形態である。ポリアルキレンイミンをもたらすアルキレンイミンとして、環を構成する炭素数が最少の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン(エチレンイミン)の主鎖の炭素数は2である。したがって、式2中のn1は2以上である。式2中のn1は、例えば10以下、8以下、6以下または4以下であることができる。ポリアルキレンイミンは、式2で表される繰り返し構造として同一構造のみを含むホモポリマーであってもよく、式2で表される繰り返し構造として2種以上の異なる構造を含むコポリマーであってもよい。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアルキレンイミンの数平均分子量は、例えば200以上であることができ、300以上であることが好ましく、400以上であることがより好ましい。また、上記ポリアルキレンイミンの数平均分子量は、例えば10,000以下であることができ、5,000以下であることが好ましく、2,000以下であることがより好ましい。
本発明および本明細書において、平均分子量(重量平均分子量および数平均分子量)とは、ゲル浸透クロマトグラフィー(GPC;Gel Permeation Chromatography)により測定され、標準ポリスチレン換算により求められる値をいうものとする。後述の実施例に示す平均分子量は、特記しない限り、GPCを用いて下記測定条件により測定された値を標準ポリスチレン換算して求めた値(ポリスチレン換算値)である。
GPC装置:HLC-8220(東ソー社製)
ガードカラム:TSKguardcolumn Super HZM-H
カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、3種カラムを直列連結)
溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
溶離液流速:0.35mL/分
カラム温度:40℃
インレット温度:40℃
屈折率(RI;Refractive Index)測定温度:40℃
サンプル濃度:0.3質量%
サンプル注入量:10μL
また、含窒素ポリマーの他の一形態としては、ポリアリルアミンを挙げることができる。ポリアリルアミンは、アリルアミンの重合体であって、下記式3で表される繰り返し単位を複数有するポリマーである。
式3中の側鎖のアミノ基を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアリルアミンの重量平均分子量は、例えば 200以上であることができ、1,000以上であることが好ましく、1,500以上であることがより好ましい。また、上記ポリアルキレンイミンの重量平均分子量は、例えば15,000以下であることができ、10,000以下であることが好ましく、8,000以下であることがより好ましい。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物として、ポリアルキレンイミンまたはポリアリルイミン由来の構造を有する化合物がバックコート層に含まれることは、バックコート層表面を飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等により分析することによって確認できる。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、含窒素ポリマーと炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種以上との塩であることができる。塩を形成する含窒素ポリマーは、1種または2種以上の含窒素ポリマーであることができ、例えばポリアルキレンイミンおよびポリアリルアミンからなる群から選択される含窒素ポリマーであることができる。塩を形成する脂肪酸類は、炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種または2種以上であることができる。フッ化脂肪酸は、脂肪酸においてカルボキシ基COOHと結合しているアルキル基を構成する水素原子の一部または全部がフッ素原子に置換された構造を有する。例えば、含窒素ポリマーと上記脂肪酸類とを室温で混合することによって、塩形成反応は容易に進行し得る。室温とは、例えば20~25℃程度である。一形態では、バックコート層形成用組成物の成分として含窒素ポリマーの1種以上と上記脂肪酸類の1種以上を使用し、バックコート層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、バックコート層形成用組成物の調製前に、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを混合して塩を形成した後に、この塩をバックコート層形成用組成物の成分として使用してバックコート層形成用組成物を調製することができる。尚、含窒素ポリマーと上記脂肪酸類とを混合して式1で表されるアルキルエステルアニオンのアンモニウム塩を形成する際、併せて含窒素ポリマーを構成する窒素原子と上記脂肪酸類のカルボキシ基とが反応して下記構造が形成される場合もあり、そのような構造を含む形態も上記化合物に包含される。
上記脂肪酸類としては、先に式1中のRとして記載したアルキル基を有する脂肪酸および先に式1中のRとして記載したフッ化アルキル基を有するフッ化脂肪酸を挙げることができる。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用する含窒素ポリマーと上記脂肪酸類との混合比は、含窒素ポリマー:上記脂肪酸類の質量比として、10:90~90:10であることが好ましく、20:80~85:15であることがより好ましく、30:70~80:20であることが更に好ましい。また、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、バックコート層形成用組成物の調製時、カーボンブラック100.0質量部に対して、例えば1.0~20.0質量部使用することができ、1.0~10.0質量部使用することが好ましい。また、例えばバックコート層形成用組成物の調製時、カーボンブラック100.0質量部あたり、0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、カーボンブラック100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。
バックコート層に含まれ得る成分について、バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
磁気記録媒体の厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気記録媒体には記録容量を高めること(高容量化)が求められている。例えば、テープ状の磁気記録媒体(即ち磁気テープ)について、高容量化のための手段としては、磁気テープの厚みを薄くし、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気記録媒体の厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることが更に好ましく、5.3μm以下であることが一層好ましく、5.2μm以下であることがより一層好ましい。また、ハンドリングの容易性の観点からは、磁気記録媒体の厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
磁気記録媒体の厚み(総厚)は、以下の方法によって測定することができる。
磁気記録媒体の任意の部分からサンプル(例えば長さ5~10cm)を10枚切り出し、これらサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(サンプル1枚当たりの厚み)を、総厚とする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
非磁性支持体の厚みは、好ましくは3.0~5.0μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
磁性層の厚み等の各種厚みは、以下の方法により求めることができる。
磁気記録媒体の厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡による断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に記載した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の1種または2種以上を用いることができる。各層形成用組成物の溶媒含有量は特に限定されるものではない。溶媒については、特開2011-216149号公報の段落0153を参照できる。各層形成用組成物の固形分濃度および溶媒組成は、組成物のハンドリング適性、塗布条件および形成しようとする各層の厚みに対応させて適宜調整すればよい。磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもよい。各層形成用組成物の調製に用いられる各種成分は、どの工程の最初または途中で添加してもよい。また、個々の成分を2つ以上の工程で分割して添加してもよい。例えば、結合剤を、混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気記録媒体の製造工程では、従来の公知の製造技術を一部の工程として用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することができる。混練工程の詳細については、特開平1-106338号公報および特開平1-79274号公報に記載されている。分散機としては、ビーズミル、ボールミル、サンドミルまたはホモミキサー等のせん断力を利用する各種の公知の分散機を使用することができる。分散には、分散ビーズを用いることができる。分散ビーズとしては、セラミックビーズ、ガラスビーズ等が挙げられ、ジルコニアビーズが好ましい。2種以上のビーズを組み合わせて使用してもよい。分散ビーズのビーズ径(粒径)およびビーズ充填率は、特に限定されるものではなく、分散対象の粉末に応じて設定すればよい。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
研磨剤液は、強磁性粉末および突起形成剤とは別分散して調製することが好ましい。研磨剤液における研磨剤の分散状態は、研磨剤の分散性向上のための分散剤の使用の有無、かかる分散剤の使用量、ビーズ分散等の分散処理の処理条件、遠心分離等の分級処理の処理条件等によって調整できる。そして研磨剤の分散状態を調整することは、先に記載した明部領域の数を制御するうえで好ましい。研磨剤液は、好ましくは、強磁性粉末および突起形成剤とは別に、研磨剤と溶媒と好ましくは結合剤とを含む研磨剤液の1種または2種以上として準備して、磁性層形成用組成物の調製に使用することができる。分散処理および分級処理には、市販の装置を使用することができる。これら処理を行うための条件は、特に限定されるものではなく、使用する装置の種類等に応じて設定すればよい。
(塗布工程)
磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および/または磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(その他の工程)
磁気記録媒体の製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて配向処理を行うことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。一例として、垂直配向処理における磁場強度は、0.1~1.5Tとすることができる。
上記磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であることができ、ディスク状の磁気記録媒体(磁気ディスク)であることもできる。例えば、磁気テープについては、各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジに巻装すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定され、通常、1/2インチである。1/2インチ=12.65mmである。スリットして得られた磁気テープには、通常、サーボパターンが形成される。サーボパターンについて、詳細は後述する。磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。
(サーボパターンの形成)
磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気記録媒体の走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、磁気テープを例にサーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
尚、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。尚、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。
例えば、サーボパターンが形成された磁気記録媒体へのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
上記磁気記録再生装置において、上記磁気記録媒体へのデータの記録は、高記録密度で行うことができる。上記磁気記録再生装置は、より高密度記録されたデータを再生する際、より良好なオフトラックマージン特性を得ることに寄与することができる。記録密度は、例えば、線記録密度として400kbpi以上(例えば400~800kbpiの範囲)であることができる。単位kbpiは、線記録密度の単位(SI単位系に換算不可)である。
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。また、以下に記載の「eq」は、SI単位系に換算不可の単位である当量(equivalent)を示す。
[研磨剤液]
<研磨剤液A>
下記成分をバッチ型超音波装置(20kHz、300W)で24時間分散させ、研磨剤液Aを得た。
アルミナ研磨剤(平均粒子サイズ:100nm):3.0部
スルホン酸基含有ポリウレタン樹脂:0.3部
重量平均分子量:70,000、SONa基:0.3meq/g
シクロヘキサノン:26.7部
<研磨剤液B>
下記成分をバッチ型超音波装置(20kHz、300W)で24時間分散させ、研磨剤液Bを得た。
ダイヤモンド研磨剤(平均粒子サイズ:100nm):1.0部
スルホン酸基含有ポリウレタン樹脂:0.1部
重量平均分子量:70,000、SONa基:0.3meq/g
シクロヘキサノン:26.7部
<研磨剤液C>
アルミナ研磨剤(平均粒子サイズ:100nm)100.0部に対し、3.0部の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ(ビーズ径:0.1mm)存在下で、ペイントシェーカーにより、180分(ビーズ分散時間)、分散させた。
分散後、メッシュにより分散液とビーズとを分離して得られた分散液の遠心分離処理を実施した。遠心分離処理は、遠心分離器として日立工機社製CS150GXL(使用ローターは同社製S100AT6)を使用し、回転数4000rpm(rpm;rotation per minute)で実施した。その後、デカンテーションにより上澄み液を回収した。この回収された液を、「研磨剤液C」と呼ぶ。
[強磁性粉末]
後述の表1中、強磁性粉末の種類の欄における「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。
表1中、強磁性粉末の種類の欄における「SrFe1」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
表1中、強磁性粉末の種類の欄における「SrFe2」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
表1中、「ε-酸化鉄」は、以下のように作製されたε-酸化鉄粉末を示す。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装着し、4時間の熱処理を施した。
熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末SrFe1に関して記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定された値である。
[実施例1]
(1)磁性層形成用組成物の処方
(磁性液)
強磁性粉末(表1参照):100.0部
分散剤:表1参照
SONa基含有ポリウレタン樹脂:14.0部
重量平均分子量:70,000、SONa基:0.4meq/g
シクロヘキサノン:150部
メチルエチルケトン:150部
(研磨剤液)
表1参照(表1中、「研磨剤液」の欄に記載の含有量は、強磁性粉末100.0部に対する研磨剤液に含まれる研磨剤の含有量である。)
(シリカゾル)
コロイダルシリカ(平均粒子サイズ:100nm):0.2部
メチルエチルケトン:1.4部
(その他の成分)
ステアリン酸:2.0部
ブチルステアレート:10.0部
ポリイソシアネート(日本ポリウレタン社製コロネート):2.5部
シクロヘキサノン:200.0部
メチルエチルケトン:200.0部
上記分散剤は、特開2019-169225号公報において、実施例1の磁性層形成用組成物の成分として記載されている化合物(ポリアルキレンイミン鎖およびビニルポリマー鎖を有する化合物)である。磁性層形成用組成物の成分として、上記化合物の合成後に得られた反応溶液を使用した。後述の表1に示されている磁性層の分散剤の含有量は、かかる反応溶液中の上記化合物の量である。
(2)非磁性層形成用組成物の処方
非磁性無機粉末(α-酸化鉄):100.0部
平均粒子サイズ(平均長軸長):10nm
平均針状比:1.9
BET(Brunauer-Emmett-Teller)比表面積:75m/g
カーボンブラック:25.0部
平均粒子サイズ:20nm
SONa基含有ポリウレタン樹脂:18部
重量平均分子量:70,000、SONa基:0.2meq/g
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
(3)バックコート層形成用組成物の処方
カーボンブラック:100.0部
キャボット社製BP-800、平均粒子サイズ:17nm
SONa基含有ポリウレタン樹脂(SONa基:70eq/ton):20.0部
OSOK基含有塩化ビニル樹脂(OSOK基:70eq/ton):30.0部
ポリエチレンイミン(日本触媒社製、数平均分子量600):表1参照
ステアリン酸:表1参照
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ブチルステアレート:2.0部
ステアリン酸アミド:0.1部
(4)磁気テープの作製
磁性液の上記成分をバッチ式縦型サンドミルを用いて24時間分散させ、磁性液を調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
磁性液および表1に記載の研磨剤を、上記のシリカゾルおよびその他の成分と混合後、バッチ型超音波装置(20kHz、300W)で30分間分散処理を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過し、磁性層形成用組成物を調製した。
非磁性層形成用組成物については、上記成分をバッチ式縦型サンドミルを用いて、24時間分散した。分散ビーズとしては、ビーズ径0.1mmのジルコニアビーズを使用した。得られた分散液を0.5μmの孔径を有するフィルタを用いてろ過し、非磁性層形成用組成物を調製した。
バックコート層形成用組成物については、上記成分を連続ニーダで混練した後、サンドミルを用いて分散させた。得られた分散液にポリイソシアネート40.0部(日本ポリウレタン工業社製コロネートL)、メチルエチルケトン1000.0部を添加した後、1μmの孔径を有するフィルタを用いてろ過し、バックコート層形成用組成物を調製した。
厚み4.1μmのポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが0.7μmとなるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。
次いで、非磁性層上に乾燥後の厚みが0.1μmとなるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。
その後、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、磁性層を形成した。
その後、支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.3μmとなるように上記で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧300kg/cm、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。こうして、長尺状の磁気テープ原反を得た。
その後、雰囲気温度70℃の環境で36時間熱処理を行った後、長尺状の磁気テープ原反を1/2インチ幅にスリットして、磁気テープを得た。得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置でサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。
磁気テープのバックコート層にポリエチレンイミンとステアリン酸により形成された、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む化合物が含まれることは、以下の方法により確認できる。
磁気テープからサンプルを切り出し、バックコート層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行う。詳しくは、下記測定条件でESCA装置によりワイドスキャン測定を行う。測定結果では、エステルアニオンの結合エネルギーの位置およびアンモニウムカチオンの結合エネルギーの位置にピークが確認される。
装置:島津製作所製AXIS-ULTRA
励起X線源:単色化Al-Kα線
スキャン範囲:0~1200eV
パスエネルギー:160eV
エネルギー分解能 1eV/step
取り込み時間:100ms/step
積算回数:5
また、磁気テープから長さ3cmのサンプル片を切り出し、バックコート層表面のATR-FT-IR(Attenuated total reflection-fourier transform-infrared spectrometer)測定(反射法)を行い、測定結果において、COOの吸収に対応する波数(1540cm-1または1430cm-1)、およびアンモニウムカチオンの吸収に対応する波数(2400cm-1)に吸収が確認される。
<オフトラックマージン特性の評価>
(記録素子および再生素子)
市販のLTOドライブ用の磁気ヘッドから記録素子を取り出し、第一の磁極(リーディング側磁極)のライトギャップ側先端部にイオンミリングによってトリミング加工を施した。こうして、第一の磁極の先端部幅W1が3.0μmであり、第二の磁極(トレーリング側)の先端部幅W2が3.0μmである記録素子を準備した。表1中、「記録素子トリミング加工の有無」の欄に「トリミング加工あり」と記載されている記録素子は、こうして準備された記録素子である。
再生素子としては、表1に示す再生素子幅のTMR素子を使用した。
(評価方法)
雰囲気温度23℃±1℃相対湿度50%の環境下にて、記録素子を備えた磁気ヘッドおよび再生素子を備えた磁気ヘッドを固定した1/2インチリールテスターに磁気テープを取り付け、記録および再生を行う際の磁気ヘッドと磁気テープとの相対速度を4m/秒として、データの記録および再生を行った。記録は線記録密度600kbpiで行い、記録パターンについては、63ビットおよび127ビット周期の疑似ランダムバイナリ系列を用いた。詳しくは、記録は以下のように行った。まず、第一トラックに63ビット周期の疑似ランダムバイナリ系列を記録した後、記録素子を備えた磁気ヘッドをテープ幅方向に1.0μmずらし、第一トラックを一部上書きするよう127ビット周期の疑似ランダムバイナリ系列を第二トラックとして記録した。
次に、再生素子を備えた磁気ヘッドを第一トラックのトラック中心に配置して再生し、再生を行った際の再生信号から元の記録系列を復元することにより、ビットエラーレートを求めた。その後、再生素子を備えた磁気ヘッドを第一トラックのトラック中心から徐々に第二トラックの方向に向かってテープ幅方向に移動させ、それぞれの再生位置における再生信号のビットエラーレートを評価した。第一トラック中心から第二トラック方向に向かって再生ヘッドを移動させるにつれ、ビットエラーレートは増加した。1×10-4以下のビットエラーレートが確保できる、再生ヘッドと第一トラック中心との最大距離を、「オフトラックマージン」として求めた。こうして求められるオフトラックマージンが100nm以上であれば、今後更なる高密度記録化に伴い予想されるより厳しいニーズにも対応可能な、良好なオフトラックマージン特性が得られたと評価することができる。後述の表1中、「評価不能」とは、磁気テープが、磁気ヘッドに貼り付いてしまったため走行不能であったことを意味する。
[実施例2~54、比較例1~39]
各種項目を表1(表1-1~表1-4)に示すように変更した点以外、実施例1と同様に磁気テープの作製およびオフトラックマージン特性の評価を行った。表1中、「記録素子トリミング加工の有無」の欄に「なし」と記載されている記録素子は、市販のLTOドライブ用の磁気ヘッドから取り出した記録素子であり、先に記載したトリミング加工は行わずにオフトラックマージン特性の評価のために使用した。この記録素子の第一の磁極の先端部幅W1は41.0μmであり、第二の磁極(トレーリング側)の先端部幅W2は3.0μmである。
[磁気テープの物性評価]
実施例および比較例の各磁気テープについて、以下の方法によって物性評価を行った。
<磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数(面積40μm×40μmあたり)>
AFMの測定条件として下記条件を採用し、実施例および比較例の各磁気テープの磁性層表面について、先に記載した方法によって上記範囲の円相当径を有する凹みの数(面積40μm×40μmあたり)を求めた。
AFM(BRUKER社製Nanoscope5)をピークフォースタッピングモードで用いて磁気記録媒体の磁性層の表面の面積40μm×40μmの領域を測定する。探針としてはBRUKER社製SCANASYST-AIRを使用し、分解能は512pixel×512pixelとし、スキャン速度は1画面(512pixel×512pixel)を512秒で測定する速度とする。
<円相当径50nm以上100nm未満の明部領域の数>
走査型電子顕微鏡(FE-SEM)として、日立製作所製FE-SEM S4800を用いて、以下の方法によって、実施例および比較例の各磁気テープの磁性層表面について、各磁気テープの磁性層表面について円相当径が50nm以上100nm未満の明部領域の数を求めた。
走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気テープの磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は5kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
以上の操作を、測定対象の磁気テープの磁性層表面の異なる箇所において100回実施する。
こうして取得された二次電子像を、画像処理ソフト(フリーソフトのImageJ)に取り込み、以下の手順により二値化処理を行う。
上記で取得された二次電子像を二値化処理するための閾値は、下限値を210諧調、上限値を255諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後、画像解析ソフト(フリーソフトのImageJ)において、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
こうして得られた二値化処理済み画像について、画像解析ソフト(フリーソフトのImageJ)によって、明部領域(即ち白色部分)の個数および各明部領域の面積を求める。ここで求められた明部領域の面積Aから、各明部領域の円相当径Lを、(A/π)^(1/2)×2=Lにより、算出する。
以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。
以上により、円相当径が50nm以上100nm未満の円相当径の明部領域の数(100画像における数の合計)を求める。
<磁気テープの総厚(テープ厚み)>
磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。各磁気テープについて、テープ厚みは、5.2μmであった。
以上の結果を、表1に示す。
磁気テープ作製時に垂直配向処理を行わなかった点以外、実施例1と同様の方法で磁気テープを作製した。
上記磁気テープからサンプル片を切り出した。このサンプル片について、振動試料型磁力計として玉川製作所製TM-TRVSM5050-SMSL型を用いて、先に記載した方法によって垂直方向角型比を求めたところ、0.55であった。
実施例1の磁気テープから切り出したサンプル片について同様に垂直方向角型比を求めたところ、0.60であった。
上記2つの磁気テープを、それぞれ1/2インチリールテスターに取り付け、以下の方法によって電磁変換特性(SNR;Signal-to-Noise Ratio)を評価した。その結果、実施例1の磁気テープについて、垂直配向処理なしで作製された上記磁気テープと比べて、2dB高いSNRの値が得られた。
温度23℃相対湿度50%の環境において、磁気テープの長手方向に0.7Nのテンションをかけて記録および再生を10パス行った。磁気テープと磁気ヘッドとの相対速度は6m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
本発明の一態様は、高密度記録用磁気記録媒体の技術分野において有用である。

Claims (10)

  1. 磁気記録媒体と、
    記録素子と、
    再生素子と、
    を含む磁気記録再生装置であって、
    前記記録素子は、
    磁界を発生させる第一の磁極と、
    ライトギャップを挟んで前記第一の磁極と離隔する第二の磁極と、
    を有するインダクティブ型記録素子であって、
    前記第一の磁極の先端部幅は、前記第二の磁極の先端部幅と略同一幅であり、
    前記再生素子の再生素子幅は、0.2μm以上0.5μm未満であり、
    前記磁気記録媒体は、
    非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
    前記磁性層の表面に存在する円相当径が0.10μm以上0.20μm未満の凹みの数が面積40μm×40μmあたり100個以上2000個以下である、磁気記録再生装置。
  2. 前記磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像において、円相当径が50nm以上100nm未満の明部領域の数が7000個以上25000個以下である、請求項1に記載の磁気記録再生装置。
  3. 前記磁気記録媒体の総厚は、5.2μm以下である、請求項1または2に記載の磁気記録再生装置。
  4. 前記磁気記録媒体は、前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~3のいずれか1項に記載の磁気記録再生装置。
  5. 前記磁気記録媒体は、前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~4のいずれか1項に記載の磁気記録再生装置。
  6. 前記バックコート層の非磁性粉末は、カーボンブラックを含む、請求項5に記載の磁気記録再生装置。
  7. 前記強磁性粉末は、六方晶バリウムフェライト粉末である、請求項1~6のいずれか1項に記載の磁気記録再生装置。
  8. 前記強磁性粉末は、六方晶ストロンチウムフェライト粉末である、請求項1~6のいずれか1項に記載の磁気記録再生装置。
  9. 前記強磁性粉末は、ε-酸化鉄粉末である、請求項1~6のいずれか1項に記載の磁気記録再生装置。
  10. 前記磁気記録媒体は、磁気テープである、請求項1~9のいずれか1項に記載の磁気記録再生装置。
JP2020217583A 2020-06-05 2020-12-25 磁気記録再生装置 Active JP7352536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/338,694 US20210383827A1 (en) 2020-06-05 2021-06-04 Magnetic recording and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020098439 2020-06-05
JP2020098439 2020-06-05

Publications (2)

Publication Number Publication Date
JP2021192327A JP2021192327A (ja) 2021-12-16
JP7352536B2 true JP7352536B2 (ja) 2023-09-28

Family

ID=78890700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020217583A Active JP7352536B2 (ja) 2020-06-05 2020-12-25 磁気記録再生装置

Country Status (1)

Country Link
JP (1) JP7352536B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249966B2 (ja) * 2020-01-24 2023-03-31 富士フイルム株式会社 磁気記録再生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023117A (ja) 1999-07-07 2001-01-26 Nec Corp 磁気抵抗効果型複合ヘッド及びそれを用いた磁気記憶装置並びに磁気抵抗効果型複合ヘッドの製造方法
JP2001110010A (ja) 1999-10-12 2001-04-20 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP2005085432A (ja) 2003-09-11 2005-03-31 Tdk Corp 薄膜磁気ヘッド及び磁気ディスク装置
JP2016194962A (ja) 2015-03-31 2016-11-17 富士フイルム株式会社 磁気記録媒体および磁気信号再生装置
JP2019003711A (ja) 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
JP2020009521A (ja) 2018-06-29 2020-01-16 富士フイルム株式会社 磁気テープ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023117A (ja) 1999-07-07 2001-01-26 Nec Corp 磁気抵抗効果型複合ヘッド及びそれを用いた磁気記憶装置並びに磁気抵抗効果型複合ヘッドの製造方法
JP2001110010A (ja) 1999-10-12 2001-04-20 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP2005085432A (ja) 2003-09-11 2005-03-31 Tdk Corp 薄膜磁気ヘッド及び磁気ディスク装置
JP2016194962A (ja) 2015-03-31 2016-11-17 富士フイルム株式会社 磁気記録媒体および磁気信号再生装置
JP2019003711A (ja) 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
JP2020009521A (ja) 2018-06-29 2020-01-16 富士フイルム株式会社 磁気テープ装置

Also Published As

Publication number Publication date
JP2021192327A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP7220165B2 (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP7249966B2 (ja) 磁気記録再生装置
JP7277394B2 (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP7220166B2 (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP7277395B2 (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP7277393B2 (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP7352535B2 (ja) 磁気記録再生装置
US11869555B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
JP2020123419A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20220270644A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20210383827A1 (en) Magnetic recording and reproducing device
JP7352536B2 (ja) 磁気記録再生装置
JP7377164B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7321124B2 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP7112979B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2022121901A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2022100077A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP7351811B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2022264956A1 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2023100879A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US11887636B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape apparatus
US20230245680A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
WO2023100878A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20230317110A1 (en) Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device
WO2022138310A1 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R150 Certificate of patent or registration of utility model

Ref document number: 7352536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150